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Part 1: Predicting and
Analyzing Protein structures
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AN INTRODUCTION TO PROTEIN
STRUCTURE PREDICTION
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Comparing SARS-CoV and SARS-CoV-2

Recall that after discussing alignment, we aligned
the SARS-CoV and SARS-CoV-2 genomes.
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Comparing SARS-CoV and SARS-CoV-2

Recall that after discussing alignment, we aligned
the SARS-CoV and SARS-CoV-2 genomes.

One of the most critical regions
encodes the spike protein,
which coats the surface of the
virus and binds to receptors on
the human ACE2 enzyme.
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What exactly does the spike protein do?

Model of Membrane Fusion by
SARS CoV-2 Spike Protein

https://www.youtube.com/watch?v=e2Qi-hAXdJo&t=18s
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Let’s align the spike proteins!

SARS-CoV genome has accession ID NC_004718.3.

Spike protein ranges from position 21492 to 25259

SARS-CoV-2 genome accession ID NC_045512.2.

Spike protein ranges from position 21563 to 25384.

Great free tool to translate gene from DNA to
protein at https://web.expasy.org/translate/.
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https://web.expasy.org/translate/

Let’s align the spike proteins!

MFIFLLFLTLTSGSDLDRCTTFDDVQAPNYTQHTSSMRGVYYPDEIFRSDTLYLTQDLFLPFYSNVTGFHTINHTFGNPVIPFKDGIYFAATEKSNVVR
GWVFGSTMNNKSQSVIIINNSTNVVIRACNFELCDNPFFAVSKPMGTQTHTMIFDNAFNCTFEYISDAFSLDVSEKSGNFKHLREFVFKNKDGFLYVYK
GYQPIDVVRDLPSGFNTLKPIFKLPLGINITNFRAILTAFSPAQDIWGTSAAAYFVGYLKPTTFMLKYDENGTITDAVDCSQNPLAELKCSVKSFEIDK
GIYQTSNFRVVPSGDVVRFPNITNLCPFGEVFNATKFPSVYAWERKKISNCVADYSVLYNSTFFSTFKCYGVSATKLNDLCFSNVYADSFVVKGDDVRQ
IAPGQTGVIADYNYKLPDDFMGCVLAWNTRNIDATSTGNYNYKYRYLRHGKLRPFERDISNVPFSPDGKPCTPPALNCYWPLNDYGFYTTTGIGYQPYR
VVVLSFELLNAPATVCGPKLSTDLIKNQCVNFNFNGLTGTGVLTPSSKRFQPFQQFGRDVSDFTDSVRDPKTSEILDISPCAFGGVSVITPGTNASSEV
AVLYQDVNCTDVSTAIHADQLTPAWRIYSTGNNVFQTQAGCLIGAEHVDTSYECDIPIGAGICASYHTVSLLRSTSQKSIVAYTMSLGADSSTAYSNNT
IAIPTNFSISITTEVMPVSMAKTSVDCNMYICGDSTECANLLLQYGSFCTQLNRALSGIAAEQDRNTREVFAQVKQMYKTPTLKYFGGFNFSQILPDPL
KPTKRSFIEDLLFNKVTLADAGFMKQYGECLGDINARDLICAQKFNGLTVLPPLLTDDMIAAYTAALVSGTATAGWTFGAGAALQIPFAMQMAYRFNGI
GVTQNVLYENQKQIANQFNKAISQIQESLTTTSTALGKLQDVVNQNAQALNTLVKQLSSNFGAISSVLNDILSRLDKVEAEVQIDRLITGRLQSLQTYV
TQQLIRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQAAPHGVVFLHVTYVPSQERNFTTAPAICHEGKAYFPREGVFVFENGTSWFITQR
NFFSPQIITTDNTFVSGNCDVVIGIINNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKY
EQYIKWPWYVWLGFIAGLIAIVMVTILLCCMTSCCSCLKGACSCGSCCKFDEDDSEPVLKGVKLHYT

MFVFLVLLPLVSSQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHATHVSGTNGTKRFDNPVLPFNDGVYFASTEKSN
ITIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLREFVFKNID
GYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLS
ETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVY
ADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSY
GFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGG
VSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQTNSPRRARSVASQSTII
AYTMSLGAENSVAYSNNSTAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDKNTQEVFAQVKQIYKTP
PIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIKQYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAG
AALQIPFAMQMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVNQNAQALNTLVKQLSSNFGATISSVLNDILSRLDKVEAE
VQIDRLITGRLQSLQTYVTQQLIRAAETIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQEKNFTTAPATCHDGKAHF
PREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNE
VAKNLNESLIDLQELGKYEQYIKWPWYIWLGFIAGLIAIVMVTIMLCCMTSCCSCLKGCCSCGSCCKFDEDDSEPVLKGVKLHYT

SARS-CoV

SARS-CoV-2

https://www.ebi.ac.uk/jdispatcher/psa/emboss_needle
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https://www.ebi.ac.uk/jdispatcher/psa/emboss_needle

Let’s align the spike proteins!

The spike proteins are extremely variable in some
regions. These have been primary focus in
determining why SARS-CoV-2 was more infectious.

1 667 1,281

RBD (74%) S2 Domain (90%)

\ J
1

S1 Domain
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Proteins Come in All Different Shapes

December 2020 November 2020 October 2020 September 2020
Hepatitis C Virus Adenylyl Cyclase Capsaicin Receptor TRPV1 SARS-CoV-2 RNA-dependent
Protease/Helicase RNA Polymerase

rT g '
e - I I
August 2020 July 2020 June 2020 May 2020
Phytosulfokine Receptor Myelin-associated SARS-CoV-2 Spike Spliceosomes

Glycoprotein

%

April 2020 March 2020 February 2020 January 2020
Photosynthetic Voltage-gated Sodium Coronavirus Proteases Twenty Years of Molecules
Supercomplexes Channels

https://pdb101.rcsb.org/motm/motm-by-date

© 2024 Phillip Compeau



The Shape of a Protein Influences

Function

,:’:':}‘z.“
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https://youtu.be/TfYf_rPWUdY
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A protein typically folds into the same
shape every time

https://www.youtube.com/watch?v=yZ2aY5IxEGE
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The Biological Problem is Clear

Protein Structure Prediction Problem

* Input: An amino acid string corresponding to a
protein.

* Output: The 3-D shape of the protein.

Nature has devised a “magic algorithm” solving
this biological problem. Can we reverse engineer
this algorithm?

© 2024 Phillip Compeau




The Russian Academy of Sciences’
Protein Institute...

MHcTuTyT 6enka Poccunckon akagemMmm Hayk Q

AcnupaHTtypa YueOHbli LeHTp LK KoHTakThb!

PykoBoacTeo OupekTopa Jlabopatopum 06 UncTuTyTE Matepuans!

NHctutyT 6enka PAH

WuctutyT 6enka PAH opraHuaosaH no NocraHosnenuto Mpeanguyma
Akapnemum Hayk CCCP 9 uioHst 1967 r. ¢ uenbio pa3sepTbiBaHUs
dyHaameHTanbHbIX UccnegosaHuii no npobneme Genka. B UHcTuTyTe
Tpyautcs 205 yenosek, U3 HUX 79 uccnepoesarenen: 69 Hay4YHbIX
coTpyaHukos u 10 MHXeHepoB-uccnegosarenei.

YaHatb 6onblie *
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...has tried to solve this problem for over
50 years!

26 Institute of Protein Russian Academy of Sciences Movek Q

Management Directors Labs About the Institute Materials Fellowship The educational center

Institute of protein RAS

The Institute of Protein of the Russian Academy of Sciences was organized
on the Decree of the Presidium of the Academy of Sciences of the USSR on
June 9, 1967 with the aim of developing fundamental research on the protein
problem. The Institute employs 205 people, including 79 researchers: 69
researchers and 10 research engineers.

© 2024 Phillip Compeau



Drug discovery often relies on finding
drugs that will bind to protein of interest

FDA tightens
100 regulation
' post-thalidomide

FDA clears backlog
following PDUFA
regulations plus small
bolus of HIV drugs

o

First wave of
biotechnology-
derived therapies

Number of drugs per billion US$ R&D spending*

o
s

1950 1960 1970 1980 1990 2000 2010

https://blogs.sciencemag.org/pipeline/archives/2012/03/08/erooms_law
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We can determine the shape of a protein
experimentally

https://www.youtube.com/watch?v=Qq8DO-4BnlY

© 2024 Phillip Compeau



So ... why not use cryo-EM for all
proteins?

The electron microscope needed can cost $5M or
more and cost a fortune to run.

© 2024 Phillip Compeau



So ... why not use cryo-EM for all
proteins?

The electron microscope needed can cost $5M or
more and cost a fortune to run.

And remember that just for humans, there are
between 600,000 and 6 million isoforms!
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So ... why not use cryo-EM for all
proteins?

The electron microscope needed can cost $5M or
more and cost a fortune to run.

And remember that just for humans, there are
between 600,000 and 6 million isoforms!

Key point: with today’s technology, we will never

be able to experimentally determine the structure
of all proteins.

© 2024 Phillip Compeau




GO g|€ tnt recipe

In English, some small
changes can cause enormous
differences in meaning ...

GO gle tnt recipe minecraft
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In proteins, some small mutations can
cause enormous structural changes ...

Normal cell Sickle cell

pro == glu == glu

Normal
hemoglobin

Sickle cell hemoglobin
forms long, inflexible chains

Normal red
blood cell Sickle cell

© 2024 Phillip Compeau Image courtesy: Sickle-Cell.com



... and yet some similar structures have
very different sequences!

Sequence Name 1. N 10 ) . ) 20 X . 30 . X 40
Hemoglobin_alpha_subunit
[(OHuman_H-a_A v r 3| p AWG Vv A
COMShark_H-a_A v 1 3] AK R EAES TP
OEmu_H-a_A 3| | p SVFA | p
Sequence |dentities

Human to Mako Shark: 43.26%

Human to Emu: 66.67%

Mako Shark to Emu: 36.17%

Mako Shark
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Two Big Picture Questions

Question 1: What is the 3-dimensional protein
corresponding to a string of amino acids?

MFVELVLLPLVSSQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLP
FFSNVTWFHAIHVSGTNGTKRFDNPVLPFNDGVYFASTEKSNIIRGWIFGTTLDSKT
QSLLIVNNATNVVIKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYV
SQPFLMDLEGKQGNFKNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVD
LPIGINITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTI
TDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVF
NATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADS
FVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLF
RKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVL
SFELLHAPATVCGPKKSTNLVKNKCVNFNFNGLTGTGVLTESNKKFLPFQQFGRDIA
DTTDAVRDPQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHAD
QLTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQTNSPRRA
RSVASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMY
ICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDKNTQEVFAQVKQIYKTPPIKDFG
GFNFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIKQYGDCLGDIAARDLICAQKF
NGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAALQIPFAMQMAYRFNGIGVT
QNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVNQNAQALNTLVKQLSSN
FGAISSVLNDILSRLDKVEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAA
TKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQEKNFTTAPAICH
DGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVNNTVYDP
LQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESL
IDLQELGKYEQYIKWPWYIWLGFIAGLIAIVMVTIMLCCMTSCCSCLKGCCSCGSCC
KFDEDDSEPVLKGVKLHYT

© 2024 Phillip Compeau

https://www.cas.org/blog/covid-19-spike-protein



Two Big Picture Questions

Question 2: How can we compare two (similar)
proteins on the level of structure?

Key Point: We want to
make conclusions about
how a change in the
structure of a protein (e.g.,
spike protein) affects the N
function of the protein. PRV

& &

BRp— BT ‘( e - .-}t;:t;
R R (e 0 Gt LAk S8 ROR CTE K8 R A 2R
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SOME NECESSARY
BIOCHEMISTRY
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What do we mean by “structure”?

A protein’s primary structure refers to the amino
acid sequence of its polypeptide chain.

MFVFLVLLPLVSSQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHATIHVSGTNGTKRFDNPVLPFNDGVYFA
STEKSNITRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNF
KNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKY
NENGTITDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSA
SFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFE
RDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFNGLTGTGVLTESNKK
FLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLI
GAEHVNNSYECDIPIGAGICASYQTQTNSPRRARSVASQSITAYTMSLGAENSVAYSNNSTIAIPTNFTISVTTEILPVSMTKTSVDCTMYICG
DSTECSNLLLQYGSFCTQLNRALTGIAVEQDKNTQEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIKQY
GDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAALQIPFAMQMAYRFNGIGVTQNVLYENQKLIANQFNSA
IGKIQDSLSSTASALGKLQDVVNQNAQALNTLVKQLSSNFGAISSVLNDILSRLDKVEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASAN
LAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQEKNFTTAPATICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIIT
TDNTFVSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQY
IKWPWYIWLGFIAGLIAIVMVTIMLCCMTSCCSCLKGCCSCGSCCKFDEDDSEPVLKGVKLHYT
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What do we mean by “structure”?

A secondary structure is a repeating substructure

that forms as a substructure of the overall folded
protein.

.. Alpha helix Beta sheet
A L ry
Ly @& oY e = |

@ ) 7 ) A 4

https://ib.bioninja.com.au/higher-level/topic-7-nucleic-acids/73-translation/protein-structure.html
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What do we mean by “structure”?

A protein’s tertiary structure describes its final 3D
shape after the polypeptide chain has folded and
is chemically stable. This is what we most

commonly refer to as the “structure” of a protein.

Human Hemoglobin Subunit Alpha

https://www.rcsb.org/structure/1S14

© 2024 Phillip Compeau




What do we mean by “structure”?

Some proteins have a quaternary structure, which
describes the protein’s interaction with other
copies of itself to form a single functional unit, or
a multimer.

Hemoglobin is a
multimer consisting of
two alpha subunits and
two beta subunits.

https://commons.wikimedia.org/wiki/File:1GZX_Haemoglobin.png
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A note on the spike protein

The spike protein is a homotrimer, formed of
three essentially identical units called chains, each

one translated from the same genome region.

© 2024 Phillip Compeau




A note on the spike protein

And each chain is formed of two subunits that
itself is formed of independently folding domains
that are each responsible for a specific interaction
or function.

1 667 1,281

RBD (74%) S2 Domain (90%)

\ J
1

S1 Domain
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A bit more biochemistry

An amino acid’s central alpha carbon atom is

connected to four different molecules:

1. a hydrogen atom (H)

2. a carboxyl group (-COOH)

3. an amino group (-NH,)

4. a side chain (denoted “R”), which differs
between amino acids.

T8
 H- N—(IZ—C OH
.

Side-Group
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A bit more biochemistry

To form a polypeptide chain, consecutive amino
acids are linked together during a condensation
reaction in which the amino group of one amino
acid is joined to the carboxyl group of another,
while a water molecule (H,O) is expelled.

H\ /R }Ti C||) H\ /R I_|| cl?

B o0 = o RO N O h
IT‘ (I% ) H/N\/C\/C\O/H '\Il (I?I/ /C\ S
H O R H H o R H

S
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A bit more biochemistry

The resulting N-C bond that is produced, called
a peptide bond, is very strong. The peptide has
very little rotation around this bond, which is
almost always locked at 180°. The polypeptide
chain is formed of consecutive peptide bonds.

Protein Backbone
H H O H H O H H O
J:LN C C N C C N C C—QI:I_
R Bond R B d R

© 2024 Phillip Compeau




A bit more biochemistry

The bonds within an amino
acid are not as rigid. The
polypeptide is free to rotate
around these two bonds. This
rotation produces two angles of
interest, called the phi angle
(b) and psi angle (), where
the alpha carbon connects to
its amino group and carboxyl
group, respectively.

© 2024 Phillip Compeau



Proteins are flexible and can therefore
form a huge number of shapes

This video illustrates how changing ¢ and @ at an
amino acid can drastically change a protein’s shape.

Peptide Bonds

Courtesy: Jacob Elmer, https://youtu.be/TusemtlYe_s
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A good analogy for polypeptide
flexibility is the “Rubik’s Twist” puzzle

© 2024 Phillip Compeau




Proteins are flexible and can therefore
form a huge number of shapes

A polypeptide with n amino acids has n - 1 peptide
bonds, meaning n - 1 ¢ angles and n - 1 ¥ angles.
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Proteins are flexible and can therefore
form a huge number of shapes

A polypeptide with n amino acids has n - 1 peptide
bonds, meaning n - 1 ¢ angles and n - 1 ¥ angles.

If each bond has k stable conformations, then the
polypeptide has k?7-? potential structures!
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Proteins are flexible and can therefore
form a huge number of shapes

A polypeptide with n amino acids has n - 1 peptide
bonds, meaning n - 1 ¢ angles and n - 1 ¥ angles.

If each bond has k stable conformations, then the
polypeptide has k?7-? potential structures!

The ability for the magic algorithm to find a single
conformation despite such an enormous number of
potential shapes is called Levinthal’s paradox.

© 2024 Phillip Compeau




Mutations aren’t made alike
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Amino acids’ side chain variety
produces different chemical properties

A. Amino Acids with Electrically Charged Side Chains

Positive Negative
. A
Arginine Histidine Lysine Aspartic Acid Glutamic Acid
(arg) () (His) (3) ) (3 (Asp) (3) o 3
o o
o
NH, NH
(o]
(o] (o]
>0
NH
B. Amino Acids with Polar Uncharged Side Chains C. Special Cases
Serine Threonine Asparagine Glutamine Cysteine Glycine Proline
isen ) ) tasn) () (Gln) (3) <y @ sy ® (pre)

%o /o) /o)

/o) %o /o) “o
o o o o ° 0:<\ o
NH, NH, NH, NH, NH, NH, NH
HO
OH o SH
NH, O
NH,

D. Amino Acids with Hydrophobic Side Chains

Alanine Valine Isoleucine Leucine Methionine Phenylalanine Tyrosine Tryptophan

(ala) Y wvah (D we) ) (Lew) (B met) (T) Phe) (3 oy €9 (Trp) Q

333+ ERE

Courtesy: Technology Networks
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Proteins seek the lowest potential energy
conformation

We can view protein folding as finding the tertiary
structure that is the most stable given a polypeptide’s
primary structure (i.e., has lowest potential energy).
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Proteins seek the lowest potential energy
conformation

We can view protein folding as finding the tertiary
structure that is the most stable given a polypeptide’s
primary structure (i.e., has lowest potential energy).

The potential energy (a.k.a. free energy) of a protein
is the energy stored within it due to its position,
state, and arrangement. It derives from the protein’s
bonds as well as non-bonded energy (e.g.,
electrostatic interactions and van der Waals forces).

© 2024 Phillip Compeau




Electrostatic interactions occur between
amino acids of opposite charge

A. Amino Acids with Electrically Charged Side Chains

Positive
“ A ginine Histidine Ly?
(Arg) (His) {3 (Lys)
4o 4o 4o
(o) (o] (o]
NH, NH, NH,
N
NH \ANH
H2N~<
NH,

Negativ
- = TN
Aspartic Acid Glutamic Acid
(Asp) (Glu) §=
“o
o
NH,
(@)
© 0

Courtesy: Technology Networks
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What are van der Waals forces?

= U
ke ~

Atoms are dynamic :
systems, with electrons .

constantly buzzing
around the nucleus. At | | % ,:
any given moment, they = ‘\

are probably relatively e
uniform. Y

S AE X e
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What are van der Waals forces?

Due to random chance, electrons may accumulate
on one side of an atom, creating a temporary “pole”
that causes this effect in nearby atoms as well.
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A classic analogy of proteins finding
lowest energy conformation

Imagine a ball on a slope; gravity causes it to tend to
move down the slope. Similarly, a polypeptide tends
toward lower energy conformations.

Low energy High Energy
Stable Unstable
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AB INITIO PROTEIN
STRUCTURE PREDICTION
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ab initio Protein Structure Prediction

Biochemists have produced scoring functions
called force fields that compute the potential energy
of a candidate protein structure.

ab initio Protein Structure Prediction Problem
* Input: An amino acid polypeptide and a force

field.

* Output: The tertiary structure for this polypeptide

having minimum potential energy, given this force
field.

© 2024 Phillip Compeau




ab initio Protein Structure Prediction

Unfortunately, even simple versions of this problem
wind up being NP-Hard ...

ab initio Protein Structure Prediction Problem
* Input: An amino acid polypeptide and a force

field.

* Output: The tertiary structure for this polypeptide
having minimum potential energy, given this force

field.
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ab initio Protein Structure Prediction

STOP: What does this problem remind us of?

ab initio Protein Structure Prediction Problem
* Input: An amino acid polypeptide and a force

field.

* Output: The tertiary structure for this polypeptide
having minimum potential energy, given this force

field.
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ab initio Protein Structure Prediction

Answer: This is an optimization problem, and the
search space is all conformations of the polypeptide.

Courtesy: David Beamish.
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ab initio Protein Structure Prediction

STOP: What algorithm for ab initio structure
prediction might you use?

Courtesy: David Beamish.
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A “Local Search” Algorithm for Protein
Structure Prediction

. Start with an arbitrary protein conformation.

. Make slight changes to the structure in a variety
of ways to produce “neighbors”.

. Consider the neighbor with optimal score. Is its
score better than the current structure?

« If “yes”, update the current
structure to this neighbor and
Iterate at step 2.

 If “no”, return the current
structure.
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A “Local Search” Algorithm for Protein
Structure Prediction

1. Start with an arbitrary protein conformation.

2. Make slight changes to the structure in a variety
of ways to produce “neighbors”.

3. Consider the neighbor with optimal score. Is its
score better than the current structure?

« If “yes”, update the current
structure to this neighbor and
Iterate at step 2.

 If “no”, return the current
structure.

STOP: How could we improve this method?
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Improving Local Search

Idea 1: Run algorithm on many different initia
values (although search space is huge).

Idea 2: Provide some “jiggle” to allow candidate
solutions to “bounce” out of local optima.
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Courtesy: David Beamish




Quantifying “Jiggle”

When considering a “neighbor” S’ of a candidate

protein structure S:

 If energy(§’) < energy(S), update S = S’

 If energy(§’) > energy(S), then update S = S with
probability proportional to Aenergy = energy(S) —
energy(S’).
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Quantifying “Jiggle”

When considering a “neighbor” S’ of a candidate

protein structure S:

 If energy(§’) < energy(S), update S = S’

 If energy(§’) > energy(S), then update S = S with
probability proportional to Aenergy = energy(S) —
energy(S’).

Classic function: exp(Aenergy / T), where T is a
“temperature” constant or function. This is called
simulated annealing because of the analogy of
reducing the temperature of a metal slowly.
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The “Hotter” the Temperature, the More

// iggle//

-

Plotting Aenergy against exp(Aenergy/T)

0.7
Probability —
of changing //
structure — T=100

0.

/
/
//
0.2
/4= 10
St : 1 // |
| | Courtésy: Carl Kingsfolrd | | Aenergy
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Over time, we lower T, lowering
probability of changing structure

Plotting Aenergy against exp(Aenergy/T)

0.7
Probability —
of changing //
structure — T=100

0.

/
/
//
0.2
/4= 10
St : 1 // |
| | Courtésy: Carl Kingsfolrd | | Aenergy
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The problem with ab initio algorithms

Because the search space is so large, and we need
to run an algorithm with a lot of initial structures, ab
initio algorithms still are extremely slow to finish.
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The problem with ab initio algorithms

Because the search space is so large, and we need
to run an algorithm with a lot of initial structures, ab
initio algorithms still are extremely slow to finish.

STOP: Say that it’s January 2020. Researchers have
sequenced and annotated the SARS-CoV-2 genome,
but they have not experimentally determined the
structure of the spike protein. What might we do?
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HOMOLOGY MODELING

2024 Phillip Compeau
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Key point: if the search space of all conformatlons
[_} 4 of the SARS-CoV-2 spike protein is enormous, why
= [s not restrict the search space to structures that are

’I Slmllal‘ to the shape of the SARS- CoV splke protem?




Homology modeling

This idea serves as the foundation of homology
modeling for protein structure prediction (a.k.a.
comparative modeling). By using the known protein
structure of a homologous protein as a template, we
can in theory improve both the accuracy and speed
of protein structure prediction.

© 2024 Phillip Compeau




Homology modeling

This idea serves as the foundation of homology
modeling for protein structure prediction (a.k.a.
comparative modeling). By using the known protein
structure of a homologous protein as a template, we
can in theory improve both the accuracy and speed
of protein structure prediction.

STOP: If we do not know which template to use

before we begin, how could we find a suitable
template?
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Homology modeling

This idea serves as the foundation of homology
modeling for protein structure prediction (a.k.a.
comparative modeling). By using the known protein
structure of a homologous protein as a template, we
can in theory improve both the accuracy and speed
of protein structure prediction.

Answer: One natural thing to do would be to search
for similar sequences for our novel protein in a
database using an algorithm like BLAST.
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Homology modeling

This idea serves as the foundation of homology
modeling for protein structure prediction (a.k.a.
comparative modeling). By using the known protein
structure of a homologous protein as a template, we
can in theory improve both the accuracy and speed
of protein structure prediction.

STOP: Once we have a template, how might we use

what we have learned to perform homology
modeling?
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How does homology modeling work?

One idea is to include an extra “similarity term” in
our energy function. The more similar a structure is
to the template, the more this similarity term
decreases the function we are minimizing.

f(S) = energy(S) — similarity(S, template)
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How does homology modeling work?

One idea is to include an extra “similarity term” in
our energy function. The more similar a structure is
to the template, the more this similarity term
decreases the function we are minimizing.

f(S) = energy(S) — similarity(S, template)

Think of the template :

protein as “pulling
down” nearby structures

in the search space.

https://www.yout be.com/atch?v=cHySthb-rk
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How does homology modeling work?

Some algorithms assume that very conserved
(similar) regions in two genes correspond to
essentially identical structures in the proteins.

1 667 1,281

RBD (74%) S2 Domain (90%)

\ J
1

S1 Domain
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How does homology modeling work?

Some algorithms assume that very conserved
(similar) regions in two genes correspond to
essentially identical structures in the proteins.

We can then use fragment libraries, or known
protein substructures, to fill in the non-conserved
regions and produce a final structure. This approach
to homology modeling is called fragment assembly.
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How does homology modeling work?

Some algorithms assume that very conserved
(similar) regions in two genes correspond to
essentially identical structures in the proteins.

We can then use fragment libraries, or known
protein substructures, to fill in the non-conserved
regions and produce a final structure. This approach
to homology modeling is called fragment assembly.

Note: we will use this idea in a SARS-CoV-2
challenge to predict its spike protein structure.

© 2024 Phillip Compeau




Popular platforms predict structure
distributed over many users’ computers

e

Greg Bowman @drGregBowman - Mar 16
As promised, here is our first glimpse of the #C0OVID19 spike protein (aka
the demogorgon) in action, courtesy of @foldingathome . More to come!

https://twitter.com/drGregBowman/status/1239629911310192640

@ 123.7K views

Q 92 Tl 1K O 3K 2

y 7 2
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COMPARING PROTEIN
STRUCTURES

2024 Phillip Compeau



Recall our Second Question

Question 2: How can we compare two similar
proteins (e.g., a predicted and experimental
structure) quantitatively?
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Comparing protein structures is
analogous to comparing shapes

Goal: Develop a “distance function d(S, T) that
quantifies how different shapes S and T are.

)
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Comparing protein structures is
analogous to comparing shapes

STOP: Consider the two shapes in the figure below.
How similar are they?

)
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Comparing protein structures is
analogous to comparing shapes

The two shapes are in fact the same! We can
superimpose/flip/rotate the red shape to see why.
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First, align shapes to have same center of
mass

Idea: To define d(S, T), first translate/flip/rotate S so

that the resulting shape is as similar to T as possible.
Then, determine how different the shapes are.
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First, align shapes to have same center of
mass

Idea: To define d(S, T), first translate/flip/rotate S so
that the resulting shape is as similar to T as possible.
Then, determine how different the shapes are.

We will first translate S to have the same centroid
(a.k.a. center of mass) as 7. The centroid of S is the
point (xs, ys) such that xs is the average of x-
coordinates on the boundary of S and y; is the
average of y-coordinates on the boundary.
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First, align shapes to have same center of
mass

STOP: Let S be the semicircular arc below. What is
the centroid of this shape?

('1/ O) (1/ O)
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First, align shapes to have same center of
mass

Answer: The x-coordinate is easy (0), but the y-
coordinate is trickier and requires us to integrate
over the y-values of the entire semicircle.

T .
B /o siné
ys =
” o)
—cosz + cos() 0, 2/m)

T
2 (-1, 0) (1,0)
T
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Next, rotate and flip S to resemble T as
closely as possible

Kabsch algorithm: uses singular value
decomposition (matrix algebra) to find flip/rotation
of one shape that causes it to be “as similar as
possible” to the other shape.
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Next, rotate and flip S to resemble T as
closely as possible

Kabsch algorithm: uses singular value
decomposition (matrix algebra) to find flip/rotation
of one shape that causes it to be “as similar as
possible” to the other shape.

That is, we must be looking for a rotation/flip
minimizing some function between the two shapes.
But what function?
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Determining Similarity of Aligned
Shapes with RMSD

Sample n points along the boundary of S and T,
converting S and T into vectors s = (sq, ..., S,)
and [ = (t1, ceoy tn)
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Determining Similarity of Aligned
Shapes with RMSD

Sample n points along the boundary of S and T,
converting S and T into vectors s = (sq, ..., S,)
and [ = (t1, ceoy tn)

We then compute the root mean square deviation
(RMSD) between the two shapes,

1
RMSD(s, 1) = \/n . (d(Sl,I1)2 + d(SQ,tz)z + .- + d(s,, tn)z)

the square root of the average squared distance
between corresponding points in the vectors.
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An example of computing RMSD

Consider the two shapes shown below.
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An example of computing RMSD

We vectorize by sampling n = 4 points from each.

“60@_. @ oo

/

O 2.2
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An example of computing RMSD

Exercise: Compute the RMSD for this example.

“60@_. @ oo

2, 5) e/ e 6, 5)

(2, 4) (4, 4)

1,3
4, 5) a RMSD(s, 1) = \/% (d(s1,11)" + d(s2,1)% + + + d(5p, 1,)%)

O 2.2
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An example of computing RMSD

We first find the distances between corresponding
points.

1,3
4, 5) a RMSD(s, 1) = \/% (d(s1, 1) +d(s2,12)% + o + d(5p, 1))

V2
O 22
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An example of computing RMSD

RMSD = V((1/4) * 2 + 1 + 4 + 2)) =(9/4) = 3/2.

“60@ . @ e o
V2

/

25 @ 2 O 6>

1

(2, 4) (4, 4)

1,3
4, 5) c RMSD(s, 1) = \/% (d(s1,11)" + d(s2,1)% + + + d(5p, 1,)%)

V2
O 22
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An example of RMSD

STOP: Do you see any issues with using RMSD?

“60@ . @ e o

/ V2

1
RMSD(s, 1) = \/ - (d(s1,11)% + d(s2,12)° + -+ + d(sp, 1,)%)

O 22
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Undersampling can cause issues

Because we didn’t sample enough points here,
RMSD is zero, but the shapes are not the same.
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Undersampling can cause issues

In practice, researchers take the “alpha carbon”
atom from each amino acid to vectorize a structure
and prevent undersampling.

Protein Backbone
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Comparing proteins of differing lengths

The situation below (an inserted substructure) would
throw off RMSD for every alpha carbon after #2.

/e\

GXG
000 606 00—
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Comparing proteins of differing lengths

STOP: Any ideas on how we could handle situations
like this?

/9\

°><°
000 606 00—
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Comparing proteins of differing lengths

Answer: First, we align the protein sequences; then,
any gap columns will not contribute to RMSD.

/9\

GXG
000 606 00—
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Small protein changes can have a huge
Impact on RMSD

Here are two protein structures that are identical
except for changing a single bond angle (red).

O
\Q O
O -
1 e o—©
0—0 o 9 N,
@/ NG O (6
0 s /

© 2024 Phillip Compeau



Small protein changes can have a huge
Impact on RMSD

The Kabsch algorithm will align proteins as shown
on the right and miss the similarities.
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Comparing structures locally

We also haven’t discussed how to compare
structures locally; i.e., at the same position.
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Comparing structures locally

STOP: Why would d(s;, t;) be a bad comparison at
the i-th alpha carbon? (Hint: look at i = 6.)
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Comparing structures locally

Answer: The proteins aren’t really different most
spots (positions 1-3, 4-9 are identical substructures).

O
\QQ
O, e
i 08 o e
-0 o O 9 -~
9/\/ QQ
0 Q/\/
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Comparing structures locally

STOP: Do you have any ideas for a better way of
comparing structures locally?

O
\QQ
O, e
i 08 o e
-0 o O 9 -~
e/\/ QO
o) Q/\/
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Comparing structures locally

Note: The set of intraprotein distances d(s, s)) is
similar to the distances d(t, t).

O
\O O
O -
1 e o—©
0—0 o 9 N,
@/ NG O (6
0 s /
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Contact maps help us visualize
intraprotein distances

Contact map: for some threshold ¢, given a structure
S, color cell (i, j) black if d(s;, 5j) < t and white
otherwise.

SARS-CoV-2 Spike (6vxx) Cutoff = 20.0 A contact map SARS (5xIr) Cutoff = 20.0 A contact map
g . - . 1.0 4 v = -y 1.0
| :!( R e },,» - 3000 ocess ek LI Y,"
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2500 <; e . | N 2 ., ‘-’(~< 1 ¢ o ._:, ; 3 : —-J'(s
f Ry ) ' 0.8 ey 8 o 0.8
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1 ', 2000 4
] stew 5 2 0.6 . 0.6
8 ol F .
‘ " .
2 1500 1 £, % 15001 .-
(3] | [
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| Y ' - 0.4 L 0.4
1000 1 - i 1000 o ?
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] ' W
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Contact maps help us visualize
intraprotein distances

STOP: How might we use a contact map to look for
local regions of similarity in protein structures?

SARS-CoV-2 Spike (6vxx) Cutoff = 20.0 A contact map SARS (5xIr) Cutoff = 20.0 A contact map
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Contact maps help us visualize
intraprotein distances

Answer: Comparing the i-th row over two maps tells
us whether to investigate differences at the i-th

amino

acid.
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2500 4
*
2000 1
-
© 1500
v

b
o

1000 4

» 8 ’ ;o
T e ey

' 2

£ K|

0 500

1000 1500 2000 2500
Residue

ct map

- 0.4

0.2

—- 0.0

2
% 15004 .-
o

SARS (5xIr) Cutoff = 20.0 A contact map
s —r—

3000 o

2500 4

2000 4

1000 4

500 4

0 500

1000 1500 2000 2500 3000
Residue

1.0

0.8

0.6

- 0.4

0.2

- 0.0

© 2024 Phillip Compeau




Q per residue offers a single value for
how much two proteins differ locally

Q per residue (Qres): defined as follows.

00 — 1 m%es T [d(si, 5;) — d(tiatj)]z]

res T
N —k 2
j#i—1,ii+1 2%

* N is the number of amino acids in each protein;

* kisequal to 2 when i is at either the start or the
end of the protein, and k is equal to 3 otherwise;

* the variance term o2 is equal to |/ — /1%, so that
nearby amino acids have more influence.

© 2024 Phillip Compeau




Q per residue offers a single value for
how much two proteins differ locally

residues
(i) 1 Z o [d(s;, s;) — d(t;, tj)]z]

Qres T
N -k 2.
e 20}

STOP: What happens to the interior term of the sum

it d(s;, s;) is comparable to d(t;, t;)?
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Q per residue offers a single value for
how much two proteins differ locally

residues n
- 1 [d(si, s;) — d(t;, 1)]
0% =—— ) expl- : ]
Nk 20;;

STOP: What happens to the interior term of the sum

it d(s;, s;) is comparable to d(t;, t;)?

Answer: It heads toward exp(0) = 1.
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Q per residue offers a single value for
how much two proteins differ locally

residues n
- 1 [d(si, s;) — d(t;, 1)]
0% =—— ) expl- . ]
N ji—1,ii+1 20;;

STOP: What happens to the interior term of the sum

it d(s;, s;) is very different to d(t;, t)?
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Q per residue offers a single value for
how much two proteins differ locally

residues n
(i) 1 Z o [d(s;, 57) — d(t;, 1))] |

Qres T
=k 2.
N e 20}

STOP: What happens to the interior term of the sum

it d(s;, s;) is very different to d(t;, t)?

Answer: It heads toward exp(-o0) = O.

© 2024 Phillip Compeau




Q per residue offers a single value for
how much two proteins differ locally

residues
(i) 1 Z o [d(si, s;) — d(8;, tj)]z]

Qres T
N -k 2.
e 20}

STOP: So, what are the possible values of Qres?
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Q per residue offers a single value for
how much two proteins differ locally

residues
0) 1 Z eXp[— [d(sia Sj) e d(tia tj)]z]

Qres T
N -k 2.
e 20}

STOP: So, what are the possible values of Qres?

Answer: Qres ranges from O when proteins are very
different at the i-th position, to 1 when proteins are
identical at the i-th position.
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PROTEIN STRUCTURE PREDICTION
IS SOLVED! (KINDA?)
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CASP contests establish best structure
prediction algorithms

Critical Assessment of protein Structure Prediction
(CASP): contest run every two years since 1994 that
tests structure prediction algorithms against each
other on known (hidden) protein structures.
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CASP contests establish best structure
prediction algorithms

Critical Assessment of protein Structure Prediction
(CASP): contest run every two years since 1994 that
tests structure prediction algorithms against each
other on known (hidden) protein structures.

DeepMind -

CASP14 (2020) was
dominated by
“AlphaFold”, a
deep learning =
a I go rlth m p rOd u Ced Alphalold: a solution to

a 50-year-old grand

by Dee P Mind. challenge in biology
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Instead of RMSD, CASP scores a
predicted structure using a different test

For some threshold t, we first take the percentage of
alpha carbon positions for which the distance
between corresponding alpha carbons in the two

structures is at most t.
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Instead of RMSD, CASP scores a
predicted structure using a different test

For some threshold t, we first take the percentage of
alpha carbon positions for which the distance
between corresponding alpha carbons in the two
structures is at most t.

The global distance test (GDT) score averages the
percentages obtained when t is equal to each of 1,
2, 4, and 8 angstroms. A GDT score of 90% is good,

and a score of 95% is excellent (comparable to
minor experimental errors).
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So, how well did AlphaFold do?

Here’s the plot of GDT scores for AlphaFold (blue)

and the 2" place method (orange), produced by
same lab that developed Rosetta@Home.

IIIIIIIIIII

Source: Mohammed AlQuraishi, https:/bit.ly/39Mnym3.
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https://bit.ly/39Mnym3

So, how well did AlphaFold do?

To show how decisive the victory is, here is 2nd
place vs. the 37 place method (submitted by the
Yang Zhang lab).

Source: Mohammed AlQuraishi, https:/bit.ly/39Mnym3.
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https://bit.ly/39Mnym3

DeepMind received lots of positive press

Structures of a protein that were predicted by artificial intelligence (blue) and experimentally determined (green)
match almost perfectly. DEEPMINI

‘The game has changed.” Al triumphs at solving protein
structures

[ ]
| CICNCE
By Robert F. Service | Nov. 30, 2020, 10:30 AM
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But some scientists remain skeptical

AlphaFold obtained a median RMSD of 1.6, but to
be trustworthy for a sensitive application like
designing drug targets, it would need an RMSD
about 90% lower.
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But some scientists remain skeptical

AlphaFold obtained a median RMSD of 1.6, but to
be trustworthy for a sensitive application like
designing drug targets, it would need an RMSD
about 90% lower.

~1/3 of AlphaFold’s CASP14 predictions have an
RMSD over 2.0, an often-used threshold for whether
a predicted structure is reliable. And there is no way
of knowing in advance whether AlphaFold will
perform well on a given protein, unless we validate
the protein’s structure, which causes a catch-22.
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AlphaFold is Still Pretty, Pretty Good

zg Institute of Protein Russian Academy of Sciences Movex a

Management Directors Labs About the Institute Materials Fellowship The educational center CcsC

Institute of protein RAS

The Institute of Protein of the Russian Academy of Sciences was organized
on the Decree of the Presidium of the Academy of Sciences of the USSR on
June 9, 1967 with the aim of developing fundamental research on the protein
problem. The Institute employs 205 people, including 79 researchers: 69
researchers and 10 research engineers.

Nevertheless, we may never again see such an
improvement to the state of the art in a problem that
has puzzled biologists for fifty years.
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Part 2: A Story About
Peptide Sequencing




Let’s Hear From Karl Pilkington on the
Infinite Monkey Theorem

https://www.youtube.com/watch?v=FWs0ujLrGI0O
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Karl is a wise man

€he New Hork Eimes

Monkeys-s-s Typing Is-s a Mess-s-s

@ Give this article ~ m

By The Associated Press
May 10, 2003 1 MIN READ

Give an infinite number of monkeys an infinite number of
typewriters, the theory goes, and they will eventually produce the
complete works of Shakespeare.

Give six monkeys one computer for a month, and they will make a
mess.

Researchers at Plymouth University in England reported this week
that monkeys left alone with a computer failed to produce a single
word.

"They pressed a lot of S's,"" said Mike Phillips, a researcher in the
project which was paid for by the Arts Council.
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Last Time: We Used RNA as Proxy for

Gene Expression

Translated peptides

Transcribed RNA
DNA

Transcribed RNA

Translated peptides

—>
GluThrPheSerLeuVal***SerIle
***AsnPhePheLeuGlyLeuIleAsn
ValTyrGlnAsnPheTrpProPheLeulys

GUGAAACUUUUUCCUUGGUUUAAUCAAUAU

5' GTGAAACTTTTTCCTTGGTTTAATCAATAT 3
3' CACTTTGAAAAAGGAACCAAATTAGTTATA 5'

CACUUUGAAAAAGGAACCAAAUUAGUUAUA

HisPheLysLysArgProLysIleLeulle
PheSerLysGlyGlnAsnLeu***Tyr
SerValLysGluLysThr***AspIle

-
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But the Central Dogma Has Exceptions

DNA replication
(DNA -> DNA)

DNA Polymerase

DO dNA
RNA replication

reverse transcription
Lranscription (DNA -> RNA) (RNA->RNA)

Rev.Transcriptase RNA Polymerase

LAY (+) Sense RNA (-) Sense RNA pfTT IupfTT P T,

translation RNA Dependent
(RNA -> Protein) RNA Polymerase
Ribosomes

O-O-0O-0O-0O-0-0 Protein
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Antibiotic Peptides Can Be Produced
Outside the Genetic Code

NRP synthetase: multi-module protein; each
module adds single amino acid to peptide.

Module 1 Module 2 Module 3 Module 4 Module 5 Modules 6-10

et aegeds

NNNNN

Completed cyclic
Tyrocidine B1

DNA

=N§ ...... =
| Y=<

RNA

Linear Tyrocidine B1
before circularization

Prote@ é
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Antibiotic Peptides Can Be Produced
Outside the Genetic Code

So how could we sequence this antibiotic peptide?

Module 1 Module 2 Module 3 Module 4 Module 5 Modules 6-10

k

f w%

:<

o
/
= %H o /
i}
?{ J NH,
o
NH
r o
e 9. HO 3
NH
0
o

:NHS """" /_<\ Completed cyclic
DIA Y’\i Tyrocidine B1
RNA
Linear Tyrocidine B1
before circularization

Prote@ é
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Another Application of Peptide
Sequencing: Dino Peptides

Science. 2007 Apr 13,316(5822):280-5.

Protein sequences from mastodon and Tyrannosaurus rex revealed by mass spectrometry.
Asara JM', Schweitzer MH, Freimark LM, Phillips M, Cantley LC.

+ Author information

Abstract
Fossilized bones from extinct taxa harbor the potential for obtaining protein or DNA sequences that could reveal evolutionary links to

extant species. We used mass spectrometry to obtain protein sequences from bones of a 160,000- to 600,000-year-old extinct mastodon
(Mammut americanum) and a 68-million-year-old dinosaur (Tyrannosaurus rex). The presence of T. rex sequences indicates that their
peptide bonds were remarkably stable. Mass spectrometry can thus be used to determine unique sequences from ancient organisms
from peptide fragmentation patterns, a valuable tool to study the evolution and adaptation of ancient taxa from which genomic
sequences are unlikely to be obtained.
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A Scientific Battle Over Statistics

Science. 2007 Apr 13,316(5822):280-5.

Protein sequences from mastodon and Tyrannosaurus rex revealed by mass spectrometry.

Asara JM', Schweitzer MH, Freimark LM, Phillips M, Cantley LC.

@ Author information

Abstract
Fossilized bones from extinct taxa harbor the potential for obtaining protein or DNA sequences that could reveal evolutionary links to

extant species. We used mass spectrometry to obtain protein sequences from bones of a 160,000- to 600,000-year-old extinct mastodon
(Mammut americanum) and a 68-million-year-old dinosaur (Tyrannosaurus rex). The presence of T. rex sequences indicates that their
peptide bonds were remarkably stable. Mass spectrometry can thus be used to determine unique sequences from ancient organisms
from peptide fragmentation patterns, a valuable tool to study the evolution and adaptation of ancient taxa from which genomic
sequences are unlikely to be obtained.

Science. 2008 Aug 22;321(5892):1040; author reply 1040. doi: 10.1126/science.1155006.

Comment on "Protein sequences from mastodon and Tyrannosaurus rex revealed by mass
spectrometry”.

Pevzner PA', Kim S, Ng J.

+ Author information

Abstract
Asara et al. (Reports, 13 April 2007, p. 280) reported sequencing of Tyrannosaurus rex proteins and used them to establish the

evolutionary relationships between birds and dinosaurs. We argue that the reported T. rex peptides may represent statistical artifacts and
call for complete data release to enable experimental and computational verification of their findings.
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Basics of Mass Spectrometry

Mass spectrometer: a machine that fragments a
peptide into two pieces, ionizes the fragments, and
then measures the mass-charge ratio of fragments.
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Basics of Mass Spectrometry

Mass spectrometer: a machine that fragments a
peptide into two pieces, ionizes the fragments, and
then measures the mass-charge ratio of fragments.

An MS machine can only read short
fragments, so we typically first break
long proteins into short pieces using
other proteins called proteases. gl
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Basics of Mass Spectrometry

Mass spectrometer: a machine that fragments a
peptide into two pieces, ionizes the fragments, and
then measures the mass-charge ratio of fragments.

An MS machine can only read short
fragments, so we typically first break
long proteins into short pieces using
other proteins called proteases. gl

Note: the fragmentation process is messy and
somewhat unpredictable.
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Sample T. rex Spectrum

Mass spectrum: range of intensities of fragments
detected at each mass-charge ratio (denoted m/z)
for a given peptide.

100
Intensity
0 JL[ Ll .J.ﬂl Lh nm. tJ t L \ ! | PN § TV T
0 200 400 600 800 1000 1200
m/z
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Sample T. rex Spectrum

Most common charge is z = +1, so we can compare
all peptide fragment masses against a spectrum
using a table of amino acid masses (in Daltons).

G A S5 P M T € L L N D K Q E M H F R Y W
57 Z1 87 9799101 103 113 113 114 115 128 128 ¥29 131 137 147 156 163 186

100
Intensity
0 JL[ " .J.ﬂl Lh nm. tJ t Lo \ S| NN § IV
0 200 400 600 800 1000 1200

m/z
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"Annotating” This T. rex Spectrum by
GIVGAPGILRGLPGK

In this case, y12++ means that this peak
corresponds to a charge z of +2.

b;: prefix peptide of length i
v;: suffix peptide of length i

100 + b! b2 b3 b4 b5 b6 b7 b8 b9 b10b11 b12b13  yi2++
GLVGAPGLRGLPGK

y13 y12 y11 y10 y9 y8 y7 y6 y5 y4 y3 y2 vy1
b11

Intensity

y4
Lys
O _._.J._..L__.. |.J......J. 1

tm.Lﬂl LL' tJ { L \ all L, J.. y12e13

|im| . .
0 200 400 600 800 1000 1200 m/z
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How Could we Determine Which

Annotation is “Better”?

100 | b1 b2 b3 b4 b5 b6 b7 b8 b9 b10

ATKIVDCFMTY

y4

y7
y10y9 y8 y7 y6 y5 y4 y3 y2 yi
y8
Intensity b6
y3
y2 m ys v6
b3
0 __L“,L‘__ |_¢_u_1 _._M..L.L.A..__‘Jﬂl. N I o L ‘.| 1 “ .[blga de
0 200 400 600 800 1000 1200
m/z
100 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 y12++
GLVGAPGLRGLPGK oo
y13 y12 y11 y10 y9 y8 y7 y6 y5 y4 y3 y2 vyi
b11
Intensity
y4
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O _._.J_-..L_.. |.4__._._J. Lllis .Jﬂl AT wlu \ |ll L l:.l._..__..}/_j_.z..t:‘].:.g_. .o
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Toward a Computational Problem

Peptide Sequencing Problem:

* Input: A mass spectrum spectrum and a peptide-
spectrum scoring function Score().

*  Output: An amino acid string peptide that
maximizes Score(peptide, spectrum) over all
amino acid strings.

An entire area of research is devoted to deriving
robust peptide-spectrum scoring functions.
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Toward a Computational Problem

Exercise: Count the following two things.

1. The number of possible peptides of length 10.

2. The number of peptides of length 10 in the
human proteome (20,000 genes, average length
~400 amino acids).
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Toward a Computational Problem

Exercise: Count the following two things.

1. The number of possible peptides of length 10.

2. The number of peptides of length 10 in the
human proteome (20,000 genes, average length
~400 amino acids).

Answer:
1. 20 choices at each position, so 2010 ~ 10 trillion.

2. Approx. 20,000 * 400 = 8 million.

© 2024 Phillip Compeau



The Problem with Peptide Sequencing

Peptide Sequencing Problem:

* Input: A mass spectrum spectrum and a peptide-
spectrum scoring function Score().

*  Output: An amino acid string peptide that
maximizes Score(peptide, spectrum) over all
amino acid strings.

The highest-scoring peptide is often not in the
proteome being considered, missing the biologically
correct protein that produced a spectrum.
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From Peptide Sequencing to
Identification

Peptide Identification Problem:

* Input: A mass spectrum spectrum, a peptide-
spectrum scoring function Score(), and a
database proteome of amino acid strings.

*  Output: An amino acid string peptide that
maximizes Score(peptide, spectrum) over all
amino acid strings from proteome.

a brute force algorithm, which we call
Peptideldentification(), is reasonable because the
size of proteome is manageable.
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Peptide Identification Over a Spectrum
Database

So, for a family of spectra and a proteome database,
we aim to find the collection of peptides scoring at
least t against a spectrum for some choice of t.

PSMSearch(spectra, proteome, t)
PSMSet € an empty set
for every mass spectrum spectrum in spectra
peptide < Peptideldentification(spectrum, proteome)
if Score(peptide, spectrum) >t
PSMSet € append(PSMSet, spectrum)
return PSMSet
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Peptide Identification Over a Spectrum
Database

If for some threshold parameter t, we find that the
highest-scoring peptide peptide in proteome scores
at least t against spectrum, then we call (peptide,
spectrum) a peptide-spectrum match (PSM).

PSMSearch(spectra, proteome, t)
PSMSet € an empty set
for every mass spectrum spectrum in spectra
peptide < Peptideldentification(spectrum, proteome)
if Score(peptide, spectrum) >t
PSMSet € append(PSMSet, spectrum)
return PSMSet
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Reported Peptides for T. rex

After collecting thousands of spectra, the T. rex
researchers consulted collagen proteins in the
Uniprot database (hundreds of species), along with
mutations. (P, is a hydroxylated version of proline.)

ID Peptide Protein

2 GLVGAPGLRGLPGK Collagen o1t2
P2 GVVGLP,,GOR Collagen a1t1
P3 GVQGPP,,GPQGPR Collagen a1t1
P4 GATGAP.,GIAGAP,,GFPohGAR Collagen altl
G5 GLPGESGAVGPAGPIGSR Collagen a2t1
P6 GSAGPP,,GATGFPohGAAGR  Collagen altl
p7 GAPGPQGPSGAP,,GPK Collagen o1t1
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Reported Peptides for T. rex

STOP: How can we determine if a single reported
PSM is any good?

ID Peptide Protein

2 GLVGAPGLRGLPGK Collagen o1t2
2 GVVGLP,,GOR Collagen a1t1
P3 GVQGPP,,GPQGPR Collagen a1t1
P4 GATGAP,,GIAGAP,,GFPohGAR Collagen altl
5 GLPGESGAVGPAGPIGSR Collagen a2t1
P6 GSAGPP,,GATGFPohGAAGR  Collagen alt1
p7 GAPGPQGPSGAP,,GPK Collagen o1t1
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Reported Peptides for T. rex

Answer: Rather than ask “Is this peptide above the
threshold?”, we ask “What are the odds that a PSM
of this quality would occur in a random database?”

ID Peptide Protein

2 GLVGAPGLRGLPGK Collagen o1t2
B2 GVVGLP,,GOR Collagen a1t1
P3 GVQGPP,,GPQGPR Collagen a1t1
P4 GATGAP,,GIAGAP,,GFPohGAR Collagen altl
5 GLPGESGAVGPAGPIGSR Collagen a2t1
P6 GSAGPP,,GATGFPohGAAGR  Collagen alt1
p7 GAPGPQGPSGAP,,GPK Collagen o1t1
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The Monkey and the Typewriter

Exercise: What is the probability that if a monkey

typed 11 English letters, that the monkey would type
SHAKESPEARE?
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The Monkey and the Typewriter

Answer: 1/2611.
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The Monkey and the Typewriter

Exercise: What is the expected number of times that

SHAKESPEARE would occur in 20 million randomly
generated "words” of length 11¢
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The Monkey and the Typewriter

Answer: Expected number in one word is the
probability of SHAKESPEARE, 1/26'". Expected
number over all words is 20 million - (1/26'") = 5.45
- 1077,
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The Monkey and the Typewriter

Answer: Expected number in one word is the
probability of SHAKESPEARE, 1/26'". Expected
number over all words is 20 million - (1/26'") = 5.45
- 1077,

This calculation relies on a probabilistic fact called
the linearity of expectation: the expected value E(X;
+ X, + ... + X,) is equal to E(X;) + E(X;) + ... + E(X,)
for any collection of random variables X;, X,, ..., X, .
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The Monkey and the Typewriter

Exercise: What is the expected number of
occurrences of all words from an English dictionary
in a randomly generated string of length n?
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The Monkey and the Typewriter

Answer: Expected number of occurrences of a single
string word is (n — |word| + 1) - (1/26lwerdl) If n is
large, then this is approximately n - (1/26/wordl),
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The Monkey and the Typewriter

Answer: Expected number of occurrences of a single
string word is (n — |word| + 1) - (1/26lwerdl) If n is
large, then this is approximately n - (1/26/wordl),

Linearity of expectation yields that the expected
number of occurrences of all words is
approximately

n-yY 6 |WOI‘d|).

each string word in dictionary (1 /2
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The Monkey and Peptide Identification

Before: “What are the odds of a monkey typing an
English word?”

Now: “What are the odds of a PSM with such a
good score appearing due to random chance?”
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The Monkey and Peptide Identification

Before: “What are the odds of a monkey typing an
English word?”

Now: “What are the odds of a PSM with such a
good score appearing due to random chance?”

Given a PSM (peptide, spectrum) with score s,
define its PSM dictionary as the set of all peptides
scoring at least s against spectrum.
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The Monkey and Peptide Identification

PSM Dictionary Problem (solvable)

* Input: An amino acid string peptide , a mass
spectrum spectrum, and a peptide-spectrum
scoring function Score().

* Output: The set of all amino acid strings having
score at least Score(peptide, spectrum).

Given a PSM (peptide, spectrum) with score s,
define its PSM dictionary as the set of all peptides
scoring at least s against spectrum.
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The Monkey and Peptide Identification

We will then compare a given PSM dictionary
against a randomly generated decoy proteome
having the same size n as the real protein database —
what is the expected number of hits that we find
from the PSM dictionary in the decoy?

Given a PSM (peptide, spectrum) with score s,
define its PSM dictionary as the set of all peptides
scoring at least s against spectrum.
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The Monkey and Peptide Identification

We will then compare a given PSM dictionary
against a randomly generated decoy proteome
having the same size n as the real protein database —
what is the expected number of hits that we find
from the PSM dictionary in the decoy?

STOP: If the score of the PSM is good, what does
this mean for the expected number of hits against
the decoy proteome?
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The Monkey and Peptide Identification

We will then compare a given PSM dictionary
against a randomly generated decoy proteome
having the same size n as the real protein database —
what is the expected number of hits that we find
from the PSM dictionary in the decoy?

Answer: It will be very low (hopefully close to zero)
because the dictionary will have few strings.
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The Monkey and Peptide Identification

Define E(Dictionary, n) as the expected number of
hits in the PSM dictionary Dictionary against a
decoy proteome containing n amino acids.
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The Monkey and Peptide Identification

Define E(Dictionary, n) as the expected number of
hits in the PSM dictionary Dictionary against a
decoy proteome containing n amino acids.

From our previous work with the monkey and the
typewriter, we know that

E(Dictionary, n) = n + Zeach peptide in dict, (1/20 IPeptidel),
We denote the sum as Pr(Dictionary).
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The Monkey and Peptide Identification

Note: This assumes a peptide can have up to n hits
in a database with n amino acids, but there are < n
substrings of length peptide in a real database.

From our previous work with the monkey and the
typewriter, we know that

E(Dictionary, n) = n + Zeach peptide in dict, (1/20 IPeptidel),
We denote the sum as Pr(Dictionary).
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Running this Analysis on the T. rex PSMs

The authors of the T. rex peptide paper released the
~31,000 spectra they had found, allowing the
following statistical analysis.

ID Peptide Protein Probability
P1 GLVGAPGLRGLPGK Collagen «1t2  1.8-107*
P2 GVELD 1 EOR Collagen o1t1 7.6 - 108
P3 GVQGPP o, GPQGPR Collagen a1t1  7.9-107""
Pd civeael iacie cheohtnn Gollisenalil 20 10
P5 CEPOECCACREACEICSR Collagen o2t1 9.9-10"*
P6  csncrP s cnNneEPelEEACR i Collagen il 30 10
P7 GAPGPQGP SGAP ., GPK Collagen «1t1  7.0-107°
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Running this Analysis on the T. rex PSMs

Problem 1: When we use expected values, we see
that at least two of the hits are very poor.

ID Peptide Protein Probability  n - Probability
P1 GLVGAPGLRGLPGK Collagen o1t2  1.8-107* 36,000

P2 GVELD 1 COR Collagen o1t1 7.6 - 108 16

P3 GVQGPP ., GPQGPR Collagen a1t1  7.9-107"" 1.6 - 1072
Pd civeapl ciacae heohcnn Gollisknalil o) 10 6.4 10
P5 CEPOECCACEACEICSR Collagen o2t1 9.9-10"* 900
P6  CsncPP s cnNICEPolERACR i Collagen il 30 10 6.4-10°
P7 GAPGPQGP SGAP,,GPK Collagen «1t1  7.0-107° 14107
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Running this Analysis on the T. rex PSMs

Problem 2: Other researchers found a more
significant PSM that was a match with ostrich
hemoglobin (hemoglobin mutates fast and has never
been recovered from much younger fossils).

ID Peptide Protein Probability  n - Probability
P1 GLVGAPGLRGLPGK Collagen o1t2  1.8-107* 36,000

P2 GVELD 1 EOR Collagen o1t1 7.6 - 108 16

P3 GVQGPP ., GPQGPR Collagen a1t1 79107 1.6 - 1072
Pd civeapl ciacae cheohtnn Gollisenalil a0 10 6.4 10
P5 CEPOECCACREACEICSH Collagen o2t1 9.9-10"* 900
P6  CsncPP s cnNICEPolERACR i Collagen il & 30 10 6.4-10°
P7 GAPGPQGP SGAP ., GPK Collagen «1t1  7.0-107° 14107
P8 VNVADCGAEALAR Hemoglobin 3 7.8-107"7 1.6-10°
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Running this Analysis on the T. rex PSMs

Problem 3: For the sake of fairness, we should
search spectra against all vertebrate proteins (with
up to 1 mismatch). This produces even more baffling
results ...

ID Peptide Protein Probability  n - Probability
P9  EDCLSGAKPK AIG7Z (Chicken) . 3.2:10712 6410
P10 ENAGEDPGLAR DCD (Human) = 271072 5ditpt
Pl EcUDAC A ConEs - P (Moise) 12 10 T
P12 SWIHVALVTGGNK CBR1 (Human) 1.2.-107"2 Dok o
P13 SSNVLSGSTLR MAMD1 (Human) 5.9.10713 80t
P14 DEVTPAYVVVAR  ASPM (Mouse) 1.9.107"3 18
P15 RNVADCGAEALAR HBB (Ostrich) 3.5-107"° 72007
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Running this Analysis on the T. rex PSMs

Problem 4: The researchers had worked with ostrich

samples beforehand (and ostrich shows up with low
probability in both analyses).

ID Peptide Protein Probability  n - Probability
P9  EDCLSGAKPK AIG7Z (Chicken) . 3.2:10712 6410
P10 ENAGEDPGLAR DCD (Human) = 271072 5ditpt
Pl EcUDAC A ConEs - P (Moise) 12 10 T
P12 SWIHVALVTGGNK CBR1 (Human) 1.2.-107"2 Dok o
P13 SSNVLSGSTLR MAMD1 (Human) 59103 80t
P14 DEVTPAYVVVAR  ASPM (Mouse) 1.9.107"3 18 10
P15 RNVADCGAEALAR  HBB (Ostrichy 3.5-107"° 72007
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Scientists Are Still Hopeful about Dino
Science that Might Not Be Possible
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Scientists Are Still Hopeful about Dino
Science that Might Not Be Possible

@) Entrepreneur @ @Entrepreneur - Jun 16, 2015

Scientists Say They Can Recreate Living Dinosaurs Within the Next 5 Years
entm.ag/1R51yQS by @Geoff_Weiss
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Scientists Are Still Hopeful about Dino
Science that Might Not Be Possible

Zmargotz v
@sissypantz

Can we get an update on this

) Entrepreneur @ @Entrepreneur - Jun 16, 2015

Scientists Say They Can Recreate Living Dinosaurs Within the Next 5 Years
entm.ag/1R51yQS by @Geoff_Weiss

9:36 AM - Mar 28, 2020 - Twitter for iPhone

121.9K Retweets 615.1K Likes
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