This is the best video to introduce a computational biology course. There will never be a better one.
How Do We Compare Biological Sequences?

Dynamic Programming

Assembling Genomes

© 2024 Phillip Compeau
Eternity II: The Highest-Stakes Puzzle in History

Courtesy: Matej Bat'ha
AN INTRODUCTION TO GENOME SEQUENCING
The Newspaper Problem

stack of NY Times, June 27, 2000
The Newspaper Problem

stack of NY Times, June 27, 2000

stack of NY Times, June 27, 2000 on a pile of dynamite
The Newspaper Problem

stack of NY Times, June 27, 2000

stack of NY Times, June 27, 2000 on a pile of dynamite

this is just hypothetical

© 2024 Phillip Compeau
The Newspaper Problem

stack of NY Times, June 27, 2000

stack of NY Times, June 27, 2000
on a pile of dynamite

this is just hypothetical

BOOM
The Newspaper Problem

- stack of NY Times, June 27, 2000
- stack of NY Times, June 27, 2000 on a pile of dynamite
- this is just hypothetical

© 2024 Phillip Compeau
The Newspaper Problem

- Stack of NY Times, June 27, 2000
- Stack of NY Times, June 27, 2000 on a pile of dynamite
- This is just hypothetical

- BOOM
- So, what did the June 27, 2000 NY Times say?

© 2024 Phillip Compeau
The Newspaper Problem

STOP: How would you reconstruct the news?
The Newspaper Problem is an overlap puzzle.
The Newspaper Problem

But what does this have to do with biology?
DNA is a Double Helix of Nucleotide Strands

DNA’s Double Helix (1953)

DNA’s Molecular Structure
Courtesy: Madprime, Wikimedia Commons

© 2024 Phillip Compeau
Nucleotide: Half of one “rung” of DNA.

Four choices for the nucleic acid of a nucleotide:

1. Adenine (A)
2. Cytosine (C)
3. Guanine (G)—bonds to C
4. Thymine (T)—bonds to A
The Order of Nucleotides Determines Genetics

Nucleotide: Half of one “rung” of DNA.

Key point: if we know one strand of DNA, we get the other strand for free because of this “complementarity”.

DNA’s Molecular Structure

Courtesy: Madprime, Wikimedia Commons

© 2024 Phillip Compeau
Genome “Sequencing” Means “Reading” the Genome

Genome: The nucleotide sequence read down one side of an organism’s chromosomosal DNA. A human genome has about 3 billion letters.

...CCGTAGTCGCATGGAACAGTATACGAGACAGTACAGATACGATACGATACGATACGATCATTAACCGAGAGTACCAGATTCCAGATCATACG TTACGCTTAGCTACGGACGTACGATACCCAGATTACGATCCATATAGATATAACCGGTGTGTCCTTGCTAATACGTAACGGGGTGCCT TCGATAGGTCAGAATACCAGATCTCTCGATCTTCTTTACAGATACTACGATCCCCATAGCTACTACCCCTACTGACCCATCGTACGGGTA CTACTACGGATATGATACCGATGAGGGGATCCATATACGCTCGCGCCATAAGATCATCGTCTAGATACACGTACGTA CTAAGACTAGCGTATGCTTATGATCGTCCCGATCGAGTCGCGTGCTCAGAAAAGCTACGATACGATACCCGATACTAGACCATAG...
Genome: The nucleotide sequence read down one side of an organism’s chromosomal DNA. A human genome has about 3 billion letters.

Polychaos dubium (an amoeba) has one of the longest known genomes: 670 billion nucleotides.
Genome “Sequencing” Means “Reading” the Genome

Genome: The nucleotide sequence read down one side of an organism’s chromosomal DNA. A human genome has about 3 billion letters.

...CCG TAGT GCATGGAAACAAGTATACGAGACAGTACAGATACGATACGATACGATACGATATTAACCGAGAGTACCATGATACCCCATCAGATACGGTTACGCTTAGCTACGGACGTACGATACCCAGATTACGATCCATATAGATATAACCGGTGTGTCTTGCTAATACGTAACGGGGTGCCCTTCGATAGGTCAGAATACCAGATCTCTCGATCTTCTTACAGATACTACGATCCCCAGATACTACCCCTACTGACCCATCGTGACGGGTACTACCTACCCGATGACGTAGGGGATCCATATATCCCGAGACGTCTCGCGCATAAGATCATCGTCTAGATACACGTACGTACTAGACTAGCGTATGCCTCTTATGATCGTCCCGATCGAGTCGCGTGCTCAGAAAAGCTACGATACGATACCCGATACTAGACCATAG...

Key Point: DNA is submicroscopic! How do we read something that we cannot see?
We Sequence a Species’s Genome to Unlock its Genetic Identity

Darwin’s notebook c. 1837

Hug et al., 2016
Nature Biotechnology, Discovery Magazine
We Sequence an Individual’s Genome to Find What Makes them Unique

2011: First person whose life was saved because of genome sequencing.
Ten years later, genome sequencing saves a life in 13 hours

Source: Owen et al. 2021
Late 1970s: Walter Gilbert and Frederick Sanger develop independent sequencing methods.

Bacterial phage PhiX174 genome (5,386 nucleotides)

© 2024 Phillip Compeau
History of Genome Sequencing

Late 1970s: Walter Gilbert and Frederick Sanger develop independent sequencing methods.

1980: They share the Nobel Prize in Chemistry.
History of Genome Sequencing

Late 1970s: Walter Gilbert and Frederick Sanger develop independent sequencing methods.

1980: They share the Nobel Prize in Chemistry.

However, their approaches cost about $1 per nucleotide.
The Race to Sequence the Human Genome

1990: Human Genome Project given $3 billion to sequence human genome.

James Watson
The Race to Sequence the Human Genome

1990: Human Genome Project given $3 billion to sequence human genome.

1992: James Watson resigns, replaced by Francis Collins.
The Race to Sequence the Human Genome

1990: Human Genome Project given $3 billion to sequence human genome.

1992: James Watson resigns, replaced by Francis Collins.

1997: Craig Venter founds Celera Genomics with same goal.
The Race to Sequence the Human Genome

2000: First draft of human genome published.
Early 2000s: Many more mammalian genomes are sequenced using Sanger’s approach.
Problem: This approach was just too expensive to scale to thousands of species.
Sequencing Cost Has Fallen Faster than Moore’s Law

Cost per Raw Megabase of DNA Sequence

Moore’s Law

NIH National Human Genome Research Institute

genome.gov/sequencingcosts

© 2024 Phillip Compeau
GISAID collects 400k-2 Million SARS-CoV-2 Genomes in One Year - Two Years

© 2024 Phillip Compeau
Scientists aim to sequence 1.5M eukaryotes before 2030
Dark Secret: The First *Full* Human Genome Wasn’t Sequenced Until 2020!

© 2024 Phillip Compeau
We Now Have Over 2 Million Human Genomes

100,000 Genomes: Sequenced 100,000 UK resident genomes (2012-2018).
Overview of Genome Sequencing

Multiple identical copies of a genome
Overview of Genome Sequencing

Multiple identical copies of a genome

Shatter the genome into reads

AGAATATCA

GAGAATATC

TGAGAATAT
Overview of Genome Sequencing

Multiple identical copies of a genome

Shatter the genome into reads

Sequence the reads (Lab)
Overview of Genome Sequencing

Multiple identical copies of a genome

Shatter the genome into reads

Sequence the reads

(Computational)

Assemble the genome using overlapping reads

(Computational)
Overview of Genome Sequencing

Multiple identical copies of a genome

Shatter the genome into reads

Sequence the reads

(Exprimental)

Assemble the genome using overlapping reads

(Computational)

What does genome sequencing remind you of?
Genome Assembly = Overlap Puzzle
Interlude: How Are Reads Sequenced?

https://www.youtube.com/watch?v=fCd6B5HRaZ8
A COMPUTATIONAL PROBLEM FOR GENOME ASSEMBLY
Practical Sequencing Complications

1. DNA may be divided over multiple chromosomes.

2. Reads have imperfect “coverage” of the underlying genome – there may be some regions that are not covered by any reads.

3. Sequencing machines are error-prone.

4. DNA is double-stranded.
Making Some Assumptions is OK!

1. A genome consists of a **single chromosome**.

2. Reads have **perfect “coverage”** of the underlying genome – every possible starting position gets sampled by the sequencer.

3. Sequencing machines are **error-free**.

4. DNA is **single-stranded**.

© 2024 Phillip Compeau
Formulating a Computational Problem for Genome Assembly

Genome Assembly Problem

- **Input:** A collection of strings *Reads*.
- **Output:** A string *Genome* reconstructed from *Reads*.
Formulating a Computational Problem for Genome Assembly

Genome Assembly Problem

• **Input:** A collection of strings *Reads*.
• **Output:** A string *Genome* reconstructed from *Reads*.

STOP: Is this a well-defined problem?
Formulating a Computational Problem for Genome Assembly

Genome Assembly Problem
- **Input:** A collection of strings *Reads*.
- **Output:** A string *Genome* reconstructed from *Reads*.

STOP: Is this a well-defined problem?

Answer: No! We have no sense of what it means to “reconstruct” a genome.
Formulating a Computational Problem for Genome Assembly

The \textit{k-mer composition} of a string \textit{Text}, denoted \textit{Composition}_k(\textit{Text}), is the collection of all \textit{k}-mer substrings of \textit{Text} (including repeats).

\begin{center}
\begin{tabular}{c}
NANABANANA \\
NAN \\
ANA \\
NAB \\
ABA \\
BAN \\
ANA \\
NAN \\
ANA
\end{tabular}
\end{center}

3-mer composition
We want to solve the reverse problem: given a collection of strings, find a string having this collection as its k-mer composition.

String Reconstruction Problem

- **Input:** A collection of strings $patterns$ and an integer k.
- **Output:** A string $Text$ whose k-mer composition is equal to $Patterns$.

© 2024 Phillip Compeau
Toward a Computational Problem

String Reconstruction Problem
- **Input:** A collection of strings *patterns* and an integer *k*.
- **Output:** A string *Text* whose *k*-mer composition is equal to *Patterns*.

STOP: Now is this a well-defined computational problem?
Toward a Computational Problem

STOP: Now is this a well-defined computational problem?

Answer: Not quite ... what if Patterns = {AAA, ZZZ}?
Toward a Computational Problem

STOP: Now is this a well-defined computational problem?

Answer: Not quite ... what if Patterns = \{AAA, ZZZ\}?

String Reconstruction Problem

- **Input:** A collection of strings patterns and an integer k.
- **Output:** A string Text whose k-mer composition is equal to Patterns (if such a string exists).
SOLVING THE STRING RECONSTRUCTION PROBLEM?
Exercise: Reconstruct the string corresponding to the following 3-mer composition.

AAT ATG GTT TAA TGT
Exercise: Reconstruct the string corresponding to the following 3-mer composition.

```
AAT  ATG  GTT  TAA  TGT
TAA
AAT
ATG
TGT
GTT
TAATGTT
```
"Greedy" algorithm: for each k-mer, look for the k-mer of maximum overlap in each direction.

TAA
AAT
ATG
TGT
GTT
TAATGTT
“Greedy” algorithm: for each k-mer, look for the k-mer of maximum overlap in each direction.

Genome assembly is trivial! We can pack up and go home.
"Greedy" algorithm: for each k-mer, look for the k-mer of maximum overlap in each direction.

Genome assembly is trivial! We can pack up and go home.

Exercise: Apply this algorithm to the 3-mer composition at right.
Toward an Algorithm for Genome Assembly

AAT
ATG
ATG
ATG
ATG
CAT
CCA
GAT
GCC
GGA
GGG
GTT
TAA
TGC
TGG
TGT

© 2024 Phillip Compeau
Toward an Algorithm for Genome Assembly

<table>
<thead>
<tr>
<th>TAA</th>
<th>AAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATG</td>
<td>ATG</td>
</tr>
<tr>
<td>ATG</td>
<td>CAT</td>
</tr>
<tr>
<td>CCA</td>
<td>GCC</td>
</tr>
<tr>
<td>GAT</td>
<td>GCA</td>
</tr>
<tr>
<td>GGA</td>
<td>GGG</td>
</tr>
<tr>
<td>GGG</td>
<td>GTT</td>
</tr>
<tr>
<td>GTT</td>
<td>TAA</td>
</tr>
<tr>
<td>TGC</td>
<td>TGA</td>
</tr>
<tr>
<td>TGG</td>
<td>TGT</td>
</tr>
</tbody>
</table>
Toward an Algorithm for Genome Assembly

TAA
 AAT
AAT
 ATG

TAAT
 GAT
 GCC
 GGA
 GGG
 GTT

TAA
 TGC
 TGG
 TGT

© 2024 Phillip Compeau
Toward an Algorithm for Genome Assembly

STOP: Which one should we choose?
Toward an Algorithm for Genome Assembly

TAA
AAT
ATG
ATG
TGC

TAATGC

© 2024 Phillip Compeau
Toward an Algorithm for Genome Assembly

AAT
AAT
ATG
ATG
CAT
CCA
GAT
GCC
GGA
GGG
GTT
TAA
TAA
TGC
TGG
TGT

TAATGCC
Toward an Algorithm for Genome Assembly

TAATGCCA

© 2024 Phillip Compeau
Toward an Algorithm for Genome Assembly

TAA
AAT
ATG
TGC
GCC
CCA
CAT

TAATGCCAT

© 2024 Phillip Compeau
Toward an Algorithm for Genome Assembly

TAA
AAT
ATG
TGC
GCC
CCA
CAT
ATG

AAT
ATG
ATG
ATG
CAT
CCA
GAT
GCC
GGA
GGG
GTT
TAA
TGC
TGG
TGT

© 2024 Phillip Compeau
Toward an Algorithm for Genome Assembly

TAA
AAT
ATG
TGC
GCC
CCA
CAT
ATG
TGG
TAATGCCATGG

AAT
ATG
ATG
ATG
CAT
CCA
GAT
GCC
GGA
GGG
GTT
TAA
TGC
TGG
TGT

© 2024 Phillip Compeau
Toward an Algorithm for Genome Assembly

TAA
AAT
ATG
TGC
GCC
CCA
CAT
ATG
TGG
GGA

TAATGCCATGGA

© 2024 Phillip Compeau
Toward an Algorithm for Genome Assembly

TAATGCCCATGGGAT

© 2024 Phillip Compeau
Toward an Algorithm for Genome Assembly

TAA
AAT
ATG
TGC
GCC
CCA
CAT
ATG
TGG
GGA
GAT
G

© 2024 Phillip Compeau
Toward an Algorithm for Genome Assembly

TAATGCCCATGGGATGT

© 2024 Phillip Compeau
Toward an Algorithm for Genome Assembly

TAA
AAT
ATG
TGC
GCC
CCA
CAT
ATG
TGG
GGA
GAT
ATG
TGT
TT
TAATGCCATGGATGTT

AAT
ATG
ATG
ATG
CAT
CCA
GAT
GCC
GGA
GGG
GTT
TAA
TGC
TGG
TGT

© 2024 Phillip Compeau
Toward an Algorithm for Genome Assembly

STOP: Why did our algorithm fail?
Toward an Algorithm for Genome Assembly

Answer: Repeated substrings!
Repeats Make Eternity II Unsolvable ...
… Even a 16-piece “Triazzle” Can Take a Human Hours to Solve...

Courtesy: Dan Gilbert

© 2024 Phillip Compeau
Repeats are very common in genomes; the 300-nucleotide Alu repeat occurs over a million times (with minor changes) in every human genome.
Repeats are very common in genomes; the 300-nucleotide Alu repeat occurs over a million times (with minor changes) in every human genome.

So what hope do we have of assembling a genome?
GENOME ASSEMBLY AS A HAMILTONIAN PATH PROBLEM
Solution to Previous Exercise

STOP: Is this the only solution?
We Can View a Genome as a “Path” in a Graph

Genome path: assign each read to a node, connect adjacent reads with edges.
We Can View a Genome as a “Path” in a Graph

Genome path: assign each read to a node, connect adjacent reads with edges.

STOP: Can you still see the genome?
We Can View a Genome as a “Path” in a Graph

Genome path: assign each read to a node, connect adjacent reads with edges.

STOP: Can you still see the genome?

STOP: Could you construct the genome path if you only knew the 3-mer composition?
We Can View a Genome as a “Path” in a Graph

Genome path: assign each read to a node, connect adjacent reads with edges.

STOP: Can you still see the genome?

Answer: No ... we need to know the order of the k-mers.
A Graph Can Represent All Overlapping Strings

- **Prefix**: First $k - 1$ letters in a k-mer.
- **Suffix**: Last $k - 1$ letters in a k-mer.

© 2024 Phillip Compeau
A Graph Can Represent All Overlapping Strings

- **Prefix**: First $k - 1$ letters in a k-mer.
- **Suffix**: Last $k - 1$ letters in a k-mer.

Overlap Graph: Form a node for each read in *Patterns*, then connect x to y if $\text{Suffix}(x) = \text{Prefix}(y)$.
A Graph Can Represent All Overlapping Strings

- **Prefix**: First $k - 1$ letters in a k-mer.
- **Suffix**: Last $k - 1$ letters in a k-mer.

Overlap Graph: Form a node for each read in *Patterns*, then connect x to y if $\text{Suffix}(x) = \text{Prefix}(y)$.

© 2024 Phillip Compeau
A Graph Can Represent All Overlapping Strings

- **Prefix**: First $k - 1$ letters in a k-mer.
- **Suffix**: Last $k - 1$ letters in a k-mer.

Overlap Graph: Form a node for each read in *Patterns*, then connect x to y if $\text{Suffix}(x) = \text{Prefix}(y)$.

© 2024 Phillip Compeau
A Graph Can Represent All Overlapping Strings

- **Prefix:** First $k - 1$ letters in a k-mer.
- **Suffix:** Last $k - 1$ letters in a k-mer.

Overlap Graph: Form a node for each read in *Patterns*, then connect x to y if $\text{Suffix}(x) = \text{Prefix}(y)$.
A Graph Can Represent All Overlapping Strings

- **Prefix**: First $k - 1$ letters in a k-mer.
- **Suffix**: Last $k - 1$ letters in a k-mer.

Overlap Graph: Form a node for each read in Patterns, then connect x to y if $\text{Suffix}(x) = \text{Prefix}(y)$.
A Graph Can Represent All Overlapping Strings

- **Prefix:** First \(k - 1 \) letters in a \(k \)-mer.
- **Suffix:** Last \(k - 1 \) letters in a \(k \)-mer.

Overlap Graph: Form a node for each read in \textit{Patterns}, then connect \(x \) to \(y \) if \(\text{Suffix}(x) = \text{Prefix}(y) \).
A Graph Can Represent All Overlapping Strings

- **Prefix**: First $k - 1$ letters in a k-mer.
- **Suffix**: Last $k - 1$ letters in a k-mer.

Overlap Graph: Form a node for each read in *Patterns*, then connect x to y if $\text{Suffix}(x) = \text{Prefix}(y)$.
A Graph Can Represent All Overlapping Strings

- **Prefix:** First $k - 1$ letters in a k-mer.
- **Suffix:** Last $k - 1$ letters in a k-mer.

Overlap Graph: Form a node for each read in *Patterns*, then connect x to y if $\text{Suffix}(x) = \text{Prefix}(y)$.
A Graph Can Represent All Overlapping Strings

- **Prefix:** First $k - 1$ letters in a k-mer.
- **Suffix:** Last $k - 1$ letters in a k-mer.

Overlap Graph: Form a node for each read in *Patterns*, then connect x to y if $\text{Suffix}(x) = \text{Prefix}(y)$.
A Graph Can Represent All Overlapping Strings

Note: we can still see the genome path, but we wouldn’t if we don’t know the order of \(k \)-mers …

Overlap Graph: Form a node for each read in *Patterns*, then connect \(x \) to \(y \) if \(\text{Suffix}(x) = \text{Prefix}(y) \).
Arranging k-mers Lexicographically Makes Genome Vanish
STOP: If we gave you this graph, what would you look for to find the genome?
We are Looking for a Hamiltonian Path in the Overlap Graph

Hamiltonian path: A path through a graph that touches each node exactly once.
STOP: What genome does the highlighted path reconstruct?
And Here’s Another Solution

STOP: How about this highlighted path?
We are Looking for a Hamiltonian Path in the Overlap Graph

Note: The graph organizes our reads, but we don’t have an algorithm for finding a Hamiltonian path.
We are Looking for a Hamiltonian Path in the Overlap Graph

STOP: What does the overlap graph look like if there are many repeats? What if there are none?
A binary string is k-universal if it contains every binary k-mer once.

Exercise: Find a 3-universal string.
A binary string is **k-universal** if it contains every binary k-mer once.

Note: a k-universal string corresponds to a Hamiltonian path in the following overlap graph.
1946: Good and de Bruijn independently discover a way to find k-universal strings. They cannot imagine that their approach will one day power genome sequencing.
Aside 2: Two Ways to Represent Graphs Computationally

Adjacency Matrix

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>c</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>d</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>e</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Adjacency matrix: $A_{i,j} = 1$ if there is an edge connecting node i to node j; $A_{i,j} = 0$ otherwise.
Aside 2: Two Ways to Represent Graphs Computationally

Adjacency matrix: $A_{i,j} = 1$ if there is an edge connecting node i to node j; $A_{i,j} = 0$ otherwise.

Adjacency list: Dictionary; “key” node i; “value” is list of nodes that i is connected to.
GENOME ASSEMBLY AS AN EULERIAN PATH PROBLEM
Assigning k-mers to *Edges* Instead of *Nodes*

We start again with a “genome path” corresponding to TAATGCCATGGGATGTT.

© 2024 Phillip Compeau
Assigning k-mers to *Edges* Instead of *Nodes*

We start again with a “genome path” corresponding to TAATGCCCATGGGATGTT.

STOP: How should we label the nodes?
Assigning k-mers to *Edges* Instead of *Nodes*

Each node represents the $(k - 1)$-mer corresponding to the *overlap* between adjacent edges.
Assigning k-mers to Edges Instead of Nodes

Each node represents the $(k - 1)$-mer corresponding to the overlap between adjacent edges.

Unlike with the overlap graph, we will glue together nodes that have the same label.
First: Gluing AT Together
Next: Gluing TG Together
Gluing GG Produces a “Loop”
Gluing GG Produces a “Loop”

This graph is called the **de Bruijn graph** of \(\text{Text} = \text{TAATGCCATGGGATGTT} \) for \(k = 3 \).
Gluing GG Produces a “Loop”

This graph is called the de Bruijn graph of Text = TAATGCCATGGGATGTT for $k = 3$.

Exercise: Construct the de Bruijn graphs for $k = 4$ and $k = 5$. How do they differ from $k = 3$?
de Bruijn Graph Becomes Less “Tangled” as \(k\) Increases (fewer repeats)

\(k = 3\)

\(k = 4\)

\(k = 5\)

© 2024 Phillip Compeau
Gluing GG Produces a “Loop”

This graph is called the **de Bruijn graph** of \(\text{Text} = TAATGCCATGGGATGTT \) for \(k = 3 \).

STOP: If we gave you this graph, could you reconstruct Text? How?
The genome path is an Eulerian path in the de Bruijn graph, or a path that uses every edge exactly once.
The genome path is an **Eulerian path** in the de Bruijn graph, or a path that uses every edge exactly once.

STOP: Can you construct the de Bruijn graph if you don’t already know **Text**?
Forming de Bruijn Graph from k-mers

Exercise: Here are the 3-mers from our original dataset represented as *isolated edges*. By gluing nodes together, what do you obtain?

© 2024 Phillip Compeau
Forming de Bruijn Graph from \(k \)-mers
It’s the Same Graph...
Approach for Constructing de Bruijn Graph

1. Form a node for every $(k - 1)$-mer appearing as a prefix/suffix in Patterns.
2. For every string in Patterns, connect its prefix to its suffix.
Approach for Constructing de Bruijn Graph

1. Form a node for every \((k - 1)\)-mer appearing as a prefix/suffix in Patterns.
2. For every string in Patterns, connect its prefix to its suffix.

STOP: Verify this approach for \(\text{Patterns} = \{\text{AAT ATG ATG ATG CAT CCA GAT GCC GGA GGG GTT TAA TGC TGG TGT}\}\).
Which Graph Would You Rather Use?

Overlap Graph – find a Hamiltonian path

de Bruijn Graph – find an Eulerian path

© 2024 Phillip Compeau
THE ICOSIAN GAME AND THE BRIDGES OF KONIGSBERG
The Origin of “Hamiltonian” Path/Cycle

Hamiltonian cycle: A Hamiltonian path that returns to its starting node.

Exercise: Can you find a Hamiltonian cycle in this graph? (What algorithm did you use?)
The Origin of “Hamiltonian” Path/Cycle

Icosian game: William *Hamilton*, 1857. Objective is to place pegs 1-20 one at a time in adjacent holes.
STOP: Is it possible to walk across each bridge exactly once and return to the starting point?
Define a graph:
• Nodes = 4 land masses
• Edges = 7 bridges
Leonhard Euler’s Insight (1735)

Define a graph:
- Nodes = 4 land masses
- Edges = 7 bridges
Leonhard Euler’s Insight (1735)

Note: The Bridges of Königsberg question has a solution when this graph has an *Eulerian* cycle.
STOP: Does this graph help you solve the original question?
Answer: There is *no* solution because some nodes have an *odd* degree (number of incident edges).
Even better, Euler would prove how to quickly determine whether a graph has an Eulerian cycle.
Even better, Euler would prove how to quickly determine whether a graph has an Eulerian cycle.

Key Point: And yet no one has ever found a polynomial-time algorithm to find a Hamiltonian cycle in a graph!
Similar Problems with Different Fates

Hamiltonian Cycle Problem

Input: a network with n nodes.

Output: “Yes” if there is a cycle visiting every *node* in the network; “No” otherwise.

Eulerian Cycle Problem

Input: a network with n nodes.

Output: “Yes” if there is a cycle visiting every *edge* in the network; “No” otherwise.
FROM EULER’S THEOREM TO AN ALGORITHM FOR GENOME ASSEMBLY
Euler’s Theorem for Directed Graphs

Indegree: Number of edges leading into a node.

Outdegree: Number of edges leading out of a node.

Balanced graph: Every node has indegree equal to outdegree.

Balanced

Unbalanced

STOP and Think: We now know that every Eulerian graph is balanced; is every balanced graph Eulerian? The graph in Figure 3.20 is balanced but not Eulerian because it is disconnected, meaning that some nodes cannot be reached from other nodes. In any disconnected graph, it is impossible to find an Eulerian cycle. In contrast, we say that a directed graph is strongly connected if it is possible to reach any node from every other node.
Euler's Theorem for Directed Graphs

Strongly connected graph: A graph where it is possible to reach every node from any other node.

STOP and Think: We now know that every Eulerian graph is balanced; is every balanced graph Eulerian?

The graph in Figure 3.20 is balanced but not Eulerian because it is disconnected, meaning that some nodes cannot be reached from other nodes. In any disconnected graph, it is impossible to find an Eulerian cycle. In contrast, we say that a directed graph is **strongly connected** if it is possible to reach any node from every other node.

Euler's Theorem: Every balanced, strongly connected directed graph is Eulerian.

Proof. Let Graph be an arbitrary balanced and strongly connected directed graph. To prove that Graph has an Eulerian cycle, place Leo at any node v_0 of Graph (the green node in Figure 3.21), and let him randomly walk through the graph under the condition that he cannot traverse the same edge twice.

If Leo were incredibly lucky — or a genius — then he would traverse each edge exactly once and return back to v_0. However, odds are that he will “get stuck” somewhere before he can complete an Eulerian cycle, meaning that he reaches a node and finds no unused edges leaving that node.
Euler’s Theorem for Directed Graphs

Strongly connected graph: A graph where it is possible to reach every node from any other node.

Euler’s Theorem: Every balanced, strongly connected graph has an Eulerian cycle.
Proof of Euler’s Theorem

Take an arbitrary balanced, strongly connected network, place an ant on any starting node v_0, and let it walk randomly.
Proof of Euler’s Theorem

STOP: What must eventually happen when the ant “gets stuck”?

Euler’s Theorem:
Every balanced, strongly connected directed graph is Eulerian.

Proof.
Let G be an arbitrary balanced and strongly connected directed graph. To prove that G has an Eulerian cycle, place Leo at any node v_0 of G (the green node in Figure 3.21), and let him randomly walk through the graph under the condition that he cannot traverse the same edge twice.

If Leo were incredibly lucky — or a genius — then he would traverse each edge exactly once and return back to v_0. However, odds are that he will “get stuck” somewhere before he can complete an Eulerian cycle, meaning that he reaches a node and finds no unused edges leaving that node.
Proof of Euler’s Theorem

Answer: Because the graph is balanced, the ant must eventually get stuck at v_0!
Proof of Euler’s Theorem

If this cycle, which we call $Cycle_0$, is Eulerian, then we stop. Otherwise, move the ant to a node on $Cycle_0$ that still has unused edges, called v_1.
Proof of Euler’s Theorem

Make the ant traverse all of Cycle₀ first, then explore unused edges.
The same reasoning implies that the ant will eventually get stuck at \(v_1 \), creating Cycle_1.
Proof of Euler’s Theorem

We simply iterate this procedure until we are out of unused edges, when we have an Eulerian cycle!
Proof of Euler’s Theorem

We simply iterate this procedure until we are out of unused edges, when we have an Eulerian cycle!
Proof of Euler’s Theorem

STOP: Why can we be sure that this process will use all the edges?
Proof of Euler’s Theorem

Answer: Because the graph is strongly connected! So note that we have used both conditions in the theorem (balanced and strongly connected).
Proof of Euler’s Theorem

Exercise: When will an “undirected” graph have an Eulerian cycle?
Euler’s Theorem is “Constructive”

Key Point: This is a “constructive proof”, meaning it implies an algorithm for finding an Eulerian cycle.

EulerianCycle(Graph)
\[
v \leftarrow \text{arbitrary node in } Graph \\
Cycle \leftarrow \text{randomly walk starting at } v \text{ (don’t revisit edges) until cycle} \\
\text{while} \text{ there are unexplored edges in } Graph \\
\quad newStart \leftarrow \text{node in } Cycle \text{ with unexplored edges} \\
\quad Cycle' \leftarrow \text{cycle formed by traversing } Cycle \text{ (starting at } newStart) \\
\quad \text{and then randomly walking} \\
\quad Cycle \leftarrow Cycle' \\
\text{return } Cycle
\]
From Eulerian Cycles to Paths

STOP: How do we find an Eulerian path in this graph?

© 2024 Phillip Compeau
From Eulerian Cycles to Paths

Answer: Simply draw an edge connecting the two unbalanced nodes to form a balanced graph. Eulerian cycle on right = Eulerian path on left.
From Eulerian Cycles to Paths

STOP: Why will the augmented de Bruijn graph on the right be balanced for any collection of strings Patterns?

© 2024 Phillip Compeau
From Eulerian Cycles to Paths

Answer: For every node \(v \) in de Bruijn graph,
\(\text{Indegree}(v) \) and \(\text{Outdegree}(v) \) are both equal to \# of patterns containing \(v \) as prefix/suffix, respectively.
String Reconstruction Problem: Reconstruct a string from its k-mer composition.

Input: An integer k and a collection $Patterns$ of k-mers.

Output: A string $Text$ with k-mer composition equal to $Patterns$ (if such a string exists).

1. Form de Bruijn graph G from $Patterns$.
String Reconstruction Problem: \textit{Reconstruct a string from its k-mer composition.}

\textbf{Input:} An integer k and a collection $Patterns$ of k-mers.

\textbf{Output:} A string $Text$ with k-mer composition equal to $Patterns$ (if such a string exists).

1. Form de Bruijn graph G from $Patterns$.
2. Add edge to make modified graph G' balanced.
String Reconstruction Problem: Reconstruct a string from its k-mer composition.

Input: An integer k and a collection $Patterns$ of k-mers.

Output: A string $Text$ with k-mer composition equal to $Patterns$ (if such a string exists).

1. Form de Bruijn graph G from $Patterns$.
2. Add edge to make modified graph G' balanced.
3. Find Eulerian cycle in G'.
We Can Assemble a Genome!

String Reconstruction Problem: Reconstruct a string from its k-mer composition.

Input: An integer k and a collection $Patterns$ of k-mers.

Output: A string $Text$ with k-mer composition equal to $Patterns$ (if such a string exists).

1. Form de Bruijn graph G from $Patterns$.
2. Add edge to make modified graph G' balanced.
3. Find Eulerian cycle in G'.
4. Infer Eulerian path in G from this cycle.
We Can Assemble a Genome!

String Reconstruction Problem: Reconstruct a string from its k-mer composition.

- **Input:** An integer k and a collection $Patterns$ of k-mers.
- **Output:** A string $Text$ with k-mer composition equal to $Patterns$ (if such a string exists).

1. Form de Bruijn graph G from $Patterns$.
2. Add edge to make modified graph G' balanced.
3. Find Eulerian cycle in G'.
4. Infer Eulerian path in G from this cycle.
5. Convert “genome path” into string $Text$.

© 2024 Phillip Compeau
Aside: De Bruijn/Good’s Question

Recall: a binary string is \textit{k-universal} if it contains every binary \textit{k}-mer once.

STOP: How can we find a \textit{k}-universal binary string?

Jack Good

Nicolaas de Bruijn
Aside: De Bruijn/Good’s Question

Answer: Construct the “de Bruijn graph” for Patterns = all binary k-mers; find Eulerian path.

© 2024 Phillip Compeau
DE BRUIJN GRAPHS FACE HARSH PRACTICAL REALITIES
Practical Sequencing Complications

1. DNA may be divided over multiple chromosomes.

2. Reads have imperfect “coverage” of the underlying genome – there may be some regions that are not covered by any reads.

3. Sequencing machines are error-prone.

4. DNA is double-stranded.
Genomes May Have Multiple Chromosomes

STOP: Any ideas for assembling a genome with multiple chromosomes?
Genomes May Have Multiple Chromosomes

STOP: Any ideas for assembling a genome with multiple chromosomes?

Answer: In theory, we just find an Eulerian path in n different de Bruijn graphs…

© 2024 Phillip Compeau
Read Coverage is Never Perfect
Boosting Coverage through Read Breaking

ATGCCGTATGGACAACGACT
ATGCCGTATG
GCCGTATGGA
GTATGGACAA
GACAACGACT

Note that these reads don’t overlap perfectly, so building a de Bruijn graph will fail.
Boosting Coverage through Read Breaking

Read breaking: Split each read into all its k-mer substrings (for a smaller value of k).
Boosting Coverage through Read Breaking

Read breaking: Split each read into all its k-mer substrings (for a smaller value of k).
Boosting Coverage through Read Breaking

Read breaking: Split each read into all its k-mer substrings (for a smaller value of k).
Read breaking: Split each read into all its k-mer substrings (for a smaller value of k).
Read breaking: Split each read into all its k-mer substrings (for a smaller value of k).
STOP: What are the trade-offs in choosing a value of k?
Boosting Coverage through Read Breaking

Answer: The smaller the value of k, the higher our coverage will be, but also the more repeats and the more "tangled" our graph.

© 2024 Phillip Compeau
Assembling Contigs

Even after read breaking, most assemblies have gaps in their coverage, and we will not have a true Eulerian path in the de Bruijn graph.
Assembling Contigs

Even after read breaking, most assemblies have gaps in their coverage, and we will not have a true Eulerian path in the de Bruijn graph.

Real assembly software instead tries to infer (a small number of) **contigs**: contiguous genome segments.
A path in a graph is called **non-branching** if InDegree(ν) = OutDegree(ν) = 1 for each “intermediate” node ν in the path.
A path in a graph is called **non-branching** if $\text{InDegree}(v) = \text{OutDegree}(v) = 1$ for each “intermediate” node v in the path.

A **maximal non-branching path** is a non-branching path that cannot be made longer in either direction.
A path in a graph is called **non-branching** if \(\text{InDegree}(v) = \text{OutDegree}(v) = 1\) for each “intermediate” node \(v\) in the path.

A **maximal non-branching path** is a non-branching path that cannot made longer in either direction.

Note: In mathematics, “maximum” means “global maximum”; “maximal” means “local maximum”.
Transforming dB Graph into Paths
STOP: Why do you think we are interested in maximal non-branching paths in genome assembly?
STOP: Why do you think we are interested in maximal non-branching paths in genome assembly?

Answer: They represent "subpaths" that must be present in any assembly, and so we can be confident in them.
STOP: Say we sequence both the correct read CGTATGGACA and the incorrect read CGTACGGACA. What will we see in the de Bruijn graph after read breaking for $k = 5$?
STOP: Say we sequence both the correct read CGTATGGACA and the incorrect read CGTACGGGACA.
What will we see in the de Bruijn graph after read breaking for \(k = 5 \)?

Answer: A “bubble”!

© 2024 Phillip Compeau
Bubble: Two disjoint short path (less than some threshold length) connecting the same pair of nodes in the de Bruijn graph.
Bubble: Two disjoint short path (less than some threshold length) connecting the same pair of nodes in the de Bruijn graph.

STOP: How might we remove bubbles? What would cause your approach to go wrong?
Inexact repeat: Repeated region in genome with minor variations; the variations look just like sequencing errors!
Inexact repeat: Repeated region in genome with minor variations; the variations look just like sequencing errors!

Lower “multiplicity” paths are likely errors; this is one more benefit of higher coverage in assembly.
dB Graph of *N. meningitidis* (Bacterium) *After Removing Bubbles*

Red edges represent repeats
Pitfalls of Double-Stranded DNA

DNA is double-stranded, and the two strands are reverse complements of each other.

![Diagram of DNA strands with complementary bases]
Reads may come from either strand, so we need to consider each read’s reverse complement.
Pitfalls of Double-Stranded DNA

Note that this example is trivial if we had two de Bruijn graphs (one for the string, one for its reverse complement).
The reality is that we see the amalgamation of both graphs.
The reality is that we see the amalgamation of both graphs.

Even though neither string has a repeat, the graph becomes tangled because ATG and CAT are inverted repeats: the strings are reverse complements of each other.
de Bruijn Assembly in Real Research

An Eulerian path approach to DNA fragment assembly | PNAS

Our main result is the reduction of the fragment assembly to a variation of the classical Eulerian path problem that allows one to generate accurate solutions of large-scale sequencing problems. ... For the last 20 years, fragment assembly in DNA sequencing mainly followed the “overlap–layout–consensus” paradigm (1–6).

by PA Pevzner · 2001 · Cited by 1522 · Related articles

Velvet: algorithms for de novo short read assembly using de Bruijn graphs

DR Zerbino, E Birney - Genome research, 2008 - genome.cshlp.org

... set of algorithms, collectively named "Velvet,... algorithm merges sequences that belong together, then the repeat solver separates paths sharing local overlaps. We have assessed Velvet ...

☆ Save ⤴ Cite Cited by 10928 Related articles All 24 versions Web of Science: 7291

SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing

A Bankevich, S Nurk, D Antipov... - Journal of ..., 2012 - liebertpub.com

... We present the SPAdes assembler, introducing a number of ... , the basis of many fragment assembly algorithms. However, a ... Unfortunately, while there is a simple algorithm for the former ...

☆ Save ⤴ Cite Cited by 20780 Related articles All 14 versions Web of Science: 15404