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Abstract

Antibiotics remain our primary and most reliable method of combating bacterial infection
and their subsequent illnesses. However, the threat of developing bacterial strains resistant
to our treatments presents a severe and costly threat to the development and deployment
of new treatments. Nature shines a ray of hope on the scene, providing us with natural
predators for the problematic bacteria, Bacteriophages, and Bdellovibrio bacteriovorus.
Lab results show that individually, both predators are incapable of completely eradicating
the prey population in their samples. In response, we propose a new treatment method:
dual predation. By deploying both of the predators on the prey sample at the same time,
we can take advantage of their varied predation methods to curb the development of
resistant prey. To model our sample, we employed a particle diffusion simulation,
optimized with a QuadTrees collision algorithm to simulate the interactions between the
predators and prey. We also made use of a Gray-Scott model to visualize the diffusion of
the entities in our sample. Our lab results and simulations were very promising, displaying
complete prey lysis within 48 hours. Despite only conducting tests in vitro, our results
have promising implications for the development of future antibacterial treatments.

1. Introduction
In recent years, antibiotic resistance has become an increasingly prevalent challenge in the world of
modern medicine. As bacteria become resistant to treatments, antibiotics become less effective which
leads to prolonged illness. According to the World Health Organization, this is a critical threat to the field
of medicine as the misuse of antibiotics becomes more common, resulting in more drug resistance. In
turn, infections are becoming harder to treat and medical procedures are becoming riskier due to the lack
of treatments to combat antimicrobial resistance. Therefore, we are interested in finding alternatives to the
typical antibiotic treatments. One such option is the use of the bacteriophages and Bdellovibrio
bacteriovorus, both natural predators of bacteria. The paper considered this potential solution and sought
to model the interactions between these predators against Escherichia coli, using differential equations.
Ultimately, these equations are very complex and their interpretability and applicability in future in vivo
tests seem to be limited due to their high threshold for understanding. Thus, beginning with these
differential equations, we wanted to simplify them by considering the base interactions. Using our
understanding of biological systems present during these interactions, we model the cells applying simple
rules. Basing our research on the paper, we wanted to simulate the population dynamics using particle
simulation to verify that the interactions stated in the paper coincide with the lab data and the differential
equations. Utilizing these “chemical” reactions instead of the differential equations as the foundation for
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the simulation allows for a more complete biological understanding of the phenomenon of dual predation.
Therefore, we will begin by introducing the main actors and their reactions.

Bacteriophages

Bacteriophages, commonly referred to as phages, are viruses that specifically target and infect bacteria.
They do this by attaching themselves to the surface of bacterial cells and injecting their genetic material
into them. The phage’s genetic material then hijacks the bacterial cellular machinery, using it to produce
more phages instead of performing its usual functions. However, this process does not kill the bacteria
instantly, rather it continues until lysis, a process which results in the cell membrane bursting and
releasing numerous phage particles that go on to infect other bacterial cells. This process of using
bacterial cells to replicate is the basis of phage therapy, a potential alternative or complement to antibiotic
treatment for bacterial infections. Thus, phage therapy has emerged as a potential solution to combat
antibiotic-resistant bacteria, as phages can specifically target and kill certain bacterial strains. Unlike
broad-spectrum antibiotics, which can harm beneficial bacteria along with harmful ones, phages are
highly specific, which could potentially reduce the collateral damage to the body’s microbiome.

However, the potential for phage resistance is still possible. Just as bacteria can evolve resistance to
antibiotics, they can also develop mechanisms to evade phage attacks. This can occur through various
means, such as mutations in the bacterial surface receptors or the production of enzymes that degrade
phage genetic material. At the same time, phages can execute a counter strategy against antiphage defense
mechanisms. We can see this by analyzing the lab data from the paper by Hobley et al., where we
observed that relying on only phages was insufficient in eliminating the entire bacterial population of E.
coli. Those surviving the initial phage attack were the E. coli cells with innate genetic mutations allowing
for resistance or the cells capable of developing resistance. Consequently, subsequent generations of
bacteria were able to rebound and reach a stable population once again.

Figure 1. Impact of bacteriophages on E. coli population over time
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Bdellovibrio bacteriovorus

Bdellovibrio bacteriovorus is a unique type of bacteria, preying on other bacteria in its environment to
reproduce. This is achieved in a similar process to bacteriophage infection, with some key exceptions.
The initial entry remains the same, B. bacteriovorus attaches itself to the host cell and begins to penetrate
the outer layer. The process diverges here, as once the layer is penetrated, the target cell immediately
undergoes apoptosis, and dies. At this point, the target cell is designated a bdelloplast as the process
continues. Inside the bdelloplast, B. bacteriovorus continues to grow and eventually begins to proliferate,
producing progeny. Finally, lysis occurs, and the bdelloplast bursts open, releasing the new B.
bacteriovorus cells out into the system, ready to repeat the process.

The properties of B. bacteriovorus as a bacterial predator imply a strong case for using it as a therapeutic
method, but such use cases are sparsely documented. This is likely due to the phenomenon of plastic
resistance reducing the effectiveness of B. bacteriovorus over time. The phenomenon is observed as a
protective outer coating growing around the target bacteria cells in the presence of B. bacteriovorus. This
outer layer protects against the penetrative ability of B. bacteriovorus, preventing infection in the first
place. That said, the protection is not perfect, and irregularities in the layer can be exploited to penetrate
the cell. The prevailing theory explaining plastic resistance is that upon a cell transforming into a
bdelloplast, an extracellular signal is produced that influences neighboring cells into raising a plastic
layer. This greatly slows down the proliferation of B. bacteriovorus, reducing its therapeutic potential.

The lab results in the paper by Hobley et al. reflect this fact, initially displaying a steady decline in E. coli
(prey) populations, relative to the amount of B. bacteriovorus present in the system. Roughly 40 hours
into the trial though, the prey population begins to reach a steady state, indicating that the remaining
members have developed plastic resistance. Our prey will then be able to repopulate, but since plastic
resistance is not heritable, the new generation will not be innately protected, and we predict the system
will reach this steady state again, in a continuous oscillation.

Figure 2. Impact of Bdellovibrio bacteriovorus on E. coli population over time
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Dual Predation

While both bacteriophages and B. bacteriovorus have shown promise in combating bacterial
infections individually, their effectiveness is limited due to the potential of bacterial resistance. This can
lead us to consider employing a strategy of dual predation, utilizing both bacteriophages and B.
bacteriovorus simultaneously. Dual predation capitalizes on the complementary mechanisms of action of
these predators. Bacteriophages target and infect bacterial cells, injecting their genetic material and
ultimately causing cell lysis, while B. bacteriovorus directly invade and prey upon bacterial cells, using
them as a nutrient source for replication. In theory, by combining these two predators, there is a
synergistic effect that enhances their efficiency. Fortunately, in practice, according to the lab data, this is
also the case.

Figure 3. Impact of dual predation by Bdellovibrio bacteriovorus and
bacteriophage on E. coli population over time

2. Methodologies and Algorithms

Experimental Data

In the lab experiment done by Hobley et al., an initial concentration of 2.9╳108 CFU/mL of E. coli,
5.0╳106 PFU/mL of Bdellovibrio bacteriovorus, and 5.0╳106 PFU/mL of bacteriophage were used in 4
different experiments of dual predation by both Bdellovibrio bacteriovorus and bacteriophage, single
predation by just Bdellovibrio bacteriovorus, single predation by just bacteriophage, and a control with no
predation. The concentrations of each organism were tracked every 2 hours for 48 hours total for each of
the tests. The above figures show the results of the experiments, and we used this data to fit our model.
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Particle Simulation

In our first method, we used a particle simulation approach to model the interactions between the
organisms. In this simulation, each organism type was represented by different particles, and reactions
were simulated by the interactions between these particles with certain probabilities, mimicking the
chemical kinetics of the biological system. We tracked the population of each cell type over time, which
could be compared with the data to adjust the probabilities and fit the data.

Cell Types
We abbreviate the cell types as follows:

All E. coli (Prey) N
Sensitive E. coli NS

Bacteriophage Resistant E. coli NR

Plastic-Resistant E. coli NP

Bdellovibrio bacteriovorus (Predator) P
Bdelloplast B
Bacteriophage (Virus) V
Phage-Infected Prey I
Medium M
Signal S

Reactions
The particles reacted according to the following reactions:

Bdellovibrio Attacks Sensitive E. coli: P + NS → B (1)
Bdellovibrio Attacks Phage-Resistant E. coli: P + NR → B (2)
Phage Attacks Sensitive E. coli: V + NS → I (3)
Phage Attacks Plastic-Resistant E. coli: V + NP → I (4)
Bdelloplast Maturation and Lysis: B → YP/BP + S + YM/BM (5)
Infected Prey Maturation and Lysis: I → YV/IV + YM/IM (6)
Sensitive Prey Growth: NS + M → 2 NS (7)
Phage-Resistant Prey Growth: NR + M → 2 NR (8)
Plastic Resistant Prey Growth: NP + M → 2 NS (9)
Phage Resistance: NS + M → NS + NR (10)
Phage Resistance Reversion: NR + M → NR + NS (11)
Plastic Resistance: NS + S → NP (12)
Predator Mortality: P → ø (13)
Phage Mortality (unused): V → ø (14)

Note that the Bdellovibrio can attack sensitive (1) and phage-resistant prey (2) since phage resistance does
not affect it, but it cannot attack plastic-resistant prey. Similarly, the bacteriophage can attack sensitive (3)
and plastic-resistant prey (4) since plastic resistance does not affect it, but it cannot attack phage-resistant
prey. For reactions (5) and (6), in addition to the predators and viruses released by the lysis, we assume a
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small amount of nutrients are released, which the prey can consume for limited growth with reactions (7),
(8), and (9), though (9) results in two sensitive cells due to the growth-coupled reversion discussed
previously. We represent YX/Y as the “yield” or the number of X produced per particle of Y; though YP/B is
fixed to a value of 4.17 by experimental results (Fenton et al.), YV/I, YM/B, and YM/I were adjusted to fit the
data. Phage resistance arises from mutations during cell division in the sensitive prey, so we represent this
as a growth reaction (10), instead of a direct conversion from sensitive to resistant. We also add (11) to
represent the reverse of this mutation. Plastic resistance occurs when the prey receives a signal instead of
through mutations, so we represent this by (12). However, we do not include a reaction or particle for an
E. coli with both plastic and phage resistance, as this was not observed in the paper by Hobley et al.
Predator mortality (13) was also included as it is observed in experimental results, but the phage mortality
reaction (14) was not utilized in the implementation because phage mortality did not have a large enough
effect within the 48-hour time span of the experiment to have statistical significance.

The Final Model

Figure 4. The interaction graph of the reactions in the final model

Initialization
Due to the large number of initial cells that would be needed to use the same scale from the experimental
setup (2.9 × 10^8 CFU/mL of E. coli), simulating every individual prey and predator would be
computationally intensive and impractical. Therefore, we scaled down the simulation to manageable
levels while still capturing the essence of the system dynamics.

Thus, we employed two scales for our simulations:

Primary Scale (1/100,000): In this scale, we reduced the number of particles representing the organisms
by a factor of 100,000. Thus, the scaled number of prey, predators, and viruses became 2900, 5, and 5,
respectively. This reduced scale allowed us to quickly conduct tests and adjust parameters without the
extremely long waiting times.
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Secondary Scale (64/100,000): To account for higher concentrations and interactions, we scaled up the
primary scale by a factor of 64 and the grid space (width and height) of the simulation by 8, resulting in
185,600 prey, 320 predators, and 320 viruses. This larger scale ensured that the initial number of resistant
cells (just 1 resistant cell) was correctly scaled, unlike the smaller scale where the existence of a single
resistant prey in the initial population of prey would be far overscaled compared to the actual
experimental concentration of resistant cells.

Then for each scale, we conducted four sets of tests to match the four tests from the lab data:

1. Dual Predation E. coli + bdellovibrio bacteriovorus + bacteriophage
2. Predator Only E. coli + bdellovibrio bacteriovorus
3. Virus Only E. coli + bacteriophage
4. Prey Only E. coli

For all tests in the primary scale, we ran the simulation for 4,800 timesteps/frames (dt = 0.01) to account
for all 48 hours of lab data, where 1 simulation time step = 0.01 hours = 36 seconds in real life. However
for the secondary scale, we were unable to do all 48 hours due to time constraints; thus we limited this to
1,000 frames (10 hours of experimental data), which should be enough to give us an idea of what the
simulation would do after, since the rest of the data is mostly flat.

Particle Movement
For simplicity’s sake, we implemented a constant random movement model for the particles. Each
particle, whether it represents prey, predators, or viruses, was assigned a random initial rate of movement
(bounded by some constant) and direction. These particles continued to move in their respective
directions until they encountered another particle and reacted, or self-reacted.

Upon a reaction event, the new product particles resulting from the reaction will start moving in random
directions at random speeds, starting from the average of the positions of the two particles that reacted (or
just from the parent particle for self-reactions). This process mimicked the dynamic movement of
biological organisms within a fluid environment, such as a liquid culture in a laboratory setting. Though
we did simulate different types of organisms having different movement speeds, this made no difference
as we could change the probabilities of the reactions to adjust for this change. Thus, we proceeded with
using the same speed bounds for all particles.

Particle Size
We assume all particles are circular, though we do consider the particle sizes in our simulation since they
represent different organisms and molecules, which have different sizes in real life. These size values
were adjusted to fit the data, but some parts were kept consistent. For example, the E. coli particles,
including all three sensitivities and infected variants, should have the same size and the predators and
viruses should be much smaller than the E. coli particles. Furthermore, signal and medium particles
should be even smaller in size as they represent the different molecules in the system. (An extra benefit of
making some particles smaller is that the smaller bounding boxes make computation time faster with our
implementation, and since smaller particles usually exist in much larger quantities than the larger ones,
this balances everything out.)
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Particle Reactions
There are two types of reactions that can occur in our simulation: pair reactions and single reactions. Pair
reactions involve interactions between two colliding particles, while single reactions occur within
individual particles.

For pair reactions, we employ a collision detection algorithm in every frame to identify intersecting
particles and run the corresponding reaction with a certain probability, which we adjust to fit the
experimental data. Single reactions are executed on every particle in every frame with a certain
probability, which we also adjust to fit the data. To prevent particles from trying to react again after failing
to react in the previous frame, we implement a hard-coded cooldown period after each reaction that gives
enough time for the particles to separate. Note that this cooldown time needs to be adjusted if we want to
adjust the time step (dt) since it changes the distance each particle moves in a unit of time.

Collision Detection: QuadTrees
The naive approach in implementing the collision detection algorithm for the pair reactions would be to
check every pair of particles for an intersection. However, since we would have to compare every one of
the n particles to every other (n – 1) particle, this results in a time complexity of O(n2) which becomes
impractical for the large numbers of particles we will be using in the simulation. So, to efficiently handle
collisions between particles, we use the QuadTree data structure, which offers a much more efficient
solution by organizing particles into a hierarchical tree structure, reducing the complexity to O(nlogn).

In a QuadTree, the simulation space is recursively divided into quadrants until each quadrant contains at
most N particles, where N is a hard-coded constant known as the bucket capacity (we found that ~30
worked the best for our case). So, when a particle is inserted into a QuadTree, it is recursively placed into
the corresponding quadrant based on its position in the simulation space. If the leaf that the particle is
inserted into is full, the space covered by that leaf is split into 4 smaller quadrants. Then, the particles
originally stored in that leaf are placed into the smaller quadrants, and that leaf becomes an internal node
(so it doesn’t store any particles). This makes sure that we only create sub-quadrants as needed.

Figure 5. A diagram of the subsections created by a QuadTree. Note that N = 1 in this diagram, so
each quadrant stores at most 1 particle. Source: https://en.wikipedia.org/wiki/Quadtree

8



The benefit of using this data structure is that it allows us to query for particles in a certain region in
logarithmic time complexity. So, for each particle, we can query inside the square-shaped space around
the particle with width and height = 2 (radius(particle) + max(radius of all particles)). Then, for each of
the particles we find that isn’t the original one, if the distance between it and the original particle is at
most radius(original) + radius(other), then we can confirm that the two are intersecting. Since this
significantly reduces the number of pairwise comparisons we do, this leads to improved computational
efficiency, and we repeat this for every particle, we can search for all colliding particles in O(nlogn) time.

So, during the simulation, we insert each particle into a QuadTree and then query for all intersecting
particles, and then run the reactions on them. In the next iteration, we create a new QuadTree and re-insert
all particles after they move. Though this may seem very inefficient, creating a new QuadTree doesn’t
take much time compared to the actual collision detection, so although we did try an implementation that
could handle particle movement inside the tree (and re-insertion if it moves out of the quadrant bounds),
this didn’t improve the speed by much. Thus, we decided to use the much simpler approach of creating a
new tree every time. (We also used Cython to convert the Python code into C for just the QuadTree
implementation to speed it up even more.)

Gray-Scott Simulation

While the particle simulation provides us insights into dual predation, it also has limitations, particularly
in scalability. Simulating every individual cell present in the experimental setup is computationally
intensive and impractical. To address this, we scaled down the simulation to manageable levels while still
capturing the essential parts of the system. An alternative approach to this problem is to instead use
differential equations that represent the reactions, and approximate the reactions that occur by solving the
equations. However, since the differential equations only give up the total population and assume all
particles are evenly spread out, we would like to include aspects of spatial distributions of concentrations
of the different particles that the particle simulation allows us to do. Thus, we can use the Gray-Scott
Model to allow us to do this.

Concentration Grid
In the Gray-Scott Simulation, the space is discretized into a grid of cells, where each cell represents a
small volume of the experimental environment with its own concentrations, and we track these
concentrations at each grid point over time. This simulation approximates this system based on the idea
that within each cell, the organisms are well-mixed and interact homogeneously, so all particles in the cell
interact with each other and react. While this may not fully capture the complexity of the actual biological
system, it provides a computationally efficient way to model the interactions between the organisms and
observe their dynamics over time. By discretizing the space into grid cells, we can simulate the movement
and interactions of the organisms at a macroscopic level, allowing us to observe emergent patterns
without having to track the movements of individual particles.

Initialization
Each cell has an initial concentration of E. coli with an upper bound of 2.9╳108 CFU/mL as defined in the
experimental results with added simplex noise to add variation. We add 5.0╳106 PFU/mL of Bdellovibrio
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bacteriovorus in the dual predation and predator-only predation models and 5.0╳106 PFU/mL of
bacteriophage in the dual predation and virus-only predation models in a similar method (with simplex
noise) as we do with the E. coli.

Reaction Phase
This model consists of two main phases that alternate in each frame: the reaction phase, where chemical
reactions occur, and the diffusion phase, where molecules diffuse through the environment.

In the reaction phase, every cell in the grid uses the particle concentrations within itself to calculate the
rates of chemical reactions that occur with the differential equations stated previously. The differential
equations and constant values come from the paper by Hobley et al.

Differential Equations

Note that the particle abbreviations used in these equations are the same as the ones from the particle
simulation. Furthermore, we will call just solving these differential equations (without Gray Scott) with
initial concentration values as defined in the experimental results as the Differential Equation Model,
which we use to compare with our simulation in our results. In their paper, Hobley et al. used a Sequential
Monte Carlo method to fit the model parameters to the data.

Diffusion Phase
After simulating the reactions in the reaction phase, the system transitions to the diffusion phase, where
the concentrations diffuse through the environment nearby, which allows the particles to interact with
each other across the entire simulated space, influencing the dynamics of the system as a whole. The rates
at which the concentrations diffuse are based on the diffusion equation,

∂𝐶(𝑥,𝑦,𝑡)
∂𝑡 = 𝐷∇2𝐶(𝑥, 𝑦, 𝑡) = 𝐷 ∂2𝐶(𝑥,𝑦,𝑡)

∂𝑥2 + ∂2𝐶(𝑥,𝑦,𝑡)

∂𝑦2( )
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where D is the diffusion constant and C(x,y,t) is the function for the concentration of the cell at (x,y) at
time t. So, we calculate the sum of the second derivatives of the concentrations of the grid in the x and y
directions multiplied by the constant to get the rate of change for the concentrations each cell should have
in the diffusion phase.

3. Results and Discussion

Differential Equation Graphs

Solving the Differential Equations
First, we used the equations and parameters provided by Hobley et al. to solve for the fitted model which
we use as the basis for comparison with our other simulations. To do this, we first used a hand-written
piece of code that solves the equations using Newton’s method, but later decided to instead use a library
that uses the Runge-Kutta 4 method to solve them more quickly. We also created a model with adjustable
parameters with real-time visual feedback to see how different parameters affect the graph, though we did
not include these in the results as they were just for our understanding. However, the code for the graphs
with adjustable parameters is included in the Code Availability section.

Figure 6. Solved differential equations from the results of the paper by Hobley et al. in fitting their
differential equations to the experimental data; we use these graphs as a basis for comparison for

our simulations, in addition to the data itself.

11



Particle Simulation Results

Primary Scale Results
For all simulations, the populations of each type of particle were saved and plotted with the results of the
differential equation model and experimental data.

Figure 7. A visual, log-scale comparison of the primary scale particle simulation and differential
equation model with the experimental results. For all graphs, black represents the total population

of E. coli, red represents the population of bdellovibrio bacteriovorus, and green represents the
population of bacteriophages. The darker-colored lines represent the particle simulation results,

and the lighter-colored lines represent the differential equation results. Top left is the simulation of
dual predation; top right is single predation by bdellovibrio bacteriovorus; bottom left is single

predation by bacteriophages; bottom right is no predation. Note that the differential equation and
experimental data were scaled down to the primary scale with the particle simulation. The dual

predation and virus-only predation simulation took ~30 minutes, and the predator-only predation
and no predation simulations took ~10 min.

We see that in the dual predation model, the particle simulation was able to exterminate the E. coli and the
populations of the other two predators matched the experimental data well, even better than the results
from the differential equation model. For the Bdellovibrio bacteriovorus-only simulation, we see that the
differential equations for the prey population decrease far too quickly at around the ~17-hour point.
Though we did try to play around with the fit parameters given to us by the original paper, we found that
none of the parameters actually adjusted this rapid decrease in population; thus we assume that the
differential equations miss an aspect that keeps the E. coli population up in the experimental data. In the
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particle simulation data, however, we see that although the sensitive population quickly decreases
similarly to the differential equation version, there is a significant temporary increase in the
plastic-resistant E. coli population that increased the total population of E. coli to match more closely to
the data, as we can see in the graph. It’s also worth noting that we see that the E. coli population does
reach 0 in the simulation, which shouldn’t occur. However, we also see this in the experimental data since
we scaled everything down by the primary scale, so technically our simulation does match better with the
data than the differential equation does. This is because the actual concentration of remaining E. coli is
much lower than the amount we scaled down by, so we would need many more particles to see this effect.

In the bacteriophage-only experiment, we see that the differential equations do match the data much better
for the E. coli population. However, this again is caused by the limitations of scale. As we previously
stated, even a single resistant E. coli particle in the initial population is very overscaled; however,
including no initial resistant strain would mean that we would have to rely on the random (very low)
chance of a mutation occurring that changes a sensitive prey into a resistant one. Thus, we decided to
keep exactly one resistant prey, which allowed the population of E. coli to increase too soon, since as the
population of sensitive prey decreases significantly, the number of medium particles that the resistant one
can interact with increases. If there were more particles and the resistant strain were correctly scaled, then
we would see that the population would have to decrease to the same point to see an increase in the
resistant population, meaning a later population increase (to match the data better). For the virus
population itself, we see that both the differential equations model and particle simulation models do very
good. However, we also saw that this population usually fit very well even if we adjusted the probability
parameters by a significant amount, so we assume this pattern is caused by the nature of how the virus
works producing a huge number of viruses per lysis.

Though the prey-only test is not very interesting, it did confirm to us that the prey population does stay
stable if no other predators exist, which we would expect.

Secondary Scale
For our secondary scale tests, because we were unable to run the simulation for all 48 hours of
experimental data (adjusting the dt would increase inaccuracies and affect the probabilities, as stated
before), we can only compare the first 1000 frames or 10 hours of experimental data for the dual
predation and bacteriophage single predation tests. However, we were able to simulate the Bdellovibrio
bacteriovorus only and no predation tests for the full 4800 frames as they don’t have the bacteriophages
which increases the computation times significantly. Nevertheless, we were able to see a much better
match to the data that we were unable to get from just the primary scale due to scaling limitations:
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Figure 8. A visual, log-scale comparison of the secondary scale particle simulation and differential
equation model with the experimental results. For all graphs, black represents the total population
of E. coli, red represents the population of Bdellovibrio bacteriovorus, and green represents the
population of bacteriophages. The darker-colored lines represent the particle simulation results,

and the lighter-colored lines represent the differential equation results. Top left is the simulation of
dual predation; top right is single predation by Bdellovibrio bacteriovorus; bottom left is single

predation by bacteriophages; bottom right is no predation. Note that the differential equation and
experimental data were scaled down to the secondary scale with the particle simulation and that
the dual predation and bacteriophage predation tests were stopped at 1000 frames, but the other
two were able to be fully simulated for 4,800 frames. The 1,000 frames for dual predation and
virus-only predation simulation both took ~6 hours, and the full 4,800 frames for predator-only

predation and no predation simulations both took ~2.5 hours.

In the dual predation test, we see that the populations for all 3 organisms were similar to the one from the
primary scale; this is likely due to the fact that the limitations of scale not existing in this model, since the
prey gets killed off too quickly for it to become an issue. Either way, we do see that the virus and predator
populations match the data better than the differential equation versions, and though the match for the
prey population is worse, we still see that it correctly decreases rapidly near where that occurred in the
experimental data. For the single predation by Bdellovibrio bacteriovorus test, we see that the predator
population is similar to that of the primary scale simulation. However, we do see that the prey population
correctly increased back up, unlike with the primary scale. As stated before, this is because of the
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increased scale which prevents the prey population from going to zero before the population of the
predators can decrease enough for the prey population to increase back up.

For the bacteriophage simulation, we again see that the population of viruses matches the data very well,
similar to the differential equation model. However, we now see that the population of prey matches well
with the data unlike that from the primary scale version, which was what we expected to see, as stated
before. Since we do see that the population starts increasing slightly early, this again would likely be fixed
if the scale were increased further. In the prey-only test, again everything stayed constant as expected.

Particle Simulation Visualization
Furthermore, we do have the rendered videos of each of the particle simulation tests we
conducted. Here are two frames from the two scales of particle simulations. Full videos are
provided in the Data Availability section.

Figure 10. Frames from the visualization of the particles in the two scales of simulation. Left is primary
scale; right is secondary scale. The timestamp for both is at ~4 hours.

Parameters
To fit the data, we adjusted several parameters included in the model, which include reaction
probabilities, yield values, and particle size. These parameters are as such:

Reaction Probabilities
(1) Bdellovibrio Attacks Sensitive E. coli: 0.6
(2) Bdellovibrio Attacks Phage-Resistant E. coli: 0.6
(3) Phage Attacks Sensitive E. coli: 0.8
(4) Phage Attacks Plastic-Resistant E. coli: 0.8
(5) Bdelloplast Maturation and Lysis: 0.004
(6) Infected Prey Maturation and Lysis: 0.005
(7) Sensitive Prey Growth: 0.99999
(8) Phage-Resistant Prey Growth: 0.99999
(9) Plastic Resistant Prey Growth: 1
(10) Phage Resistance: 0.00001
(11) Phage Resistance Reversion: 0.00001
(12) Plastic Resistance: 0.1
(13) Predator Mortality: 0.0011
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Particle Size Yield Values
Sensitive E. coli (NS): 5 YP/B (fixed): 4.17
Bacteriophage Resistant E. coli (NR): 5 YV/I: 24
Plastic-Resistant E. coli (NP): 5 YM/B: 0.3
Bdellovibrio bacteriovorus (P): 3 YM/I: 0.35
Bdelloplast (B): 5
Bacteriophage (V): 2
Phage-Infected Prey (I): 5
Medium (M): 1
Signal (S): 1

Gray-Scott Simulation Results

In our Gray-Scott simulation, we averaged all concentrations in each cell to give us the total population to
compare the results with the data. Here are the graphs produced from this compared to the differential
equation model and experimental data.

Figure 11. A visual, log-scale comparison of the Gray-Scott model and differential equation model
with the experimental results. For all graphs, black represents the total population of E. coli, red
represents the population of Bdellovibrio bacteriovorus, and green represents the population of

bacteriophages. The darker-colored lines represent the particle simulation results, and the
lighter-colored lines represent the differential equation results. Top left is the simulation of dual

predation; top right is single predation by Bdellovibrio bacteriovorus; bottom left is single
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predation by bacteriophages; bottom right is no predation. Note that the data from the Gray-Scott
model represents the average concentrations of each particle in the cells.

We can see from the graphs that the data closely resembles the differential equation model, as expected
since the model is based on them. However, while the model captured the general trends, it seems to
perform worse except with the population of prey in the dual predation test, which is likely due to it being
able to average and smooth out the rapid drop in population. The larger errors are likely due to the
concentration inconsistencies due to the noise generation, which we added to account for differences in
concentrations in the original experimental sample and to make sure that organisms in one area of can
only interact with the organisms nearby. However, it seems like the model ended up averaging out all the
concentrations in the cells throughout the system due to diffusion, even if the diffusion constant is set to
be very low (in our experiment, we ended up with D = 1, as it seemed to make not much of a difference).

Gray-Scott Visualization
Similar to the particle simulation, we also have animations of the Gray-Scott simulations. However, they
ended up not being as interesting as the particle simulations, since the diffusion caused all the
concentrations to even out. Nonetheless, here are two frames from simulations that were somewhat
interesting, where the majority population is changing from E. coli to one of the predators:

Figure 12. Two interesting frames from the Gray-Scott simulation visualizations. Left: dual
predation at ~3.5 hours; Right: single predation by Bdellovibrio bacteriovorus at ~14 hours.

Numerical Evaluation

To score our models numerically (instead of just pure visual comparison), we used a distance function
provided by Hobley et al., which they used to fit their parameters to the experimental data. So, we
calculate the distance by the formula:

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  𝑠𝑢𝑚[(𝑝𝑜𝑖𝑛𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)2]
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠

where the point distance is calculated by:

𝑝𝑜𝑖𝑛𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑙𝑜𝑔(𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑑𝑎𝑡𝑢𝑚) − 𝑙𝑜𝑔(𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑑𝑎𝑡𝑢𝑚)

For each of the simulation tests and the differential equation model results, we evaluated the distance with
the data. Note that for the primary scale particle simulation and Gray-Scott model, we were able to use all
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48 hours of data points from the lab results for calculating the average distance, but for the secondary
scale model, only the first 10 hours of data were compared for the dual predation and virus predation
tests; the predator and no-predation tests used all 48 hours as we were able to simulate the entire 4800
frames. Furthermore, the distance for the differential equation model changes for the two scales of particle
simulation and the Gray-Scott model due to scaling and clipping (the minimum to 1 to prevent log 0
errors), which affects the final score.

Primary Scale Particle Simulation Differential Equation Model
Particle Dual Predator Virus None Dual Predator Virus None

N 0.08215 0.15619 0.26022 0.04955 0.04479 0.15755 0.06700 0.04957
P 0.08699 0.09252 – – 0.10770 0.10118 – –
V 0.06791 – 0.03203 – 0.07349 – 0.04799 –

Secondary Scale Particle Simulation Differential Equation Model
Particle Dual Predator Virus None Dual Predator Virus None

N 0.42919 0.17484 0.46339 0.04957 0.18664 0.17794 0.18828 0.04957
P 0.19126 0.09231 – – 0.23953 0.10118 – –
V 0.16310 – 0.08701 – 0.18189 – 0.16500 –

Gray-Scott Simulation Differential Equation Model
Particle Dual Predator Virus None Dual Predator Virus None

N 0.18320 0.19119 0.76015 0.10629 0.08929 0.17794 0.08488 0.04957
P 0.13004 0.10046 – – 0.10770 0.10118 – –
V 0.10552 – 0.11777 – 0.07349 – 0.04799 –

Figure 9. Tables of distance scores for each particle type in each test for the two scales of particle
simulations and the Gray-Scott model, with the differential equation model. The top table

compares the primary scale particle simulation with the differential equations; the middle compares
the secondary scale simulation with the differential equations; the bottom compares the average
cell concentrations in the Gray-Scott model with the differential equations. Note that a smaller

distance is a better fit for the data.

Something to note is that for the dual predation and the virus-only tests for the secondary scale
particle simulation, we see that the distance score is very high; this is because we are calculating
the average distance, and since we have a high error at time = 8 hours when the rapid drop in E.
coli population occurs, which usually is averaged out by the entire 48 hour time span, but now is
only spread out to the 10-hour limited time span. The scores for the Gray-Scott simulation are
also very high, though this is because of a bad fit to the data. Furthermore, since we can visually
see these errors in the graph, these values don’t give us any new information—we provided these
just for completeness.
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4. Conclusion
The key takeaway from our research is as follows: by taking advantage of the dual predators in the
system, we were able to observe complete and total lysis of our E. coli population within a reasonable
time frame of 48 hours. Observing the data more closely reveals that this is no coincidence. As both
predators proceed with their proliferation as usual, the prey is able to form resistance to their respective
aggressors. However, at this point, we theorize that the subsequent generation of prey is still susceptible
to the alternate predator, and is consumed regardless. By overlaying the results of both the single
predation trials, we arrive at the same conclusion as our dual predation trial, implying there are no
significant interactions between the predators influencing the result. As a result, we can conclude that
simply the presence of an alternate predator is an effective combatant to individual resistance.

This conclusion opens up many options for potential therapeutics, with further investment and
development, taking advantage of dual predation could lead to very robust methods of antibacterial
treatment. As discussed earlier, the results of this trial suggest no special interaction between our selected
bacteriophage and B. bacteriovorus, a natural next step would be trials with other bacteria, and their
corresponding bacteriophages. Verifying this would allow us to develop new treatments for bacterial
infections that are, ironically, resistant to resistance. That said, only further trials can confirm the
effectiveness of this theory and any potential drawbacks that may arise with its implementation.

5. Data and Code Availability

Data

The data, graphs, and simulation videos produced from our simulations, including those from the
experimental results and solved differential equations are located here. Note that the experimental data
included come from the paper by Hobley et al.

Code

The Python code used for our implementations of the above simulations is located here.
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https://github.com/kaiyataura/dual_predation_simulation
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