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Abstract

Multiple Sequence Alignment (MSA) is a fundamental tool in computational biology, employed
to align DNA, RNA, or amino acid sequences for evolutionary analysis and protein structure
inference. Despite the availability of several MSA aligners, like CLUSTALW and MUSCLE, the
selection of optimal parameters for alignment remains a challenge, often leading to suboptimal
alignments when default settings are used. In this study, we introduce a novel approach utilizing
an example of algorithm in nature – Particle Swarm Optimization (PSO) to optimize the
parameter settings of MSA aligners based on biological characteristics of the sequence sets. In
this setup, a characteristics library is constructed, which is then used to match input sequences to
existing sequences based on similarities in biological characteristics. This process yields the
most optimal alignment parameters for ClustalW alignment in any inputted sequences. This
approach enables sequence alignment problems to become more dynamic by addressing the
NP-hard problem of selecting optimal parameters.

1. Introduction

Multiple Sequence Alignment
Alignment of biological sequences like DNA and amino acid sequences is a crucial

computational biology tool for gaining insights into characteristics of the species. It has many
implications in biological research including evolutionary analysis and protein structure
inferences. Multiple Sequence Alignment (MSA) is a computational problem that is used to align
more than two biological sequences (DNA, RNA, or Amino Acid Sequences), and it is
considered to be an NP-complete optimization problem [7]. A mathematical definition of the
MSA problem is as follows: Given a set of k sequences S = {s1, s2, …, sk}, where each si in S is
a string made from an alphabet Σ, a multiple sequence alignment on the set of sequences S is an
array A = [s1’, s2’, …, sk’], where each si’ in A is a string made from an alphabet Σ∪{“-”} and
all si’ in A have the same length. Removing the gap symbols “-” from any si’ should equal to si.
The goal of MSA algorithms is to minimize the the total cost of the alignment A, which is
calculated by the following expression:



where aj is the jth column of the array A [4]. MSA has significant applications in biological
research as it reflects the biological relationships between different species, which could be
further used to infer other important information like phylogenetic relationships. An accurate
MSA aligner would reveal the biological relationships more clearly and accurately [1].

Currently, there are many softwares that can perform multiple sequence alignment (like
CLUSTALW and MUSCLE) given a set of input sequences. These aligners allow users to
customize parameters like gap-opening-penalty to be used in MSA, and if the user does not wish
to customize the parameters, the aligner would use its built-in default parameter configuration to
perform the MSA. Such a default parameter is determined during the establishment of online
softwares after methods of optimization and is common for researchers when dealing with MSA
in current years to establish their results based on such default parameter alignments. Take
ClustalW as an example, ClustalW (1.82) contains five different parameters for protein sequence
alignment and has the default as such:

Gap opening penalty = 15.0
Gap extension penalty = 6.66
Protein Matrix = Gonnet
ENDGAP = -1
GAPDIST = 4

Each default parameter here was optimized using different standards to obtain the most
reasonable value considering multiple aspects of the nature of the unaligned sequences. Take gap
opening and gap extension penalty as an example. Gap opening penalty stands for the cost of
opening a new gap of any length in the alignment, and gap extension penalty is the cost of
extending every item in such a gap. The two values are reasoned to be dependent on different
protein weight matrices, similarities in sequences, length of sequences and difference in length of
sequences [8]. Default parameters for gap opening and gap extension penalties are thereby
calculated based on formulas derived utilizing these dependencies [9]. However, the default
parameter configuration does not always produce the best MSA of the sequences for every set of
input sequences. The dynamic approach of changing parameters based on any given input
sequences is currently considered as a NP-hard problem that researchers are solving in recent
years. From the study [7], we got the idea that sequences may have different parameter
configurations that produce the best resulting alignment depending on their biological
characteristics, so a better way to select parameter configurations for a set of input sequences
may be using the parameters configurations that produces the optimum result on a set of
sequences with similar biological characteristics. This is referred to as the characteristics-based
framework [7]. In this study, we aim to first build a characteristics library with various sets of
sequences with different biological characteristics with their corresponding optimum parameter



configurations for different MSA aligners, then use the characteristics-based framework to
produce parameters for sets of test sequences to see if the aligners produce more accurate
alignments than using only the default parameter configurations.

Particle Swarm Optimization Algorithm
To construct the characteristics library, we use Particle Swarm Optimization (PSO) to

find the optimum parameter configurations of different sets of sequences. PSO is an algorithm
mimicking swarm behaviors in nature to solve optimization problems. The algorithm involves
moving a number of particles through an n-dimensional search space, where each particle
represents a potential solution to the problem. The particles would move in the search space in
each iteration and get assessed by an evaluation function. The direction of movement of each
particle in the next iteration is determined by three factors: the global optimum (the optimum
solution found among all particles so fat), local optimum (the optimum solution found by this
particle so far), and momentum (the tendency to keep going to its current direction, which can be
modified to suit different purposes). By adding randomness to the movement and carefully
balancing the particles’ tendencies of exploration (explore unexplored solutions) and exploitation
(converge towards the current optimum solution), after several iterations, the particles would
start converging towards the optimum solution [2]. The movement of each particle in each
iteration can be represented by this equation

,
where vid(t) represents the momentum, pd^best (t) represents the local optimum, gd^best (t)
represents the global optimum, and xid(t) represents the current location. Other variables are
weights and constants to adjust exploration and exploitation of the particles. An illustration of
particle movement is shown by Figure 1. The pseudocode demonstrating the complete PSO
algorithm is shown by Figure 2.

Figure 1: A graphical illustration of how each particle moves in each iteration in PSO. Image source:
https://www.researchgate.net/figure/Graphical-representation-of-PSO_fig1_350600249

https://www.researchgate.net/figure/Graphical-representation-of-PSO_fig1_350600249


Figure 2: Pseudocode for PSO Algorithm (Image from [2]).

Converting MSA Parameters Optimization to a PSO Framework
To optimize MSA parameters using PSO, we need to incorporate the MSA parameter

optimization problem into the PSO framework. And there are two major parts we need to define
in the PSO framework–the particles, and the evaluation function for the particles.

We represent each particle as a vector of quantitative parameters to be optimized. For
example, a particle can be: [Gap-opening penalty, Gap-extension penalty, Maxdiv, transweight].
And we evaluate each particle by running the MSA aligner with the parameters represented by
the particle, and assessing the resulting alignment using the objective SP-score, which we will
discuss in the next section.

The rest of the paper would be structured as follows: Section 2 would describe how we
construct the characteristics-based framework, as well as how it functions; Section 3 would
present how we test the framework, present the result, and discuss the result; and finally Section
4 would assess the limitations of our study and some future directions to improve.

2. Constructing the Characteristics-based Framework

General Idea
The characteristics-based framework is divided into two components: the characteristics

library, and the search algorithm.



The characteristics library is constructed using sets of sequences that have their parameter
configurations optimized by the PSO algorithm. Each set of sequences used to construct the
library would have a reference alignment, which is its optimum alignment. Constructing each
particle as a vector of parameter configuration, during each iteration of PSO, an alignment of the
sequences produced using the parameter configurations given by the particle is compared to the
reference alignment via a difference function based on SP-Scoring. The goal of PSO is to have
particles converge towards a parameter configuration that minimizes the difference between the
resulting alignment and the reference alignment. The resulting parameter configuration, along
with the biological characteristics of the sequences, are stored in the library. Biological
characteristics for each sequence set are extracted by a characteristic extractor function. For each
sequence set in the library, ten characteristics are extracted and stored for use in the parameter
lookup mechanism.

In the search algorithm, the same extractor function is utilized to determine the biological
characteristics of unaligned sequences. We then identify the set of biological characteristics that
are most similar to the extracted one, and use the corresponding optimum parameter
configuration to align the input sequences.

The characteristics-based framework, when completed, would take in a set of sequences
to be aligned, extract its biological characteristics and use the search algorithm to find the closest
biological characteristics in the library, use the optimum parameter configuration corresponding
to that biological characteristics to run the MSA aligner with the input sequences, and output the
resulting alignment. An illustration of the structure of the framework is shown in Figure 3.

Figure 3: An illustration of the general structure of the Characteristics-based Framework.

MSA Aligners Used
CLUSTALW
Parameters optimized for this aligner:

● Gap-opening penalty



● Gap-extension penalty
● Maxdiv (Percent identity for delay)
● Transweight (Transitions weighting)

Library Setup
1. PSO Algorithm

Our implementation of PSO was borrowed from the pyswarms library, which provides a
robust implementation of particle swarm optimization. We used the “ps.single.GlobalBestPSO”
function, along with 0.5, 0.5, and 0.9 for the c1, c2, and w parameters, and ran the optimizer
using the .optimize function on the PSO object. The best position returned by this call was the
value used in our optimized parameters library. We set the bounds as 0 to 100 for the gap
opening penalty, gap extension penalty, and maxdiv, and 0 to 1 for the transweight parameter.

2. Difference Scoring Function
The goal of the function is to run the MSA aligner on the input sequences with the

parameters given, compare against the reference alignment, and return a score reflecting the
difference between the two alignments (the smaller the score, the better the parameter
configuration). To compute the difference between two alignments, we used the difference
between the Objective SP-scores of the two alignments. Figure 4 shows a runthrough of the
scoring function.

Figure 4: Pseudocode of the Difference Scoring Function. SP_Difference is the function that computes the difference
of SP-Scores between the alignment produced by the aligner with the input parameters and the reference alignment.
The length of reference alignment is the length of a row of alignment (one of the unaligned sequences with gaps
inserted)

As an example, the Objective SP-score difference between the alignment ['ADEH-', 'DSR--',
'AS-HL'] and the reference alignment ['ADEH', 'DSR-', 'ASHL'] would be 1.0.

The algorithm we used to compute the Objective SP-score difference between the two
alignments is modified from Algorithm 1 and Algorithm 2 from this paper [6].

3. Characteristics Extractor Function
The characteristics extractor function is used to identify a set of ten biological

characteristics of a set of sequences. These ten characteristics are categorized into three groups:



Group A: General categorization of sequences

- A1. Number of unaligned sequences
- A2. Average length of the unaligned sequences
- A3. Standard deviation of sequence lengths

Group B: Comparative analysis of individual sequence among sequences

- B1. Average Kimura Distance [5] between each pair of unaligned sequences
- B2. Standard deviation of the Kimura Distance

Group C: Characteristics of individual amino acids within the sequences

- C1. Percentage of amino acids with positively charged side chains: R, H, K
- C2. Percentage of amino acids with negatively charged side chains: D, E
- C3. Percentage of amino acids with polar uncharged side chains: S, T, N, Q
- C4. Percentage of special cases amino acids: C, U, G, P
- C5. Percentage of amino acids with hydrophobic side chains: A,V, I, L, M, F, Y,

W

Characteristics are categorized into three groups to analyze sequences from three distinct
perspectives. Group A provides a general overview of the sequences, offering data useful for
assessing the performance of aligners in terms of runtime. Group B evaluates the Kimura
Distance, which is considered an evolutionary measure between sequences, thereby validating
the alignment process. Group C focuses on the individual amino acid composition among
sequences, a crucial factor in determining the tertiary structures of proteins based on the
properties of individual amino acids.

The evaluation of all three aspects combined offers a comprehensive analysis of a
sequence, enhancing the accuracy of matching newly inputted unaligned sequences with those
already existing in the library. This multidimensional approach ensures a more nuanced and
effective parameter selection for sequence alignment.

Search Algorithm–Finding the closest biological characteristics
In order to determine the set of parameters to use for a given input sequence, we use our

data extraction and matching pipeline. To set up our library, we used the above characteristics
extractor function in order to extract the characteristics from a large set of data points from the
sources we want to optimize for. This list of characteristics, along with the label for the source of
each datapoint, is then pickled using the python pickle library so that each time an individual
sequence is run, the code to extract all the data doesn’t have to run, as this would introduce
significant overhead.



When a sequence is passed into the final function, its characteristics are extracted, then its
passed off to a function that normalizes the library data using standard scaler fit on that data, and
transforms the input sequence with the same scaler. Then the body of data is passed off to the
sklearn PCA function, and the normalized input sequence are transformed using the same PCA
object. Then the mode of the 5 nearest neighbors in the dimensional reduction of the transformed
input data is assigned to the label for that input sequence. This serves as the label for which the
optimized PSO hyperparameters are drawn, which are in turn used to run ClustalW. An example
of PCA is shown in Figure 5.

Figure 5: A visualization of PCA, mapping the biological characteristics of ox, sabre, and covid sequence sets into a
two-dimensional plane.

3. Testing the Library

Dataset
To test our characteristics-based framework, we used sequences sets of 3 different

species–covid, ox, and sabre. Each of these datasets contains sets of sequences along with their
corresponding reference alignment. The covid dataset comes from Professor Compeau,
containing UK covid sequences during 2020-2022. Due to limited computing power, we selected
35 of them to be used in PCA mapping and testing. Ox and sabre dataset come from Professor
DeBlasio. We used all 395 sets of ox sequences sequences and all 423 sets of sabre sequences in
PCA, and we used the sabre sequences in testing our framework.



Method of Evaluation
To evaluate the quality of the alignment produced by running CLUSTALW with

PSO-optimized parameters and with the default parameters, we used Reference-based
Sum-of-Pairs Score (reference-based SP score) to calculate the similarity between the alignment
and the reference alignment. The reference based SP score is derived from comparing the
computed alignment (the alignment produced by running CLUSTALW with PSO-optimized
parameters or default parameters) and the reference alignment column by column, then compute
the percentage of pairs (of bases) recovered by the computed alignment. It is computed by
scanning through each column of the reference alignment and computing the pairs of bases
present in that column (gaps are ignored), then looking at the corresponding column in the
computed alignment to see how many of these pairs are recovered in that column. The result is
(total number of pairs recovered by the computed alignment)/(total number of pairs present in the
reference alignment) [10]. Figure 6 gives an example on how to compare the commuted
alignment with the reference alignment to get the number of pairs recovered and calculate the
reference-based SP score.

Figure 6: An example of computing the reference-based SP score (Image from [3]). We compare the computed
alignment with the reference alignment column by column (only look at the columns in red). Note that the column on
the left in the reference alignment has pairs “DS”, “DS”, and “SS”--all three of which is recovered by the left
column in the computed alignment; the column on the right in the reference alignment has pairs “ER”, “EH”, and
“RH”, and the right column of the computed alignment only has pair “ER” (note that we are ignoring gaps), so
only “ER” is recovered. Thus, the reference SP score for the columns in red is: (total number of pairs recovered by
the computed alignment)/(total number of pairs present in the reference alignment) = (3+1)/(3+3) = 66.67%.

Result
The result of this optimization algorithm is a set of parameters that in our testing

significantly underperformed against the default parameters. In a large battery of tests on the
saber dataset, which comes from sequences from sabertooth tigers, we found with a p value of



0.0000009 that the default parameters performed better than the assigned dataset. The effect size
for this difference was also not insignificant, as can be seen from the graph below.

Discussion
There are a lot of possible explanations for why this optimization failed. The most

significant one is that the parameters were optimized with the objective SP score function, while
the final scoring was done with the reference SP score. We aren’t sure how different the output
space for these two functions are, but a significant deviation could explain the
underperformance.

It may also be that optimization on MSA is just hard, and the lack of useful gradients in
many places could make the optimization problem too difficult for PSO to tackle with the
parameters we chose. It may be the case that with more particles and more iterations that the
algorithm would’ve randomly found better minima than we were able to on our limited
hardware. This also reflects another possible issue, which is that the covid dataset could only be
run on a low number of particles and iterations due to the aforementioned hardware limitations,
making the optimization suspect at best. For the smaller dataset, there may not be enough
information for the characteristic extractor function to return a meaningful description of the
data, making the PCA dimensionality reduction less effective. The ideal case for this kind of
optimization, which would be longer datasets with a more robust optimization, was ultimately
not possible in this project, though it’s suspect how much this would actually help address the
gap between our performance and the default performance.



4. Limitations and Future Directions

MSA Parameter Advising Sample Space
MSA parameter advising could be a difficult problem to optimize on because it has a

search space that is not continuous.
For pairwise sequence alignments, a utility function that outputs the quality of an

alignment given a reference alignment is proven to be piecewise structured [1]. Figure 7 shows
an example of how the alignment quality can change as a parameter changes.

Figure 7: An example of alignment quality change when varying the indel parameter (Image from [1]). The y-axis
represents the alignment quality and the x-axis represents the value of the indel parameter. Note that as the indel
parameter changes, the alignment quality does not change continuously, but in a piecewise manner.

Because when aligning a pair of sequences, the alignment quality change as one of the
parameters varies can be represented by a piecewise function, which can be viewed as a
one-dimensional search space, the alignment quality change when varying multiple parameters
would also be discontinuous, thus giving an n-dimensional search space that is not continuous as
the alignment quality is a piecewise function of each dimension (each parameter). Aligning
multiple sequences simply adds more dimensions to the search space, but the influence of
changing each parameter on aligning each pair of sequences is still discontinuous. Therefore, the
search space for MSA parameter advising is a multi-dimensional search space that is not
continuous.

And finding the global optimum in a discontinuous search space is not easy, as we cannot
simply rely on methods similar to gradient descent with some randomness. This could be one of
the reasons that our PSO algorithm failed to find the optimum parameter–due to the



discontinuous nature of the search space, the particles could be converging towards a local
maximum or could have trouble converging to a spot as slight changes in location inside the
search space could cause dramatic changes in the alignment quality.

Predator-prey PSO Algorithm
One of the problems that could occur when running PSO is that the particles could

converge onto a local optimum instead of the actual global optimum of the whole search space.
This problem is especially difficult to prevent when working with a discontinuous search space.
To alleviate the issue, we could use a Predator-Prey PSO algorithm instead.

The Predator-Prey PSO algorithm added a set of “predator” particles on top of the
original PSO algorithm. The idea is that “predators” would move towards the current global
optimum and “chase away” all the “preys” that are converging there, forcing them to find a new
global optimum. The “prey” particles have the same mechanism for searching in the search space
but are repelled from the “predator” particles (we can simply add a repulsion term to the
movement expression of the original particles). The “predator” particles would move towards the
current global optimum, and its movement can be represented by the following expressions:

,
where v is the velocity and x is the position of the predator [2]. Figure 8 presents an example of a
Predator-Prey PSO algorithm with 2 “predator” particles.

Figure 8: An example of Predator-Prey PSO algorithm that has 2 “predators” chasing the “prey” on the global
optimum (Image from [2]).



Other Improvements
The first improvement we could make to our pipeline is to run our PSO optimization

using the reference SP rather than the objective SP. Our results point to the possibility of
improving the smoothness of the output space is likely significantly outweighed by the deviation
in the output space between the objective and reference function. In terms of the existing
pipeline, one of the significant advantages of our architecture is that it’s very extensible with new
sequences with a run of PSO and extracting all the data characteristics for the dimensional
reduction. Future improvements could be streamlining this process with dedication functions for
adding new data to the dataset. We could also extend this pipeline to include other multiple
sequence aligners, which would involve writing dedicated functions to align with those new
aligners, along with building parameter libraries for the parameters unique to those aligners.

Lastly, we could consider redesigning large portions of our pipeline, breaking down and
testing what works and what didn’t and altering the portions that don’t contribute to an
improvement in the test alignment scores. This could involve using different PSO algorithms,
such as the predator prey PSO algorithm described above, changing the closest biological
characteristics function from PCA to another dimensionality reduction algorithm, or another
mechanism entirely. We could also change the characteristics we are extracting, since our
pipeline implicitly assumes that these characteristics map somewhat well to the appropriate
parameters for that sequence, but this is an assumption that future research could challenge.
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