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1 Abstract

Building upon the foundation laid by Erdaw and Tachbele [1], who developed a machine
learning model for the automatic detection of COVID-19 in chest X-ray images, this study
extends the application to differentiate COVID-19 pneumonia from other types of pneu-
monia. Employing a combination of Convolutional Neural Networks (CNN) and Support
Vector Machines (SVM), our models replicate and advance previous findings, achieving
high classification accuracy. In particular these models achieve 98.5% accuracy in a binary
classification task (COVID-19 Pneumonia vs. Other) and 89.13% accuracy in a ternary clas-
sification task (COVID-19 Pneumonia vs. Normal vs. Viral Pneumonia). The SVM model,
originally utilized by Erdaw and Tachbele, has been complemented with a CNN approach to
enhance feature extraction and classification tasks, thereby broadening the scope to identify
pneumonia caused by pathogens other than SARS-CoV-2. Our results confirm the viability
of using advanced machine learning techniques to improve diagnostic accuracy in medical
imaging, contributing valuable insights into the automated differentiation of pulmonary dis-
eases. This extension not only underscores the adaptability of AI in medical diagnostics
but also paves the way for more targeted and swift healthcare responses in distinguishing
between COVID-19 and other respiratory illnesses.
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2 Introduction

Medical imaging, such as X-rays and CT scans, plays a critical role in the non-invasive
diagnosis of diseases, including respiratory conditions like pneumonia, where imaging is the
current standard diagnostic practice [2]. The onset of the COVID-19 pandemic has height-
ened the need for rapid and accurate diagnostic tools capable of distinguishing between
similar illnesses, a task which medical professionals struggle with [3]. Currently, radiolo-
gists assess chest X-ray images for signs of COVID-19 by looking for several key features
indicative of the disease. Consolidations, presenting as denser, whiter areas, indicate fluid
or inflammatory infiltration, often located at the lung bases and possibly affecting both
lungs. COVID-19 often shows bilateral involvement and affects the outer sections of the
lungs, distinguishing it from some other types of pneumonia. Linear opacities, representing
thickened interlobular septa or filled alveolar walls, might also be visible, along with vas-
cular enlargement due to inflammation. Radiologists also look for the absence of features
typical of other respiratory conditions, such as nodules and pleural effusions. These visual
inspections are complemented by considering the patient’s symptoms and exposure history,
though it’s important to note that the disease’s radiographic presentation can vary with
the stage of infection[4]. While traditional imaging requires expert interpretation, which,
as mentioned earlier, is often inaccurate, advances in artificial intelligence (AI), specifically
machine learning (ML) and deep learning (DL), offer significant enhancements. AI tech-
nologies automate the detection of patterns in imaging data, increasing diagnostic accuracy
and consistency. This study leverages Convolutional Neural Networks (CNN) and Support
Vector Machines (SVM) to extend the capabilities of chest radiography, aiming to improve
the speed and reliability of diagnosing COVID-19 relative to other respiratory diseases.
By advancing AI-driven diagnostics, we aim to enhance treatment efficacy and healthcare
responsiveness in managing respiratory health crises.

3 Background

Building upon the foundation laid by Erdaw and Tachbele [1], who developed a machine
learning model for the automatic detection of COVID-19 in chest X-ray images, this study
extends the application to differentiate COVID-19 pneumonia from other types of pneumo-
nia. Employing a combination of Convolutional Neural Networks (CNN) and Support Vector
Machines (SVM), our models replicate and advance previous findings, achieving high clas-
sification accuracy. The SVM model, originally utilized by Erdaw and Tachbele, has been
complemented with a CNN approach to enhance feature extraction and classification tasks,
thereby broadening the scope to identify pneumonia caused by pathogens other than SARS-
CoV-2. Our results confirm the viability of using advanced machine learning techniques
to improve diagnostic accuracy in medical imaging, contributing valuable insights into the
automated differentiation of pulmonary diseases. This extension not only underscores the
adaptability of AI in medical diagnostics but also paves the way for more targeted and swift
healthcare responses in distinguishing between COVID-19 and other respiratory illnesses.

This study aims to fill this gap by employing both CNN and SVM models to not only
replicate existing diagnostic accuracies but also extend them to more nuanced distinctions
between multiple types of pneumonia. This approach seeks to harness the strengths of both

3



model types to improve diagnostic granularity and reliability, contributing to more targeted
therapeutic interventions.
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4 Defining a Computational Problem

Figure 1: An idealized comparison of chest x-rays caused by different conditions [5]

As is visible above, differentiating between normal and patients with a respiratory illness
from a chest x-ray appears to a be a trivial task for a medical professional. However, when
asked to differentiate between pneumonia caused by COVID-19 or another viral/bacterial
infection doctors can only do so with 62.8% sensitivity[3]. As a result, we define the follow-
ing classification task to be solved with a machine learning approach.

Input

• A dataset of N chest X-ray images, denoted as X = {x1, x2, . . . , xN}, where each
image xi is represented by a high-dimensional pixel array.

• Each image xi is pre-labeled with one of C classes {c1, c2, . . . , cC} where C includes
categories such as normal, various types of pneumonia (e.g., viral, bacterial, fungal,
COVID-19), and other thoracic diseases.

Output

• A classification label ŷi for each image xi, that minimizes the cross-entropy loss func-
tion defined by H(P ⇤|P ) = �

P
i P

⇤(i) logP (i). This is the function used to optimize
the models used in this project.
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5 Algorithms and Computational Approaches

5.1 Convolutional Neural Network

A Convolutional Neural Network (CNN) is a machine learning model that is especially
good at recognizing features of image and classifying them according to a sequence of layered
computations. A general outline of the computation is as follows:

5.1.1 Input Layer

The CNN takes an image as input, represented as an array of its pixels. In the case of
colored images, there are 3 separate arrays for each of the color channels, but the case of
x-ray image data (grayscale), we only have 1 matrix representing the intensity of each pixel.

5.1.2 Convolutional Layers

The convolutional layers apply a convolution operation to the images by sliding a set of
learnable filters/kernels which are applied via computing dot products to produce feature
maps. As the filter slides across the width and height of the input volume, a 2-dimensional
activation map is produced giving the the response of the filter at every position. The
network learns filters that activate when they see specific features at some position in the
input.

Figure 2: Feature maps created by convolutional layers [6]

5.1.3 Activation Function

After the convolution operations, an activation function such as Recitfied Linear Unit (ReLU)
is applied. The ReLU function introduces non-linearity into the model, allowing it to learn
more complex patterns. The ReLU activation function is defined as follows:

ReLU(x) = max(0, x)
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The ReLU activation function promotes sparsity in the neural network. Sparseness is
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Figure 3: Graph of the ReLU Function

important for the success of our model not only because it improves computational efficiency
by reducing the amount active neurons, but also by reducing the risk of overfitting. This
allows for better generalization to novel data and allow the network to quickly converge to
a set of salient features in an image.

5.1.4 Pooling Layers

These layers reduce the width and height of the input volume for the next convolutional
layer by a technique called max pooling where the max value from a set of pixels is retained.
This downsampling reduces computational complexity and reduces overfitting by abstracting
some features. Note that overfitting is meant to describe the idea that a machine learning
model may learn the dataset that it is trained on too well and recognize features that are
not relevant in classifying novel datasets.

5.1.5 Fully Connected Layers

After several layers of pooling and convolution operations, fully-connected layers handle
the high-level reasoning of the neural network. Each neuron in a fully-connected layer
computes a weighted sum of inputs adds a bias term, passes the result through an activation
function such as ReLU, and then makes the output available to the next layer.

5.1.6 Output Layer

The last of the Fully Connected Layers usually uses a softmax or sigmoid activation
functions to give a final classificatioin. The softmax function gives a probability distribution
over the classes in the form of a vector whose entries sum to 1 and the sigmoid function
returns a value 0  p  1 and is used for binary classfication tasks.
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5.1.7 The Sigmoid and Softmax Activation Functions

The sigmoid activation function is defined as:

S(x) =
1

1 + e�x

�10 �5 5 10

0.5

1

x

y

Figure 4: Graph of the Sigmoid Function

This function allows us, in the last layer, to classify each image as being representative
of a COVID-19 infection or otherwise. We utilize a threshold value of p = 0.5. So all all
inputs that sigmoid maps to x � 0.5 are considered to be COVID-19 and all others are
considered to be representative of a COVID-19 infection.

The Softmax function is defined as follows:

�(~z)i =
e
zi

PK
j=1

e
zj

where K is the number of classifications there are for the given task.
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Figure 5: Graph of the Softmax Function[7]
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Essentially, this function can be described as a generalization of the Sigmoid function.
It transforms the raw outputs of the neural network into a vector of probabilities (that sum
to 1) which resembles probability distribution over the input classes. The class with the
highest probability value, will be the predicted label of the image.

Figure 6: An overview of the layers of the CNN model [8]
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5.2 Support Vector Machines

A Support Vector Machine (SVM) is a powerful supervised machine learning model used
for classification tasks, including medical image analysis. In the context of our project, we
employ an SVM to differentiate chest X-ray images into two categories: those that exhibit
indicators of COVID-19 and those that do not.

5.2.1 Classification Mechanism

At its core, the SVM operates by identifying the optimal hyperplane that separates the two
classes with the greatest margin. This hyperplane is the decision boundary: points on one
side belong to one class, while points on the other side fall into the other class. What makes
SVM powerful is the fact that only support vectors need to be stored. This minimizes space
complexity and improves efficiency.

5.2.2 Preprocessing and feature extraction

For the classification of chest X-rays using an SVM, each image is first processed to extract
relevant features, which typically include textures, edges, and specific patterns pertinent
to pulmonary abnormalities. These features are transformed into a high-dimensional space
(using techniques like Histogram of Oriented Gradients (HOG) or Principal Component
Analysis (PCA)) where the SVM’s kernel trick is applied to facilitate a separation even in
non-linear distributions.

5.2.3 Kernel functions

Figure 7: A visualization of a 2D projection of the hyperplane used to separate datapoints
in the SVM [9]

The kernel choice, often a Gaussian Radial Basis Function (RBF), critically influences
the SVM’s performance by dictating how the separation line bends around data points
in the feature space. The two sample RBF kernel equation K(x0

, x) = exp (��||x0 � x||2)
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corresponds to the above example, with tuning variable � that dictates how jagged or smooth
the hyperplane is. Though only a projection of the actual hyperplane used by the SVM,
Figure 7 gives some intuition as to how � values could effect the generated separation lines.
A larger � would allow for more curvature and inflection points (potentially adding another
inflection point to cover more of the red dots), while a smaller � would reduce the number
of inflection points (potentially uncovering some of the white dots). SVMs are prized for
their effectiveness in high-dimensional spaces and their ability to handle overfitting well,
particularly in scenarios where the number of dimensions exceeds the number of samples.

5.2.4 Training the SVM

To train an SVM for image classification, each image is first converted into a n⇥ 1 feature
vector whose values represent the intensities/colors of pixels. The SVM then learns from a
training set of such vectors, each labeled with its category (COVID-19 vs no COVID-19).
Once trained, the SVM can classify new images as a COVID-19 patient or not by computing
the side of the decision boundary on which the new image’s feature vector falls, offering a
valuable diagnostic tool that adds to physicians’ capabilities in fast and accurate COVID-19
detection.
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6 Methodology

6.1 Data Acquisition

For the CNN model, a Kaggle data set [10] of approximately 15,000 images containing
chest radiographs representing a variety of upper respiratory infections (normal, COVID-19
pneumonia, viral pneumonia) was split 80/20 for training and validation, respectively.

For the SVM model, a Kaggle data set was used [11]. 96 images of combined COVID-19
x-rays and non-COVID-19 x-rays were used to fit the SVM model. To validate the accuracy
of the SVM, the remaining images were randomly selected and run through the SVM in
batches of 20 due to the long image processing time.

6.2 Data Analysis

For this project Amazon Web Services and Google Colab were used to analyze the data
sets and train/test the CNN and SVM models. Firstly, to perform data analysis and build
our models, we installed numpy, pandas, tensorflow, matplotlib, and keras. We prepared
the data sets and added layers to the CNN with ReLU and Sigmoid activation functions
so that it can be trained to perform binary classification on images. Note that since the
last activation function used in the last layer of the CNN is a sigmoid activation function,
the final prediction is outputted as a value p, where 0  p  1. The model then uses
this predication value p to classify each image as not COVID-19 or COVID-19. Next, we
prepared the training and validation datasets using an 80/20 split. Using line graphs, we
visualized the test and training accuracy and loss.

Next, we prepared the model for testing on a novel dataset. First, the classes and labels
of the test and training generators were loaded. For each image in the novel dataset, the
CNN model made a classification prediction (COVID-19 or no COVID-19). We set the
cut-off at 0.5. Thus, for all predictions p < 0.5, the image was classified as no COVID-19,
and p � 0.5 was classified as a COVID-19 patient.
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7 Results

7.1 CNN Results

After training the CNN using the methodology described in the previous section, we obtained
a training accuracy of 98.25% and a validation accuracy of 98.5%.

Figure 8: CNN training accuracy in binary classification task

Figure 9: CNN model loss in binary classification task

Following training the model was run on a novel dataset (no shared images with the
training set). On this data set, it classified 624 of 624 images correctly. More testing is
necessary to determine whether this unprecedented accuracy is in fact the result of overfitting
or some other oversight.
However, our ultimate goal was to go beyond binary classification and achieve a ternary
classification model capable of separating chest radiographs from COVID-19, normal, and
other chest radiographs of viral / bacterial pneumonia with better accuracy than physicians.
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In this task, our model achieved 92.68% training accuracy and 90.97% validation accuracy,
as shown in the figure below.

Figure 10: Ternary classification model accuracy statistics

This lower accuracy is explained by the following confusion matrix.

Figure 11: Confusion matrix for ternary classification task

As the plot demonstrates, the CNN identifies COVID-19 and normal chest x-rays with
high accuracy, but struggles with differentiating between normal x-rays and x-rays at-
tributable to other viruses or bacteria. However, the precision over 80% for this class far
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exceeds the ability of physicians to differentiate between these conditions by radiography.
This specific classification is likely the most difficult in the context of the images presented
earlier. As such, a potential resolution to this issue may include adding more layers to the
network or varying the activation functions used.

7.2 SVM Results

Since the SVM utilizes an N-dimensional hyperplane for binary classification, it is not pos-
sible to generate a comprehensive visual. However, an intuitive 2D visualization still exists;
an example is Figure 4. The SVM model, when fed non-COVID-19 images, produced an
accuracy of 98% and a false positive of 2%. When fed COVID-19 images, the model pro-
duced an accuracy of 98.4% and a false negative of 1.6%. For an overall accuracy of 98.2%
(981 out of 999 was correct).

Figure 12: Confusion Matrix of the SVM
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8 Discussion

Our study effectively builds on the foundation laid by Erdaw and Tachbele [1], using two
models, one using a Convolutional Neural Network (CNN) and the other using a Support
Vector Machine (SVM) to classify chest radiograph images for the detection of COVID-
19 pneumonia versus other types of pneumonia. The integration of CNNs was crucial for
enhanced feature extraction, enabling the identification of subtle but critical variations in
pulmonary patterns that are characteristic of different pathogens, such as COVID-19. This
advanced extraction of characteristics and the separation of data classes allowed for high
classification accuracy, a significant increase in performance compared to 62.8% sensitivity of
healthcare professionals. These results underscore the ability of advanced machine learning
techniques to significantly improve diagnostic accuracy in medical imaging.

We visually inspected the images that were wrongly classified to analyze any potential
trends in their visual features and reasons for wrong classification. Two possible trends were
observed. Firstly, it seemed that most of the wrongly classified images were images that had
visual features in between different classes. As an example, Figure 13 shows an image that
was predicted to be normal (no COVID-19), but its true label was COVID-19. This image
shows mild signs of inflammation and is more similar to normal patients. Additionally, the
watermarks in the x-ray images could have influenced the classification. The images have
different watermarks (possibly suggesting that they were taken with different machines). If
for example, one hospital saw a bunch of COVID-19 cases, and thus the model learns the
features of these images as being COVID-19, it could think that the watermark is a sign of
COVID-19. If a different hospital uses the same machine with the same watermarks, then
on normal patients (no COVID-19) it could detect the watermark as COVID-19, wrongly
classifying the image. This could be the reason for the wrong classification of Figure 14,
which was classified as COVID-19 but actually has true label normal, highly possible due
to many COVID-19 images having the same "R" watermark.

Figure 13: COVID-19 image wrongly classified as normal
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Figure 14: Normal image wrongly classified as COVID-19

Moreover, overfitting remains a critical concern for models like CNNs. To combat this,
we used k-fold cross-validation in the testing & training phase to ensure the effectiveness
of the model in various data subsets and to prevent its performance from being distorted
by any particular partition of the data. As a result, our analysis of the model’s loss curves
during the epochs suggests that our model is generalizing well. Both training and validation
losses demonstrate a downward trend, indicating an effective learning which is minimizing
the loss function during back-propagation and therefore increasing its prediction capabilities.
Furthermore, there is no upward trend in validation loss after a certain point. This upward
trend in the validation loss is a common sign of overfitting because in this case the model
learns the training data and its noise too well, not generalizing to unseen data. Therefore,
the absence of this upward trend in the validation loss is typically indicative of the model
having learned to capture the underlying patterns in the data rather than memorizing the
training set. Despite the high validation accuracy achieved, these characteristics of the loss
curves lend confidence to our model’s ability to generalize to novel data and not be overfit.

Next, future research could extend these results in several ways. First, expanding the
data set to include a greater variety of X-ray images and balance the representation of
different classes more would likely help to develop a more robust and generalized model.
Furthermore, integrating clinical data such as patient demographics, symptoms, and time
between presentation with illness and imaging could provide additional information, improv-
ing the predictive capability and complexity of these models. Advanced image preprocessing
techniques could also be explored to reduce noise and image artifacts more effectively, thus
refining the input quality for model training.

The successful implementation of both a Convolutional Neural Network (CNN) and a
Support Vector Machine (SVM) to differentiate COVID-19 from people without COVID-19
or other forms of pneumonia through chest X-ray images marks significant advancement and
achievement in medical diagnostics. The high accuracy achieved by this model underscores
its potential to transform healthcare practices by providing rapid and precise diagnoses,
thereby facilitating early and more effective treatment interventions. This capability is
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particularly critical for the management of infectious diseases such as COVID-19, where swift
diagnosis is essential to contain outbreaks and efficiently manage public health responses.

In addition, the application of such advanced diagnostics can significantly reduce health-
care costs by minimizing the reliance on traditional diagnostic methods that require more
labor and human input. This efficiency makes high-level medical care more accessible,
especially in remote and underserved areas, potentially equalizing the disparities in health-
care availability. The predictive accuracy of the model also paves the way for personalized
medicine, where treatments are tailored to individual genetic profiles and physiological con-
ditions, improving treatment efficacy and reducing side effects. Furthermore, such AI-driven
tools can enhance public health surveillance by providing authorities with real-time data on
disease trends and epidemiological patterns, thus improving decision making in public health
management and resource allocation.

However, the integration of AI into medical diagnostics is not without challenges. Eth-
ical, legal, and privacy concerns, particularly related to personal data handling, algorithm
bias, and the lack of human influence in diagnostics, must be seriously considered to ensure
these technologies are used responsibly and equitably.

As we continue to refine these technologies, the prospect of smoothly integrating AI into
clinical settings offers a promising pathway to a smarter and more responsive healthcare
system that is both effective and equitable. This study not only demonstrates the capability
of the model in enhancing diagnostic precision but also highlights the broader implications
for healthcare systems worldwide, suggesting a substantial impact on how medical care is
delivered in the future.
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