
Compladni: Efficient Computational 
Simulation of Chladni Patterns from Raw 

Audio
1 Introduction
2 Methods

2.1 Overview
2.2 Audio Processing

2.2.1 Audio Input Processing
2.2.2 Music Source Separation
2.2.3 Signal Analysis

2.2.3.1 Fast Fourier Transform (FFT)
2.2.3.2 Hann Window
2.2.3.3 Noise Reduction
2.2.3.4 Root Mean Square (RMS)

2.2.4 Dominant Frequency Detection
2.2.5 Data Export (Optional)

2.3 Physics Simulation
2.3.1 Overview
2.3.2 Closed-form Solution

2.3.2.1 Definition of function 
2.3.2.2 Determining the movement of particles
2.3.2.3 Time complexity

2.3.3 Progressive Coarse-grained Solver
2.3.3.1 Coarse-grained solver
2.3.3.2 Motivation of the progressive coarse-grained solver
2.3.3.3 Implementation of the progressive coarse-grained solver
2.3.3.4 Estimating time complexity
2.3.3.5 Quality Comparison
2.3.3.6 Parallelization of the progressive coarse-grained solver

2.4 Render and Visualization
2.4.1 Basic Rendering Method
2.4.2 Voice Part Separation Analysis
2.4.3 Rshiny Design

3 Team Contributions
4 References

1 Introduction  
The visualization of sound through physical patterns has long captivated scientists and artists alike. 
Chladni patterns, first documented by Ernst Chladni in the 18th century, represent one of the most 

fascinating demonstrations of wave mechanics in physical systems 1 . These patterns emerge when 
a plate covered with fine particles vibrates at specific frequencies, causing the particles to 
accumulate along nodal lines where no vibration occurs, thereby creating distinctive geometric 
patterns.
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The theoretical foundation for understanding these patterns was established through extensive 
research in plate vibrations and wave mechanics. Colwell et al. demonstrated the mathematical 

principles governing the formation of Chladni figures on square plates 2 , and later expanded this 

work to include comprehensive analyses of vibrations in symmetrical plates and membranes 3 . 
Their work provides the fundamental equations that describe how standing waves create these 
intricate patterns.

Recent technological advances have enabled new approaches to studying and visualizing these 

acoustic phenomena. 4 5  While traditional Chladni patterns are created through direct mechanical 
vibration of plates, modern computational methods offer the possibility of simulating these 
patterns from any audio source, particularly music. This intersection of classical physics, digital signal 
processing, and computational visualization presents an opportunity to create novel 
representations of musical compositions.

Our research focuses on developing a computational framework for transforming musical pieces 
into dynamic Chladni patterns through simulation. This approach combines audio signal processing 
techniques, physical modeling of wave mechanics, and advanced visualization methods. By 
analyzing the frequency components and temporal dynamics of music using Fast Fourier Transform 
(FFT) and implementing physics-based particle simulation, we aim to create physically accurate and 
visually engaging representations of sound.

The significance of this work extends beyond mere visualization. It bridges the gap between acoustic 
physics and digital art, providing new insights into the relationship between musical structure and 
physical wave phenomena. Furthermore, this research contributes to the broader field of scientific 
visualization by developing methods for representing complex acoustic data in an intuitive and 
aesthetically pleasing manner.

This paper presents a comprehensive approach to simulating Chladni patterns from musical input, 
encompassing audio analysis, physics simulation, and visualization techniques. We build upon 
established research in plate vibrations and wave mechanics while introducing novel computational 
methods for pattern generation and particle dynamics simulation.

2 Methods  
2.1 Overview  
Compladni is a computational simulation of Chladni patterns from raw audio. The system is built on 
three main components: audio processing, physics simulation, and visualization. The audio 
processing component is responsible for converting the raw audio into a sequence of frequencies 
and amplitudes. The physics simulation component takes these frequencies and amplitudes as 
input, solves the states of the membrane at different positions, and simulates the motion of 
particles on the membrane. The visualization component renders the Chladni patterns as complete 
videos from the simulation results. The following figure shows an overview of the system.
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Fig 2.1.a: Overview of the system

2.2 Audio Processing  
The audio processing module was developed to extract essential acoustic characteristics from audio 
files for Chladni pattern generation. The implementation utilized the go-audio/wav  package for 

handling audio files, the facebookresearch/demucs  package for music source separation, and the 
go-dsp/fft  package for frequency analysis. 

The processing pipeline consisted of several key steps:

2.2.1 Audio Input Processing  

For audio input processing, the go-audio/wav  package is utilized for handling the input audio files. 

Support was implemented for both mono and stereo WAV files. 

Channel separation was developed to enable independent analysis of stereo tracks. 

Systems for sample rate detection and buffer management were established to ensure smooth 
processing.

2.2.2 Music Source Separation  

The music source separation stage used the facebookresearch/demucs  package to decompose 

music into four stems: bass, drums, others, and vocals. 

The bass stem captured low-frequency instruments and bass lines. 

The drums stem isolated percussive and rhythmic components. 

The others stem represented melodic instruments and harmonics. 

The vocals stem separated human voice elements.

The detailed information is shown in 2.4.2.

2.2.3 Signal Analysis  

2.2.3.1 Fast Fourier Transform (FFT)  

For signal analysis, the Fast Fourier Transform (FFT) algorithm, provided by the go-dsp/fft  
package, was applied. 
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FFT is the fundamental algorithm we use for audio signal analysis, which can efficiently convert time-
domain signals into their frequency components, allowing us to analyze "the spectrum or frequency 

content of a signal". 6

Our system processes raw PCM data from WAV files, which initially exists as integer values ranging 
from -32768 to 32767. To prepare this data for FFT analysis, we first convert it to floating-point values 
normalized within the  range, ensuring consistent processing across various input sources.

We use FFT every 4096 samples combined with a Hann window with 75% overlap between 
consecutive segments. This configuration enables us to accurately detect both subtle and dramatic 
frequency changes in the music while maintaining computational efficiency. The high overlap ratio 
(75%) ensures we capture rapid variations in the audio signal, which is crucial for generating 
responsive Chladni patterns that accurately reflect the musical dynamics.

Prior to FFT execution, each window undergoes two crucial preprocessing steps. First, we apply a 
Hann Window function to minimize spectral leakage, a common issue in frequency analysis. 
Second, we implement an adaptive Noise Reduction system based on the signal's Root Mean 
Square (RMS) value, effectively reducing background noise while preserving signal integrity. The 
fft.FFTReal  function then processes this prepared data, generating a complex spectrum with 2048 

frequency bins.

The resulting FFT output integrates seamlessly with downstream processing tasks. The complex 
spectrum is converted to amplitude information, enabling accurate peak detection for dominant 
frequency identification and RMS calculations for loudness measurement. These processed results 
directly feed into the Chladni pattern simulation system, providing the fundamental data required 
for pattern generation. This comprehensive approach ensures high-quality frequency analysis while 
maintaining computational efficiency, making it particularly suitable for real-time audio visualization 
applications.

2.2.3.2 Hann Window  

To minimize spectral leakage and improve frequency analysis accuracy, Hann Windowing 7  with a 
75% overlap was implemented. The Hann window is a cosine-based function expressed 
mathematically as:

where  is the sample index and  is the window length. This windowing approach significantly 
reduces spectral leakage and ensures smooth temporal transitions.

2.2.3.3 Noise Reduction  

The noise reduction system implements a sophisticated adaptive noise gate with soft-knee 
characteristics, designed to effectively minimize background noise while preserving the integrity of 
the audio signal. Our implementation processes the normalized floating-point audio data, operating 
on windows of 4096 samples to maintain consistency with the FFT analysis pipeline.

The system employs a dynamic thresholding approach based on the signal's overall characteristics. 
The threshold is calculated as 5% of the signal's RMS value, which provides an adaptive reference 
level that automatically adjusts to different input signals. This approach proves more robust than 
fixed-threshold systems, particularly when processing audio sources with varying dynamic ranges 
and noise floors.

The noise reduction process incorporates three distinct operational zones:
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In the sub-threshold zone (signal magnitude < threshold), the signal is fully attenuated to 
eliminate background noise. 

The super-threshold zone (signal magnitude > 2.0 × threshold) maintains the original signal 
completely, ensuring that strong, intentional signals remain unmodified. 

The intermediate zone (threshold < signal magnitude < 2.0 × threshold) implements a soft-
knee transition using linear interpolation, calculated as:

This soft-knee implementation was chosen specifically to avoid the artificial-sounding abrupt 
transitions often associated with traditional noise gates. The gradual transition provides natural-
sounding noise reduction while minimizing artifacts and maintaining musical dynamics, making it 
particularly suitable for musical applications where preservation of artistic content is crucial.

The effectiveness of our noise reduction system is further enhanced by its integration with the FFT 
analysis pipeline. By applying noise reduction before frequency analysis, we improve the accuracy of 
Dominant Frequency Detection and reduce computational overhead in subsequent processing 
stages. This integration also ensures that the noise reduction process adapts to both temporal and 
spectral characteristics of the input signal.

2.2.3.4 Root Mean Square (RMS)  

The loudness calculation system employs the Root Mean Square (RMS) 8  method, providing a 

robust and perceptually relevant measure of audio signal intensity. This approach was chosen over 
peak detection or average amplitude methods because RMS better correlates with human 
perception of sound intensity and provides a more stable metric for continuous audio analysis.

RMS effectively represents the energy level of the signal and provides a good approximation of 
perceived loudness. The mathematical foundation of RMS calculation is expressed as:

where  is the number of samples in the analysis window and  represents the amplitude of each 
sample. This method provided a reliable measure of the signal's loudness.

Our implementation processes the audio data in synchronized windows of 4096 samples, matching 
the FFT analysis framework. This synchronization ensures computational efficiency and maintains 
temporal consistency across different analysis components. The system operates on normalized 
floating-point data (range ), which provides consistent results regardless of the input audio's 
bit depth or encoding format.

2.2.4 Dominant Frequency Detection  

The dominant frequency detection system implements a sophisticated peak analysis algorithm that 
combines spectral magnitude analysis with temporal consistency constraints. This approach was 
developed to address the common challenges in musical frequency analysis, particularly the 
presence of harmonics and rapid frequency transitions in complex musical compositions.

Our system employs a top-5 peak analysis methodology, which proves more robust than single-
peak detection for musical applications. The analysis operates on the magnitude spectrum obtained 
from the FFT output, with frequency resolution determined by:
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where  represents the number of audio samples per second (Hz) and  
represents the number of samples in each FFT window. 

Then, the peak detection algorithm operates in several stages: 

1. Peak Identification: 

Process the magnitude spectrum up to the Nyquist frequency ( ).

Store peaks as (magnitude, frequency index) pairs.

Implement a sliding window comparison to identify local maxima. 

2. Top-5 Peak Selection. 

Select the 5 highest magnitude peaks. 

3. Temporal Consistency Analysis: 

Track the previous frame's dominant frequency. 

Among the top 5 peaks, select the candidate that:
a. Has magnitude ≥ 50% of the maximum peak
b. Is closest to the previous dominant frequency

This approach prevents frequency jumping while maintaining responsiveness

The five-peak tracking system provides three crucial advantages over single-peak detection: it 
manages harmonic content by distinguishing fundamental frequencies from overtones, enables 
smooth handling of note transitions by tracking multiple frequency components simultaneously, 
and enhances noise resilience through redundant peak information and temporal consistency 
checking. This comprehensive approach makes the system particularly effective for analyzing 
complex musical signals where multiple frequencies coexist and change dynamically.

2.2.5 Data Export (Optional)  

Finally, optional data export functionality was introduced to facilitate downstream testing. 
Processed data could be exported in CSV format, with separate output files created for the left and 
right channels. The data structures were organized for seamless integration into physics simulations 
for Chladni pattern generation.

2.3 Physics Simulation  

2.3.1 Overview  

As we discussed in the background section, the standing wave on the membrane results in different 
vibration strengths at different positions. Parts of the membrane vibrate more vigorously while 
others vibrate less. The spatial distribution of the vibration strength is determined by the frequency 
of the excitation. If we randomly scatter a vast number of particles on the membrane and excite the 
membrane with a certain frequency, we can observe all particles moving towards some very specific 
areas, forming visually appealing symmetric and complex patterns. Here is a figure showing the 
initial random distribution of particles on the membrane and the final distribution after the 
membrane is excited by a frequency of 2000 Hz.
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Fig 2.3.1.a: Initial state and final state
The initial state is a random distribution of particles on the membrane, and the final state is the Chladni

pattern formed by the particles after the membrane is excited by a frequency of 2000 Hz.

Fig 2.3.1.b: Typical process of particle movement on an excited membrane

In the physics simulation, we first randomly scatter particles on the membrane. Then, we repeatedly 
apply forces to the particles based on the vibration strength at their positions. In this process, the 
particles in positions with higher vibration strength will be pushed out of areas, while the particles in 
areas with lower vibration strength tend to stay still. As a result, after a sufficient number of 
iterations, the particles will all settle into stable positions, forming the Chladni pattern. The following 
figure shows a typical process of particle movement on an excited membrane with nodal lines 
represented in white.

The force applied to each particle is calculated based on the vibration strength at its position. In our 
implementation, we use a closed-form solution to calculate the vibration strength at each position, 
and generates a random force with varying direction, using the vibration strength as the magnitude. 
This random walk process is derived from the physical description of the particle behavior in physics 

research 9 .

During the benchmarking of our algorithm, we found that the closed-form solution is 
computationally expensive, and is the performance bottleneck. Therefore, we developed a 
progressive coarse-grained solver that dramatically improves the performance of the physics 
simulation. In the following section, we will first introduce the closed-form solution, and then 
describe the details of the progressive coarse-grained solver.

2.3.2 Closed-form Solution  

The closed-form solution is a mathematical solution to the vibration strength at each position on a 
membrane with specific shape and boundary conditions. In our implementation, we use a square 
membrane that is excited by a point source at its center. The closed-form solution is described in 

detail in modern physics textbooks 10 . The mathematical details behind the closed-form solution 
are not the focus of this paper, so we will not repeat the detailed derivation here. We implemented 
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the closed-form solution in an approximate manner so that it is programmable and within project 
scope. For simplicity, we will show the formal definition of our derived programmatic solution here.

2.3.2.1 Definition of function  

The function  computes the vibration strength at a specific position  on a square 
plate by summing contributions from various wave modes. The vibration strength is influenced by 
the input frequency and accounts for various predefined physical properties of the system.

Particle Position ( , ): Represents the position of the particle on the plate in pixels.

Input Frequency ( ): Represents the input frequency of the simulation, in Hertz.

Plate Size ( ): Represents the length of one side of the square plate in meters.

Half Plate Size in Pixels ( ): Denotes half the plate size measured in pixels, used to scale the 
position coordinates  and .

Dispersion Constant ( ): Represents a constant physical property of the material of the plate, 
describing the speed of the wave propagation.

Energy Dissipation Constant ( ): Represents the damping factor that accounts for energy loss 
in the system, preventing the particles from oscillating indefinitely.

Wave Number for Mode  ( ): Calculated for each mode , where  and  are 
even integers representing the number of half-wavelengths along the - and -axes, 
respectively.

Maximum Mode ( ): Represents the maximum mode number to be included in the 
summation.

2.3.2.2 Determining the movement of particles  

As described in the overview section, the movement of particles is generated by a random walk 
process that is weighted by the vibration strength at their positions. In an actual audio to video 
simulation, we will also apply the amplitude of the input audio to the vibration strength, so that the 
movement of particles responses to the loudness of the input audio.

Given the vibration strength at each position, we calculate the force applied to each particle at each 
iteration by generating a random direction, and normalize it to the same scale as the vibration 
strength times audio amplitude.

However, most of music is not pure tones, and the frequency and amplitude of the input audio may 
change significantly over time. This could result in a situation where we can never form a stable 
Chladni pattern because of the varying frequency and insufficient number of iterations to converge. 
Therefore, we added a StepScale  and NumIterations  hyperparameter to create a layer of control 

over the random walk process, making the particle converges faster to the nodal lines, even when 
the input audio is noisy and highly unstable.
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For clarity, we will use pseudocode to describe the process of determining the movement of 
particles. The input to the physics simulation is a list of particles, a list of frequencies, and a list of 
amplitudes. Extra parameters include StepScale  and NumIterations . Note the difference between 
NumIterations  and the actual number of simulation steps that we will perform. The actual number 

of simulation steps is equal to the length of the input frequency list. The NumIterations  parameter 

is used to control the number of iterations that we will perform for each particle within one 
simulation step. Each iteration involves moving the particle once, based on the StepScale  
parameter. Here is the pseudocode:

2.3.2.3 Time complexity  

For this unoptimized implementation, we iterate through all particles and calculate the force applied 
to each particle at each iteration. Let  be the number of particles, and  be the number of 
iterations. The total number of simulation units of this implementation is . However, a unit of 
simulation includes the calculation of the closed-form solution. Recall that we need to iterate 
through all possible combinations of  modes up to , so we need to calculate the impact of 

 mode combinations for each particle. Thus, the total number of simulation units is 
.

def chladni_simulation(

    particles_count: int,

    frequencies: list[float],

    amplitudes: list[float],

    step_scale: float,

    num_iter: int

) -> list[list[Particle]]:

    # Initialize particles

    particles = initialize_particles(particles_count)

    time_series = [particles]

    # Simulate the Chladni pattern

    for frequency, amplitude in zip(frequencies, amplitudes):

        new_particles = step_simulation(particles[-1],

                                        frequency, amplitude,

                                        step_scale, num_iter)

        time_series.append(new_particles)

    return time_series

def step_simulation(

    particles: list[Particle],

    frequency: float,

    amplitude: float,

    step_scale: float,

    num_iterations: int

) -> list[Particle]:

    for particle in particles:

        for _ in range(num_iterations):

            vibration: float = psi(particle, frequency)

            unit: tuple[float, float] = random_direction()

            force = step_scale * amplitude * vibration * unit

            particle.move(force)

    return particles
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Fig 2.3.2.3.a: Typical pattern formed with different M values

During our benchmarking, we found that our algorithm spent almost all of its time calculating the 
closed-form solution, and the random walk process only took a negligible amount of time. In 
preliminary testing, we also found that we need to have large enough  to get visually appealing 
patterns. For small , the pattern of nodal lines changes less with different frequencies, and the 
pattern is less interesting. The figure below shows the typical pattern formed with different  
values.

To optimize the performance of the algorithm, we parallelized the simulation process. The 
parallelization brings significant performance improvement because the updates of particle 
positions are independent of each other. In our testing, the parallelized version of the algorithm can 
achieve a 10x speedup compared to the sequential version on a 20-core machine. However, with our 
innovative progressive coarse-grained solver, the seemingly significant speedup is not as 
pronounced.

2.3.3 Progressive Coarse-grained Solver  

2.3.3.1 Coarse-grained solver  

Since the goal of our project is to generate video demonstrations of the behavior of particles on a 
membrane, the precision of the simulation would become unnecessary if it goes beyond the 
resolution of the video. Therefore, a intuitive idea is to build a coarse grid matching the resolution of 
the video, and only calculate the vibration strength at the grid points.

During simulation, we can firtly test if the  value at the nearest grid point for each particle has been 
calculated. If so, we can directly use the value without recalculating it; if not, we calculate the  value 
using the closed-form solution and store it in the grid. Here is the pseudocode for the coarse-grained 
solver:

GRID = [[0, 0, 0, ...],

        [0, 0, 0, ...],

        ...,

        [0, 0, 0, ...]]

def coarse_grain_psi(x: float,

                     y: float) -> float:

    # Which grid does the particle fall in?

    grid_x: int = nearest_grid_coord(x)

    grid_y: int = nearest_grid_coord(y)

    # Already calculated? Just get the stored value!
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Fig 2.3.3.1.a: Overall architecture of the coarse-grained solver

In this way, instead of doing  units of simulation, we instead need to do up to  for each 
frequency, where  is the resolution of the video.

However, in actual audio files, the frequency of the audio signal changes over time, so we need to 
create a new coarse grid for each distinct frequency. To better reuse the coarse grids which contain 
previously calculated  values, we chose to also approximate the frequency of the audio signal by 
rounding it to the nearest multiple of , where  is the frequency resolution of the coarse grid. 
In this way, we can reuse the coarse grids across different audio frequencies. Below is a figure 
showing the overall architecture of our coarse-grained solver.

This coarse-grained solver could present an improvement over the original implementation when 
 is large and  is small for each corresponding frequency. However, in practice, audio files 

contain a wide range of frequencies, resulting the  value being relatively small for most frequencies, 
unless we round the frequency to ridiculously large . Thus, the performance improvement is not 
as significant as expected.

2.3.3.2 Motivation of the progressive coarse-grained solver  

Our invention of the progressive coarse-grained solver comes from the observation that particles in 
the Chladni pattern tend to settle and accumulate in very specific areas, the nodal lines. The 
vibration strength near these nodal lines are low and need to be calculated more precisely to form 
the correct pattern. However, for areas far away from the nodal lines, the vibration strength is high 
and the particle will never accumulate there. The precision of the  values in far away areas is not as 
important because most particles will not be in these areas after several iterations of random walk.

This observation motivates us to only calculate precise  values for points near the nodal lines, and 
use less precise  values for areas far away from the nodal lines. This will only negligibly compromise 
the quality of the Chladni pattern, because very tiny proportion of particles will be in these far away 
areas after several iterations of random walk.

    if is_calculated(GRID[grid_x][grid_y]):

        return GRID[grid_x][grid_y]

    # Not calculated? Calculate and store the value!

    else:

        vibration_strength = psi(grid_x, grid_y)

        GRID[grid_x][grid_y] = vibration_strength

        return vibration_strength
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Fig 2.3.3.1.b: Initial state of the coarse-grained solver

Based on the motivation described above, we propose a progressive coarse-grained solver that 
progressively adjusts the precision of the  values based on the density of particles in different 
areas.

2.3.3.3 Implementation of the progressive coarse-grained solver  

Instead of building a  coarse grid initially, where  is the resolution of the video, we start with 
a very low resolution  grid holding the  values of at each grid point, along with a counter at 
each grid point recording the access to that grid point. For every incoming particle, we first 
approximate its position to match a grid point. If the  value at the grid point has been calculated, 
we use the value directly and increment the counter at the grid point; if not, we calculate the  value 
using the closed-form solution and store it in the grid.

Then, we predefine a hyperparameter  that indicates a threshold of the counter value for a grid 
point to be considered as a high density area. If the counter value at a grid point is greater than , 
we consider the area as a high density area and believe that a nodal line is present in the area. To 
refine the  value at this high density grid point, we then build a smaller  grid inside the high 
density grid point. If we call the intial  grid the level 0 refinement, we can call the new  
grid the level 1 refinement, providing a doubled precision. Thus, for any future particle that falls into 
this area, instead of getting the  value from the larger  grid, we will go into the smaller  
grid and do a more precise calculation.

The above process cound be repeated multiple times, and results in a higher and higher level of 
refinement in certain areas where nodal lines are present. The process is repeated until the 
resolution of the finest grid reaches the resolution of the video. Here is a visual example of this 
progressive coarse-grained solver in action.

1. Assume that the resolution of the video is  pixels and the threshold  is 10. We start 
with a  grid, and the counter at each grid point is initialized to 0.

2. A particle with coordinates  is scattered onto the membrane and is placed into 
the bottom right grid point, which has not been calculated before. We calculate the  value at 
this grid point, store the value in the grid, and increment the counter by 1.
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Fig 2.3.3.1.c: First iteration of the coarse-grained solver

Fig 2.3.3.1.d: After several iterations

Fig 2.3.3.1.e: Build a smaller grid inside the high density grid point

3. The above process is repeated for a few more iterations. Since the resolution is low, most of the 
particles will get a previously calculated  value. After several iterations, we can see that the 
counter at the bottom right grid point is meets the threshold .

4. We then build a smaller  grid inside the high density grid point and initialize the counter 
at each new grid point to 0.

5. A particle with coordinates  is scattered onto the membrane and is placed into 
the smaller grid point which we just created and has not been calculated before. We calculate 
the  value at this grid point, store the value in the smaller grid, and increment the 
corresponding counter by 1. Since the resolution of the smaller grid is higher, the  value we 
get is more precise.

No. 13 / 24



Fig 2.3.3.1.f: A particle is scattered onto the membrane

Fig 2.3.3.1.g: After several iterations

Fig 2.3.3.1.h: After enough iterations

6. The above process is repeated for lots of iterations, and particles will become more and more 
concentrated in at nodal lines. In the following figure, we drew an example nodal line in red to 
indicate the area where particles are more likely to accumulate. We can see that the resolution 
of the grid near the nodal lines is higher, so the  value is more precise.

7. Finally, after enough iterations, we can see that the Chladni pattern is formed and almost all 
particles are in the nodal lines. The resolution of the grid near the nodal lines will grow larger 
and larger until it reaches the resolution of the video.

Here is a pseudocode showing the implementation of the progressive coarse-grained solver:

class ProgressiveCoarseGrid:

    # Where psi values are stored
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Similarly, since actual audio files contain a wide range of frequencies, we can round the frequency to 
the nearest multiple of  to reuse the coarse grids across different audio frequencies. Here is a 
figure showing the overall architecture of the progressive coarse-grained solver:

    values = [[None, None, None, ...],

              [None, None, None, ...],

              ...,

              [None, None, None, ...]]

    # How many times the grid point has been accessed

    counter = [[0, 0, 0, ...],

               [0, 0, 0, ...],

               ...,

               [0, 0, 0, ...]]

    # Children grids, used for refinement

    children = [[None, None, None, ...],

                [None, None, None, ...],

                ...,

                [None, None, None, ...]]

GRID = ProgressiveCoarseGrid() # One grid for one frequency

def pcg_psi(x: float, y: float, grid = GRID) -> float:

    # PCG: Progressive Coarse-Grained Solver

    # Find the grid point that the particle falls in

    g_x, g_y = nearest_grid_coord(grid, x, y)

    # Threshold reached? Do refinement

    if grid.counter[g_x][g_y] >= THRESHOLD:

        # Is the children grid initialized?

        if grid.children[g_x][g_y] is None:

            grid.children[g_x][g_y] = ProgressiveCoarseGrid()

        # Recursive call to the children grid

        return pcg_psi(x, y, grid.children[g_x][g_y])

    # Calculated? Get the stored value and increment the counter

    if grid.values[g_x][g_y] is not None:

        grid.counter[g_x][g_y] += 1

        return grid.values[g_x][g_y]

    # Not calculated? Calculate the value and store it in the grid

    else:

        vibration_strength = psi(g_x, g_y)

        grid.values[g_x][g_y] = vibration_strength

        grid.counter[g_x][g_y] = 1

        return vibration_strength
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Fig 2.3.3.1.i: Overall architecture of the progressive coarse-grained solver

2.3.3.4 Estimating time complexity  

In our previous implementation where we have an  coarse grid, the number of times we need 
to calculate the  value is up to . As it turns out, in our progressive coarse-grained solver, the 
number of times we need to calculate the  value is proportional to the number of particles. Here is 
how we derive this conclusion.

Say that we are about to simulate the Chladni pattern of a certain frequency with the video 
resolution . The length of nodal lines formed by this frequency is  pixels. Recall that particles will 
accumulate in the nodal lines, so the final situation is that all grids that touches the nodal lines will 
be refined to the resolution of the video. On average, every two pixel in the length of nodal lines will 
correspond to one maximum refinement level  grid. The results in a total number of  
calculations of  values for the maximum refinement level. Similarly, on average, every two  
grids in the th refinement level will correspond to one  grid in the th refinement level. 
Thus, the total number of calculations of  values on level  is half of that on level .

For a video of resolution , the maximum number of refinement levels is . Therefore, the 
total number of calculations of  values can be calculated as:

Since  is the length of nodal lines in pixels, it is proportional to the resolution of the video . 
Therefore, the total number of calculations of  values can be written as . Let's 
assume that the nodal line forms a perfect square with side length , then . 
Therefore, the total number of calculations of  values is , which is linear to the resolution of the 
video.

In this way, we reduce the total number of calculations of  values from  to . For a typical 
video of resolution , the total number of calculations of  values is reduced from over 
a million to less than 10 thousand, which is a 100x speedup. This trend is very obvious if we look at 
this figure:
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Fig 2.3.3.4.a: Grid visualization comparison

Fig 2.3.3.4.b: Comparison of the performance
Y-axis: Time taken in seconds in logarithmic scale

 

This theoretical trend matches the performance improvement we observed in our benchmarking. In 
the physics simulation with 10000 particles, 10000 iterations,  resolution at a fixed 
frequency, the serial version of the progressive coarse-grained solver is even faster than the parallel 
version of the original implementation. Here is a figure showing the comparison of the performance 
of the two implementations.

2.3.3.5 Quality Comparison  

It turns out that the quality of the Chladni pattern drops when we use more efficient solvers. The 
original implementation is the most accurate, forming the most complete Chladni pattern with 
sharpest nodal lines. The coarse-grained solver is the second most accurate, but it may miss some 
delicate features and may make certain nodal lines less clear. The accuracy of the progressive coarse-
grained solver varies depending on the number of refinement levels it has, but it is generally the 
least accurate. However, if we simulate on larger scale, the quality of the progressive coarse-grained 
solver will gradually improve and be comparable to the coarse-grained solver.
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Fig 2.3.3.5.a: Quality comparison when the number of iterations is small
Simulated on 100 iterations. We can see that the coarse-grained solver is more blurry than the precise

implementation. The progressive coarse-grained solver is most blurry, and is missing some nodal lines.

Fig 2.3.3.5.b: Quality comparison when the number of iterations is large
Simulated on 1000 iterations. We can see that the precise implementation now forms some very fine

features, which is not visible in the coarse-grained solver. The overall quality of the progressive coarse-
grained solver is now comparable to the coarse-grained solver.

2.3.3.6 Parallelization of the progressive coarse-grained solver  

Since the progressive coarse-grained solver uses a 2D grid to store the  values, we will need careful 
handling of the grid to ensure that the parallelization is safe and efficient, so that each cell of the grid 
can be accessed by multiple threads without causing race conditions, repeated calculations, or other 
issues.

To understand this, let's first recap all operations we need to perform on the grid in pseudocode:

class ProgressiveCoarseGrid:

    values: list[list[float]]

    counter: list[list[int]]

    children: list[list[ProgressiveCoarseGrid]]

    def get_psi(self, x: int, y: int) -> float:

        if self.children[x][y] is not None:

            return self.children[x][y].get_psi(x, y)

        else:

            if not reached_max_refinement(self.counter[x][y]):

                self.counter[x][y] += 1

            return self.values[x][y]

    def set_psi(self, x: int, y: int):
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As we can see, all operations on the grid involves modifying the cell of the grid or its children. To 
make the parallelization safe, we need to ensure that no two threads modify the same grid cell at the 
same time. We can achieve this by using a lock on each grid cell.

When a thread wants to access a grid, we first check if the grid cell is locked. If it is, we wait for the 
lock to be released. If it is not, we proceed by checking if the current access needs a lock. If it does, 
we lock the grid cell and proceed. If it does not, we proceed without locking.

An access may need a lock if it reads from an underpopulated grid cell (and increments the counter), 
or if it writes to an uncalculated grid cell, or if it creates a child grid. An access does not need a lock if 
it reads from a populated grid cell with a valid child grid, or if it reads from a grid cell that has already 
reached the maximum refinement level.

To further optimize the parallelization, we defined a loose threshold to disable locking when reading 
from a very underpopulated grid cell. For example, if the predefined refinement threshold is 100 and 
the counter at a grid cell is only 7, we will not lock the grid cell when reading from it. This is because 
the grid cell is very unlikely to get to above the threshold during the reading and incrementing 
process. This optimization reduces the overhead of locking and unlocking the grid cell, and speeds 
up the simulation by 5% in preliminary testing.

2.4 Render and Visualization  

2.4.1 Basic Rendering Method  

In designing the visualization strategy for Chladni patterns, we faced two seemingly contradictory 
objectives: the need to precisely represent each particle's position to reflect authentic physical 
motion, while simultaneously creating a soft, ethereal visual effect that captures the flowing nature 
of sound waves. To resolve this challenge, we embraced a Dual-Layer Rendering approach as our 
core visual strategy.

This dual-layer structure draws inspiration from the natural phenomenon of light scattering. Much 
like observing the night sky, where each star possesses both a brilliant core and a gentle halo, our 
visualization endows each particle with two visual layers: a sharp, bright nucleus and a diffused glow 
layer. The bright nucleus employs linear attenuation to ensure positional accuracy, while the glow 
layer follows an exponential decay function:

where 'd' represents the distance from the particle's core, and 'R' defines the glow radius. This decay 
pattern not only creates natural light diffusion effects but also enables smooth transitions when 
particles cluster together.

We then transforms each frame into a celestial tableau, where particles dance like stars responding 
to the music's invisible forces. The rendering system processes these frames in parallel, orchestrating 
a symphony of visual elements:

        self.values[x][y] = psi(transform(x), transform(y))

        self.counter[x][y] = 1

    def create_child(self, x: int, y: int):

        self.children[x][y] = get_child(*args)
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Fig 2.4.1: Rendering result demonstration
The white particles represent the final rendering result of our system, showing both the precise positions

and the overall visual effect of the simulation

After these settings, you can conclude from Fig 2.4.1 that not only does our dual-layer rendering 
approach effectively capture the precise particle positions, but it also creates a visually captivating 
representation of the wave dynamics. The bright nuclei of the particles clearly mark their exact 
locations while the surrounding glow layers blend smoothly to reveal the underlying wave patterns. 
The parallel processing implementation ensures this visual quality is maintained even at high frame 
rates, producing fluid animations that accurately represent the physical phenomena.

 

2.4.2 Voice Part Separation Analysis  

For the audio separation task, we utilized Demucs v4, a pre-trained model that demonstrates state-
of-the-art performance in music source separation. The model effectively separated our audio tracks 
into distinct components - vocals, drums, bass, and other accompaniments, achieving satisfactory 

results. 11 12

 

go func(start, end int, ch chan []*image.RGBA) {

    batch := make([]*image.RGBA, end-start)

    for i := start; i < end; i++ {

        batch[i-start] = r.RenderSingleFrame(i, voicePart)

    }

    ch <- batch

}(startIdx, endIdx, channels[i])
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Fig 2.4.2.a: Visualization of different voice parts at the same timestamp
Multiple panels showing distinct particle distributions: (a) Bass track with concentrated patterns in lower
frequencies; (b) Drum track displaying focused, rhythmic distributions; (c) Other instruments showing

dispersed patterns across frequency ranges; (d) Vocal track demonstrating broad frequency range
distributions with characteristic clustering

As shown in Fig. 2.4.2.a, the particle patterns of different voice parts at the same timestamp exhibit 
distinct characteristics. From left to right, the bass track (a) and drum track (b) show more 
concentrated particle distributions, which aligns with our expectation for low-frequency 
components. In contrast, the other instruments (c) and vocal track (d) display more dispersed 
patterns, reflecting their broader frequency ranges. These distinct visualizations at the identical 
moment demonstrate that each pattern responds exclusively to its corresponding audio 
component, validating the effectiveness of our voice separation approach.

But this is just a start. In crafting our visualization's color palette, we found inspiration from an 
interesting coincidence - our example track comes from Akina Nakamori's 1985 album "CRIMSON." 
This serendipitous connection led us to choose crimson ( {220, 20, 60, 255} ) as the color for 

vocal patterns, paying a subtle homage to the J-pop diva's iconic album. As shown in Fig 2.4.2b, this 
choice not only carries this meaningful reference but also proves to be visually striking.

Building around this central crimson theme, we carefully selected complementary colors for other 
voice parts to create a harmonious visual ensemble. The deep violet ( {75, 36, 115, 255} ) for bass 

patterns provides a rich, grounding presence, while the electric blue ( {54, 137, 160, 255} ) for 

drums adds dynamic energy to the visualization. The accompanying instruments are rendered in a 
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Fig 2.4.2.b: Color scheme visualization
Complete visualization demonstrating the interaction of multiple color layers: Crimson (#DC143CFF) for

vocals, Deep violet (#4B2473FF) for bass, Electric blue (#3689A0FF) for drums, and Vapor cyan
(#66BBB2FF) for other instruments, showing how different colors blend while maintaining distinct voice

part identities

subtle vapor cyan ( {102, 187, 178, 255} ), which gracefully fills the spaces between the more 

prominent elements without overshadowing them.

Through our dual-layer rendering approach, these colors interact and blend naturally as particles 
move across the plate. Each voice part maintains its distinct identity while contributing to a cohesive 
whole - much like how the instruments in Nakamori's tracks weave together to create her signature 
sound. The rendering parameters for each voice part are carefully tuned to this color scheme, with 
the core and glow effects enhancing the natural interplay between different musical elements.

 

 

2.4.3 Rshiny Design  

We developed an interactive Shiny application to demonstrate the Chladni pattern generation 
system. As shown in Fig 2.4.3, the graphical user interface adopts an intuitive layout, dividing the 
functionality into two main sections: a parameter control panel and a result display area.

The control panel on the left allows users to upload audio files in WAV format and adjust key 
parameters through a series of numeric input boxes, including the plate's physical dimensions, 
image resolution, particle count, and other physical simulation parameters. To optimize 
computational performance, we introduced a coarse simulation option, where users can balance 
calculation speed and accuracy through a multi-level resolution refinement strategy.

The main panel on the right, as demonstrated in the screenshot, employs a hierarchical video 
display layout. The complete Chladni pattern animation is shown at the top, while the visualizations 
for bass, drums, vocals, and other instruments are displayed separately below. A progress bar and 
status indicators allow users to monitor the processing progress in real-time. This layout design not 
only facilitates observation of the overall effect but also enables easy comparison of vibration 
characteristics across different voice parts, providing an intuitive analytical tool for music 
visualization research.

No. 22 / 24

af://n1737


Fig 2.4.3: Interactive visualization demonstration using R Shiny

1. “Ernst Chladni.” Wikipedia, The Free Encyclopedia. Wikimedia Foundation, Inc., Last edited on 30 November 2024. https://en.wikipedia.org/wik
i/Ernst_Chladni ↩

The system's responsive design ensures a good user experience across different devices. Through 
this demonstration interface, users can conveniently explore how different parameters influence the 
formation of Chladni patterns and gain a deeper understanding of the relationship between sound 
and physical vibration patterns.
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