
Compladni: Efficient Computational
Simulation of Chladni Patterns from Raw

Audio
1 Introduction
2 Methods

2.1 Overview
2.2 Audio Processing

2.2.1 Audio Input Processing
2.2.2 Music Source Separation
2.2.3 Signal Analysis

2.2.3.1 Fast Fourier Transform (FFT)
2.2.3.2 Hann Window
2.2.3.3 Noise Reduction
2.2.3.4 Root Mean Square (RMS)

2.2.4 Dominant Frequency Detection
2.2.5 Data Export (Optional)

2.3 Physics Simulation
2.3.1 Overview
2.3.2 Closed-form Solution

2.3.2.1 Definition of function
2.3.2.2 Determining the movement of particles
2.3.2.3 Time complexity

2.3.3 Progressive Coarse-grained Solver
2.3.3.1 Coarse-grained solver
2.3.3.2 Motivation of the progressive coarse-grained solver
2.3.3.3 Implementation of the progressive coarse-grained solver
2.3.3.4 Estimating time complexity
2.3.3.5 Quality Comparison
2.3.3.6 Parallelization of the progressive coarse-grained solver

2.4 Render and Visualization
2.4.1 Basic Rendering Method
2.4.2 Voice Part Separation Analysis
2.4.3 Rshiny Design

3 Team Contributions
4 References

1 Introduction
The visualization of sound through physical patterns has long captivated scientists and artists alike.
Chladni patterns, first documented by Ernst Chladni in the 18th century, represent one of the most

fascinating demonstrations of wave mechanics in physical systems 1 . These patterns emerge when
a plate covered with fine particles vibrates at specific frequencies, causing the particles to
accumulate along nodal lines where no vibration occurs, thereby creating distinctive geometric
patterns.

No. 1 / 24

af://n1485

The theoretical foundation for understanding these patterns was established through extensive
research in plate vibrations and wave mechanics. Colwell et al. demonstrated the mathematical

principles governing the formation of Chladni figures on square plates 2 , and later expanded this

work to include comprehensive analyses of vibrations in symmetrical plates and membranes 3 .
Their work provides the fundamental equations that describe how standing waves create these
intricate patterns.

Recent technological advances have enabled new approaches to studying and visualizing these

acoustic phenomena. 4 5 While traditional Chladni patterns are created through direct mechanical
vibration of plates, modern computational methods offer the possibility of simulating these
patterns from any audio source, particularly music. This intersection of classical physics, digital signal
processing, and computational visualization presents an opportunity to create novel
representations of musical compositions.

Our research focuses on developing a computational framework for transforming musical pieces
into dynamic Chladni patterns through simulation. This approach combines audio signal processing
techniques, physical modeling of wave mechanics, and advanced visualization methods. By
analyzing the frequency components and temporal dynamics of music using Fast Fourier Transform
(FFT) and implementing physics-based particle simulation, we aim to create physically accurate and
visually engaging representations of sound.

The significance of this work extends beyond mere visualization. It bridges the gap between acoustic
physics and digital art, providing new insights into the relationship between musical structure and
physical wave phenomena. Furthermore, this research contributes to the broader field of scientific
visualization by developing methods for representing complex acoustic data in an intuitive and
aesthetically pleasing manner.

This paper presents a comprehensive approach to simulating Chladni patterns from musical input,
encompassing audio analysis, physics simulation, and visualization techniques. We build upon
established research in plate vibrations and wave mechanics while introducing novel computational
methods for pattern generation and particle dynamics simulation.

2 Methods
2.1 Overview
Compladni is a computational simulation of Chladni patterns from raw audio. The system is built on
three main components: audio processing, physics simulation, and visualization. The audio
processing component is responsible for converting the raw audio into a sequence of frequencies
and amplitudes. The physics simulation component takes these frequencies and amplitudes as
input, solves the states of the membrane at different positions, and simulates the motion of
particles on the membrane. The visualization component renders the Chladni patterns as complete
videos from the simulation results. The following figure shows an overview of the system.

No. 2 / 24

af://n1492
af://n1493

Fig 2.1.a: Overview of the system

2.2 Audio Processing
The audio processing module was developed to extract essential acoustic characteristics from audio
files for Chladni pattern generation. The implementation utilized the go-audio/wav package for

handling audio files, the facebookresearch/demucs package for music source separation, and the
go-dsp/fft package for frequency analysis.

The processing pipeline consisted of several key steps:

2.2.1 Audio Input Processing

For audio input processing, the go-audio/wav package is utilized for handling the input audio files.

Support was implemented for both mono and stereo WAV files.

Channel separation was developed to enable independent analysis of stereo tracks.

Systems for sample rate detection and buffer management were established to ensure smooth
processing.

2.2.2 Music Source Separation

The music source separation stage used the facebookresearch/demucs package to decompose

music into four stems: bass, drums, others, and vocals.

The bass stem captured low-frequency instruments and bass lines.

The drums stem isolated percussive and rhythmic components.

The others stem represented melodic instruments and harmonics.

The vocals stem separated human voice elements.

The detailed information is shown in 2.4.2.

2.2.3 Signal Analysis

2.2.3.1 Fast Fourier Transform (FFT)

For signal analysis, the Fast Fourier Transform (FFT) algorithm, provided by the go-dsp/fft
package, was applied.

No. 3 / 24

af://n1497
af://n1500
af://n1509
af://n1521
af://n1522

FFT is the fundamental algorithm we use for audio signal analysis, which can efficiently convert time-
domain signals into their frequency components, allowing us to analyze "the spectrum or frequency

content of a signal". 6

Our system processes raw PCM data from WAV files, which initially exists as integer values ranging
from -32768 to 32767. To prepare this data for FFT analysis, we first convert it to floating-point values
normalized within the range, ensuring consistent processing across various input sources.

We use FFT every 4096 samples combined with a Hann window with 75% overlap between
consecutive segments. This configuration enables us to accurately detect both subtle and dramatic
frequency changes in the music while maintaining computational efficiency. The high overlap ratio
(75%) ensures we capture rapid variations in the audio signal, which is crucial for generating
responsive Chladni patterns that accurately reflect the musical dynamics.

Prior to FFT execution, each window undergoes two crucial preprocessing steps. First, we apply a
Hann Window function to minimize spectral leakage, a common issue in frequency analysis.
Second, we implement an adaptive Noise Reduction system based on the signal's Root Mean
Square (RMS) value, effectively reducing background noise while preserving signal integrity. The
fft.FFTReal function then processes this prepared data, generating a complex spectrum with 2048

frequency bins.

The resulting FFT output integrates seamlessly with downstream processing tasks. The complex
spectrum is converted to amplitude information, enabling accurate peak detection for dominant
frequency identification and RMS calculations for loudness measurement. These processed results
directly feed into the Chladni pattern simulation system, providing the fundamental data required
for pattern generation. This comprehensive approach ensures high-quality frequency analysis while
maintaining computational efficiency, making it particularly suitable for real-time audio visualization
applications.

2.2.3.2 Hann Window

To minimize spectral leakage and improve frequency analysis accuracy, Hann Windowing 7 with a
75% overlap was implemented. The Hann window is a cosine-based function expressed
mathematically as:

where is the sample index and is the window length. This windowing approach significantly
reduces spectral leakage and ensures smooth temporal transitions.

2.2.3.3 Noise Reduction

The noise reduction system implements a sophisticated adaptive noise gate with soft-knee
characteristics, designed to effectively minimize background noise while preserving the integrity of
the audio signal. Our implementation processes the normalized floating-point audio data, operating
on windows of 4096 samples to maintain consistency with the FFT analysis pipeline.

The system employs a dynamic thresholding approach based on the signal's overall characteristics.
The threshold is calculated as 5% of the signal's RMS value, which provides an adaptive reference
level that automatically adjusts to different input signals. This approach proves more robust than
fixed-threshold systems, particularly when processing audio sources with varying dynamic ranges
and noise floors.

The noise reduction process incorporates three distinct operational zones:

No. 4 / 24

af://n1529
af://n1533

In the sub-threshold zone (signal magnitude < threshold), the signal is fully attenuated to
eliminate background noise.

The super-threshold zone (signal magnitude > 2.0 × threshold) maintains the original signal
completely, ensuring that strong, intentional signals remain unmodified.

The intermediate zone (threshold < signal magnitude < 2.0 × threshold) implements a soft-
knee transition using linear interpolation, calculated as:

This soft-knee implementation was chosen specifically to avoid the artificial-sounding abrupt
transitions often associated with traditional noise gates. The gradual transition provides natural-
sounding noise reduction while minimizing artifacts and maintaining musical dynamics, making it
particularly suitable for musical applications where preservation of artistic content is crucial.

The effectiveness of our noise reduction system is further enhanced by its integration with the FFT
analysis pipeline. By applying noise reduction before frequency analysis, we improve the accuracy of
Dominant Frequency Detection and reduce computational overhead in subsequent processing
stages. This integration also ensures that the noise reduction process adapts to both temporal and
spectral characteristics of the input signal.

2.2.3.4 Root Mean Square (RMS)

The loudness calculation system employs the Root Mean Square (RMS) 8 method, providing a

robust and perceptually relevant measure of audio signal intensity. This approach was chosen over
peak detection or average amplitude methods because RMS better correlates with human
perception of sound intensity and provides a more stable metric for continuous audio analysis.

RMS effectively represents the energy level of the signal and provides a good approximation of
perceived loudness. The mathematical foundation of RMS calculation is expressed as:

where is the number of samples in the analysis window and represents the amplitude of each
sample. This method provided a reliable measure of the signal's loudness.

Our implementation processes the audio data in synchronized windows of 4096 samples, matching
the FFT analysis framework. This synchronization ensures computational efficiency and maintains
temporal consistency across different analysis components. The system operates on normalized
floating-point data (range), which provides consistent results regardless of the input audio's
bit depth or encoding format.

2.2.4 Dominant Frequency Detection

The dominant frequency detection system implements a sophisticated peak analysis algorithm that
combines spectral magnitude analysis with temporal consistency constraints. This approach was
developed to address the common challenges in musical frequency analysis, particularly the
presence of harmonics and rapid frequency transitions in complex musical compositions.

Our system employs a top-5 peak analysis methodology, which proves more robust than single-
peak detection for musical applications. The analysis operates on the magnitude spectrum obtained
from the FFT output, with frequency resolution determined by:

No. 5 / 24

af://n1547
af://n1553

where represents the number of audio samples per second (Hz) and
represents the number of samples in each FFT window.

Then, the peak detection algorithm operates in several stages:

1. Peak Identification:

Process the magnitude spectrum up to the Nyquist frequency ().

Store peaks as (magnitude, frequency index) pairs.

Implement a sliding window comparison to identify local maxima.

2. Top-5 Peak Selection.

Select the 5 highest magnitude peaks.

3. Temporal Consistency Analysis:

Track the previous frame's dominant frequency.

Among the top 5 peaks, select the candidate that:
a. Has magnitude ≥ 50% of the maximum peak
b. Is closest to the previous dominant frequency

This approach prevents frequency jumping while maintaining responsiveness

The five-peak tracking system provides three crucial advantages over single-peak detection: it
manages harmonic content by distinguishing fundamental frequencies from overtones, enables
smooth handling of note transitions by tracking multiple frequency components simultaneously,
and enhances noise resilience through redundant peak information and temporal consistency
checking. This comprehensive approach makes the system particularly effective for analyzing
complex musical signals where multiple frequencies coexist and change dynamically.

2.2.5 Data Export (Optional)

Finally, optional data export functionality was introduced to facilitate downstream testing.
Processed data could be exported in CSV format, with separate output files created for the left and
right channels. The data structures were organized for seamless integration into physics simulations
for Chladni pattern generation.

2.3 Physics Simulation

2.3.1 Overview

As we discussed in the background section, the standing wave on the membrane results in different
vibration strengths at different positions. Parts of the membrane vibrate more vigorously while
others vibrate less. The spatial distribution of the vibration strength is determined by the frequency
of the excitation. If we randomly scatter a vast number of particles on the membrane and excite the
membrane with a certain frequency, we can observe all particles moving towards some very specific
areas, forming visually appealing symmetric and complex patterns. Here is a figure showing the
initial random distribution of particles on the membrane and the final distribution after the
membrane is excited by a frequency of 2000 Hz.

No. 6 / 24

af://n1586
af://n1588
af://n1589

Fig 2.3.1.a: Initial state and final state
The initial state is a random distribution of particles on the membrane, and the final state is the Chladni

pattern formed by the particles after the membrane is excited by a frequency of 2000 Hz.

Fig 2.3.1.b: Typical process of particle movement on an excited membrane

In the physics simulation, we first randomly scatter particles on the membrane. Then, we repeatedly
apply forces to the particles based on the vibration strength at their positions. In this process, the
particles in positions with higher vibration strength will be pushed out of areas, while the particles in
areas with lower vibration strength tend to stay still. As a result, after a sufficient number of
iterations, the particles will all settle into stable positions, forming the Chladni pattern. The following
figure shows a typical process of particle movement on an excited membrane with nodal lines
represented in white.

The force applied to each particle is calculated based on the vibration strength at its position. In our
implementation, we use a closed-form solution to calculate the vibration strength at each position,
and generates a random force with varying direction, using the vibration strength as the magnitude.
This random walk process is derived from the physical description of the particle behavior in physics

research 9 .

During the benchmarking of our algorithm, we found that the closed-form solution is
computationally expensive, and is the performance bottleneck. Therefore, we developed a
progressive coarse-grained solver that dramatically improves the performance of the physics
simulation. In the following section, we will first introduce the closed-form solution, and then
describe the details of the progressive coarse-grained solver.

2.3.2 Closed-form Solution

The closed-form solution is a mathematical solution to the vibration strength at each position on a
membrane with specific shape and boundary conditions. In our implementation, we use a square
membrane that is excited by a point source at its center. The closed-form solution is described in

detail in modern physics textbooks 10 . The mathematical details behind the closed-form solution
are not the focus of this paper, so we will not repeat the detailed derivation here. We implemented

No. 7 / 24

af://n1596

the closed-form solution in an approximate manner so that it is programmable and within project
scope. For simplicity, we will show the formal definition of our derived programmatic solution here.

2.3.2.1 Definition of function

The function computes the vibration strength at a specific position on a square
plate by summing contributions from various wave modes. The vibration strength is influenced by
the input frequency and accounts for various predefined physical properties of the system.

Particle Position (,): Represents the position of the particle on the plate in pixels.

Input Frequency (): Represents the input frequency of the simulation, in Hertz.

Plate Size (): Represents the length of one side of the square plate in meters.

Half Plate Size in Pixels (): Denotes half the plate size measured in pixels, used to scale the
position coordinates and .

Dispersion Constant (): Represents a constant physical property of the material of the plate,
describing the speed of the wave propagation.

Energy Dissipation Constant (): Represents the damping factor that accounts for energy loss
in the system, preventing the particles from oscillating indefinitely.

Wave Number for Mode (): Calculated for each mode , where and are
even integers representing the number of half-wavelengths along the - and -axes,
respectively.

Maximum Mode (): Represents the maximum mode number to be included in the
summation.

2.3.2.2 Determining the movement of particles

As described in the overview section, the movement of particles is generated by a random walk
process that is weighted by the vibration strength at their positions. In an actual audio to video
simulation, we will also apply the amplitude of the input audio to the vibration strength, so that the
movement of particles responses to the loudness of the input audio.

Given the vibration strength at each position, we calculate the force applied to each particle at each
iteration by generating a random direction, and normalize it to the same scale as the vibration
strength times audio amplitude.

However, most of music is not pure tones, and the frequency and amplitude of the input audio may
change significantly over time. This could result in a situation where we can never form a stable
Chladni pattern because of the varying frequency and insufficient number of iterations to converge.
Therefore, we added a StepScale and NumIterations hyperparameter to create a layer of control

over the random walk process, making the particle converges faster to the nodal lines, even when
the input audio is noisy and highly unstable.

No. 8 / 24

af://n1598
af://n1619

For clarity, we will use pseudocode to describe the process of determining the movement of
particles. The input to the physics simulation is a list of particles, a list of frequencies, and a list of
amplitudes. Extra parameters include StepScale and NumIterations . Note the difference between
NumIterations and the actual number of simulation steps that we will perform. The actual number

of simulation steps is equal to the length of the input frequency list. The NumIterations parameter

is used to control the number of iterations that we will perform for each particle within one
simulation step. Each iteration involves moving the particle once, based on the StepScale
parameter. Here is the pseudocode:

2.3.2.3 Time complexity

For this unoptimized implementation, we iterate through all particles and calculate the force applied
to each particle at each iteration. Let be the number of particles, and be the number of
iterations. The total number of simulation units of this implementation is . However, a unit of
simulation includes the calculation of the closed-form solution. Recall that we need to iterate
through all possible combinations of modes up to , so we need to calculate the impact of

 mode combinations for each particle. Thus, the total number of simulation units is
.

def chladni_simulation(

 particles_count: int,

 frequencies: list[float],

 amplitudes: list[float],

 step_scale: float,

 num_iter: int

) -> list[list[Particle]]:

 # Initialize particles

 particles = initialize_particles(particles_count)

 time_series = [particles]

 # Simulate the Chladni pattern

 for frequency, amplitude in zip(frequencies, amplitudes):

 new_particles = step_simulation(particles[-1],

 frequency, amplitude,

 step_scale, num_iter)

 time_series.append(new_particles)

 return time_series

def step_simulation(

 particles: list[Particle],

 frequency: float,

 amplitude: float,

 step_scale: float,

 num_iterations: int

) -> list[Particle]:

 for particle in particles:

 for _ in range(num_iterations):

 vibration: float = psi(particle, frequency)

 unit: tuple[float, float] = random_direction()

 force = step_scale * amplitude * vibration * unit

 particle.move(force)

 return particles

No. 9 / 24

af://n1625

Fig 2.3.2.3.a: Typical pattern formed with different M values

During our benchmarking, we found that our algorithm spent almost all of its time calculating the
closed-form solution, and the random walk process only took a negligible amount of time. In
preliminary testing, we also found that we need to have large enough to get visually appealing
patterns. For small , the pattern of nodal lines changes less with different frequencies, and the
pattern is less interesting. The figure below shows the typical pattern formed with different
values.

To optimize the performance of the algorithm, we parallelized the simulation process. The
parallelization brings significant performance improvement because the updates of particle
positions are independent of each other. In our testing, the parallelized version of the algorithm can
achieve a 10x speedup compared to the sequential version on a 20-core machine. However, with our
innovative progressive coarse-grained solver, the seemingly significant speedup is not as
pronounced.

2.3.3 Progressive Coarse-grained Solver

2.3.3.1 Coarse-grained solver

Since the goal of our project is to generate video demonstrations of the behavior of particles on a
membrane, the precision of the simulation would become unnecessary if it goes beyond the
resolution of the video. Therefore, a intuitive idea is to build a coarse grid matching the resolution of
the video, and only calculate the vibration strength at the grid points.

During simulation, we can firtly test if the value at the nearest grid point for each particle has been
calculated. If so, we can directly use the value without recalculating it; if not, we calculate the value
using the closed-form solution and store it in the grid. Here is the pseudocode for the coarse-grained
solver:

GRID = [[0, 0, 0, ...],

 [0, 0, 0, ...],

 ...,

 [0, 0, 0, ...]]

def coarse_grain_psi(x: float,

 y: float) -> float:

 # Which grid does the particle fall in?

 grid_x: int = nearest_grid_coord(x)

 grid_y: int = nearest_grid_coord(y)

 # Already calculated? Just get the stored value!

No. 10 / 24

af://n1630
af://n1631

Fig 2.3.3.1.a: Overall architecture of the coarse-grained solver

In this way, instead of doing units of simulation, we instead need to do up to for each
frequency, where is the resolution of the video.

However, in actual audio files, the frequency of the audio signal changes over time, so we need to
create a new coarse grid for each distinct frequency. To better reuse the coarse grids which contain
previously calculated values, we chose to also approximate the frequency of the audio signal by
rounding it to the nearest multiple of , where is the frequency resolution of the coarse grid.
In this way, we can reuse the coarse grids across different audio frequencies. Below is a figure
showing the overall architecture of our coarse-grained solver.

This coarse-grained solver could present an improvement over the original implementation when
 is large and is small for each corresponding frequency. However, in practice, audio files

contain a wide range of frequencies, resulting the value being relatively small for most frequencies,
unless we round the frequency to ridiculously large . Thus, the performance improvement is not
as significant as expected.

2.3.3.2 Motivation of the progressive coarse-grained solver

Our invention of the progressive coarse-grained solver comes from the observation that particles in
the Chladni pattern tend to settle and accumulate in very specific areas, the nodal lines. The
vibration strength near these nodal lines are low and need to be calculated more precisely to form
the correct pattern. However, for areas far away from the nodal lines, the vibration strength is high
and the particle will never accumulate there. The precision of the values in far away areas is not as
important because most particles will not be in these areas after several iterations of random walk.

This observation motivates us to only calculate precise values for points near the nodal lines, and
use less precise values for areas far away from the nodal lines. This will only negligibly compromise
the quality of the Chladni pattern, because very tiny proportion of particles will be in these far away
areas after several iterations of random walk.

 if is_calculated(GRID[grid_x][grid_y]):

 return GRID[grid_x][grid_y]

 # Not calculated? Calculate and store the value!

 else:

 vibration_strength = psi(grid_x, grid_y)

 GRID[grid_x][grid_y] = vibration_strength

 return vibration_strength

No. 11 / 24

af://n1639

Fig 2.3.3.1.b: Initial state of the coarse-grained solver

Based on the motivation described above, we propose a progressive coarse-grained solver that
progressively adjusts the precision of the values based on the density of particles in different
areas.

2.3.3.3 Implementation of the progressive coarse-grained solver

Instead of building a coarse grid initially, where is the resolution of the video, we start with
a very low resolution grid holding the values of at each grid point, along with a counter at
each grid point recording the access to that grid point. For every incoming particle, we first
approximate its position to match a grid point. If the value at the grid point has been calculated,
we use the value directly and increment the counter at the grid point; if not, we calculate the value
using the closed-form solution and store it in the grid.

Then, we predefine a hyperparameter that indicates a threshold of the counter value for a grid
point to be considered as a high density area. If the counter value at a grid point is greater than ,
we consider the area as a high density area and believe that a nodal line is present in the area. To
refine the value at this high density grid point, we then build a smaller grid inside the high
density grid point. If we call the intial grid the level 0 refinement, we can call the new
grid the level 1 refinement, providing a doubled precision. Thus, for any future particle that falls into
this area, instead of getting the value from the larger grid, we will go into the smaller
grid and do a more precise calculation.

The above process cound be repeated multiple times, and results in a higher and higher level of
refinement in certain areas where nodal lines are present. The process is repeated until the
resolution of the finest grid reaches the resolution of the video. Here is a visual example of this
progressive coarse-grained solver in action.

1. Assume that the resolution of the video is pixels and the threshold is 10. We start
with a grid, and the counter at each grid point is initialized to 0.

2. A particle with coordinates is scattered onto the membrane and is placed into
the bottom right grid point, which has not been calculated before. We calculate the value at
this grid point, store the value in the grid, and increment the counter by 1.

No. 12 / 24

af://n1643

Fig 2.3.3.1.c: First iteration of the coarse-grained solver

Fig 2.3.3.1.d: After several iterations

Fig 2.3.3.1.e: Build a smaller grid inside the high density grid point

3. The above process is repeated for a few more iterations. Since the resolution is low, most of the
particles will get a previously calculated value. After several iterations, we can see that the
counter at the bottom right grid point is meets the threshold .

4. We then build a smaller grid inside the high density grid point and initialize the counter
at each new grid point to 0.

5. A particle with coordinates is scattered onto the membrane and is placed into
the smaller grid point which we just created and has not been calculated before. We calculate
the value at this grid point, store the value in the smaller grid, and increment the
corresponding counter by 1. Since the resolution of the smaller grid is higher, the value we
get is more precise.

No. 13 / 24

Fig 2.3.3.1.f: A particle is scattered onto the membrane

Fig 2.3.3.1.g: After several iterations

Fig 2.3.3.1.h: After enough iterations

6. The above process is repeated for lots of iterations, and particles will become more and more
concentrated in at nodal lines. In the following figure, we drew an example nodal line in red to
indicate the area where particles are more likely to accumulate. We can see that the resolution
of the grid near the nodal lines is higher, so the value is more precise.

7. Finally, after enough iterations, we can see that the Chladni pattern is formed and almost all
particles are in the nodal lines. The resolution of the grid near the nodal lines will grow larger
and larger until it reaches the resolution of the video.

Here is a pseudocode showing the implementation of the progressive coarse-grained solver:

class ProgressiveCoarseGrid:

 # Where psi values are stored

No. 14 / 24

Similarly, since actual audio files contain a wide range of frequencies, we can round the frequency to
the nearest multiple of to reuse the coarse grids across different audio frequencies. Here is a
figure showing the overall architecture of the progressive coarse-grained solver:

 values = [[None, None, None, ...],

 [None, None, None, ...],

 ...,

 [None, None, None, ...]]

 # How many times the grid point has been accessed

 counter = [[0, 0, 0, ...],

 [0, 0, 0, ...],

 ...,

 [0, 0, 0, ...]]

 # Children grids, used for refinement

 children = [[None, None, None, ...],

 [None, None, None, ...],

 ...,

 [None, None, None, ...]]

GRID = ProgressiveCoarseGrid() # One grid for one frequency

def pcg_psi(x: float, y: float, grid = GRID) -> float:

 # PCG: Progressive Coarse-Grained Solver

 # Find the grid point that the particle falls in

 g_x, g_y = nearest_grid_coord(grid, x, y)

 # Threshold reached? Do refinement

 if grid.counter[g_x][g_y] >= THRESHOLD:

 # Is the children grid initialized?

 if grid.children[g_x][g_y] is None:

 grid.children[g_x][g_y] = ProgressiveCoarseGrid()

 # Recursive call to the children grid

 return pcg_psi(x, y, grid.children[g_x][g_y])

 # Calculated? Get the stored value and increment the counter

 if grid.values[g_x][g_y] is not None:

 grid.counter[g_x][g_y] += 1

 return grid.values[g_x][g_y]

 # Not calculated? Calculate the value and store it in the grid

 else:

 vibration_strength = psi(g_x, g_y)

 grid.values[g_x][g_y] = vibration_strength

 grid.counter[g_x][g_y] = 1

 return vibration_strength

No. 15 / 24

Fig 2.3.3.1.i: Overall architecture of the progressive coarse-grained solver

2.3.3.4 Estimating time complexity

In our previous implementation where we have an coarse grid, the number of times we need
to calculate the value is up to . As it turns out, in our progressive coarse-grained solver, the
number of times we need to calculate the value is proportional to the number of particles. Here is
how we derive this conclusion.

Say that we are about to simulate the Chladni pattern of a certain frequency with the video
resolution . The length of nodal lines formed by this frequency is pixels. Recall that particles will
accumulate in the nodal lines, so the final situation is that all grids that touches the nodal lines will
be refined to the resolution of the video. On average, every two pixel in the length of nodal lines will
correspond to one maximum refinement level grid. The results in a total number of
calculations of values for the maximum refinement level. Similarly, on average, every two
grids in the th refinement level will correspond to one grid in the th refinement level.
Thus, the total number of calculations of values on level is half of that on level .

For a video of resolution , the maximum number of refinement levels is . Therefore, the
total number of calculations of values can be calculated as:

Since is the length of nodal lines in pixels, it is proportional to the resolution of the video .
Therefore, the total number of calculations of values can be written as . Let's
assume that the nodal line forms a perfect square with side length , then .
Therefore, the total number of calculations of values is , which is linear to the resolution of the
video.

In this way, we reduce the total number of calculations of values from to . For a typical
video of resolution , the total number of calculations of values is reduced from over
a million to less than 10 thousand, which is a 100x speedup. This trend is very obvious if we look at
this figure:

No. 16 / 24

af://n1686

Fig 2.3.3.4.a: Grid visualization comparison

Fig 2.3.3.4.b: Comparison of the performance
Y-axis: Time taken in seconds in logarithmic scale

This theoretical trend matches the performance improvement we observed in our benchmarking. In
the physics simulation with 10000 particles, 10000 iterations, resolution at a fixed
frequency, the serial version of the progressive coarse-grained solver is even faster than the parallel
version of the original implementation. Here is a figure showing the comparison of the performance
of the two implementations.

2.3.3.5 Quality Comparison

It turns out that the quality of the Chladni pattern drops when we use more efficient solvers. The
original implementation is the most accurate, forming the most complete Chladni pattern with
sharpest nodal lines. The coarse-grained solver is the second most accurate, but it may miss some
delicate features and may make certain nodal lines less clear. The accuracy of the progressive coarse-
grained solver varies depending on the number of refinement levels it has, but it is generally the
least accurate. However, if we simulate on larger scale, the quality of the progressive coarse-grained
solver will gradually improve and be comparable to the coarse-grained solver.

No. 17 / 24

af://n1698

Fig 2.3.3.5.a: Quality comparison when the number of iterations is small
Simulated on 100 iterations. We can see that the coarse-grained solver is more blurry than the precise

implementation. The progressive coarse-grained solver is most blurry, and is missing some nodal lines.

Fig 2.3.3.5.b: Quality comparison when the number of iterations is large
Simulated on 1000 iterations. We can see that the precise implementation now forms some very fine

features, which is not visible in the coarse-grained solver. The overall quality of the progressive coarse-
grained solver is now comparable to the coarse-grained solver.

2.3.3.6 Parallelization of the progressive coarse-grained solver

Since the progressive coarse-grained solver uses a 2D grid to store the values, we will need careful
handling of the grid to ensure that the parallelization is safe and efficient, so that each cell of the grid
can be accessed by multiple threads without causing race conditions, repeated calculations, or other
issues.

To understand this, let's first recap all operations we need to perform on the grid in pseudocode:

class ProgressiveCoarseGrid:

 values: list[list[float]]

 counter: list[list[int]]

 children: list[list[ProgressiveCoarseGrid]]

 def get_psi(self, x: int, y: int) -> float:

 if self.children[x][y] is not None:

 return self.children[x][y].get_psi(x, y)

 else:

 if not reached_max_refinement(self.counter[x][y]):

 self.counter[x][y] += 1

 return self.values[x][y]

 def set_psi(self, x: int, y: int):

No. 18 / 24

af://n1704

As we can see, all operations on the grid involves modifying the cell of the grid or its children. To
make the parallelization safe, we need to ensure that no two threads modify the same grid cell at the
same time. We can achieve this by using a lock on each grid cell.

When a thread wants to access a grid, we first check if the grid cell is locked. If it is, we wait for the
lock to be released. If it is not, we proceed by checking if the current access needs a lock. If it does,
we lock the grid cell and proceed. If it does not, we proceed without locking.

An access may need a lock if it reads from an underpopulated grid cell (and increments the counter),
or if it writes to an uncalculated grid cell, or if it creates a child grid. An access does not need a lock if
it reads from a populated grid cell with a valid child grid, or if it reads from a grid cell that has already
reached the maximum refinement level.

To further optimize the parallelization, we defined a loose threshold to disable locking when reading
from a very underpopulated grid cell. For example, if the predefined refinement threshold is 100 and
the counter at a grid cell is only 7, we will not lock the grid cell when reading from it. This is because
the grid cell is very unlikely to get to above the threshold during the reading and incrementing
process. This optimization reduces the overhead of locking and unlocking the grid cell, and speeds
up the simulation by 5% in preliminary testing.

2.4 Render and Visualization

2.4.1 Basic Rendering Method

In designing the visualization strategy for Chladni patterns, we faced two seemingly contradictory
objectives: the need to precisely represent each particle's position to reflect authentic physical
motion, while simultaneously creating a soft, ethereal visual effect that captures the flowing nature
of sound waves. To resolve this challenge, we embraced a Dual-Layer Rendering approach as our
core visual strategy.

This dual-layer structure draws inspiration from the natural phenomenon of light scattering. Much
like observing the night sky, where each star possesses both a brilliant core and a gentle halo, our
visualization endows each particle with two visual layers: a sharp, bright nucleus and a diffused glow
layer. The bright nucleus employs linear attenuation to ensure positional accuracy, while the glow
layer follows an exponential decay function:

where 'd' represents the distance from the particle's core, and 'R' defines the glow radius. This decay
pattern not only creates natural light diffusion effects but also enables smooth transitions when
particles cluster together.

We then transforms each frame into a celestial tableau, where particles dance like stars responding
to the music's invisible forces. The rendering system processes these frames in parallel, orchestrating
a symphony of visual elements:

 self.values[x][y] = psi(transform(x), transform(y))

 self.counter[x][y] = 1

 def create_child(self, x: int, y: int):

 self.children[x][y] = get_child(*args)

No. 19 / 24

af://n1712
af://n1713

Fig 2.4.1: Rendering result demonstration
The white particles represent the final rendering result of our system, showing both the precise positions

and the overall visual effect of the simulation

After these settings, you can conclude from Fig 2.4.1 that not only does our dual-layer rendering
approach effectively capture the precise particle positions, but it also creates a visually captivating
representation of the wave dynamics. The bright nuclei of the particles clearly mark their exact
locations while the surrounding glow layers blend smoothly to reveal the underlying wave patterns.
The parallel processing implementation ensures this visual quality is maintained even at high frame
rates, producing fluid animations that accurately represent the physical phenomena.

2.4.2 Voice Part Separation Analysis

For the audio separation task, we utilized Demucs v4, a pre-trained model that demonstrates state-
of-the-art performance in music source separation. The model effectively separated our audio tracks
into distinct components - vocals, drums, bass, and other accompaniments, achieving satisfactory

results. 11 12

go func(start, end int, ch chan []*image.RGBA) {

 batch := make([]*image.RGBA, end-start)

 for i := start; i < end; i++ {

 batch[i-start] = r.RenderSingleFrame(i, voicePart)

 }

 ch <- batch

}(startIdx, endIdx, channels[i])

No. 20 / 24

af://n1725

Fig 2.4.2.a: Visualization of different voice parts at the same timestamp
Multiple panels showing distinct particle distributions: (a) Bass track with concentrated patterns in lower
frequencies; (b) Drum track displaying focused, rhythmic distributions; (c) Other instruments showing

dispersed patterns across frequency ranges; (d) Vocal track demonstrating broad frequency range
distributions with characteristic clustering

As shown in Fig. 2.4.2.a, the particle patterns of different voice parts at the same timestamp exhibit
distinct characteristics. From left to right, the bass track (a) and drum track (b) show more
concentrated particle distributions, which aligns with our expectation for low-frequency
components. In contrast, the other instruments (c) and vocal track (d) display more dispersed
patterns, reflecting their broader frequency ranges. These distinct visualizations at the identical
moment demonstrate that each pattern responds exclusively to its corresponding audio
component, validating the effectiveness of our voice separation approach.

But this is just a start. In crafting our visualization's color palette, we found inspiration from an
interesting coincidence - our example track comes from Akina Nakamori's 1985 album "CRIMSON."
This serendipitous connection led us to choose crimson ({220, 20, 60, 255}) as the color for

vocal patterns, paying a subtle homage to the J-pop diva's iconic album. As shown in Fig 2.4.2b, this
choice not only carries this meaningful reference but also proves to be visually striking.

Building around this central crimson theme, we carefully selected complementary colors for other
voice parts to create a harmonious visual ensemble. The deep violet ({75, 36, 115, 255}) for bass

patterns provides a rich, grounding presence, while the electric blue ({54, 137, 160, 255}) for

drums adds dynamic energy to the visualization. The accompanying instruments are rendered in a

No. 21 / 24

Fig 2.4.2.b: Color scheme visualization
Complete visualization demonstrating the interaction of multiple color layers: Crimson (#DC143CFF) for

vocals, Deep violet (#4B2473FF) for bass, Electric blue (#3689A0FF) for drums, and Vapor cyan
(#66BBB2FF) for other instruments, showing how different colors blend while maintaining distinct voice

part identities

subtle vapor cyan ({102, 187, 178, 255}), which gracefully fills the spaces between the more

prominent elements without overshadowing them.

Through our dual-layer rendering approach, these colors interact and blend naturally as particles
move across the plate. Each voice part maintains its distinct identity while contributing to a cohesive
whole - much like how the instruments in Nakamori's tracks weave together to create her signature
sound. The rendering parameters for each voice part are carefully tuned to this color scheme, with
the core and glow effects enhancing the natural interplay between different musical elements.

2.4.3 Rshiny Design

We developed an interactive Shiny application to demonstrate the Chladni pattern generation
system. As shown in Fig 2.4.3, the graphical user interface adopts an intuitive layout, dividing the
functionality into two main sections: a parameter control panel and a result display area.

The control panel on the left allows users to upload audio files in WAV format and adjust key
parameters through a series of numeric input boxes, including the plate's physical dimensions,
image resolution, particle count, and other physical simulation parameters. To optimize
computational performance, we introduced a coarse simulation option, where users can balance
calculation speed and accuracy through a multi-level resolution refinement strategy.

The main panel on the right, as demonstrated in the screenshot, employs a hierarchical video
display layout. The complete Chladni pattern animation is shown at the top, while the visualizations
for bass, drums, vocals, and other instruments are displayed separately below. A progress bar and
status indicators allow users to monitor the processing progress in real-time. This layout design not
only facilitates observation of the overall effect but also enables easy comparison of vibration
characteristics across different voice parts, providing an intuitive analytical tool for music
visualization research.

No. 22 / 24

af://n1737

Fig 2.4.3: Interactive visualization demonstration using R Shiny

1. “Ernst Chladni.” Wikipedia, The Free Encyclopedia. Wikimedia Foundation, Inc., Last edited on 30 November 2024. https://en.wikipedia.org/wik
i/Ernst_Chladni ↩

The system's responsive design ensures a good user experience across different devices. Through
this demonstration interface, users can conveniently explore how different parameters influence the
formation of Chladni patterns and gain a deeper understanding of the relationship between sound
and physical vibration patterns.

3 Team Contributions
Claude:

Project idea and proof of concept

Essay: Methods Overview, Physics Simulation

Code: Physics Simulation Module, Preliminary Visualization, Integration, Architecture Planning,
Optimization

Presentation: Introduction, Methods Overview, Physics Simulation

Luci:

Essay: Visualization

Code: Visualization Module, RShiny, Integration, Code Optimization

Presentation: Visualization

ShiYu:

Essay: Introduction, Audio Processing

Code: Audio Processing Module

Presentation: Audio Processing

4 References

No. 23 / 24

https://en.wikipedia.org/wiki/Ernst_Chladni
https://en.wikipedia.org/wiki/Ernst_Chladni
af://n1745
af://n1772

2. R. C. Colwell, "Chladni figures on square plates," Journal of the Franklin Institute, vol. 221, no. 5, pp. 635-652, 1936. ↩

3. R. C. Colwell, A. W. Friend, and J. K. Stewart, "The Vibrations of Symmetrical Plates and Membranes," The Journal of the Acoustical Society of

America, vol. 10, no. 1, pp. 68-73, 1938. ↩

4. "CYMATICS: Science Vs. Music - Nigel Stanford," YouTube. [Online]. Available at: https://www.youtube.com/watch?v=Q3oItpVa9fs ↩

5. "Musical Fire Table!" YouTube. [Online]. Available at: https://www.youtube.com/watch?v=2awbKQ2DLRE ↩

6. Heideman, M. T.; Johnson, D. H.; Burrus, C. S. Gauss and the history of the fast Fourier transform. IEEE ASSP Magazine. 1984, 1(4): 14–21. ↩

7. “Hann function.” Wikipedia. [Online]. Last edited on 16 April 2024. Available at: https://en.wikipedia.org/wiki/Hann_function ↩

8. “Root mean square.” Wikipedia. [Online]. Last edited on 19 November 2024. Available at: https://en.wikipedia.org/wiki/Root_mean_square ↩

9. Arango, Jaime, and Carlos Reyes. "Stochastic models for chladni figures." Proceedings of the Edinburgh Mathematical Society 59.2 (2016): 287-
300. ↩

10. Serway, Raymond A., and John W. Jewett. Physics for scientists and engineers with modern physics. Vol. 2. Cengage Learning, 2019. https://ph
ys.libretexts.org/Bookshelves/Waves_and_Acoustics/The_Physics_of_Waves_(Goergi)/11%3A_Two_and_Three_Dimensions/11.03%3A_Chladni_Pl
ates ↩

11. Rouard, S., Massa, F., & Défossez, A. "Hybrid Transformers for Music Source Separation." In Proceedings of IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), 2023. ↩

12. Défossez, A. "Hybrid Spectrogram and Waveform Source Separation." In Proceedings of the International Society for Music Information

Retrieval (ISMIR) Workshop on Music Source Separation, 2021. ↩

No. 24 / 24

https://www.youtube.com/watch?v=Q3oItpVa9fs
https://www.youtube.com/watch?v=2awbKQ2DLRE
https://en.wikipedia.org/wiki/Hann_function
https://en.wikipedia.org/wiki/Root_mean_square
https://phys.libretexts.org/Bookshelves/Waves_and_Acoustics/The_Physics_of_Waves_(Goergi)/11%3A_Two_and_Three_Dimensions/11.03%3A_Chladni_Plates
https://phys.libretexts.org/Bookshelves/Waves_and_Acoustics/The_Physics_of_Waves_(Goergi)/11%3A_Two_and_Three_Dimensions/11.03%3A_Chladni_Plates
https://phys.libretexts.org/Bookshelves/Waves_and_Acoustics/The_Physics_of_Waves_(Goergi)/11%3A_Two_and_Three_Dimensions/11.03%3A_Chladni_Plates

	1 Introduction
	2 Methods
	2.1 Overview
	2.2 Audio Processing
	2.2.1 Audio Input Processing
	2.2.2 Music Source Separation
	2.2.3 Signal Analysis
	2.2.3.1 Fast Fourier Transform (FFT)
	2.2.3.2 Hann Window
	2.2.3.3 Noise Reduction
	2.2.3.4 Root Mean Square (RMS)

	2.2.4 Dominant Frequency Detection
	2.2.5 Data Export (Optional)

	2.3 Physics Simulation
	2.3.1 Overview
	2.3.2 Closed-form Solution
	2.3.2.1 Definition of function \psi(p_x, p_y)
	2.3.2.2 Determining the movement of particles
	2.3.2.3 Time complexity

	2.3.3 Progressive Coarse-grained Solver
	2.3.3.1 Coarse-grained solver
	2.3.3.2 Motivation of the progressive coarse-grained solver
	2.3.3.3 Implementation of the progressive coarse-grained solver
	2.3.3.4 Estimating time complexity
	2.3.3.5 Quality Comparison
	2.3.3.6 Parallelization of the progressive coarse-grained solver

	2.4 Render and Visualization
	2.4.1 Basic Rendering Method
	2.4.2 Voice Part Separation Analysis
	2.4.3 Rshiny Design

	3 Team Contributions
	4 References

