
Group 2: Ab Initio Secondary Structure Prediction
Final Report

Group Members:
Arth Banka
Riti Bhatia
Sanchitha Kuthethoor
Sumeet Kothare

Abstract

Predicting protein structure using mathematical and computational methods has been an area of
great interest for several decades now. This project explores two foundational secondary structure
prediction algorithms, Chou-Fasman (CF) and Garnier-Osguthorpe-Robson (GOR), which were
pivotal in the 1970s for leveraging statistical analyses. Additionally, we experimentally
implemented a Hidden Markov Model (HMM). Our models predict four secondary structure
categories: alpha helices, beta-sheets, turns, and coils. When compared to DSSP structure
predictions for 50 proteins, Chou-Fasman achieved an average accuracy of 35.02%, GOR
achieved 41.19%, and our experimental HMM surprisingly achieved an accuracy of 47.29%. By
comparing predictions from each model through an interactive interface, we highlight a critical
point in the evolution of computational methods that laid the groundwork for modern
state-of-the-art AI-driven advancements like AlphaFold2. This study underscores the
transformative role of traditional algorithms in the progression of protein structure prediction.

Introduction

Since the early 1900s, scientists have sought to understand the structure of proteins, recognizing
the value of inferring function from structure. The very first three dimensional structure of a
protein, myoglobin from sperm whales, was determined in 1958 through X-ray crystallography
[10]- a breakthrough that took over two decades [11]. Researchers were optimistic that this feat
would enable the prediction of all protein structures from a few examples, as seen with the
symmetry of DNA’s double helix. However, the complex structure of myoglobin shattered this
hope, as it showed that every protein likely has a unique structure that is born out of various
complex intermolecular interactions.

The field progressed significantly with Christian Anfinsen's pioneering experiment in 1961 [12],
which demonstrated that given the right conditions, the information needed for a protein to fold
into its functional structure is entirely within its amino acid sequence. This thermodynamic

hypothesis laid the foundation for understanding protein folding and the relationship between the
amino acid sequences and a protein’s native 3D conformation. Predicting a protein’s structure
based on its primary sequence became a critical pursuit, driven by the resource and time
intensive nature of experimental methods. This highlighted the need for computational and
mathematical approaches to structure prediction.

Figure 1: Cartoon representation of the three levels of protein structure

Protein folding involves hierarchical levels of structure: the primary structure is the amino acid
sequence or polypeptide chain; the secondary structure is formed by hydrogen bonds formed
between the amino acids resulting in local motifs such as alpha helices and beta sheets; and the
tertiary structure involves interactions between the amino acid side chains resulting in a 3D
folded conformation. Early efforts in protein structure prediction focused on secondary structure
prediction, and some of the successful and pioneering algorithms that were developed in the
1970s were the Chou-Fasman (CF) and the Garnier-Osguthorpe-Robson (GOR) algorithm, which
were based on statistical analysis of empirical data to perform its predictions. We have come a
long way since then, with AlphaFold2 using AI-ML approaches to predict tertiary protein
structure from an amino acid sequence very quickly and accurately.

In this project, we implemented the two foundational secondary structure prediction algorithms,
Chou-Fasman and GOR, to appreciate their contributions to computational biology and
transforming the field of protein structure prediction. We also extend our exploration by
employing an experimental Hidden Markov Model (HMM). The models we have implemented
predict 4 broad categories of secondary structures - alpha helices (H), beta-sheets (E), turns (T),
and coils (C). Our implementation includes a user-friendly interface that allows users to input
amino acid sequences and compare predictions from these three prediction methods. Our project
aims to highlight the significance of computational approaches in protein structure prediction
while exploring how traditional algorithms paved the way for modern machine learning models
that have astounding capabilities today.

Computational Problem

In this project, we were motivated by a central theme: predicting the secondary structure of
proteins from their amino acid sequences using straightforward, pre-defined heuristic
methods. Rather than relying on modern, data-intensive machine learning approaches, we chose
to revisit and implement earlier, “classic” algorithms—such as Chou-Fasman, GOR, and simple
Hidden Markov Models (HMMs)—to assess their predictive accuracy against established
“ground-truth” or industry-standard predictions (e.g., derived from DSSP or reliable online
prediction tools). This historical and heuristic-driven perspective allows us to understand how
early computational biology tackled a complex prediction problem without the luxury of
advanced machine learning frameworks.

Figure 2: Infographic depicting the Main Computational Problem and our “problem-chunking” to
define the 3 approaches to solving the main problem.

Main Computational Problem:
Given an input amino acid sequence (a string of single-letter amino acid codes), produce an
output string indicating the secondary structure state (e.g., H, E, T, C for helix, strand, turn, coil)
for each residue. The objective is to maximize the percentage match between this predicted
structure and the actual experimentally validated structure. We operate under minimal
computational overhead and use models that rely on relatively simple statistical insights or
state-based frameworks, without large-scale model training.

Methodology

Model 1: Chou-Fasman Model

The Chou-Fasman algorithm predicts the secondary structure of an amino acid sequence based
on empirically derived propensity scores of each amino acid to participate in one of three
structures- alpha helix, beta sheets, or turns. Amino acids are classified into categories that
classify them as either “formers” or “breakers” of these secondary structures, and using this, the
algorithm predicts the probability of a structure’s occurrence at that residue. The original model
reported a predicted accuracy of 70-80%, which changed to 50-60% when the algorithm was
implemented computationally. This was likely due to the fact that the original paper also relied
on the intuition of the scientists while they were making predictions[12][13].

Definitions
1. Propensity-

In the original study, the propensity for an amino acid, i, to adopt a particular structural
conformation was calculated from the database of known structures with the following
equations-

, where𝑃(𝑖|𝑥) = 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑎𝑚𝑖𝑛𝑜 𝑎𝑐𝑖𝑑 𝑖 𝑖𝑛 𝑥
𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑎𝑚𝑖𝑛𝑜 𝑎𝑐𝑖𝑑 𝑖 𝑥 = α ∨ β ∨ 𝑇

In other words, this equation is the conditional probability being normalized by the background
probability of the amino acid.

For example if 25% of of the residues in helices are alanine, and 25% of the total amino acids in

the data set are alanine, then the calculation would be - ; so the propensity𝑃
α/β/𝑇

𝑖 = 25
25 = 1

for alanine to be a helix would be 1.

2. Former- s amino acids that have a high propensity (usually over 1.0) to occur in a
particular structure (either helix or sheet). These amino acids favor the formation of a
particular structure.

3. Breaker- amino acids that have very low propensity to occur in a particular structure
(either helix or sheet). They often disrupt the formation of a particular structure, and
cannot be found at the nucleation sites.

4. Bend probabilities table- reflects how likely a sequence of four consecutive residues is
to form a turn based on their observed frequencies in the experimentally determined
structures (from the original paper).

Algorithm
Alpha Helix Prediction: (= propensity score of a residue to form helix) 𝑃

α

1. Find a nucleation site

a. A sliding window of 6 amino acid residues is created and average is calculated.𝑃
α

b. “Formers” () will contribute 1 point to the former count, and “weak 𝑃
α

≥ 1. 05

formers” () will contribute 0.5 point to the former count. 𝑃
α

≥ 1. 00

c. “Breakers” () will contribute 1 point to the breaker count. 𝑃
α

≤ 0. 69

d. If the average of the 6 residue window is , the former count is , and𝑃
α

≥ 1. 03 ≥ 4

the breaker count is , then the window is favourable to be a nucleation site for< 2
a helix. If not, then slide along and repeat until a nucleation site is found.

2. Once a nucleation site is found, the window extends in either direction.

a. Continue extending in either direction until average falls below the 1.03𝑃
α

threshold, or, a set of tetrapeptide (i.e 4 consecutive) breakers are encountered.
3. Predict the entire window as a helix (H).
4. Continue sliding the window to find the next nucleation site.

Beta Sheet Prediction: (= propensity score of each residue to form sheet)𝑃
β

1. Find a nucleation site

a. A sliding window of 5 amino acid residues is created and average is calculated.𝑃
β

b. “Formers” () will contribute 1 point to the former count. 𝑃
β

≥ 1. 00

c. “Breakers” () will contribute 1 point to the breaker count. 𝑃
β

≤ 0. 75

d. If the average of the 5 residue window is , the former count is , and𝑃
β

≥ 1. 05 ≥ 3

the breaker count is , then the window is favourable to be a nucleation site for< 2
a helix. If not, then slide along and repeat until a nucleation site is found.

2. Once a nucleation site is found, the window extends in either direction.

a. Continue extending in either direction until average falls below the 1.05𝑃
𝑃

β

threshold, or, a set of tetrapeptide (i.e 4 consecutive) breakers are encountered.
3. Predict the entire window as a sheet (E).
4. Continue sliding the window to find the next nucleation site.

Turn Prediction: (= propensity score of each residue to form turn)𝑃
𝑡

For a 4 residue window:

1. Calculate average .𝑃
𝑡

2. Calculate bend probability .𝑝
𝑡

= 𝑓
𝑖

× 𝑓
𝑖+1

× 𝑓
𝑖+2

× 𝑓
𝑖+3

3. If the average is and the bend probability () is , and the𝑃
𝑡

≥ 1. 00 𝑝
𝑡

≥ 0. 000075 𝑓
𝑖+1

and individually have , predicts the region as a turn (T).𝑓
𝑖+2

𝑃
𝑡

≥ 0. 5

4. Continue sliding the window until the conditions are satisfied.

Resolve Overlapping Regions:
- If regions predicted as “Helix” or “Sheet” or “Turn” overlap, the prediction with the

highest average propensity score will be the predicted structure for the region.

All unassigned residues get the default structure of “Coil”.

Figure 3. A figure depicting the overall Chou Fasman algorithm (note: steps have been skipped). a.
Shows the favourable helix nucleation site, b. Shows the final extended helix window, c. Shows the

favourable sheet nucleation site, d. Shows the sliding window looking for more nucleation sites (in this
case it was unfavourable), e. Looking for turn regions (propensity score not added for simplicity) f.
Shows found favourable turn regions, g. Shows updating predicted structures onto the final prediction

structure, h. Shows overlaps being handled based on higher propensity scores.

Challenges & Limitations
Limited Dataset and Generalizability:
The algorithm relies on empirical data obtained from observed frequencies of amino acids in a
small set of 29 known protein structures. As a result, its rules and propensities may not

generalize well to other proteins. If the scores were derived from a larger and more diverse set of
protein structures, the accuracy could potentially improve.
Ignores Long-Range Interactions:
The Chou-Fasman algorithm considers only the local sequence context, focusing on the
immediate neighbors of amino acids to predict secondary structure. It does not account for
long-range interactions, which play a significant role in protein folding.
Simplified Structure Categories:
The algorithm predicts only four broad categories of secondary structures—alpha helices (H),
beta-sheets (E), turns (T), and coils (C). This simplification fails to capture the nuanced and
diverse structures found in most proteins, such as intricate loop formations or irregular motifs.
Overlapping Sequence Handling:
In regions of overlapping sequence propensities, the algorithm replaces structures based solely
on higher average propensities. This simplistic approach overlooks the biological reality that
secondary structures do not transition abruptly (e.g., from a helix to a sheet) without intermediary
spacer regions, such as bends or coils, to accommodate these transitions.
Accuracy Constraints:
The Chou-Fasman algorithm achieved an average accuracy of 35.02% in our study, lower than
the reported 50% in earlier studies. This discrepancy may arise because many online
implementations use updated datasets with refined propensity values, adjusted thresholds, and
improved handling of overlapping sequences. Modern versions address these limitations,
resulting in more biologically realistic predictions and higher accuracy.

Model 2: Garnier-Osguthorpe-Robson (GOR) Model

Algorithm
Overview of the GOR Method

The GOR (Garnier-Osguthorpe-Robson) method is a statistical approach used for predicting
protein secondary structures based on amino acid sequences. It utilizes information theory and
Bayesian statistics to calculate the propensity of each residue to adopt a particular secondary
structure—Helix (H), Beta-strand (E), Turn (T), or Coil (C)—by considering the influence of
neighboring residues.

Figure 4 below illustrates the calculation of an information score for Alanine (A) from a
collection of proteins using a short sample sequence. Initial version of GOR used 26 proteins
with known secondary structures with subsequent GOR model versions included upwards of 226
proteins. The residue sequence in Figure 4 represents one protein from such a database of
proteins. First, we calculate the conditional probability, P(A,-2|H), of finding an Alanine residue
at a position of -2 (second-last residue to a central residue at position 0) in a structural segment
that forms a helix. As in Figure 4, this is calculated by dividing the number of windows with A at

-2 position with a helix at the central residue (red cells) by the number of windows with a helix
structure (green cells). Secondly, we calculate the probability, P(A,-2), of finding Alanine in
position -2 across all structures in the protein database. Lastly, the logarithm (to any base used
consistently) of the division of these two probabilities is calculated to derive a unique
information score for Alanine found at position -2 in a helical structure. This information score is
then placed in a table specific to helices. The GOR authors chose a maximum of eight residues
before and after a central residue to calculate such information scores and tabulate them as
shown in Figure 4. We use four such tables, for each of the four structures, in our structure
prediction process.

Figure 4: Calculating the information values using probabilities of finding an amino acid in a particular
structural segment.

Figure 5: Stepwise calculation of structural information scores and final structure prediction

Figure 5 illustrates the sliding window approach and shows the information scoring that leads to
the prediction of a specific structure at a central residue. As mentioned above, GOR references 8
amino acid residues before and after a central residue leading to a window that contains 17
residues. This window was determined by the GOR authors as sufficient to capture the local
influence that neighboring amino acid residues enforce on a central residue. Figure 5 illustrates
this approach assuming a shorter 5-residue window. In Step 1, the window begins with the first
residue in the entire protein sequence being considered as the central residue with only 2 amino
acid residues after this residue being considered. Since the residues to the left of this central
residue (orange cell) don’t exist, they are ignored or assumed to contribute a score of 0. In Step
2, as the central residue moves to the next residue to the right, the window expands with one

residue available to the left. This expansion of the window continues until we reach the
maximum window length of 5 as in Step 3. Step 3 also shows the Window indices from -2
through 2 including the central residue. Subsequently, for each of the amino acid residues in Step
3 with the central residue, A, at index 0 (protein position -2), information scores from the table
for a helix are looked up (Step 4) and summed as shown in Step 5. This process is performed for
beta sheets, coils, and turns by looking up the respective residues’ information scores from the
respective structure tables. Finally, the maximum information score out of the four calculated for
each structure is chosen and the corresponding structure is predicted to be the structure at the
central residue.

Limitations
Limited to Local Interactions in GOR:
The use of a fixed window size means that long-range interactions are not considered. Given a
3-dimensional folding of proteins, the entire strand of the protein sequence may dictate the
structure in a particular region. For example, a region 20 amino acids further from the
N-terminus may be impacted by a region 100 amino acids further from the N-terminus if the two
regions come into proximity due to the folding of the strand. Additionally, the method assumes
that the contributions of neighboring residues are independent and additive, which may not
capture all the complexities of protein folding. Hence, the local interactions assumed in GOR
underestimate non-localized effects.

Prediction Accuracy
As a statistical method, the GOR algorithm cannot account for all factors influencing protein
structure, leading to potential inaccuracies. The quality of the prediction depends on the dataset
used to derive the information tables. Biases in the dataset can affect results. For example, the
updated GOR method by Garnier, Gibrat, and Robson used a curated protein database containing
267 proteins with residue length longer than 50 residues. This difference selection of the protein
dataset skews the calculation of the probabilities and their derived information values. Capturing
a large enough sample set of every residue occurring at each of the indices in the reading window
for every conformation is intractable. This intractable issue leads to differences in approaches
leading to an uneven comparison of prediction results across studies.

Edge Effects
At the beginning and end of the sequence, the window extends beyond the available residues.
Optionally, padding the sequence with dummy residues or adjusting the window size may
address this issue but this may introduce artifacts. For example, the structure score prediction for
the first 8 residues may differ from the subsequent residues’ structure score predictions since the
reading window extends beyond the available residues leading to an assumption of a zero
contribution. That is, fewer than 17 residues contribute to the structural prediction of the first 8
residues resulting in an under-defined overall prediction.

Simplification of Secondary Structures
The method reduces secondary structures to four states (H, E, T, C), which may oversimplify the
diversity of actual protein conformations. This also introduces complexity during validation since
different approaches, tools, and classifications by researchers result in an unequal comparison of
the outcomes.

Experimental Model: Hidden Markov Model

Algorithm Overview:
Secondary structures, such as helices, sheets, turns, and coils, form the building blocks of
proteins. Our project employs a Hidden Markov Model (HMM) to predict these secondary
structures based on sequences of amino acids. This probabilistic approach is inspired by the
ability of HMMs to capture sequential patterns and transitions between observable data (amino
acids) and hidden states (secondary structures). By using the Viterbi algorithm, the model
predicts the most probable sequence of secondary structures for a given protein sequence.

The HMM represents the protein secondary structure prediction problem as a sequence of states
and symbols:

1. States: These correspond to secondary structures (Helix, Sheet, Turn, Coil).
2. Symbols: These represent the observable amino acid residues (20 types).

The model comprises:

1. Transition Probabilities: Define the likelihood of moving from one state (e.g., Helix) to
another (e.g., Sheet).

2. Emission Probabilities: Represent the likelihood of observing a particular amino acid
given a state (e.g., probability of Alanine in a Helix).

3. Initial Probabilities: Indicate the likelihood of starting in each state.

Figure 6: The figure above shows how our model would generate predictions (although we will be
using it for decoding rather than generation). This image is borrowed from Ding et. al , 2012 [8].

To predict the secondary structures, the Viterbi algorithm is employed. This dynamic
programming approach computes the most probable sequence of hidden states by:

1. Initializing the probabilities based on the starting states and the first observation.
2. Iteratively computing the probabilities of subsequent states while keeping track of the

most likely transitions.
3. Backtracking through the computed probabilities to reconstruct the optimal sequence of

states.

Why use an HMM for secondary structure prediction?

We chose to use a Hidden Markov Model (HMM) for predicting the secondary structure of
proteins because it offered a unique approach compared to traditional methods like Chou-Fasman
and GOR. We abstracted this model from what we learnt about markov chains in Math class and
we found existing literature implementing this approach as well ([6], [7] and [8]). These
conventional models employ a sliding window technique, analyzing the context of an entire
segment of amino acids to make predictions. In contrast, an HMM focuses on the current amino
acid residue and its immediately preceding state. This difference intrigued us, as we wanted to
explore how an HMM could potentially uncover correlations between specific residues and their
corresponding secondary structures. Additionally, we hypothesized that an HMM might
inherently learn the transition rules between different structural states without explicit
enforcement. While we haven't imposed any structural rules in our model yet, we believe that the
HMM's ability to learn patterns from sequential data could lead to insightful discoveries in
protein structure prediction.

Training the model: Justification for fine tuning the parameters

We chose a 4-state model for ease of implementation. We implemented the Expectation
maximization algorithm to train the HMM rather than Baum Welch since we wanted to train the
model on labelled data to identify the relationship between secondary structures and predicted
amino acid residues.
The Expectation-Maximization (EM) algorithm implemented for training the Hidden Markov
Model (HMM) is a powerful iterative approach designed to optimize the model parameters based
on labeled sequences. At a high level, the algorithm operates by alternating between two main
steps: the Expectation (E) step and the Maximization (M) step. In the E-step, the algorithm
calculates expected counts of various events, such as state transitions and symbol emissions,
using the provided labeled data. These counts are derived by analyzing how often each state and

transition is observed in the training sequences. During the M-step, these expected counts are
then used to update the HMM's parameters, including initial probabilities, transition
probabilities, and emission probabilities, ensuring they reflect the observed data more accurately.
This process repeats iteratively until convergence is achieved or until a predefined number of
iterations is completed. The implementation also handles edge cases, such as zero counts, by
assigning uniform probabilities to maintain numerical stability. Overall, this approach allows the
HMM to learn from labeled sequence data and adjust its parameters to better model the
underlying patterns in protein secondary structure prediction.

The values for the initial probability and transition probability we got from the EM training were
as follows:

Table 1: Initial Probabilities learned from training are depicted in the figure above. In our dataset all the
proteins started from C and that is reflected in the values learned from training.

Table 2: Transition Probabilities learned from training are depicted in the figure above.

The values we obtained from training were quite similar to those reported in the 3-state model of

the PRT-HMM implemented by Ding et al., 2012 . However, these trained initial and transition
probabilities were not directly used in our final model. Instead, we fine-tuned these parameters to
produce more coherent and realistic predictions. During training, we observed that the model
exhibited a strong bias towards self-transitions, often resulting in repetitive predictions such as
long stretches of the same state (e.g., "HHHHH"). To address this issue, we drew inspiration
from the transition probabilities used by Martin et al. (2006) and normalized the transition values
to reduce this bias.

Fine-tuning the transition probabilities in a Hidden Markov Model (HMM) rather than using the
trained values directly is a strategic decision aimed at enhancing the model's predictive accuracy
and reliability. During the training phase, the model learns probabilities based on the given data,
which can sometimes result in overfitting or an unrealistic bias towards certain transitions, such
as excessive self-transitions. This can lead to repetitive predictions, such as long sequences of the
same state, which do not accurately reflect biological reality. By fine-tuning these probabilities,
we can introduce a level of normalization that reduces this bias while still maintaining the
inherent preference for self-transitions where appropriate. This adjustment helps to create a more
balanced model that is better suited for generalization across different datasets. Additionally,
fine-tuning allows us to incorporate insights from previous research and empirical observations,
such as reducing transition probabilities for less common states like turns, which might be
underrepresented in training data. This process ensures that the HMM remains robust and
adaptable, providing more coherent and realistic predictions of protein secondary structures. This
also ensures that the emission probabilities learnt from the EM training can actually showcase
the correlation between the amino acid residues and secondary structure predictions.

While self-transitions remained the most likely option, their dominance was tempered to allow
for more varied state transitions. Additionally, the probabilities for turn transitions were
significantly reduced, reflecting their sparse presence in both the training data and biological
reality. Both the trained and fine-tuned parameters exhibited very low probabilities for turn
transitions, which led to the HMM rarely predicting turns in practice.

Table 3: Transition Probabilities finally used in the HMM are depicted in the figure above.

For the emission probabilities we have directly used the values we learnt from EM training. Once
again we found that the emission probabilities we learned from training were very similar to the
ones obtained in the paper by Ding et. al, 2012 [8]1.

Figure 7: The state transition graph for our HMM model is depicted in the figure above.

Implementation
The HMM approach has been translated into a structured program through object-oriented
principles and dynamic programming.

The HMM was implemented in Go using a modular design, where the core logic is encapsulated
within an HMM struct. This struct contains:

1. State and symbol definitions.
2. Transition, emission, and initial probability matrices.
3. Functions for initialization and prediction.

1 Our Emission Probabilities table can be found in the Appendix

The Viterbi algorithm is implemented as a method on the HMM struct. It processes a given
sequence of amino acids and outputs the most probable sequence of secondary structures.
Additionally our implementation uses logarithmic probabilities for numerical stability, as
multiplying many small probabilities can lead to underflow errors in floating-point arithmetic.

Input/Output: The program accepts a string of amino acid residues (e.g., "HAAAG") and outputs
a string representing the predicted secondary structure (e.g., "HTHHC", where H = Helix, T =
Turn, C = Coil).
The Viterbi algorithm predicts the most probable sequence of secondary structures for a given
sequence of amino acid residues using a dynamic programming approach. It operates by
considering possible paths through the states of the Hidden Markov Model (HMM) and selecting
the sequence with the highest probability.

Viterbi Algorithm
1. Initialization: The algorithm starts by initializing the score matrix for the first amino acid

in the sequence. Each state’s score is computed using the initial probabilities and the
emission probability of the first amino acid.

2. Recursion: For each subsequent amino acid in the sequence, the algorithm updates the
score matrix by considering all possible previous states. It computes the maximum
probability of transitioning from any previous state to the current state while emitting the
current amino acid. These probabilities are stored in the score matrix. The backpointer
matrix tracks the state that gave the maximum score.

3. Termination: After processing the entire sequence, the algorithm identifies the state with
the highest probability in the last column of the score matrix. This state indicates the most
likely final state in the sequence.

4. Backtracking: Using the backpointer matrix, the algorithm traces back from the last state
to the first, reconstructing the most probable sequence of secondary structures.

5. Justification: The score matrix ensures that all possible paths are considered, while the
backpointer matrix ensures that only the optimal path is traced back.
The algorithm uses the transition and emission probabilities learned from training to
make predictions based on the amino acid sequence. This process allows the Viterbi
algorithm to efficiently find the most likely sequence of secondary structures, balancing
both sequence-specific emissions and transitions between structural states.

Challenges
Implementing a HMM for predicting protein secondary structures presented several challenges,
which are reflected in the Go code

1. Efficient State Management: Managing the dynamic programming matrices for large
sequences required careful optimization to ensure the code remained efficient and
comprehensible.

2. Numerical Stability: Implementing the algorithm in log-space required additional care
to ensure that all computations (addition and multiplication) adhered to logarithmic rules.

3. Data Constraints: Real-world data often exhibit correlations that a simple HMM cannot
capture. For instance, some secondary structures depend on broader sequence contexts
beyond adjacent residues.

Limitations
The current implementation has several limitations:

1. Single-Residue Emission: The model considers each amino acid independently for
emission probabilities. This simplification ignores correlations between adjacent residues,
which could improve prediction accuracy. Extending the model to use pairs or triplets of
amino acids would increase the "codebook size" (e.g., from 20 to 400 for pairs) but also
require significantly more data and computational resources.

2. Lack of Structural Coherence: The HMM predicts secondary structures independently
of global constraints, which may lead to biologically implausible predictions. For
instance, it does not enforce compatibility between successive states or ensure structural
coherence across the protein sequence.

3. Model Parameters: Training the HMM using Baum-Welch might allow us to use various
latent models within each state rather than just a 4-state model as we have right now. The
model was currently trained by Expectation Maximization, in the future we can also train
using the Baum-Welch algorithm.

4. Turn Predictions: The HMM rarely predicts turns, even though they are a defined state.
This occurs because the transition probabilities to turns are very low, reflecting their
scarcity in the training data. This limitation could be addressed by developing a more
refined model in the future.

User Interface

Implementation
A Shiny app was developed to accept user inputs in the form of protein sequences or FASTA
files, generating predicted structures for the three models: Chou-Fasman, GOR and HMM. It
compares match percentages across these sequences and provides a visual representation of the
comparison. Additionally, the app displays the percentage composition of each structural
character (H, E, C, T) for each of the models.

Figure 8: RShiny User Interface, showing the input protein sequence, and the outputs. The outputs
include the predicted sequences from all three models, the percentage of matching characters between

them, and a visual comparison of the matching percentage.

Figure 9: RShiny User Interface, showing the character composition (percentage of H, E, C and Ts) of
all three predicted sequences.

Secondary Structure Validation with DSSP

Metrics and Method
DSSP (Dictionary of Secondary Structure in Proteins) is a widely used algorithm which was
developed by Wolfgang Kabsch and Chris Sander. It is designed to assign secondary structure
elements to the amino acids of a protein based on its atomic-resolution coordinates. The

algorithm identifies intra-backbone hydrogen bonds using an electrostatic model, which helps in
determining the secondary structures such as helices, sheets, and loops.

In our project, we used the SecNet 2018 test dataset to validate our outputs. The SecNet 2018 test
dataset is a collection of protein structures that were determined and released in 2018. This
dataset was specifically designed to evaluate secondary structure prediction models, such as
SecNet, by using DSSP-derived information. The dataset uses DSSP to assign secondary
structure elements to the protein chains included in the dataset. DSSP provides the annotations of
secondary structures and categorizes them into eight types (DSSP8) or reduces them to four
broader classes (DSSP4). Since our outputs for our 3 algorithms classified the secondary
structures into 4 classes, we used the DSSP4 category5.

Unlike predictive models, DSSP does not predict secondary structures from primary amino acid
sequences; instead, it extracts this information directly from the 3D coordinates of proteins. This
makes DSSP an invaluable tool for validating secondary structure prediction models, such as our
own, as it provides a reliable reference for comparing our predicted structures against
experimentally determined ones. By using DSSP data, we can assess the accuracy and
effectiveness of our three computational models designed to predict protein secondary structures
from amino acid sequences.

We illustrate the metrics and methods used in our validation of our model outputs against gold
standard DSSP sequences via an example computation using simple dummy amino-acid
sequences below.

Structure Types Considered:

● H: Helix
● E: Beta-sheet
● C: Coil
● T: Turn

Ground Truth sequence from DSSP database: H E T T C C E E
(Indices: 1 2 3 4 5 6 7 8)

Model Prediction (example, from GOR): H E E T C H E E
(Indices: 1 2 3 4 5 6 7 8)

Visually, we can easily identify that there are two positions in these sequences that differ;
however, longer sequences require additional metrics to quantify differences more effectively.
The two sequences are compared head-to-head in the table below.

Table 5: Table to explain how “matches” are decided.

We calculated percentage Accuracy, Precision, Recall, and F1-Score values, described in the
table below, to robustly validate our models’ outputs with the gold standard sequence outputs.

Table 6: Metrics for model performance statistics and their significance

Using the metrics defined above, the model correctly predicted six out of eight structures with a
75% accuracy when comparing the example model sequence output with the ground truth output.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (6
8) × 100% = 75%

Unlike accuracy, the next three metrics are applied to gauge the model performance per structure.
The model correctly predicted a helix (H) at position 1 (True Positive), incorrectly predicted an
H at position 6 instead of the actual C (False Positive), and there were no positions that were H
but were predicted as another structure (False Negative). This presents the following metrics for
a helix.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝐻) = 1
1+1 × 100 = 50%

𝑅𝑒𝑐𝑎𝑙𝑙(𝐻) = 1
1+0 × 100 = 100%

𝐹1 𝑆𝑐𝑜𝑟𝑒(𝐻) = 1
1+1 × 100 ≈ 66. 67%

Note that F1-Scores are usually reported as fractions between 0 to 1 but we reported them here in
percentages for consistency with the other metrics. We calculated these hypothetical metrics
similarly for the remaining three structures as shown in the summary table below.

Table 7: Precision, Recall, and F1-Score metrics for each structure type in the example above.

For a helix, 50% precision indicates that the model predicts a helix 50% of the time; this may
indicate a high false positive rate. Secondly, a recall of 100% indicates that all actual helices are
identified correctly. Lastly, an F1-Score balances the previous two metrics and indicates a low
precision with perfect recall. These metrics are calculated by our code in R for a sequence of any
length and are depicted visually using bar graphs in our RShiny Validation Application interface.

Validation Results
In this section, we present the actual validation results for the actual outputs from our three
models when compared to the gold standard DSSP database’s “ground truth” sequence structure
strings. We sampled 50 protein sequences from the DSSP database and extracted their
corresponding “ground-truth” structures. Using the calculations illustrated and metrics described
in the examples above we validate our models’ performance. The graphs below are generated
using our RShiny Validation Application.

Figure 10 below plots the Accuracy of the three models for each of the 50 protein amino acid
sequences from the dataset. The figure conveys the average accuracies of approximately 35.02

% for CF, 41.19 % for GOR, and 47.29 % percent for HMM models.± 9. 69 ± 10. 63 ± 17. 32
These percentages indicate the number of structures in a sequence that the model correctly
predicts when compared to the ground truth value. While GOR shows a greater average accuracy
than CF, they both display comparable standard deviations indicating a similar spread in the
predictions of the two models. The HMM model shows the highest prediction accuracy but the
accompanying higher standard deviation indicates the large variance in the model’s predictions.
The higher variance observed in HMM predictions may result from its complexity and sensitivity
to variations in data, whereas CF and GOR models are simpler and more consistent but less
accurate overall. Hidden Markov Models rely on probabilistic transitions and emissions to
predict sequences, which means that small changes in the input data or training set can lead to
different outcomes. This variability is particularly pronounced when the training data is sparse or
unbalanced, as is often the case with secondary structure prediction, where certain states like
turns are underrepresented. As a result, while HMMs are powerful tools for capturing patterns in
sequential data, their predictions can exhibit higher variance, especially in cases where the
training data does not adequately represent all possible scenarios.

Figure 10: Bar graph showing the Accuracy(in %) of the three structure prediction models across 50
protein sequences.

Figures 11a., 11b., and 11c., below plot the per-structure metrics of precision, recall, and
F1-Scores. All three models show comparable precision values for predicting helices (H), beta
sheets (E), and coils (C). Most notably, the three models are better at correctly predicting coils,
all with greater than 50% precision, than compared to other structures. Conversely, CF and GOR
are poor at predicting turns (T) whereas the HMM model fails at predicting turns. Low to

non-existent precision for turns indicates that the models have a high false positive rate for
predicting turns and that many of their positive predictions are incorrect for turns. The difficulty
in predicting turns by the HMM model is a result of the low probability assigned to turn
transitions which is a consequence of the low representation of turns in training data, leading to
poor model performance on this structure type.

The helix recall value is the highest for the HMM model, at about 79% indicating a low false
negative rate and that this model correctly predicts helices about 79% of the time. This high
recall value combined with the observation of a low recall for beta sheets and nonexistent
precision and recall values for turns may also suggest that the HMM model preferentially
predicts helices. The CF and GOR models have low but expected and similar recall values except
for the turns wherein CF greatly outperforms GOR. The F1-Scores harmonize the precision and
recall observations into one statistic. A low F1-Score may convey that a model struggles in either
precision (high false positives) or recall (high false negatives) or both; the ideal situation arises
when the F1-Score is as close to 100% as possible. The preference of HMM for helices may be
due to a higher frequency of helices in training data, while CF's better performance on turns
could reflect its simpler rule-based approach capturing certain turn-specific features better than
GOR or HMM.

a.

b.

c.

Figure 11: a. Bar graph depicting the average precisions of predicting H, E, C and Ts across 3 models
for 50 proteins. b. Bar graph showing the average recall for each structure type, across 50 proteins. c.
Bar graph depicting the average F-1 scores of each structure type across the three models for 50

proteins.

Figure 12 below plots the percent accuracy values for each model for each of the 50 proteins

from the DSSP dataset against each protein’s respective length of residues. This figure

establishes the Law of Large Numbers wherein longer length residues convey an accuracy closer

to the average accuracy of a particular model resulting in a seemingly Gaussian distribution. This

trend is mostly because longer sequences provide more data points for statistical averaging,

hence reducing the variability in accuracy measurements across different proteins compared to

shorter sequences where any random fluctuations have a larger impact on results.

Figure 12: Scatterplot of the average accuracy of each model plotted as a function of the protein length.

Conclusion

In this study, we evaluated three classical models—Chou-Fasman (CF),

Garnier-Osguthorpe-Robson (GOR), and Hidden Markov Model (HMM)—for protein secondary

structure prediction. By comparing the CF, GOR, and HMM methods, we have demonstrated the

varying degrees of accuracy and limitations inherent in each approach. The Chou-Fasman model,

while pioneering, shows lower accuracy due to its reliance on static propensity values (from a

small dataset) without considering sequence context. In contrast, the GOR method leverages

local sequence context through statistical analysis, resulting in improved prediction accuracy.

However, its dependence on local interactions limits its ability to account for long-range

structural influences. The experimental HMM approach, promising due to its probabilistic

framework, surprisingly outperformed both previous models. However, it exhibited high

variance, reflecting the need for parameter optimization and training on larger datasets. Future

directions include implementing the advanced versions of CF and GOR models, and refining the

HMM with advanced training algorithms like Baum-Welch. All of the models could also be

enhanced by integrating modern machine learning techniques to improve accuracy and

generalizability.

Despite these challenges, the exploration of these classical algorithms provides valuable insights

into the progression of computational biology and sets a benchmark for evaluating more

advanced machine learning models like AlphaFold2. The field has seen remarkable

advancements with machine learning models achieving up to 84% accuracy in secondary

structure prediction, while AlphaFold by DeepMind has revolutionized tertiary structure

prediction with an astonishing 99% accuracy, setting a benchmark for AI-driven approaches.

Emerging trends include using attention-based architectures and large language models (LLMs),

which offer faster and potentially more accurate predictions. Hence, this project emphasizes the

importance of integrating historical methods with contemporary technologies to enhance our

understanding and prediction of protein structures.

Citations

1. Prevelige, P., & Fasman, G. D. (1989). Chou-Fasman Prediction of the secondary structure of

proteins. Prediction of Protein Structure and the Principles of Protein Conformation, 391–416.

https://doi.org/10.1007/978-1-4613-1571-1_9

2. Garnier, J., Osguthorpe, D. J., & Robson, B. (1978). Analysis of the accuracy and implications

of simple methods for predicting the secondary structure of globular proteins. Journal of

Molecular Biology, 120(1), 97–120.

3. Garnier, J., Gibrat, J. F., & Robson, B. (1996). GOR method for predicting protein secondary

structure from amino acid sequence. Methods in Enzymology, 266, 540–553.

4. Gibrat, J. F., Garnier, J., & Robson, B. (1987). Further developments of protein secondary

structure prediction using information theory. Journal of Molecular Biology, 198(3), 425–443.

5. Anfinsen CB. Principles that govern the folding of protein chains. Science. 1973 Jul

20;181(4096):223-30. doi: 10.1126/science.181.4096.223. PMID: 4124164.

6. Kabsch, W. and Sander, C. (1983) ‘Dictionary of protein secondary structure: Pattern

recognition of hydrogen‐bonded and geometrical features’, Biopolymers, 22(12), pp.

2577–2637. doi:10.1002/bip.360221211.

7. Asai K, Hayamizu S, Handa K. Prediction of protein secondary structure by the hidden

Markov model. Comput Appl Biosci. 1993 Apr;9(2):141-6. doi: 10.1093/bioinformatics/9.2.141.

PMID: 8481815.

8. Martin, J., Gibrat, JF. & Rodolphe, F. Analysis of an optimal hidden Markov model for

secondary structure prediction. BMC Struct Biol 6, 25 (2006).

https://doi.org/10.1186/1472-6807-6-25

9. Ding, Wang et al. “PRT-HMM: A Novel Hidden Markov Model for Protein Secondary

Structure Prediction.” 2012 IEEE/ACIS 11th International Conference on Computer and

Information Science (2012): 207-212.

10. Potter, J., Lutsky, A., Nandakumar, R., & Katiyar, S. (2023). Predicting secondary structure

protein folding. Pittsburgh, PA USA.

11. Kendrew, J. C., Bodo, G., Dintzis, H. M., Parrish, R. G., Wyckoff, H., & Phillips, D. C.

(1958). A three-dimensional model of the myoglobin molecule obtained by X-ray analysis.

Nature, 181(4610), 662–666. https://doi.org/10.1038/181662a0

12. McDonough, M. (2024, November 22). Did ai solve the protein-folding problem?. Harvard

Medicine Magazine.

https://magazine.hms.harvard.edu/articles/did-ai-solve-protein-folding-problem

13. Chou, P. Y., & Fasman, G. D. (1978). Empirical predictions of protein conformation. Annual

Review of Biochemistry, 47(1), 251–276. https://doi.org/10.1146/annurev.bi.47.070178.001343

Contributions

Arth Banka: Worked on the HMM code from research, to implementation and testing functions
Riti Bhatia: Worked on the Chou-Fasman code from research to implementation and testing
functions
Sanchitha Kuthethoor: Worked on the visualizations using RShiny- the user interface as well as
the validation app. She also worked on validation of the three models against DSSP predictions.
Sumeet Kothare: Worked on the GOR code from research to implementation and testing. Sumeet
also worked with Sanchitha on the visualizations and validation.

https://doi.org/10.1186/1472-6807-6-25
https://magazine.hms.harvard.edu/articles/did-ai-solve-protein-folding-problem

Appendix

Table: Emission Probabilities learned from training and finally used in the HMM are depicted in the
figure above.

