
Jonathan Potter
Andrew Lutsky
Rohit Nandakumar
Shashank Katiyar

Predicting Secondary Structure Protein Folding

Background

The earliest concepts of secondary structure protein prediction emerged after the work of

Linus Pauling and Robert Corey, who discovered the alpha-helix and beta-sheet in the early

1950s. Among the first well-known algorithms to identify secondary structure is the

Chou-Fasman method. In the early 1970s, Peter Chou and Gerald Fasman developed a statistical

method to analyze the frequencies of alpha-helices, beta-sheets, and turns. This method yielded

about a 50-60% accuracy with predicting secondary structure. However, some limitations of

Chou-Fasman include the fact that apart from immediate neighbors, Chou-Fasman does not

account for longer-range interactions [1].

Later on, during the late 1970s, as an improvement to the Chou-Fasman method, the

GOR algorithm was developed by Garnier, Osguthorpe, and Robson. This algorithm utilized

information theory to identify the likelihood of alpha-helices, beta-sheets, and turns. However,

this algorithm had similar limitations to the Chou-Fasman method, with longer-range interactions

not being accounted for. The GOR algorithm has an accuracy of 60-70% [2].

In the 1990s to present, machine learning techniques have been used to predict secondary

structure. Most notably, AlphaFold was developed by Alphabet’s DeepMind to predict protein

structure at a remarkable 92.4% accuracy [4]. This is considered the state-of-the-art approach.

In our project, we will be focused on developing the Chou-Fasman and GOR algorithms.

We will then visualize and compare the predictions of both algorithms using both 2D and 3D

visualization techniques. We will use CASP classifications into three different secondary
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structure types. The typical method for validating secondary structure prediction is to compare

to DSSP classification[8]. The DSSP classification categorizes things into 8 larger groups of

secondary structures. However, it is very common to translate these 8 larger groups into just

three different structures and it is common to narrow down into H for Helices, E for sheets, and

C/L for coils/loops[8]. This is why in our project we narrowed down secondary structures into

only three different classifications, as there is precedence. Additionally, Chou-Fasman and GOR

I only have predefined parameters for four secondary structure classifications for these types of

classifications. We aim to compare the two algorithms using the DSSP classifications of x-ray

crystallography data which have been cleaned and made into a test dataset in the SECNET 2018

validation dataset.

Chou-Fasman Method

The Chou-Fasman method primarily involves utilizing a set of predefined statistics of the

frequencies of particular amino acids in certain secondary structures. For example, amino acids

that were more likely to be found in an alpha-helix secondary structure would have a higher

propensity value for helices for that amino acid. In this way, a dictionary of sorts can be defined

for specific amino acids. Chou-Fasman primarily relies on these propensity values for specific

amino acids in conjunction with a series of predefined steps in order to determine the overall

secondary structure prediction.

There are several limitations of the Chou-Fasman method, including but not limited to

low accuracy, independence assumption, small dataset for defining the parameters, and failure to

account for local environment. It has been reported that Chou-Fasman is in fact only

approximately 50-60% accurate in identifying correct secondary structure. This inaccuracy can



be chalked up to several defining characteristics of the algorithm. The initial set of parameters

was only defined off of a dataset of approximately 15 different proteins and was reported as up to

80% accurate on globular proteins; this in fact was later defunct. Additionally, later methods

employed the inference of independent neighboring residues, although Chou-Fasman does use a

four residue window to determine the probability of a turn secondary structure.

The actual algorithm for the Chou-Fasman method takes the following steps [9], as

shown in Figure 1.

Figure 1 - A visual representation of the Chou-Fasman algorithm.

1) The amino acids in the peptide are all associated with their respective parameters from a

table of weights for alpha helices, beta sheets, and bends that were determined in the

original Chou-Fasman paper (Figure 1a). These scores were initially determined by using

relative frequencies heuristics calculated from around 30 proteins with known structures



(This small dataset became a large criticism of the paper, one that was never updated due

to better algorithms being created that relied on machine learning).

2) The peptide is then scanned with a sliding window, starting at one end, until a region is

found where four of six contiguous amino acids are found with helix parameter scores

(assigned in step 1) greater than 1.00 (Figure 1b). This region is then labeled as the root

of a helix. The ends of the root are then extended in their respective directions one at a

time until the 4 terminal amino acids have an average helix score of less than 1.00

(Figure 1c). The whole section is then evaluated: if the selected region is longer than 5

acids and the average helix score is greater than the average sheet score, the region is

added to a list of alpha helices (Figure 1d).

3) Step 2 is repeated until the entire peptide has been evaluated for helices.

4) A similar method is then performed for identifying beta sheets. The major differences

include: The initial sliding root window requires 3 of 5 acids to have a sheet score greater

than 1.00 (instead of an acid score) and when evaluating the selected region (Figure 1e),

the average beta score of the flanking windows must be less than 1.00 (Figure 1f), and the

average sheet score must be greater than 1.05 (instead of 1.00), with an average sheet

score higher than the average helix score (Figure 1g).

5) Now, armed with a list of all possible sheets and helices, the selected regions are scanned

for overlaps. If two helices overlap, the one with the highest helix score is kept, with the

others discarded. The same applies for sheets using sheet scores. If a helix and a sheet

overlap, the region with the highest score out of both helix and sheet scores wins, and the

region is kept and labeled as such, with the other regions discarded (Figure 1h).



6) Finally, bends are identified by considering the turn score and calculating the “bend

score”, which is the sum of the f(i), f(i+1), f(i+2), and f(i+3) scores (all assigned in step

1) of the acid being investigated as well as the three subsequent acids, respectively. If the

bend score is greater than 0.000075, the average turn score of the four acids is greater

than 1.00, and the average beta sheet and alpha helix scores of the tetrapeptide are less

than the turn score, then the initial amino acid is labeled as a beta-turn (Figure 1i).

GORMethod

The GOR method primarily relies on the idea of using a window of parameters and

information theory to determine the secondary structure of a given residue. The original dataset

of predetermined parameters were derived from the study of directional information plots

created by Robson & Suzuki[7] and only from a sample size of approximately 25 proteins. These

information plots were fitted and smoothed to give better parameters, particularly challenged by

small sample size. Similar to Chou-Fasman, there is a set of parameters for each residue. Unlike

Chou-Fasman these parameters correspond to the information content of a particular residue

appearing in a window of residues in a specific position. The information content is a

quantification of the probability of a particular event occurring from a random variable, in this

case that residue being one of predetermined secondary structures, helix, sheet, or coil/loop.

Additionally, in contrast to Chou-Fasman, we find that instead of using a single residue and

extending out those regions, we evaluate the information content or self-information across a 17

window range. A simplistic implementation of GOR 1 can be approximated as the overall

equation for summing the information content, which can be found in Figure 2. The steps

involved can be broken down into the following three simplistic steps.



Figure 2 - A visual representation of the steps of the GOR algorithm labeled steps 1 through 3.

1. Map the residues a number of residues away from the central residue we are

assigning secondary structure to various scores.

2. We sum the information content of a particular residue given a window of

approximately 17 for each secondary structure that we are calculating. Where

I(S:R) is the information content of a particular residue given the window R, …..

Rn for a particular secondary structure[3]. Essentially we are summing iteratively

across the window, for the whole window for each secondary structure. This

results in a score or total information content for each secondary strucutre.



3. We then find the maximum information content for each secondary structure and

assign that structure to residue j, where residue j is the central residue of the

window.

The GOR I method just involves taking the maximum information content from the

available measurements and choosing that secondary structure. There have since been major

improvements to the GOR I method, seeing an increase of up to approximately 8-9% for globular

proteins(GOR V was released in 2005). These improved methods involve using larger sample

databases to derive the parameters, improved statistics, and using pairs and triplets of amino

acids instead of single residues.

Visualization

To visualize the results of our algorithm, we implemented two types of visualization, 2D

and 3D.2D visualizations- In these types of visualizations, we draw a simple 2-dimensional

image, with a collection of vertical lines corresponding to each amino acid in the protein. The

color of each line is according to the type of secondary structure allotted to the corresponding

amino acid. For this, we used the go graphics package for Golang [5].

Figure 3 - 2D visualization for ubiquitin protein. Green: Beta sheets; Red: Helices; Blue: Loops



3D visualizations- For these visualizations, the user must operate the program in the

“array” mode. In the array mode, the input is in the form of an array of ensembl-ids of genes.

The gget package [6] is used to extract the protein sequence corresponding to the gene/s and the

algorithm is run on those sequences. Also, from the Alphafold database, the pdb for the protein is

downloaded by the code. The output of the algorithm is overlayed on the pdb structure in the

form of colors, and an existing HTML template with the code to display a protein 3d structure is

modified to display this structure with the prediction’s colors. The result looks like the following

for ubiquitin protein.

Figure 4 - 3D visualization for ubiquitin protein. Green: Beta sheets; Red: Helices; Blue: Loops



Results/Analysis

In order to assess the accuracy of each prediction algorithm we tested their accuracies

using a small selection of proteins randomly selected from the SECNET 2018 validation dataset.

(https://github.com/sh-maxim/ss/tree/master) The accuracies of each implemented secondary

structure prediction algorithms were written out into a csv file, along with their secondary

structure accuracies. This information has been compiled into Figure 5.

Figure 5 - Comparative accuracy of Chou-Fasman and GOR secondary structure prediction

https://github.com/sh-maxim/ss/tree/master


methods. (A) Accuracy of individual protein prediction and overall accuracy (+/- SEM).(B)

Prediction of each secondary structure prediction algorithm per secondary structure (+/- SEM).

Comparing the results of Chou-Fasman and GOR to real biological examples is

extraordinarily useful at assessing how useful they are as tools. We can see that although

originally reported to be anywhere from 50-60 % accuracy, these two algorithms fall somewhat

short on real world examples(from Secnet2018). Our internal assessment of the algorithms

appear to demonstrate that the algorithms themselves are about ~5-10 % less accurate than

reported. This can be attributed to small validation test sets. Additionally, if we examine Figure

5B we see that Chou-Fasman performs quite terribly in comparison to GOR at identifying sheets.

This can be attributed to multiple different issues with the validation and the nature of

Chou-Fasman in the first place. First, Chou-Fasman does not examine as large of a window

comparatively to GOR, and beta sheets are relatively global secondary structures of proteins by

nature. That is that completely different parts of the primary structure align, so having a larger

window size would lend itself to more accurate predictions for these more “global” secondary

structures. Additionally, the validation dataset only contains relatively small proteins, which

could also lend to the low accuracy of sheets. Lastly, it could be possible that since Chou-Fasman

was derived from such a small dataset of proteins, that there were not enough sheets present in

the proteins to lend accurate propensities for the beta sheet secondary structure. Interestingly

enough, the accuracies of GOR and Chou-Fasman for the other secondary structures perform

within the margin of errors of each other. Overall, we can conclude that GOR is significantly

better than Chou-Fasman at predicting beta sheets and in secondary structure in general, despite

its simplicity relative to Chou-Fasman.



Future Advancements in the Field

Most recent advancements in the field have been spearheaded by the adoption and growth

of machine learning-based models. The first notable usage of machine learning models for the

prediction of secondary protein structure was PSIPRED [10], which achieved an accuracy of

76.5% for three-state (helix, sheet, and turn) prediction. Later ML-based algorithms such as

JPred4 and RaptorX had an accuracy of 82.0% and 84.0% accuracy with three-state prediction

[11][12].

Among the biggest advances in the field has been the development of AlphaFold by

Alphabet’s DeepMind. AlphaFold predicted tertiary structure at an astonishing 92.4% accuracy,

and has even been termed as one of the most important achievements in the field of artificial

intelligence [13][14].

We predict future advancements in the field to be based on current trends in artificial

intelligence, notably with rapid advances in attention-based models such as transformers and

large language models (LLMs). Historically, attention-based models were largely used for

natural language processing (NLP) tasks. Attention-based ML models can be trained to look at

sequences of amino acids, similar to how natural language is a sequence of words, to better

predict protein structure. Meta’s ESMFold (released in 2022) [15] has been able to leverage

LLM-based architecture to rival AlphaFold’s accuracy while being substantially faster.
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Contributions

Jon Potter

Jon contributed to the project by constructing the code for most of the Chou-Fasman algorithm

backend, everything along the pipeline from a string of amino acids to the collection of labeled

features. Jon also laid the foundation for the GOR I method. Jon contributed to the presentation

by constructing visual diagrams for the Chou Fasman algorithm slides. Jon contributed to the

final report by writing about the Chou-Fasman algorithm and how it was applied to the problem

at hand. Finally, Jon attended the weekly meetings to discuss the project’s direction and group

work assignments.

Andrew Lutsky

Andrew contributed to the overall project by implementing the identifying turns section of the

CF algorithm as well as completing the overall implementation the GOR I algorithm and

performing exploratory data analysis to visualize comparative accuracies of the two algorithms.

Andrew contributed to the final report by writing about the GOR algorithm and how it was

applied to the problem, DSSP classification, and the results section of the report. Additionally,

Andrew attended the weekly meetings to discuss the project’s direction and group work

assignments.



Rohit Nandakumar

Rohit contributed to the project by creating the input files for FASTA and CIF sequences.

Additionally, Rohit assisted in the creation of the Chou-Fasman method, focusing on beta sheet

identification. Rohit was heavily involved with creating testing functions for ten functions.

In regards to the non-coding aspects of the project, Rohit wrote up the “Background” and

“Future Advancements” sections of the paper and presentation. Lastly, Rohit attended weekly

meetings with the group to discuss direction and progress.

Shashank Katiyar

Shashank was heavily involved in creating the visualization tool for the project as well as

implementing CLI workflow options. He tied together the various components of our project and

provided a CLI for the user to interact with. Subsequently, he also created detailed instructions

for the usage of the program in the Readme of the project and the demonstration video. Shashank

also attended weekly meetings with the group to discuss direction and progress. Shashank

contributed to the presentation by talking about the various different approaches taken to

visualize the protein structure and to discuss future direction and progress.


