
Swimbots - Final Paper

Phillip’s Fan Club

Sarah Baalbaki

Dylan Estep

William Hsu

Tanxin Qiao

December 2022



Introduction

Evolution and the Genetic Algorithm

The phenomenon of evolution, in which the frequencies of heritable characteristics in
populations change over generations, impacts all life and manifests at various scales, from the
biomolecular to the ecological. Accordingly, in addition to fundamentally upending humankind’s
conception of ourselves and our relationship to all other living things, our understanding of
evolution has profoundly informed all fields of the life sciences in the past few centuries. Its
consequences – in medicine, that populations of pathogens can evolve resistance to
treatments; in agriculture, that artificial selection of favorable traits among a domesticated crop
can dramatically transform its lineage; among innumerable others – are pervasive and
unignorable to the modern biologist.

In addition to its transformative impact on biology, our understanding of the basic mechanisms
of evolution have also inspired computational methods to a large degree. Among the more
famous of these methods is the genetic algorithm (GA) that rose to prominence in the 1970s.
This algorithm was formulated as a broadly applicable computational strategy to solving
well-defined optimization problems through successive improvement of candidate solutions over
many generations in a manner analogous to the way a living population adapts to its
environment. Descriptions of the GA tend to draw clear parallels between its steps and the
modification, reassortment, and reproduction of genes – the building blocks of heredity – that
occur in biology, particularly in the context of natural selection.

In his well-known text on the subject, the engineer David Goldberg summarized the GA as
follows: “In every generation, a new set of artificial creatures (strings) is created using bits and
pieces of the fittest of the old; an occasional new part is tried for good measure.”[1] The
“creatures” in Goldberg’s description are potential solutions to the optimization problem encoded
in strings, each of which has a score indicative of its quality obtained through a defined fitness
function. Solutions are selected randomly, in proportion to their fitness score, to “reproduce” for
the next generation, with pairs of solutions exchanging contiguous segments of their values up
to specific points, in a manner mirroring the chromosomal crossover that occurs during the
production of gametes in sexually reproducing organisms. Modifications to values within the
“offspring” solutions can also be made randomly at low probability, similarly to the way mutation
manifests in actual genes. For a successful GA, the fitness of the solution population increases
as generations elapse, and the algorithm can be terminated when some condition is met, for
example when no further improvement in fitness is observed or simply when the top-scoring
solution has achieved a certain threshold fitness.

Swimbots and Other GA-Based Artificial Life Simulations

Given the strength of the parallels between the workings of the GA and the underlying
mechanisms of biological evolution, it is hardly a surprise that computational simulations of
living systems have themselves heavily utilized the GA. In the early 1990s, the digital artist



Jeffrey Ventrella, then a graduate student at the MIT Media Lab, created a series of GA-driven
artificial life simulations with the goal of facilitating the emergence of life-like physical forms and
behaviors, particularly conducive to efficient locomotion, in rudimentary artificial beings.[2] In the
first of these, simple three-dimensional bipedal creatures that he called walkers could modulate
the motion of their legs based on parameters encoded in genes; the walkers which could
successfully traverse the farthest distance toward a predefined goal in a given period of time
scored highest in fitness, and their genes would serve as the basis for the next generation.[3]

In subsequent simulations of this type, the dimension of the simulated creatures and their
environment was reduced to two, with fewer constraints on the creatures’ morphology. In these
simulations, rather than directing its own motion toward arbitrary predefined goals, a creature
could pursue another individual as its goal and directly “mate” with it sexually to produce
offspring, thus departing with the conventional GA conception of generations advancing in a
synchronous, lock-step manner, a feature inspired by a hope Richard Dawkins had expressed
for artificial life simulations in one of his books.[4] The artificial creatures, which Ventrella
eventually called swimbots, consisted of segments of varying dimensions linked to one another
– in the simulation’s first iteration, all through a central node, and in subsequent versions
end-to-end with an underlying tree-like structure.[5, 6] Each swimbot had an internal energy value
and could pursue a goal within its field of vision – either one of the food bits scattered through
the environment, or another swimbot – based on its state. Swimbots with genetically-encoded
morphologies and motion parameters favorable to efficient pursuit of their chosen goal were
those whose genes would be used to produce offspring, obviating the need for an explicitly
defined fitness function.

Ventrella presented his work on swimbot and related simulations at several artificial life
conferences throughout the 1990s, and in 1996 one became the basis for an intended
commercial product, called Darwin Pond, by his eventual employer, the computer game studio
Rocket Science Games.[7] The studio’s prior releases struggled to find a sizeable audience and
the developer ultimately went out of business in 1997, before Darwin Pond could be released.
Nevertheless, Ventrella continued work on swimbot simulations, continually updating them and
making them accessible via internet browser onward through the late 1990s and 2000s, with the
latest iteration, GenePool, still available today.[8]

The Computational Problem: Designing Our Own Swimbot Simulation

In the ensuing paper, we will describe the design of our own swimbot simulation. Simulating an
evolving artificial life system requires three main components:

1. The environment in which the living things exist
2. A representation of the living things themselves, including underlying data fields and
structures
3. A series of rules delineating the living things’ interactions with their environment and
one another, along with consequent changes in their internal states



As in Ventrella’s simulations, swimbots in our own simulation could move through a
two-dimensional environment to pursue their goals. We represented swimbots as objects with
fields for motion, including their position in the environment, their internal energy, and the genes
that wholly govern the structure and connectivity of their body segments as well as motion
parameters. Genes were represented in their own structures, with float (and some integer)
values encoding the swimbots’ traits. The rules driving swimbot behavior are encoded in the
functions called during the execution of each timestep. Further details of all these elements are
given below.

For a successful swimbot simulation, we hoped to observe, in addition to emergent behavior
among the swimbots in the visually rendered system, changes in the frequencies of swimbots’
traits as the simulation progresses, with an enhancement in frequencies of traits advantageous
to swimbot motion. Thus, we designed additional functions to track these frequencies at any
given timestep, and to export the data for visualization.



Algorithms
Simulation Overview and Initialization

As with other simulations developed over the course of the semester, we simulate our system by
creating an initial environment – in this case, a Pond object – containing the appropriate number
of swimbots and food bit objects, each assigned a random position within a central square of the
pond. Swimbots are created with random genomes, with their segments assembled based on
the genes’ values, and assigned a random initial direction as their velocity. Each successive
“generation” (timestep) of the simulation is then obtained by copying the prior pond configuration
and updating it: each swimbot queries its internal state to retain its prior goal – either a food bit
or another swimbot – or select a new one, attempts to move toward the goal, then takes further
action if it is within a critical threshold distance of its goal. Swimbots gain energy from eating
food bits and lose it from moving or mating; if their energy is depleted or they reach a maximum
allowable age, they die and are removed from the system. As the simulation advances,
additional food bits are added to the environment with frequency defined in a global parameter.

When a swimbot is constructed for the first time, whether during the simulation’s initialization or
during the birth of offspring, its constituent segments must be assembled. The first segment
encoded in its genes is designated the main segment, which derives its position and angle fields
from the fields of the swimbot as a whole. Remaining segments, depending on the number of
segments encoded in the swimbot’s genome, are attached to the building swimbot one at a
time, with the segment of attachment determined in a random manner. More specifically, when
the segment is added, it can be added as a subsegment of any of the attached segments on the
swimbot. Consequently, swimbots’ segment connectivity is tree-like in nature. Because the
Swimbot object encodes its main segment, and hence all its subsequent segments, through
pointers, the structure of the segment tree must be copied in a recursive manner in later
generations to maintain proper segment connectivity in the copied swimbot without modifying
the configuration from prior timesteps. When we update the position of the swimbot, we have to
update the position of the subsequent segments as well.

Swimbot Goal Determination

Several steps are required for a swimbot to decide whether to retain or update its goal in each
timestep. The goal is ultimately determined by two factors: the swimbot’s internal energy state
and what is visible to it, with swimbots capable of seeing all objects within a defined radius of
their own position. For example, if a swimbot’s prior goal was another swimbot, but it is now
hungry due to its internal energy being below the hunger threshold, it will need to determine a
new goal: a food bit. When the swimbot’s prior goal does match its current energy state, it
nonetheless needs to check if the previous goal is still valid – that it has not been removed from
the system due to having been eaten (for food bits), having died (for other swimbots), or simply
no longer being within the swimbot’s field of vision. If the goal remains valid, it is retained and
the swimbot will ultimately orient its motion toward the same goal.



If the goal is invalid, then the swimbot determines a new goal according to its energy level. If the
energy level is below the hunger threshold, it decides to pursue a food bit. It will choose the
closest food bit to itself and set that as its goal. If the swimbot is not hungry, it will be
characterized as pursuing mates and will thus choose a specific mate within its field of vision to
pursue. We initially decided to implement choosing a mate randomly, but wanted to also study
how our system would be affected if we have specific preferences or desired characteristics. So,
we implemented multiple options to determine mate preference, equally applicable to all
swimbots: preference for random swimbots, for swimbots with small or large numbers of body
segments, for swimbots with faster translational motion parameters, for swimbots with a similar
number of segments to itself, and for swimbots with a similar length of primary segment to itself.
Mate choice is constrained in that swimbots will not choose one of its own children or parents as
a goal. If no suitable goal is found within its field of vision, it will simply have no goal for that
timestep, and its motion will be oriented in the same direction as it had been in the prior
timestep.

As swimbots move towards their target, they lose energy. Swimbots lose energy based on their
speed and their mass, where swimbots that are faster, and ones that are heavier, lose more
energy than those slower or smaller than them.

Taking Action: Eating or Mating

If, following their motion during a timestep, swimbots find themselves within the critical distance
of their goals, they will need to take action accordingly. We thus implemented a function called
EatOrMate, a method of the Pond object, that performs these checks for all swimbots and
executes the associated actions. In the case that a swimbot’s goal is a food bit, the swimbot
eats the food bit, gains its associated energy, and the food bit is removed from the pond. In the
case that the goal is another swimbot, the swimbots mate, lose energy, and generate an
offspring that is created in the pond nearby. Mating is constrained such that no swimbot can
mate more than once per timestep.

When an offspring swimbot is created, we execute a genetic recombination operation to ensure
the offspring receives a combination of genes from both parents. For the swimbot’s “common
genes” (the three defining traits applicable to the entire swimbot), the value of each is randomly
selected from either parent. These encode the swimbot’s number of total body segments, plus
translational and rotational movement parameters that define and constrain their movement
capabilities. The method then proceeds to the offspring’s eight segment genes, corresponding
to the maximum number of segments any swimbot can possess. (The number of segments
“expressed” when constructing the swimbot is defined by the associated common gene, but
gene values for the remaining “latent” segments are nonetheless retained.) For each segment,
these genes specify the color, width, and length of the segment, as well as the angle from the
segment to the one it’s attached to. For each of the eight segments, a one-point genetic
crossover is performed: gene values up to the randomly selected crossover point are derived
from one randomly selected parent, with the remainder derived from the other. The offspring



swimbot is then built from the resultant genome and added to the pond. At this time, the “family”
fields of the swimbots are modified to prevent parents or children from pursuing one another in
subsequent timesteps.



Results
In order to analyze the ways that a simulated pond’s evolution is affected by specific traits or
external factors, and in order to identify the most significant features, we generated summary
statistics and graphed their distributions to compare the initial and final populations of swimbots.
We measured the following traits: the number of segments, main segment length (one among
the several possible mate preference criteria), translational and rotational movement
parameters, age, and energy.

We varied several simulation initialization parameters and observed the following:

Parameters Varied Observations in Final
Generation

Comments

Choosing a swimbot with
more segments

Most frequent segment
number in the last
generation: 2
The most frequent segment
number in the last
generation: 8

We would expect that the
swimbots at the end would
have more segments, but it
appears that despite having a
preference for it, another trait
might be more prominent.

Choose swimbots that move
faster

Average translational
velocity parameter…
in last generation: 3.536965
in first generation: 4.53

Versus default…
in last generation: 2.395939
in first generation: 4.53

In both simulations,
translational velocity
parameter distribution
becomes less uniform; higher
average translational velocity
parameter observed in
simulation with mate
preference for faster
swimbots

Choosing swimbots with
similar length of
mainSegment

Average main segment
length…
in last generation: 2.008357
in first generation: 5.255

Versus default…
in last generation: 2.27665
in first generation: 5.255

Average length of the main
segment in the last generation
remained similar compared to
default.
And the most frequent range
group of main segment length
didn’t show significant
differences either.
However, the distribution of
the length groups changed.
The proportion of the most
frequent group increased
compared to default.

Choosing swimbots with
similar number of segments

Average segment number…
in last generation: 2.008357
in first generation: 5.255

At the conclusion of both
simulations, the most
common segment number is



Versus default…
in last generation: 2.27665
in first generation: 5.255

2, but in the simulation in
which swimbots favor similar
numbers of segments, almost
no swimbots have segment
numbers other than 2.

Varying Food frequency
Increasing: food placed at
every timestep instead of
every 5 timesteps.
Decreasing: food placed at
every 10 timesteps instead of
every 5 timesteps.

Increasing: 1610 swimbots,
97.521874 max energy

Decreasing: 270 swimbots,
90.059049 max energy

Versus default case: 529
swimbots and average
energy of 94.159245

More food helps in generating
more swimbots since they
acquire more energy more
easily and shift their
preferences to mating, while
less food hinders the
generation of more swimbots
since less energy supply is
available, and so the goal of
getting food is more important
than generating bots.

Initializing all the swimbots
with the same translational
and rotational energy

We start out with 200
swimbots, and end up with
232 bots.

Versus default: 498
swimbots are generated.

The average energy values,
movement parameters, ..
remain relatively similar.

We observe that when all the
swimbots move at the same
pace, the system maintains
itself in a similar fashion, in a
type of “equilibrium”, while if
we vary the initial energies,
we observe more variation
and evolution of the system.

A sample of the graphs we generate is observed below:



Where the labels refer to the characteristic we are dealing with (main segment length), and the
percentages in the center correspond to the percentage of swimbots in the last generation with
these characteristics. In cases where our characteristics are continuous variables, we define
bins of specific ranges and allocate the swimbots to them accordingly. So based on this figure,
35% of swimbots have their main segment length between 17 and 19.



Conclusion
Overall, by tweaking our parameters, we were able to observe evolutionary patterns in our
artificial lifeforms and study how external factors (such as food), and organisms’ preferential
characteristics are related and how they are affected by each other.

Conditions facilitating more food intake, such as increased frequency of food bit generation or
relaxing the proximity required to reach a goal, helped increase reproduction compared to
default conditions; because energy gain was easier, swimbots could more readily pursue mates
as goals and ultimately produce offsprings.

If all the swimbots have the same characteristics defining their motion, the system maintains a
type of “equilibrium” where the number of swimbots present at every generation is relatively
stable, with other correlated factors maintained similarly. However, varying the initial energies
and ensuring differences in swimbots’ abilities to move leads to a more complex system where
traits advantageous to more efficient goal pursuit are more likely to propagate to later
generations.

When it comes to what is “attractive vs. efficient”, we do not have a conclusive answer because
we do not necessarily know if the attractive traits contribute to efficiency or inefficiency under
our current system of motion and energy depletion. With a more advanced and physically
realistic system of motion, in which the morphology of the swimbots contributes more directly to
their ability to move – as those in Ventrella’s swimbots with “wiggling” segments do – we would
be able to answer these questions more definitively. However, we can comment on both these
aspects, and say that when certain “efficient” traits are favored such as choosing a swimbot that
moves faster, organisms will be produced more easily, and the evolved organisms in later
generations will carry part of these traits that help them evolve (as observed with a higher
average translational velocity). When it comes to what is “attractive”, preferred traits such as
choosing a swimbot with more segments or a similar number of segments to itself are chosen.
When choosing a more attractive trait, we expect the system to eventually evolve to a system
where the favored gene is more prominent. However, this is not necessarily the case for all
types of mate preference, as we did not observe that in all our simulations. We observed that in
some cases, the distribution of the groups changed, where the proportion of the most frequent
group increased compared to default, but the overall average of these characteristics appears
quite similar.



References

[1] Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning.
(Reading, MA: Addison-Wesley), pp. 1-26.

[2] Ventrella, J. (1998). Designing Emergence in Animated Artificial Life Worlds. Virtual Worlds:
First International Conference Proceedings. (Berlin: Springer), pp. 143-155.

[3] Ventrella, J. (1994). Explorations in the Emergence of Morphology and Locomotion Behavior
in Animated Characters. Artificial Life IV: Proceedings of the Fourth International Workshop on
the Synthesis and Simulation of Living Systems. (Cambridge, MA: MIT Press), pp. 436-441.

[4] Ventrella, J. (2005). GenePool: Exploring the Interaction Between Natural Selection and
Sexual Selection. Artificial Life Models in Software. (London: Springer), pp. 81-96.

[5] Ventrella, J. (1996). Sexual Swimmers: Emergent Morphology and Locomotion Without a
Fitness Function. From Animals to Animats 4: Proceedings of the Fourth International
Conference on Simulation of Adaptive Behavior. (Cambridge, MA: MIT Press), pp. 484-493.

[6] Ventrella, J. (1998). Attractiveness vs. Efficiency: How Mate Preference Affects Locomotion
in the Evolution of Artificial Swimming Organisms. Artificial Life VI: Proceedings of the Sixth
International Conference on Artificial Life. (Cambridge, MA: MIT Press), pp. 178-186.

[7] Ventrella, J., Dodd, B. (2004). Darwin Pond.
<https://www.ventrella.com/Darwin/darwin.html>. Accessed December 14, 2022.

[8] Ventrella, J. (2021). GenePool. <https://www.swimbots.com/genepool>. Accessed December
14, 2022.


