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Part 1: Motifs in transcription 
factor networks
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Biological Networks are Everywhere
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Types of Biological Networks
Yeast transcription network Yeast Protein-Protein  

interaction network

Yeast Phosphorylation 
network

E. coli metabolic 
network

Yeast SSL network

Zhu et al, 2007.!2

Are there any recurring “subgraphs”, or network 
motifs, that occur surprisingly often?



Recall: Transcription Factors
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A transcription 
factor can either  
cause the cell to 
increase (activate) 
or decrease 
(repress) the 
production of 
RNA/protein 
corresponding to a 
given gene.



Transcription Factor Networks
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Transcription factor network:
• Nodes: genes
• Edges: x is connected to y if x is a transcription 

factor that regulates the expression of y.

E. coli transcription factor network



Transcription Factor Networks
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Notes:
1. Some of the nodes are transcription factors; 

others aren’t.
2. Edge x à y is also labeled +/- according to 

whether x activates/represses y.

Transcription factor network:
• Nodes: genes
• Edges: x is connected to y if x is a transcription 

factor that regulates the expression of y.



There sure are a lot of (feedback) loops!
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Autoregulation: a 
transcription factor Y 
regulates its own 
transcription.

Source: https://journals.aps.org/pre/abstract/10.1103/PhysRevE.97.062407

Gene
DNA

Transcription

Translation

(Auto)regulation

mRNAProtein



Two Questions
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Question 1: How can we justify that the number of 
loops in a TF network is ”surprisingly large”?

Question 2: If autoregulation is so common, then 
why did such a strange mechanism evolve?

“Nothing in biology 
makes sense except in 
the light of evolution.”

Theodosius Dobzhansky



AUTOREGULATION IS 
SURPRISINGLY FREQUENT
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Transcription Factor Networks
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E. coli transcription factor network

STOP: What does it mean for a biological network 
motif to occur “surprisingly often”? 



Transcription Factor Networks
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E. coli transcription factor network

STOP: What does it mean for a biological network 
motif to occur “surprisingly often”? 

Answer: It occurs more often than it would if the 
network were random! (Nothing new here J.)



Constructing Random Networks 
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Gilbert model for random graphs: given an integer 
n and a number p between 0 and 1, define G(n, p):
• Form n nodes.
• For all n2 choices of starting node x and ending 

node y, connect x to y with probability p.



Constructing Random Networks 
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Gilbert model for random graphs: given an integer 
n and a number p between 0 and 1, define G(n, p):
• Form n nodes.
• For all n2 choices of starting node x and ending 

node y, connect x to y with probability p.

We limit ourselves to the TF network comprising 
only transcription factors that regulate each other. 
This network has 197 nodes and 477 edges.



Constructing Random Networks 
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Gilbert model for random graphs: given an integer 
n and a number p between 0 and 1, define G(n, p):
• Form n nodes.
• For all n2 choices of starting node x and ending 

node y, connect x to y with probability p.

We limit ourselves to the TF network comprising 
only transcription factors that regulate each other. 
This network has 197 nodes and 477 edges.

STOP: What should n be in our decoy network?



Constructing Random Networks 
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Gilbert model for random graphs: given an integer 
n and a number p between 0 and 1, define G(n, p):
• Form n nodes.
• For all n2 choices of starting node x and ending 

node y, connect x to y with probability p.

We limit ourselves to the TF network comprising 
only transcription factors that regulate each other. 
This network has 197 nodes and 477 edges.

Answer: n = 197 (the number of TFs). 



Constructing Random Networks 
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Gilbert model for random graphs: given an integer 
n and a number p between 0 and 1, define G(n, p):
• Form n nodes.
• For all n2 choices of starting node x and ending 

node y, connect x to y with probability p.

We limit ourselves to the TF network comprising 
only transcription factors that regulate each other. 
This network has 197 nodes and 477 edges.

STOP: OK, but what should p be?



Constructing Random Networks 
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Gilbert model for random graphs: given an integer 
n and a number p between 0 and 1, define G(n, p):
• Form n nodes.
• For all n2 choices of starting node x and ending 

node y, connect x to y with probability p.

Answer: If we were to set p equal to 1/n2, then we 
would on average only see a single edge in the 
random network. To get 477 edges on average, we 
set p equal to 477/n2 = 477/1972 ≈ 0.0123.



Real vs. Random E. coli TF Network
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Real Random

5 loops130 loops!



Real vs. Random E. coli TF Network
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Real Random

130 loops! 5 loops

95 are repression!



Negative Autoregulation: The Simplest 
Network Motif
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– 
Negative autoregulation: a 
transcription factor Y represses its own 
expression.

Question 2: If autoregulation is so common, then 
why did such a strange mechanism evolve?

Y



AN EVOLUTIONARY BASIS FOR 
NEGATIVE AUTOREGULATION
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Simulating a Race to Steady State
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Say that a TF X regulates another transcription 
factor Y, and consider two cells. In both 
cells, X upregulates the transcription of Y, but in the 
second cell, Y also negatively autoregulates.

++

Cell 1 Cell 2
– YYX X



Simulating a Race to Steady State
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We will simulate a “race” to the steady-state 
concentration of Y in the two cells. The cell that 
reaches this steady state faster can respond more 
quickly to its environment and is therefore more fit 
for survival.

++

Cell 1 Cell 2
– YYX X



Simulating Particle Level Simulations
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MCell: A software program that simulates reaction-
diffusion models, in which particles interact with 
each other as they diffuse randomly.



Simulating Cell 1
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Initialization: Start with a constant number of X 
particles and no Y.

+
YX



Simulating Cell 1

© 2024 Phillip Compeau

Initialization: Start with a constant number of X 
particles and no Y.

Diffusion: Both X and Y diffuse at the same rate.

+
YX



Simulating Cell 1

© 2024 Phillip Compeau

Initialization: Start with a constant number of X 
particles and no Y.

Diffusion: Both X and Y diffuse at the same rate.

X activating Y: we add the reaction X à X + Y. In 
any interval of time, there is some probability that 
an X particle will produce a Y.

+
YX



Simulating Cell 1
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Over time, proteins are degraded by proteases so 
that proteins at high concentration can be removed.

https://www.youtube.com/watch?v=dDo_s6a3wcM

Recall: viruses like 
HIV and SARS-
CoV-2 use 
proteases to cut 
their translated 
RNA genome into 
protein fragments.

+
YX



Simulating Cell 1
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Over time, proteins are degraded by proteases so 
that proteins at high concentration can be removed.

Kill reaction: Y are removed at some rate.

+
YX



Simulating Cell 1
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Over time, proteins are degraded by proteases so 
that proteins at high concentration can be removed.

Kill reaction: Y are removed at some rate.

Note: we will assume that X is at steady-state, so the 
rate of production of X balances its removal and we 
do not need such reactions for X.

+
YX



Simulating Cell 2
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STOP: What reaction could be used to add a 
simulation of the negative autoregulation of Y?

+
YX – 



Simulating Cell 2
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STOP: What reaction could be used to add a 
simulation of the negative autoregulation of Y?

Answer: We will use Y + Y à Y. When two Y 
particles encounter each other, there is some 
probability that one of the particles is removed, 
which mimics the process of a transcription factor 
turning off another copy of itself during negative 
autoregulation.

+
YX – 



Comparing concentration of Y in the two 
simulated cells 
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It seems like Cell 1 is winning because its response 
time to the external stimulus is shorter…

Cell 1

Cell 2



Our Comparison Isn’t Currently Fair
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Mathematically controlled comparison (Savageau 
1976): we can only compare models on a 
mathematically level playing field.

Key Point: if we are comparing the two cells, then 
the steady-state concentration of Y in the two cells 
should be approximately the same.



Recall Cell 1’s Model
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Initialization: Start with a constant number of X 
particles and no Y.

Diffusion: Both X and Y diffuse at the same rate.

X activating Y: we add the reaction X à X + Y. In 
any interval of time, there is some probability that 
an X particle will produce a Y.

+
YX



Recall Cell 1’s Model
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Initialization: Start with a constant number of X 
particles and no Y.

Diffusion: Both X and Y diffuse at the same rate.

X activating Y: we add the reaction X à X + Y. In 
any interval of time, there is some probability that 
an X particle will produce a Y.

STOP: How can we ensure that Cell 2 has a higher 
steady-state concentration of Y?

+
YX



Recall Cell 1’s Model
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Initialization: Start with a constant number of X 
particles and no Y.

Diffusion: Both X and Y diffuse at the same rate.

X activating Y: we add the reaction X à X + Y. In 
any interval of time, there is some probability that 
an X particle will produce a Y.

Answer: The only thing that we can change is 
increasing the rate of X à X + Y in Cell 2.

+
YX



Running a Fair Comparison
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STOP: Now, why do you 
think nature has evolved 
negative autoregulation?



Ensuring that Yst = Xst 
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Answer: To help a TF 
respond to a stimulus and 
reach steady-state faster. 

Cell 2’s “response time is 
much faster than cell 1’s.



Ensuring that Yst = Xst 
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Analogy (Alon): negative 
autoregulation is like a 
sportscar with a powerful 
engine and sensitive brakes.

Cell 2’s “response time is 
much faster than cell 1’s.



Ensuring that Yst = Xst 
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Cell 2’s “response time is 
much faster than cell 1’s. But if the protein is not a TF, 

can it be turned on faster 
than simple regulation?



THE FEEDFORWARD LOOP 
MOTIF
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Speeding Up Protein Manufacture for 
Non-Transcription Factors
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Of the 4,400 total E. coli proteins, fewer than 10% 
(about 300) are transcription factors.

Feed-forward loop (FFL): a network motif 
connecting X à Y, X à Z, and Y à Z. (It’s not a 
loop.) E. coli has 42 total FFLs.

X Y Z

+

+ −



One common labeling of FFL edges
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STOP: Why might this motif allow Z to be turned on 
faster than under simple regulation?

“Type 1” incoherent feed-forward loop: an FFL with 
the activation/repression pattern shown below.

X Y Z

+

+ −



One common labeling of FFL edges
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“Type 1” incoherent feed-forward loop: an FFL with 
the activation/repression pattern shown below.

Answer: X serves to “ramp up” Z quickly, and once 
X builds up Y, Y serves as a delayed-action “brakes” 
for Z.

X Y Z

+

+ −



One common labeling of FFL edges
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“Type 1” incoherent feed-forward loop: an FFL with 
the activation/repression pattern shown below.

STOP: We are going to compare this FFL against 
simple activation X à Z. How can we model this 
motif with reactions, like what we did previously?

X Y Z

+

+ −



Cell 1 is the same system from before
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+
ZX

Initialization: Start with a constant number of X 
particles and no Z.

Diffusion: Both X and Z diffuse at the same rate.

X activating Z: we add the reaction X à X + Z. In 
any interval of time, there is some probability that 
an X particle will produce a Z.

Kill reaction: Z are removed at some rate.



Cell 2 requires a few more reactions
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To simulate Cell 2, we will have all of these 
reactions, with a higher rate of activation X à X + Z 
to obtain a mathematically controlled simulation.. 

X activating Y: X à X + Y.

Kill reaction: Y and Z are removed at some rate.

X Y Z

+

+ −

Y repressing Z : Y + Z à Y.



Plotting a FFL-regulated protein Z 
against one regulated by X à Z
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Damped Oscillations
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Note: The shape of the FFL-regulated protein 
concentration is similar to a “damped” oscillation.



Real oscillations are everywhere in 
biology
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https://www.thoughtco.com/stages-of-mitosis-373534 https://www.narayanahealth.org/blog/what-is-abnormal-heartbeat/

https://carex.com/blogs/resources/circadian-rhythm



The first simple synthetic oscillator
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X Y

Z

−

−−

Repressilator: a three-element synthetic “cycle” 
motif of repression that produces oscillations.

Oscillator motifs in nature are much 
more complicated than this!



The first simple synthetic oscillator
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X Y

Z

−

−−

Repressilator: a three-element synthetic “cycle” 
motif of repression that produces oscillations.

STOP: Why might this motif 
produce oscillatory behavior?



Isn’t the repressilator neat?

© 2024 Phillip Compeau



Part 2: Modeling Bacterial 
Chemotaxis
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THE LOST IMMORTALS
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An Absurd Hypothetical Question
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If two immortal people 
were placed on opposite 
sides of an uninhabited 
Earth-like planet, how 
long would it take them 
to find each other? 
100,000 years? 
1,000,000 years?

STOP: Any thoughts?



Munroe’s Answer: 
“Be an Ant”

• If you have no information, walk at random, leaving a trail of stone 
markers, each one pointing to the next. For every day that you walk, rest 
for three. Periodically mark the date alongside the cairn. It doesn’t 
matter how you do this, as long as it’s consistent. You could chisel the 
number of days into a rock, or lay out rocks to plot the number.

• If you come across a trail that’s newer than any you’ve seen before, 
start following it as fast as you can. If you lose the trail and can’t recover 
it, resume leaving your own trail.

• You don’t have to come across the other player’s current location; 
you simply have to come across a location where they’ve been. You can 
still chase one another in circles, but as long as you move more quickly 
when you’re following a trail than when you’re leaving one, you’ll find 
each other in a matter of years or decades.

• And if your partner isn’t cooperating—perhaps they’re just sitting 
where they started and waiting for you—then you’ll get to see some neat 
stuff.

© 2024 Phillip Compeau



Bacteria employ a similar randomized 
algorithm to find food
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https://www.youtube.com/watch?v=F6QMU3KD7zw



E. COLI AND ITS RANDOM 
WALK EXPLORATION
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Bacterial runs and tumbles
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https://www.sciencephoto.com/media/659604/
view/e-coli-bacterium-illustration

An E. coli cell has 5-12 
flagella on its surface, which 
can rotate both clockwise 
and counter-clockwise. 

Chemotaxis: The movement 
of an organism in response 
to a chemical stimulus.



Bacterial runs and tumbles

© 2024 Phillip Compeau

https://www.sciencephoto.com/media/659604/
view/e-coli-bacterium-illustration

An E. coli cell has 5-12 
flagella on its surface, which 
can rotate both clockwise 
and counter-clockwise. 

When the flagella are all 
rotating CCW, they form a 
bundle and propel the cell 
forward at 20 µm/s. 



Bacterial runs and tumbles
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https://www.sciencephoto.com/media/659604/
view/e-coli-bacterium-illustration

Note: This is about 10x the 
length of the cell per 
second, like a car traveling 
at 160 kph (100 mph). 

When the flagella are all 
rotating CCW, they form a 
bundle and propel the cell 
forward at 20 µm/s. 



Bacterial runs and tumbles
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When any flagellum rotates CW, the flagella are  
uncoordinated, and the bacterium stops and rotates.

Courtesy: Sandy Parkinson



Bacterial runs and tumbles
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Run and tumble model: when we zoom out, E. coli 
alternates between running and tumbling in place.

Courtesy: Sandy Parkinson



E. coli’’s movement looks like a random 
walk!
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https://commons.wikimedia.org/wiki/File:Random_walk_25000.gif

Question: what is 
the molecular basis 
for the random walk 
movement?



Bacterial tumbling is constant
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Key point: almost all bacteria, in the absence of 
attractant/repellent, tumble every 1-1.5 secs. Why?

“Nothing in biology 
makes sense except in 
the light of evolution.”

Theodosius Dobzhansky



SIGNALING AND LIGAND-
RECEPTOR DYNAMICS
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How E. coli detects attractants
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E. coli has receptor proteins that detect attractants 
such as glucose by binding to and forming a 
complex with these attractant ligands.



How E. coli detects attractants
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The “signal” of the binding is then “transduced” via 
a series of internal chemical processes that leads to 
a change in the flagellar rotation.



Modeling a single ligand-receptor 
reaction
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T

L

L

L

L

L

To model ligand-receptor dynamics, we will use 
a reversible reaction in which a ligand L and 
receptor T bind and dissociate at different rates.

T + L ⇆ LT

STOP: Why would a 
ligand and receptor need 
to dissociate?



Modeling a single ligand-receptor 
reaction
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To model ligand-receptor dynamics, we will use 
a reversible reaction in which a ligand L and 
receptor T bind and dissociate at different rates.

T + L ⇆ LT

T

L

L

L

L

LAnswer: We don’t want 
to detect temporary 
changes permanently.



Modeling a single ligand-receptor 
reaction
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T

L

L

L

L

L

The rates kbind and kdissociate of the forward/reverse 
reactions determine the equilibrium, or steady 
state, of the system. Let’s see how…



Calculation of Equilibrium in a 
Reversible Ligand-Receptor Reaction
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Suppose that:
• initial concentrations of L and T are l0 and t0;
• [L], [T], and [LT] denote the concentrations of the 

three molecule types;
• the reaction rates kbind and kdissociate are fixed.



Calculation of Equilibrium in a 
Reversible Ligand-Receptor Reaction
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Suppose that:
• initial concentrations of L and T are l0 and t0;
• [L], [T], and [LT] denote the concentrations of the 

three molecule types;
• the reaction rates kbind and kdissociate are fixed.

At steady-state, binding is equal to dissociation:
kbind · [L] · [T] = kdissociate · [LT].



Calculation of Equilibrium in a 
Reversible Ligand-Receptor Reaction
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Suppose that:
• initial concentrations of L and T are l0 and t0;
• [L], [T], and [LT] denote the concentrations of the 

three molecule types;
• the reaction rates kbind and kdissociate are fixed.

At steady-state, binding is equal to dissociation:
kbind · [L] · [T] = kdissociate · [LT].

By law of conservation of mass:
[L] + [LT] = l0 [T] + [LT] = t0.



Calculation of Equilibrium in a 
Reversible Ligand-Receptor Reaction
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Solving the conservation of mass equations gives
[L] = l0 - [LT] [T] = t0 - [LT]

Substituting into our steady-state equation gives
kbind · (l0 - [LT]) · (t0 - [LT]) = kdissociate · [LT]

At steady-state, binding is equal to dissociation:
kbind · [L] · [T] = kdissociate · [LT].

By law of conservation of mass:
[L] + [LT] = l0 [T] + [LT] = t0.



Calculation of Equilibrium in a 
Reversible Ligand-Receptor Reaction
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Solving the conservation of mass equations gives
[L] = l0 - [LT] [T] = t0 - [LT]

Substituting into our steady-state equation gives
kbind · (l0 - [LT]) · (t0 - [LT]) = kdissociate · [LT]

Expansion of this equation gives
kbind · [LT]2 - (kbind · l0 + kbind · t0) · [LT] = kdissociate · [LT] + kbind · l0 · t0

 



Calculation of Equilibrium in a 
Reversible Ligand-Receptor Reaction
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Solving the conservation of mass equations gives
[L] = l0 - [LT] [T] = t0 - [LT]

Substituting into our steady-state equation gives
kbind · (l0 - [LT]) · (t0 - [LT]) = kdissociate · [LT]

Expansion of this equation gives
kbind · [LT]2 - (kbind · l0 + kbind · t0) · [LT] = kdissociate · [LT] - kbind · l0 · t0

 



Calculation of Equilibrium in a 
Reversible Ligand-Receptor Reaction

© 2024 Phillip Compeau

Solving the conservation of mass equations gives
[L] = l0 - [LT] [T] = t0 - [LT]

Substituting into our steady-state equation gives
kbind · (l0 - [LT]) · (t0 - [LT]) = kdissociate · [LT]

Expansion of this equation gives
kbind · [LT]2 - (kbind · l0 + kbind · t0) · [LT] = kdissociate · [LT] - kbind · l0 · t0

Subtract the right side from both sides:
kbind · [LT]2 - (kbind · l0 + kbind · t0 + kdissociate) · [LT] + kbind · l0 · t0 = 0

This is just a quadratic equation in [LT]!
 



Let’s Look at a Real Example

© 2024 Phillip Compeau

l0 = 10,000; t0 = 7,000; lt0 = 0
kbind = 0.0146((molecules/µm3)-1)s-1; kdissociate = 35s-1



Let’s Look at a Real Example
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l0 = 10,000; t0 = 7,000; lt0 = 0
kbind = 0.0146((molecules/µm3)-1)s-1; kdissociate = 35s-1

Our previous quadratic equation was:
kbind · [LT]2 - (kbind · l0 + kbind · t0 + kdissociate) · [LT] + kbind · l0 · t0 = 0

 



Let’s Look at a Real Example

© 2024 Phillip Compeau

l0 = 10,000; t0 = 7,000; lt0 = 0
kbind = 0.0146((molecules/µm3)-1)s-1; kdissociate = 35s-1

Our previous quadratic equation was:
kbind · [LT]2 - (kbind · l0 + kbind · t0 + kdissociate) · [LT] + kbind · l0 · t0 = 0

 
Solving this for [LT] gives 🥱 that

[LT] = 4,793 molecules/ µm3



Let’s Look at a Real Example

© 2024 Phillip Compeau

l0 = 10,000; t0 = 7,000; lt0 = 0
kbind = 0.0146((molecules/µm3)-1)s-1; kdissociate = 35s-1

Our previous quadratic equation was:
kbind · [LT]2 - (kbind · l0 + kbind · t0 + kdissociate) · [LT] + kbind · l0 · t0 = 0

 
Solving this for [LT] gives 🥱 that

[LT] = 4,793 molecules/ µm3

By law of conservation of mass,
[L] = l0 - [LT] = 5,207 [T] = t0 - [LT] = 2,207



Scaling this will be a disaster
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Key point: This is not too bad for one reversible 
equation, but real biological systems have many 
reactions, and this will not scale. As with the n-body 
problem in physics, we need a simulation.

Source: n3a9, Github user



The Need for a ”Particle-Free” Model 
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The E. coli cell is so small that we will assume that 
the concentration of any particle in its immediate 
surroundings is well-mixed (i.e., uniform). 



The Need for a ”Particle-Free” Model 

© 2024 Phillip Compeau

The E. coli cell is so small that we will assume that 
the concentration of any particle in its immediate 
surroundings is well-mixed (i.e., uniform). 

Our model of chemotaxis will have many particles 
and reactions that depend on each other, and so a 
“particle-free” model that does not track the 
diffusion of individual particles will greatly increase 
efficiency.



STOCHASTIC SIMULATION OF 
CHEMICAL REACTIONS WITH THE 
GILLESPIE ALGORITHM
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The Poisson Distribution
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Say that you own a store and have noticed that on 
average, there are λ customers entering your store in 
a single hour. Let X be a random variable denoting 
the number of customers that enter the store in the 
next hour.



The Poisson Distribution
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Say that you own a store and have noticed that on 
average, there are λ customers entering your store in 
a single hour. Let X be a random variable denoting 
the number of customers that enter the store in the 
next hour.

X follows a Poisson distribution; it can be shown 
that the probability that exactly n customers arrive 
in the next hour is



The Poisson Distribution

© 2024 Phillip Compeau

Furthermore, the probability of observing 
exactly n customers in t hours is

X follows a Poisson distribution; it can be shown 
that the probability that exactly n customers arrive 
in the next hour is



From Poisson to Exponential
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If we let T be the random variable corresponding to 
the wait time on the next customer, then the 
probability of waiting at least t hours is the 
probability of seeing zero customers in t hours:



From Poisson to Exponential
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If we let T be the random variable corresponding to 
the wait time on the next customer, then the 
probability of waiting at least t hours is the 
probability of seeing zero customers in t hours:

That is, Pr(T > t) decays exponentially as t increases; 
thus, random variable T follows an exponential 
distribution. (Mean wait time: 1/λ).



From Poisson to Exponential
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If we let T be the random variable corresponding to 
the wait time on the next customer, then the 
probability of waiting at least t hours is the 
probability of seeing zero customers in t hours:

STOP: What is the probability Pr(T < t)?



From Poisson to Exponential
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If we let T be the random variable corresponding to 
the wait time on the next customer, then the 
probability of waiting at least t hours is the 
probability of seeing zero customers in t hours:

STOP: What is the probability Pr(T < t)?

Answer: 1 – e-λt. 



An overview of the Gillespie algorithm
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Given a well-mixed environment and a reaction 
taking place at some known average rate, we would 
like to know how long we expect to wait before this 
reaction occurs somewhere in the environment.
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STOP: Remind you of anything?

Given a well-mixed environment and a reaction 
taking place at some known average rate, we would 
like to know how long we expect to wait before this 
reaction occurs somewhere in the environment.



An overview of the Gillespie algorithm
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STOP: Remind you of anything?

Answer: We will model each of our reactions using 
an exponential distribution! 

Given a well-mixed environment and a reaction 
taking place at some known average rate, we would 
like to know how long we expect to wait before this 
reaction occurs somewhere in the environment.



An overview of the Gillespie algorithm
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STOP: Remind you of anything?

Answer: We will model each of our reactions using 
an exponential distribution! 

This idea is the engine of Gillespie’s stochastic 
simulation algorithm (SSA).

Given a well-mixed environment and a reaction 
taking place at some known average rate, we would 
like to know how long we expect to wait before this 
reaction occurs somewhere in the environment.



Modeling a single ligand-receptor 
reaction with Gillespie

© 2024 Phillip Compeau

Recall that the rate of T + L à LT is kbind and the rate 
of LT à T + L is kdissociate .

T

L

L

L

L

L



Modeling a single ligand-receptor 
reaction with Gillespie
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Repeat the following steps for the entire simulation.
1. Define rbind = kbind · [L] · [T] and rdissociate = 

kdissociate · [LT].

Recall that the rate of T + L à LT is kbind and the rate 
of LT à T + L is kdissociate .



Modeling a single ligand-receptor 
reaction with Gillespie
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Repeat the following steps for the entire simulation.
1. Define rbind = kbind · [L] · [T] and rdissociate = 

kdissociate · [LT].
2. Pick a wait time according to an exponential 

distribution with λ = rbind + rdissociate .

Recall that the rate of T + L à LT is kbind and the rate 
of LT à T + L is kdissociate .



Modeling a single ligand-receptor 
reaction with Gillespie
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Repeat the following steps for the entire simulation.
1. Define rbind = kbind · [L] · [T] and rdissociate = 

kdissociate · [LT].
2. Pick a wait time according to an exponential 

distribution with λ = rbind + rdissociate .
3. The probability that the reaction is the forward 

reaction is Pr(L + T → LT) = rbind/(rbind + rdissociate).

Recall that the rate of T + L à LT is kbind and the rate 
of LT à T + L is kdissociate .



Modeling a single ligand-receptor 
reaction with Gillespie
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Repeat the following steps for the entire simulation.
1. Define rbind = kbind · [L] · [T] and rdissociate = 

kdissociate · [LT].
2. Pick a wait time according to an exponential 

distribution with λ = rbind + rdissociate .
3. The probability that the reaction is the forward 

reaction is Pr(L + T → LT) = rbind/(rbind + rdissociate).

STOP: What is the probability that the reaction is 
the reverse reaction?



Modeling a single ligand-receptor 
reaction with Gillespie
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Repeat the following steps for the entire simulation.
1. Define rbind = kbind · [L] · [T] and rdissociate = 

kdissociate · [LT].
2. Pick a wait time according to an exponential 

distribution with λ = rbind + rdissociate .
3. The probability that the reaction is the forward 

reaction is Pr(L + T → LT) = rbind/(rbind + rdissociate).

Answer: Pr(LT → L + T) =  rdissociate /(rbind + rdissociate).



An illustration of Gillespie
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rtotal = kbind · [L] · [T] + kdissociate · [LT] 

Pr(L + T → LT) = kbind · [L] · [T] / rtotal

t t + δ · t
Expected Wait time

δ · t ~ 1/ rtotal

Pr(LT → L + T ) = kdissoc
iate

· [LT] / rtotal



Can Gillespie Replicate Our Example?
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l0 = 10,000; t0 = 7,000; lt0 = 0
kbind = 0.0146((molecules/µm3)-1)s-1; kdissociate = 35s-1

Our previous quadratic equation was:
kbind · [LT]2 - (kbind · l0 + kbind · t0 + kdissociate) · [LT] + kbind · l0 · t0 = 0

 
Solving this for [LT] gives 🥱 that

[LT] = 4,793 molecules/ µm3

By law of conservation of mass,
[L] = l0 - [LT] = 5,207 [T] = t0 - [LT] = 2,207



It Can! J
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Solving this for [LT] gives 🥱 that
[LT] = 4,793 molecules/ µm3

By law of conservation of mass,
[L] = l0 - [LT] = 5,207 [T] = t0 - [LT] = 2,207



A note on Gillespie with multiple 
different reactions
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STOP: The question is how to generalize this idea to 
n reactions, having rates k1, k2, …, kn. Ideas?

Repeat the following steps for the entire simulation.
1. Define rbind = kbind · [L] · [T] and rdissociate = 

kdissociate · [LT].
2. Pick a wait time according to an exponential 

distribution with λ = rbind + rdissociate .
3. The probability that the reaction is the forward 

reaction is Pr(L + T → LT) = rbind/(rbind + rdissociate).



A note on Gillespie with multiple 
different reactions
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Repeat the following steps for the entire simulation.
1. For each i, define ri = ki · (product of reactant 

concentrations in equation i).
2. Pick a wait time according to an exponential 

distribution with λ = r1 + r2 + … + rn .
3. The probability that the reaction is the i-th 

reaction is Pr(L + T → LT) = ri / λ.

Answer: It’s easier than you might imagine! We just 
extend the definitions and sum over n terms.



Again, great ideas don’t have to be 
complicated
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Repeat the following steps for the entire simulation.
1. For each i, define ri = ki · (product of reactant 

concentrations in equation i).
2. Pick a wait time according to an exponential 

distribution with λ = r1 + r2 + … + rn .
3. The probability that the reaction is the i-th 

reaction is Pr(L + T → LT) = ri / λ.



BUILDING AN ACCURATE MODEL 
OF CHEMOTAXIS WITH RULE-
BASED MODELING

© 2024 Phillip Compeau



A ”phosphorylation cascade” is the 
engine of signal transduction
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In a phosphorylation event, a 
phosphoryl group (PO3

-) is 
attached to an organic 
molecule. 

Phosphoryl can be broken off 
an adenosine triphosphate 
(ATP) molecule, or exchanged 
as part of dephosphorylation of 
a phosphorylated molecule.

Sigma-Aldrich



Explaining the molecular basis for 
signaling
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Receptors form a complex on the inside of the cell 
with CheA and CheW proteins, which is more stable 
without ligand binding. Remember this fact!



Explaining the molecular basis for 
signaling
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When bound, CheA autophosphorylates, adding a 
phosphoryl group to itself – not a strange concept 
after autoregulation J



Explaining the molecular basis for 
signaling
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When phosphorylated, CheA can pass on the 
phosphoryl group to a molecule called CheY.



Explaining the molecular basis for 
signaling

© 2024 Phillip Compeau

When phosphorylated CheY interacts with the 
flagellar motor switch protein complex on the 
flagellum, it changes rotation from CCW to CW.



Bacterial runs and tumbles
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https://www.sciencephoto.com/media/659604/
view/e-coli-bacterium-illustration

STOP: What happens when 
the flagellum rotates CW 
instead?

Recall: when the flagella are 
all rotating CCW, they form 
a bundle and propel the cell 
forward at 20 µm/s. 



Bacterial runs and tumbles
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https://www.sciencephoto.com/media/659604/
view/e-coli-bacterium-illustration

STOP: What happens when 
the flagellum rotates CW 
instead?

Recall: when the flagella are 
all rotating CCW, they form 
a bundle and propel the cell 
forward at 20 µm/s. 

Answer: Tumble!



Explaining the molecular basis for 
signaling
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If a ligand is detected, then the cell needs to 
decrease CheY concentration to reduce tumbling, 
dephosphorylating CheY with the CheZ enzyme.



Explaining the molecular basis for 
signaling
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Remember: this whole process is more likely when 
ligand is not present. So, less ligand means more 
tumbling, and more ligand means more running. 



The model is starting to get pretty 
unwieldy and won’t fit on one slide …
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We need three particle types corresponding to MCP 
molecules, ligands, and bound complexes.

A bound complex molecule binds with CheA and 
CheW and can be either phosphorylated or 
unphosphorylated.

And CheY can be phosphorylated or 
unphosphorylated too … 



Changing ligand concentrations leads to 
a change in molecular concentrations
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The figure below plots phosphorylated CheA and 
CheY at equilibrium in the absence of ligand.



Changing ligand concentrations leads to 
a change in molecular concentrations
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The addition of 5,000 attractant ligand molecules 
increases bound receptors, leading to less CheA 
autophosphorylation, and less phosphorylated 
CheY.



Changing ligand concentrations leads to 
a change in molecular concentrations
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If we instead add 100,000 attractant molecules, then 
we see an even more drastic decrease in 
phosphorylated CheA and CheY.



Changing ligand concentrations leads to 
a change in molecular concentrations
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So far, none of this is surprising, other than how fast 
the cell can react. But what we have shown is just 
part of the story …



METHYLATION HELPS A 
BACTERIUM ADAPT TO DIFFERING 
CONCENTRATIONS

© 2024 Phillip Compeau



E. coli is smarter than you think
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Recall that in the absence of an attractant, CheW 
and CheA readily bind to an MCP, leading to greater 
autophosphorylation of CheA, which 
phosphorylates CheY, increasing tumbling.



E. coli is smarter than you think
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E. coli also has a “memory” of past concentrations 
through a chemical process called methylation, in 
which (–CH3) is added to a molecule.



E. coli is smarter than you think
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Every MCP receptor has four methylation sites. The 
more sites that are methylated, the higher the 
phosphorylation rate of CheA, therefore the higher 
the phosphorylation of CheY, and higher tumbling.



E. coli is smarter than you think
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CheR methylates ligand-MCP complexes, so that if 
the attractant concentration is high but stable, this 
methylation will boost CheA autophosphorylation, 
raising tumbling frequency to default levels.



E. coli is smarter than you think

© 2024 Phillip Compeau

Methylation should be temporary and can be 
undone with CheB, which works faster when 
methylation is high.



E. coli is smarter than you think

© 2024 Phillip Compeau

Tumbling frequency can be increased in two ways:
1. Phosphorylation cascade (low attractant)
2. Increased MCP methylation (when attractant 

stabilizes).



E. coli is smarter than you think
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Tumbling frequency can be increased in two ways:
1. Phosphorylation cascade (low attractant)
2. Increased MCP methylation (when attractant 

stabilizes).

#1 allows the cell to respond to absolute changes in 
attractant concentration, and #2 means that the cell 
can adapt based on relative changes in this 
concentration.



Building this model from scratch would 
be a nightmare!
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Each MCP could have one of 40 states:
• is it bound to a ligand? (2 states)
• is it bound to CheR? (2 states)
• is it phosphorylated? (2 states)
• which methylation state is it in? (5 states)



Building this model from scratch would 
be a nightmare!

© 2024 Phillip Compeau

Each MCP could have one of 40 states:
• is it bound to a ligand? (2 states)
• is it bound to CheR? (2 states)
• is it phosphorylated? (2 states)
• which methylation state is it in? (5 states)

STOP: Say that we only want to model the MCP-
ligand binding reaction, T + L → TL. How many of 
the 40 possible states does this affect?



Building this model from scratch would 
be a nightmare!

© 2024 Phillip Compeau

Each MCP could have one of 40 states:
• is it bound to a ligand? (2 states)
• is it bound to CheR? (2 states)
• is it phosphorylated? (2 states)
• which methylation state is it in? (5 states)

Answer: 20, since it corresponds to the half of the 
MCP states in which the MCP is unbound to ligand. 
And so we will need 20 different reactions! 



Building this model from scratch would 
be a nightmare!

© 2024 Phillip Compeau

Each MCP could have one of 40 states:
• is it bound to a ligand? (2 states)
• is it bound to CheR? (2 states)
• is it phosphorylated? (2 states)
• which methylation state is it in? (5 states)

The number of reactions needed to represent a  
complex system grows very fast. This principle is 
called combinatorial explosion.



Building this model from scratch would 
be a nightmare!
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Each MCP could have one of 40 states:
• is it bound to a ligand? (2 states)
• is it bound to CheR? (2 states)
• is it phosphorylated? (2 states)
• which methylation state is it in? (5 states)

And yet, all 20 reactions can be summarized by one 
rule: “regardless of the other states, allow unbound 
MCPs to bind to ligand at some rate”. 



Rule-based modeling fixes 
combinatorial explosion
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Rule-based modeling: a modeling approach that 
uses a small set of “rules” to generate a potentially 
huge number of different reactions automatically. 

If you’re interested in seeing how to use rule-based 
modeling to build a complete model of chemotaxis, 
check out http://biologicalmodeling.org.



Our bacterium can return to default 
tumbling even with huge attractant boost 

© 2024 Phillip Compeau

First, we add a relatively small amount of attractant, 
setting l0 equal to 10,000, which has essentially no 
effect.



Our bacterium can return to default 
tumbling even with huge attractant boost 
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Setting l0 equal to 100,000 causes a change, and 
equilibrium is achieved in a few minutes.



Our bacterium can return to default 
tumbling even with huge attractant boost 
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With l0 =1,000,000, the initial drop is bigger, but the 
system still returns to equilibrium quickly.



Our bacterium can return to default 
tumbling even with huge attractant boost 
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When l0 = 10,000,000, we see an even bigger jolt.



Our bacterium can return to default 
tumbling even with huge attractant boost 

© 2024 Phillip Compeau

The system is still robust if l0 =100,000,000.



Yet it seems like we are missing 
something
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But according to the run and tumble model, the 
direction that a bacterium is moving at any point in 
time is random! So why would a decrease in 
tumbling frequency help E. coli move toward an 
attractant?



THE BEAUTY OF E. COLI’S ROBUST 
RANDOMIZED EXPLORATION 
ALGORITHM

© 2024 Phillip Compeau



Let’s model the chemotaxis algorithm!
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Recall the “run and tumble model”: E. coli alternates 
between running and tumbling in place.

Courtesy: Sandy Parkinson



A simple chemotaxis algorithm
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Take the following actions for a finite number n of 
steps.
• Select a random direction of movement (uniform 

random decimal between 0 and 360 degrees)
• Randomly select a duration of movement.
• Move the bacterium to a new position indicated 

by the direction and duration of movement.



A simple chemotaxis algorithm
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Take the following actions for a finite number n of 
steps.
• Select a random direction of movement (uniform 

random decimal between 0 and 360 degrees)
• Randomly select a duration of movement.
• Move the bacterium to a new position indicated 

by the direction and duration of movement.

STOP: How should we select the duration of 
movement?



A simple chemotaxis algorithm

© 2024 Phillip Compeau

Take the following actions for a finite number n of 
steps.
• Select a random direction of movement (uniform 

random decimal between 0 and 360 degrees)
• Randomly select a duration of movement.
• Move the bacterium to a new position indicated 

by the direction and duration of movement.

Answer: We are waiting for the next change of 
direction, so we use an exponential distribution! 
(With mean = experimentally verified 1.0 second.)



Mimicking a real environment
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Let’s start a bacterium 
at (0,0) in an attractant 
gradient that is 
maximized at a blue 
“goal” (1500, 1500).



Mimicking a real environment
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This shows three 
different walks, ending 
at the red points.

Let’s start a bacterium 
at (0,0) in an attractant 
gradient that is 
maximized at a blue 
“goal” (1500, 1500).



This algorithm doesn’t really model 
chemotaxis
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STOP: This is just a 
random walk with 
variable run times, so 
the bacterium won’t 
get any closer to a 
goal. How does the 
real chemotaxis 
algorithm differ from 
it?



This doesn’t really model chemotaxis
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Answer: Recall that 
the duration of a 
bacterium’s run 
depends on the 
relative change in 
attractant 
concentration that it 
detects.



A more realistic chemotactic algorithm
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Take the following actions for a finite number n of 
steps.
• Select a random direction of movement (uniform 

random decimal between 0 and 360 degrees)
• Randomly select a duration of movement, such 

that the larger the difference Δ[L] between the 
concentration at the cell’s current point andits 
previous point, the longer the walk.

• Move the bacterium to a new position indicated 
by the direction and duration of movement.



A more realistic chemotactic algorithm
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• Randomly select a duration of movement, such 
that the larger the difference Δ[L] between the 
concentration at the cell’s current point andits 
previous point, the longer the walk.

Note: This step may seem tricky, but we still use an 
exponential distribution. The mean “wait time” to 
stop and tumble is simply proportional to Δ[L].



A tiny change made a big difference
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The only change in 
our algorithm is “if the 
current concentration 
is getting larger, run 
for longer”. And yet 
we are able to hone in 
on the goal quickly.



From 3 to 500 simulations
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Average distance to 
the goal over time for 
500 simulations 
following the two 
strategies. The shaded 
area for each strategy 
represents one 
standard deviation 
from the average.



From 3 to 500 simulations
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STOP: Why do you 
think that such a 
simple algorithm is 
able to reach the goal?



From 3 to 500 simulations
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Answer: Attractant 
detection acts like a 
“rubber band” that 
prevents bacterium 
from running too far 
in wrong direction.

STOP: Why do you 
think that such a 
simple algorithm is 
able to reach the goal?



Tumbling frequency is robust to 
disturbance across species

© 2024 Phillip Compeau

If we change the 
default tumbling 
frequency (when Δ[L] 
= 0) from 1.0 secs to 
0.2 secs, the “rubber 
band” is too tight.



Tumbling frequency is robust to 
disturbance across species
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And if we change it to 
every 5.0 secs, then 
the rubber band is too 
flexible, and cells run 
past the goal without 
being able to stop.



Tumbling frequency is robust to 
disturbance across species
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Trying a collection of 
different frequency 
values shows that 
bacteria are able to 
quickly find and stay 
at food when they 
tumble every ~1.0 
second.



Bacteria are even smarter than we 
thought

© 2024 Phillip Compeau

https://www.youtube.com/watch?v=F6QMU3KD7zw

Saragosti et al. 2011: When moving toward an 
attractant, the bacterium makes only small 
directional changes.



A remark on solving computational 
problems

© 2024 Phillip Compeau

Note: If our problem is to find a sugar cube, then 
there isn’t a computational problem to solve – just 
move greedily in the direction of largest increase.
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Note: If our problem is to find a sugar cube, then 
there isn’t a computational problem to solve – just 
move greedily in the direction of largest increase.

And yet what nature has evolved is somehow a 
more robust approach that relies on probability, 
despite having no real intelligence/communication.



A remark on solving computational 
problems
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Note: If our problem is to find a sugar cube, then 
there isn’t a computational problem to solve – just 
move greedily in the direction of largest increase.

And yet what nature has evolved is somehow a 
more robust approach that relies on probability, 
despite having no real intelligence/communication.

This will be a theme of our work when we discuss 
more about algorithms in nature.



CONCLUSION: TOWARD A 
COMPLETE MODEL OF THE 
BACTERIAL CELL

© 2024 Phillip Compeau



Once we have a model of chemotaxis, 
what should we do with it?
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submodels together. We defined 28 modules (Figure 1A) and
independently built, parameterized, and tested a submodel of
each. Some biological processes have previously been studied
quantitatively and in depth, whereas other processes are less
well characterized or are hardly understood. Consequently,
each module was modeled using the most appropriate mathe-
matical representation. For example, metabolism was modeled
using flux-balance analysis (Suthers et al., 2009), whereas
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Figure 1. M. genitalium Whole-Cell Model
Integrates 28 Submodels of Diverse Cellular
Processes
(A) Diagram schematically depicts the 28 sub-

models as colored words—grouped by category

as metabolic (orange), RNA (green), protein

(blue), and DNA (red)—in the context of a single

M. genitalium cell with its characteristic flask-

like shape. Submodels are connected through

common metabolites, RNA, protein, and the

chromosome, which are depicted as orange,

green, blue, and red arrows, respectively.

(B) The model integrates cellular function sub-

models through 16 cell variables. First, simulations

are randomly initialized to the beginning of the cell

cycle (left gray arrow). Next, for each 1 s time step

(dark black arrows), the submodels retrieve the

current values of the cellular variables, calculate

their contributions to the temporal evolution of the

cell variables, and update the values of the cellular

variables. This is repeated thousands of times

during the course of each simulation. For clarity,

cell functions and variables are grouped into five

physiologic categories: DNA (red), RNA (green),

protein (blue), metabolite (orange), and other

(black). Colored lines between the variables and

submodels indicate the cell variables predicted by

each submodel. The number of genes associated

with each submodel is indicated in parentheses.

Finally, simulations are terminated upon cell divi-

sion when the septum diameter equals zero (right

gray arrow).

RNA and protein degradation were
modeled as Poisson processes.
A key challenge of the project was to

integrate the 28 submodels into a unified
model. Although we and others had
previously developed methods to inte-
grate ODEs with Boolean, probabilistic,
and constraint-based submodels (Covert
et al., 2001, 2004, 2008; Chandrasekaran
and Price, 2010), the current effort
involved so many different cellular func-
tions and mathematical representations
that a more general approach was
needed. We began with the assumption
that the submodels are approximately
independent on short timescales (less
than 1 s). Simulations are then performed
by running through a loop in which the

submodels are run independently at each time step but
depend on the values of variables determined by the other
submodels at the previous time step. Figure 1B summarizes
the simulation algorithm and the relationships between the
submodels and the cell variables. Data S1 (available
online) provides a detailed description of the complete
modeling process, including reconstruction and computational
implementation.

390 Cell 150, 389–401, July 20, 2012 ª2012 Elsevier Inc.

We could model every process for a very simple 
bacterium (M. genitalum, only 525 genes).



Once we have a model of chemotaxis, 
what should we do with it?
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We could model every process for a very simple 
bacterium (M. genitalum, only 525 genes).

Then build a “super-model” that links up these 
smaller models into a model of the cell.



‘member replication?
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The whole cell model showed that the lengths of 
initiation and replication are inversely correlated. In 
other words, the length of replication is robust to 
small stochastic changes in the cell.



‘member replication?
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The whole cell model showed that the lengths of 
initiation and replication are inversely correlated.
Why? If initiation of replication is slow, the cell 
builds up a larger surplus of dNTP molecule used by 
DNA polymerase during replication. 



Doing biological research with a 
computational model
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The whole cell model showed that the lengths of 
initiation and replication are inversely correlated.
Key point: This was a new biological observation 
made by a purely computational model that was 
outside known research at the time.



And yet biology remains difficult …
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The whole cell model showed that the lengths of 
initiation and replication are inversely correlated.
Key point: This was a new biological observation 
made by a purely computational model that was 
outside known research at the time.

Unfortunately, still no model of this sophistication 
for E. coli has been published.



As of 2021, they were 43% finished
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