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This lecture comes from the Biological
Modeling project

Special thanks to the two - gocical MO
. |

students who helped me build 'ooﬂs,,o,trou,

this content ©

Noah Lee Shuanger Li
(BSCB 2021) (MSCB 2021)
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Part 1: Motits in transcription
factor networks



Biological Networks are Everywhere

Yeast transcription network Yeast Protein-Protein
: W interaction rnetwork

o Lethal
o Slow growth

e Regulated target o Unknown

e Transcription factor e Non-lethal

Yeast Phosphorylation E. coli metabolic Ybeast SSL network
~network network g -

—

o Kinase e Regulated target

Zhu et al, 2007.

Are there any recurring “subgraphs”, or network
motifs, that occur surprisingly often?
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Recall: Transcription Factors

A transcription (e PR o
. osSRIMbo\e
factor can either e
cause the cell to pomsl— onn X ) - sl
1 . éﬂdw\ ste Tam)"* s b
6
Increase (activate) for Heis ahuatior

or decrease
(repress) the
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RNA/protein _— . @ — 2
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corresponding to a el e
given gene. o A e
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Transcription Factor Networks

Transcription factor network:
* Nodes: genes

 Edges: x is connected to y if x is a transcription
factor that regulates the expression of y.
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E. coli transcription factor network
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Transcription Factor Networks

Transcription factor network:
* Nodes: genes

 Edges: x is connected to y if x is a transcription
factor that regulates the expression of y.

Notes:

1. Some of the nodes are transcription factors;
others aren't.

2. Edge x = y is also labeled +/- according to
whether x activates/represses .

© 2024 Phillip Compeau




There sure are a lot of (feedback) loops!

Autoregulation: a
transcription factor Y
regulates its own
transcription.

Translation

.

Protein MRNA

(Auto)regulation Transcription

Gene

DNA

Pl

*ll'
"RbsR_ QseB PutA PurR

P = “ﬁ" ~

LrhA leR LexA LeuO
="}

DsdC DpiA DnaA chA
P i

AgaR  AdiY  Ada ActR

(4 [& (& L[~

T
, *_'—”'5' ”
PspF  PrpR

Lacl KdpE

t~ L ) j
_*. \
DhaR DgsA

Source: https://journals.aps.org/pre/abstract/10.1103/PhysRevE.97.062407
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Two Questions

Question 1: How can we justify that the number of
loops in a TF network is “surprisingly large”?

Question 2: If autoregulation is so common, then
why did such a strange mechanism evolve?

“Nothing in biology
makes sense except in

the light of evolution.”
Theodosius Dobzhansky
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AUTOREGULATION IS
SURPRISINGLY FREQUENT

2024 Phillip Compeau



Transcription Factor Networks

STOP: What does it mean for a biological network
motif to occur “surprisingly often”?
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Transcription Factor Networks

STOP: What does it mean for a biological network
motif to occur “surprisingly often”?

Answer: It occurs more often than it would if the
network were random! (Nothing new here ©.)
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Constructing Random Networks

Gilbert model for random graphs: given an integer

n and a number p between 0 and 1, define G(n, p):

* Form n nodes.

» For all n? choices of starting node x and ending
node y, connect x to y with probability p.

Random graphs

EN Gilbert - The Annals of Mathematical Statistics, 1959 - JSTOR

1. Introduction. Let N points, numbered 1, 2,'-, N, be given. There are N (N-1)/2 lines which
can be drawn joining pairs of these points. Choosing a subset of these lines to draw, one
obtains a graph; there are 2N (N-1) 12 possible graphs in total. Pick one of these graphs by
the following random process. For all pairs of points make random choices, independent of
each other, whether or not to join the points of the pair by a line. Let the common probability
of join-ing be p. Equivalently, one may erase lines, with common probability g= 1-p from the ...

v YY Cited by 1590 Related articles All 5 versions
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Constructing Random Networks

Gilbert model for random graphs: given an integer

n and a number p between 0 and 1, define G(n, p):

e Form n nodes.

» For all n? choices of starting node x and ending
node y, connect x to y with probability p.

We limit ourselves to the TF network comprising

only transcription factors that regulate each other.
This network has 197 nodes and 477 edges.
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Constructing Random Networks

Gilbert model for random graphs: given an integer

n and a number p between 0 and 1, define G(n, p):

e Form n nodes.

» For all n? choices of starting node x and ending
node y, connect x to y with probability p.

We limit ourselves to the TF network comprising
only transcription factors that regulate each other.
This network has 197 nodes and 477 edges.

STOP: What should n be in our decoy network?
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Constructing Random Networks

Gilbert model for random graphs: given an integer

n and a number p between 0 and 1, define G(n, p):

e Form n nodes.

» For all n? choices of starting node x and ending
node y, connect x to y with probability p.

We limit ourselves to the TF network comprising
only transcription factors that regulate each other.
This network has 197 nodes and 477 edges.

Answer: n = 197 (the number of TFs).
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Constructing Random Networks

Gilbert model for random graphs: given an integer

n and a number p between 0 and 1, define G(n, p):

e Form n nodes.

» For all n? choices of starting node x and ending
node y, connect x to y with probability p.

We limit ourselves to the TF network comprising
only transcription factors that regulate each other.
This network has 197 nodes and 477 edges.

STOP: OK, but what should p be?
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Constructing Random Networks

Gilbert model for random graphs: given an integer

n and a number p between 0 and 1, define G(n, p):

e Form n nodes.

» For all n? choices of starting node x and ending
node y, connect x to y with probability p.

Answer: If we were to set p equal to 1/n?, then we
would on average only see a single edge in the
random network. To get 477 edges on average, we
set p equal to 477/n> =477/197%2= 0.0123.

© 2024 Phillip Compeau




Real vs. Random E. coli TF Network

Random o®

130 loops! 5 loops
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Real vs. Random E. coli TF Network

Random o®

130 loops! 5 loops

95 are repression!
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Negative Autoregulation: The Simplest
Network Motif

Negative autoregulation: a

transcription factor Y represses its own @—
expression.

www.nature.com » letters » article

Engineering stability in gene networks by autoregulation ...
by A Becskei - 2000 - Cited by 1559 - Related articles

Jun 1, 2000 - The genetic and biochemical networks which underlie such things as
homeostasis in metabolism and the developmental programs of living ...

Question 2: If autoregulation is so common, then
why did such a strange mechanism evolve?
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AN EVOLUTIONARY BASIS FOR
NEGATIVE AUTOREGULATION

2024 Phillip Compeau



Simulating a Race to Steady State

Say that a TF X regulates another transcription
factor Y, and consider two cells. In both

cells, X upregulates the transcription of Y, but in the
second cell, Y also negatively autoregulates.

®——O® @L@Q_

Cell 1 Cell 2
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Simulating a Race to Steady State

We will simulate a “race” to the steady-state
concentration of Y in the two cells. The cell that
reaches this steady state faster can respond more
quickly to its environment and is therefore more fit
for survival.

®——O® @L@Q_

Cell 1 Cell 2
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Simulating Particle Level Simulations

MCell: A software program that simulates reaction-
diffusion models, in which particles interact with
each other as they diffuse randomly.

Monte Carlo methods for simulating realistic synaptic microphysiology using
MCell

JR Stiles, TM Bartol - Computational neuroscience: realistic ..., 2001 - books.google.com

... The MDL and MCell's program flow are summarized in Figure 4.1 and Boxes 4.1 and
4.2. Specific examples follow in Sections 4.5 and 4.6 ... Page 115. Monte Carlo Synaptic
Models 93 FIGURE 4.1 General Overview of MCell Simulations ...

v Y9 Cited by 307 Related articles All 4 versions T
O
T
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Simulating Cell 1
®——@

Initialization: Start with a constant number of X
particles and no Y.
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Simulating Cell 1
®——@

Initialization: Start with a constant number of X
particles and no Y.

Diffusion: Both X and Y diffuse at the same rate.
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Simulating Cell 1
®——@

Initialization: Start with a constant number of X
particles and no Y.

Diffusion: Both X and Y diffuse at the same rate.

X activating Y: we add the reaction X 2 X + Y. In
any interval of time, there is some probability that
an X particle will produce a Y.

© 2024 Phillip Compeau




Simulating Cell 1
®——@

Over time, proteins are degraded by proteases so
that proteins at high concentration can be removed.

Recall: viruses like
HIV and SARS-
CoV-2 use
proteases to cut
their translated
RNA genome into

b e
oo .
‘ https://%outube.com/watch?v:d Do_s6a3wcM p rOte N frag men tS .
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Simulating Cell 1
®——@

Over time, proteins are degraded by proteases so

that proteins at high concentration can be removed.

Kill reaction: Y are removed at some rate.
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Simulating Cell 1
®——@

Over time, proteins are degraded by proteases so
that proteins at high concentration can be removed.

Kill reaction: Y are removed at some rate.

Note: we will assume that X is at steady-state, so the

rate of production of X balances its removal and we
do not need such reactions for X.

© 2024 Phillip Compeau




Simulating Cell 2
e -0

STOP: What reaction could be used to add a
simulation of the negative autoregulation of Y?

© 2024 Phillip Compeau




Simulating Cell 2
e -0

STOP: What reaction could be used to add a
simulation of the negative autoregulation of Y?

Answer: We will use Y+ Y =2 Y. When two Y
particles encounter each other, there is some
probability that one of the particles is removed,
which mimics the process of a transcription factor
turning off another copy of itself during negative
autoregulation.

© 2024 Phillip Compeau




Comparing concentration of Y in the two
simulated cells

It seems like Cell 1 is winning because its response
time to the external stimulus is shorter...

© 2024 Phillip Compeau



Our Comparison Isn’t Currently Fair

Mathematically controlled comparison (Savageau
1976): we can only compare models on a
mathematically level playing field.

Key Point: if we are comparing the two cells, then
the steady-state concentration of Y in the two cells
should be approximately the same.

© 2024 Phillip Compeau




Recall Cell 1’s Model
®——®

Initialization: Start with a constant number of X
particles and no Y.

Diffusion: Both X and Y diffuse at the same rate.

X activating Y: we add the reaction X 2 X + Y. In
any interval of time, there is some probability that
an X particle will produce a Y.

© 2024 Phillip Compeau




Recall Cell 1’s Model
®——®

Initialization: Start with a constant number of X
particles and no Y.

Diffusion: Both X and Y diffuse at the same rate.

X activating Y: we add the reaction X 2 X + Y. In
any interval of time, there is some probability that
an X particle will produce a Y.

STOP: How can we ensure that Cell 2 has a higher
steady-state concentration of Y?

© 2024 Phillip Compeau




Recall Cell 1’s Model
®——

Initialization: Start with a constant number of X
particles and no Y.

Diffusion: Both X and Y diffuse at the same rate.

X activating Y: we add the reaction X 2 X + Y. In
any interval of time, there is some probability that
an X particle will produce a Y.

Answer: The only thing that we can change is
increasing the rate of X 2 X + Y in Cell 2.

© 2024 Phillip Compeau




Running a Fair Comparison

| =} Plot Data — O X
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STOP: Now, why do you
think nature has evolved
negative autoregulation?
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Ensuring that Y, = X,

|~ | Plot Data

File Show Set

File="output_datawreact_datalseed_000011Y2 Waorld.dat' C “f’ nns 0and 1: 0.0 < 337.0
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Cell 2’s “response time is

much faster than cell 1’s. Answer: 1o help alF

respond to a stimulus and
reach steady-state faster.
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Ensuring that Y, = X,

|~ | Plot Data

File Show Set

File="output_datawreact_dataiseed_000011Y2. World.dat' C In ins Dand 1: 0.0 =y < 337.0
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Cell 2’s “response time is

much faster than cell 1’s. Anal()gy (AIOH)Z negative
autoregulation is like a
sportscar with a powerful
oine and sensitive brakes.
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Ensuring that Y, = X,

|~ | Plot Data

File Show Set
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Cell 2’s “response time is

QTCINEECRUELISIREN But if the protein is not a TF,
can it be turned on faster

than simple regulation?
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THE FEEDFORWARD LOOP
MOTIF

2024 Phillip Compeau



Speeding Up Protein Manufacture for
Non-Transcription Factors

Of the 4,400 total E. coli proteins, fewer than 10%
(about 300) are transcription factors.

Feed-forward loop (FFL): a network motif

connecting X 2> Y, X 2> Z, and Y =2 Z. (It's not a
loop.) E. coli has 42 total FFLs.

-+

o
© -0 —0

© 2024 Phillip Compeau




One common labeling of FFL edges

“Type 1” incoherent feed-forward loop: an FFL with
the activation/repression pattern shown below.

STOP: Why might this motif allow Z to be turned on
faster than under simple regulation?

-+

o
® —0—0
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One common labeling of FFL edges

“Type 1” incoherent feed-forward loop: an FFL with
the activation/repression pattern shown below.

Answer: X serves to “ramp up” Z quickly, and once
X builds up Y, Y serves as a delayed-action “brakes”

for Z.

-+

o
® —0—0
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One common labeling of FFL edges

“Type 1” incoherent feed-forward loop: an FFL with
the activation/repression pattern shown below.

STOP: We are going to compare this FFL against
simple activation X = Z. How can we model this
motif with reactions, like what we did previously?

-+

o
® —0—0
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Cell 1 is the same system from before

g o

Initialization: Start with a constant number of X
particles and no Z.

Diffusion: Both X and Z diffuse at the same rate.

X activating Z: we add the reaction X 2 X + Z. In

any interval of time, there is some probability that
an X particle will produce a Z.

Kill reaction: Z are removed at some rate.

© 2024 Phillip Compeau




Cell 2 requires a few more reactions

-+

e
@ -0 —0

To simulate Cell 2, we will have all of these
reactions, with a higher rate of activation X 2 X + Z
to obtain a mathematically controlled simulation..

X activating Y: X 2 X + V.

YrepressingZ:Y + Z > Y.

Kill reaction: Y and Z are removed at some rate.
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Plotting a FFL-regulated protein Z
against one regulated by X 2 Z
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Damped Oscillations

Note: The shape of the FFL-regulated protein
concentration is similar to a “damped” oscillation.

0

TA
e
Ll

Time
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Real oscillations are everywhere in
biology

—%  Metaphase —y
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The first simple synthetic oscillator

Repressilator: a three-element synthetic “cycle”
motif of repression that produces oscillations.

A synthetic oscillatory network of transcriptional regulators
MB Elowitz, S Leibler - Nature, 2000 - nature.com
Networks of interacting biomolecules carry out many essential functions in living cells 1, but

the 'design principles' underlying the functioning of such intracellular networks remain poorly
understood, despite intensive efforts including quantitative analysis of relatively simple ...

v YYD Cited by 4909 Related articles All 82 versions

0
Oscillator motifs in nature are much
more complicated than this! —'\ %
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The first simple synthetic oscillator

Repressilator: a three-element synthetic “cycle”
motif of repression that produces oscillations.

A synthetic oscillatory network of transcriptional regulators
MB Elowitz, S Leibler - Nature, 2000 - nature.com
Networks of interacting biomolecules carry out many essential functions in living cells 1, but

the 'design principles' underlying the functioning of such intracellular networks remain poorly
understood, despite intensive efforts including quantitative analysis of relatively simple ...

v Y9 Cited by 4909 Related articles All 82 versions
o ®— O
STOP: Why might this motif

produce oscillatory behavior? —'\ %
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Isn’t the repressilator neat?
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THE LOST IMMORTALS
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An Absurd Hypothetical Question

If two immortal people
were placed on opposite
sides of an uninhabited
Earth-like planet, how
long would it take them
to tind each other?
100,000 years?
1,000,000 years?

STOP: Any thoughts?

SERIOUS SCIENTIFIC ANSWERS

to Absurd [[\'/)()//1(‘/1'('(// Ql(('.s/i(m.s'

‘what if?

RANDALL MUNROE
creator okaCd
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e

Munroe’s Answer:
“Be an Ant”

* If you have no information, walk at random, leaving a trail of stone
markers, each one pointing to the next. For every day that you walk, rest
for three. Periodically mark the date alongside the cairn. It doesnt
matter how you do this, as long as it’s consistent. You could chisel the
number of days into a rock, or lay out rocks to plot the number.

* If you come across a trail that’s newer than any you‘ve seen before,
start following it as fast as you can. If you lose the trail and can’t recover

it, resume leaving your own trail.

* You don’t have to come across the other player’s current location;
you simply have to come across a location where they’ve been. You can
still chase one another in circles, but as long as you move more quickly
when you're following a trail than when you're leaving one, you’ll find
each other in a matter of years or decades.

* And if your partner isn't cooperating—perhaps theyre just sitting
where they started and waiting for you—then you’ll get to see some neat
stuff.



Bacteria employ a similar randomized
algorithm to find food

https://www.youtube.com/watch?v=F6QMU3KD7 zw
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E. COLI AND ITS RANDOM
WALK EXPLORATION
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Bacterial runs and tumbles

An E. coli cell has 5-12
flagella on its surface, which
can rotate both clockwise
and counter-clockwise.

Chemotaxis: The movement
of an organism in response
to a chemical stimulus.

https://www.sciencephoto.com/media/659604/
view/e-coli-bacterium-illustration
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Bacterial runs and tumbles

An E. coli cell has 5-12

flagella on its surface, which
can rotate both clockwise
and counter-clockwise.

When the flagella are all
rotating CCW, they form a
bundle and propel the cell
forward at 20 pm/s.

https://www.sciencephoto.com/media/659604/
view/e-coli-bacterium-illustration

© 2024 Phillip Compeau



Bacterial runs and tumbles

Note: This is about 10x the
length of the cell per
second, like a car traveling

at 160 kph (100 mph).

When the flagella are all
rotating CCW, they form a
bundle and propel the cell
forward at 20 pm/s.

https://www.sciencephoto.com/media/659604/
view/e-coli-bacterium-illustration
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Bacterial runs and tumbles

When any flagellum rotates CW, the flagella are
uncoordinated, and the bacterium stops and rotates.

run (CCW)

=

'o~....~.~‘ l;‘,‘;z‘*f"" Q\—ﬁ
' tumble (CW) Lh

st et

Courtesy: Sandy Parkinson
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Bacterial runs and tumbles

Run and tumble model: when we zoom out, E. coli
alternates between running and tumbling in place.

run (CCW)
: // — -

N

i

7 tumble (CW) L’n

|

Courtesy: Sandy Parkinson
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E. coli”s movement looks like a random
walk!

Question: what is
the molecular basis
for the random walk
movement?

WSmg;uSM

RED&_EQE,H
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Bacterial tumbling is constant

Key point: almost all bacteria, in the absence of
attractant/repellent, tumble every 1-1.5 secs. Why?

“Nothing in biology
makes sense except in

the light of evolution.”
Theodosius Dobzhansky
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SIGNALING AND LIGAND-
RECEPTOR DYNAMICS
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How E. coli detects attractants

E. coli has receptor proteins that detect attractants
such as glucose by binding to and forming a
complex with these attractant ligands.

° 3) Response: changed rotation direction
1) Stimulus: ligand 0 P 5
Extracellular Space >
Cellular membrane
Cytoplasm CW rotation

4

2) Signaling Events
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How E. coli detects attractants

I//

The “signal” of the binding is then “transduced” via
a series of internal chemical processes that leads to
a change in the flagellar rotation.

3) Response: changed rotation direction

1) Stimulus: ligand 0

Extracellular Space >

Cellular membrane

Cytoplasm CV& rotation

—
-
=
e
—
-
—

2) Signaling Events
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Modeling a single ligand-receptor
reaction

To model ligand-receptor dynamics, we will use
a reversible reaction in which a ligand L and
receptor T bind and dissociate at different rates.

IT'+L ST

STOP: Why would a ® @ O

ligand and receptor need
to dissociate?
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Modeling a single ligand-receptor
reaction

To model ligand-receptor dynamics, we will use
a reversible reaction in which a ligand L and
receptor T bind and dissociate at different rates.

IT'+L ST

Answer: We don’t want (x) @ O
to detect temporary
changes permanently.
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Modeling a single ligand-receptor
reaction

The rates ky;,y and Kk ....iate Of the forward/reverse
reactions determine the equilibrium, or steady
state, of the system. Let’s see how...
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Calculation of Equilibrium in a
Reversible Ligand-Receptor Reaction

Suppose that:
e initial concentrations of L and T are /, and t,;

« [L], [T], and [LT] denote the concentrations of the
three molecule types;

* the reaction rates kg and Kgi.ociate are fixed.
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Calculation of Equilibrium in a
Reversible Ligand-Receptor Reaction

Suppose that:
e initial concentrations of L and T are /, and t,;

« [L], [T], and [LT] denote the concentrations of the
three molecule types;

* the reaction rates ki g and Ki..ociate are fixed.

At steady-state, binding is equal to dissociation:
kbind L - [T = kdissociate - [LT].
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Calculation of Equilibrium in a
Reversible Ligand-Receptor Reaction

Suppose that:
e initial concentrations of L and T are /, and t,;

« [L], [T], and [LT] denote the concentrations of the
three molecule types;

* the reaction rates kg and Kgi.ociate are fixed.

At steady-state, binding is equal to dissociation:
kbind L - [T = kdissociate - [LT].

By law of conservation of mass:

(L] + [LT] = I, [T + [LT] = ¢,.
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Calculation of Equilibrium in a
Reversible Ligand-Receptor Reaction

Solving the conservation of mass equations gives
[L] = 1o - [LT] [7] =ty - [LT]
Substituting into our steady-state equation gives

Kpind * (lo = [LTT) - (o - [LT]) = Kgissociate * [LT]

At steady-state, binding is equal to dissociation:
kbind L - [T = kdissociate - [LT].

By law of conservation of mass:

[L] + [LT] = Iy 7]+ [LT] =
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Calculation of Equilibrium in a
Reversible Ligand-Receptor Reaction

Solving the conservation of mass equations gives
[L] = Iy - [LT] [7] =1t - [LT]
Substituting into our steady-state equation gives

Kbind * (o = [LT1) - (to - [LT]) = Kaissociate * [LT]
Expansion of this equation gives
kbind - [LT]* - (kbind ) /O + kbind “to) - [LT] = kdissociate - [LT] + kbind ) /O " Ty
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Calculation of Equilibrium in a
Reversible Ligand-Receptor Reaction

Solving the conservation of mass equations gives
[L] = Iy - [LT] [7] =1t - [LT]
Substituting into our steady-state equation gives

Kbind * (o = [LT1) - (to - [LT]) = Kaissociate * [LT]
Expansion of this equation gives
kbind - [LT]* - <kbind ) /O + kbind o) - [LT] = kdissociate - [LT] - kbind ) /O "o
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Calculation of Equilibrium in a
Reversible Ligand-Receptor Reaction

Solving the conservation of mass equations gives
[L] = Iy - [LT] [7] =1t - [LT]
Substituting into our steady-state equation gives
Kbind = Uo = [LT1) - (to - [LT]) = Kgissociate * [LT]

Expansion of this equation gives

Kbind * [LT1? = (Kpind = fo + Kbind * o) * [LT] = Kaissociate * [LT] = Kpind * fo * o
Subtract the right side from both sides:

Kpind * [LT1? = (Kpind * fo + Kbind * to + Kaissociate) * [LT] + Kping * lo - to =0
This is just a quadratic equation in [LT]!
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Let’s Look at a Real Example

[, =10,000; t, = 7,000; It, =0
Kping = 0.0146((molecules/um?3)")s; kjicoociate = 3557
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Let’s Look at a Real Example

[, =10,000; t, = 7,000; It, =0
Kping = 0.0146((molecules/um?3)")s; kjicoociate = 3557

Our previous quadratic equation was:
kbind - [LT]° - (kbind ) /O + kbind “lp t kdissociate) - ILT] + kbind ) /O "t =0
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Let’s Look at a Real Example

[, =10,000; t, = 7,000; It, =0
Kping = 0.0146((molecules/um?3)")s; kjicoociate = 3557

Our previous quadratic equation was:
kbind - [LT]* - (kbind ) /O + kbind "o + kdissociate) - [LT] + kbind ) /0 =0

Solving this for [LT] gives @ that
[LT] = 4,793 molecules/ ym?3
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Let’s Look at a Real Example

[, =10,000; t, = 7,000; It, =0
Kping = 0.0146((molecules/um?3)")s; kjicoociate = 3557

Our previous quadratic equation was:
kbind - [LT]* - (kbind ) /O + kbind "o + kdissociate) - [LT] + kbind ) /0 =0

Solving this for [LT] gives @ that
[LT] = 4,793 molecules/ ym?3

By law of conservation of mass,
L] = I, - [LT] = 5,207 [Tl = t,-[LT] = 2,207
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Scaling this will be a disaster

Key point: This is not too bad for one reversible
equation, but real biological systems have many
reactions, and this will not scale. As with the n-body
problem in physics, we need a simulation.

Source: n3a9, Github user- *
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The Need for a ”Particle-Free” Model

The E. coli cell is so small that we will assume that
the concentration of any particle in its immediate
surroundings is well-mixed (i.e., uniform).
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The Need for a ”Particle-Free” Model

The E. coli cell is so small that we will assume that
the concentration of any particle in its immediate
surroundings is well-mixed (i.e., uniform).

Our model of chemotaxis will have many particles
and reactions that depend on each other, and so a
“particle-free” model that does not track the

diffusion of individual particles will greatly increase
efficiency.
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STOCHASTIC SIMULATION OF
CHEMICAL REACTIONS WITH THE
GILLESPIE ALGORITHM
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The Poisson Distribution

Say that you own a store and have noticed that on
average, there are A customers entering your store in
a single hour. Let X be a random variable denoting
the number of customers that enter the store in the
next hour.
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The Poisson Distribution

Say that you own a store and have noticed that on
average, there are A customers entering your store in
a single hour. Let X be a random variable denoting
the number of customers that enter the store in the
next hour.

X follows a Poisson distribution; it can be shown
that the probability that exactly n customers arrive
in the next hour is

Ate™*

Pr(X =n) = ’
n!
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The Poisson Distribution

Furthermore, the probability of observing
exactly n customers in t hours is

(ﬂt)ne_h

n!

X follows a Poisson distribution; it can be shown
that the probability that exactly n customers arrive
in the next hour is

Ate™*

Pr(X =n) = '
n!
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From Poisson to Exponential

If we let T be the random variable corresponding to
the wait time on the next customer, then the
probability of waiting at least t hours is the
probability of seeing zero customers in t hours:

At 0 —At
PHT > 1) = Pr(X = 0) = . )of — M
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From Poisson to Exponential

If we let T be the random variable corresponding to
the wait time on the next customer, then the
probability of waiting at least t hours is the
probability of seeing zero customers in t hours:

At 0 —At
PHT > 1) = Pr(X = 0) = . )Of = M

That is, Pr(T > t) decays exponentially as t increases;
thus, random variable T follows an exponential
distribution. (Mean wait time: 1/2).
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From Poisson to Exponential

If we let T be the random variable corresponding to
the wait time on the next customer, then the
probability of waiting at least t hours is the
probability of seeing zero customers in t hours:

lt 0 —At
PHT > 1) = Pr(X = 0) = . )Of = M

STOP: What is the probability Pr(T < t)?
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From Poisson to Exponential

If we let T be the random variable corresponding to
the wait time on the next customer, then the
probability of waiting at least t hours is the
probability of seeing zero customers in t hours:

At 0 —At
PHT > 1) = Pr(X = 0) = . )Of = M

STOP: What is the probability Pr(T < t)?

Answer: 1 — e,
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An overview of the Gillespie algorithm

Given a well-mixed environment and a reaction
taking place at some known average rate, we would
like to know how long we expect to wait before this
reaction occurs somewhere in the environment.
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An overview of the Gillespie algorithm

Given a well-mixed environment and a reaction
taking place at some known average rate, we would
like to know how long we expect to wait before this
reaction occurs somewhere in the environment.

STOP: Remind you of anything?
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An overview of the Gillespie algorithm

Given a well-mixed environment and a reaction
taking place at some known average rate, we would
like to know how long we expect to wait before this
reaction occurs somewhere in the environment.

STOP: Remind you of anything?

Answer: We will model each of our reactions using
an exponential distribution!
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An overview of the Gillespie algorithm

Given a well-mixed environment and a reaction
taking place at some known average rate, we would
like to know how long we expect to wait before this
reaction occurs somewhere in the environment.

STOP: Remind you of anything?

Answer: We will model each of our reactions using
an exponential distribution!

This idea is the engine of Gillespie’s stochastic
simulation algorithm (SSA).
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Modeling a single ligand-receptor
reaction with Gillespie

Recall that the rate of T + L = LT is k;,;,4 and the rate
of LT 2 T+ Lis Kgisociate -
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Modeling a single ligand-receptor
reaction with Gillespie

Recall that the rate of T + L = LT is k;,;,4 and the rate
of LT 2 T+ Lis Kgisociate -

Repeat the following steps for the entire simulation.

1. Define I'bind — kbind ) [L] ) [T] and I'dissociate =
kdissociate - [LT].
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Modeling a single ligand-receptor
reaction with Gillespie

Recall that the rate of T + L = LT is k;,;,4 and the rate
of LT 2 T+ Lis Kgisociate -

Repeat the following steps for the entire simulation.

1. Define I'bind = kbind - [L] - [T] and I'dissociate =
kdissociate - [LT].

2. Pick a wait time according to an exponential
distribution with A = 1 g + gicsociate -

© 2024 Phillip Compeau



Modeling a single ligand-receptor
reaction with Gillespie

Recall that the rate of T + L = LT is k;,;,4 and the rate
of LT 2 T+ Lis Kgisociate -

Repeat the following steps for the entire simulation.

1. Define I'bind = kbind - [L] - [T] and I'dissociate =
kdissociate - [LT].

2. Pick a wait time according to an exponential
distribution with A = 1 g + gicsociate -

3. The probability that the reaction is the forward
reaction Is Pr(L + T — LT) = ryind/(rbind + dissociate)-
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Modeling a single ligand-receptor
reaction with Gillespie

STOP: What is the probability that the reaction is
the reverse reaction?

Repeat the following steps for the entire simulation.

1. Define rying = Kping * [L] - [T] and rgiceociate =
kdlSSOClate [Lﬂ

2. Pick a wait time according to an exponential
distribution with A = 1 g + gicsociate -

3. The probability that the reaction is the forward
reaction Is Pr(L + T — LT) = ryind/(rbind + dissociate)-
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Modeling a single ligand-receptor
reaction with Gillespie

Answer: PF(LT — L+ n = Idissociate /(rbind + rdissociate)'

Repeat the following steps for the entire simulation.

1. Define rying = Kping * [L] - [T] and rgiceociate =
kdlSSOClate [Lﬂ

2. Pick a wait time according to an exponential
distribution with A = 1 g + gicsociate -

3. The probability that the reaction is the forward
reaction Is Pr(L + T — LT) = ryind/(rbind + dissociate)-
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An illustration of Gillespie

_____________________________ 3 e kd\ssoc‘a‘,///’ W 0
I,’ ~\\ Lol L,\—T e '

‘. \)r(LT =i T L T Ly R e e ,/I:
b

5 e

Iotal = kbind TR ] kdissociate - [LT]

c Pr([+7 e L

gl b S et e RS 3L o [7) i
kblnd [l] [7] i G

Expected Wait time
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Can Gillespie Replicate Our Example?

[, =10,000; t, = 7,000; It, =0
Kping = 0.0146((molecules/um?3)")s; kjicoociate = 3557

Our previous quadratic equation was:
kbind ) [LTJZ - (kbind ) /O + kbind "o + kdissociate) - [LT] + kbind ) /O "l = 0

Solving this for [LT] gives @ that
[LT] = 4,793 molecules/ pm?3

By law of conservation of mass,
L] = I, - [LT] = 5,207 [Tl = t,-[LT] = 2,207
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It Can! ©

ligand_receptor.gdat

0000000
0000000
OOOOOOO

0000000

3.00€03
0000000

1.00E03

time

I free_ligand bound_ligand free_receptor

Solving this for [LT] gives @ that
[LT] = 4,793 molecules/ pm?3

By law of conservation of mass,
L] = I, - [LT] = 5,207 [Tl = t,-[LT] = 2,207
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A note on Gillespie with multiple
different reactions

STOP: The question is how to generalize this idea to
n reactions, having rates k;, k,, ..., k,. Ideas?

Repeat the following steps for the entire simulation.

1. Define rying = Kping * [L] - [T] and rgiceociate =
kdlSSOClate [Lﬂ

2. Pick a wait time according to an exponential
distribution with A = 1 g + gicsociate -

3. The probability that the reaction is the forward
reaction Is Pr(L + T — LT) = ryind/(rbind + dissociate)-
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A note on Gillespie with multiple
different reactions

Answer: It's easier than you might imagine! We just
extend the definitions and sum over n terms.

Repeat the following steps for the entire simulation.

1. For each i, define r; = k; - (product of reactant
concentrations in equation /).

2. Pick a wait time according to an exponential
distribution withA=r; +r, + ... +71,.

3. The probability that the reaction is the i-th
reaction is Pr(L+ T — LT) = r;/ A.
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Again, great ideas don’t have to be
complicated

Exact stochastic simulation of coupled chemical reactions

DT Gillespie - The journal of physical chemistry, 1977 - ACS Publications

There are two formalisms for mathematically describing the time behavior of a spatially
homogeneous chemical system: The deterministic approach regards thetime evolution as a
continuous, wholly predictable process which is governedby a set of coupled, ordinary ...

v UYY Cited by 10346 Related articles All 47 versions

Repeat the following steps for the entire simulation.

1. For each i, define r; = k; - (product of reactant
concentrations in equation /).

2. Pick a wait time according to an exponential
distribution withA=r; +r, + ... +71,.

3. The probability that the reaction is the i-th
reaction is Pr(L+ T — LT) = r;/ A.
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BUILDING AN ACCURATE MODEL
OF CHEMOTAXIS WITH RULE-
BASED MODELING
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A "phosphorylation cascade” is the
engine of signal transduction

In a phosphorylation event, a wre
phosphoryl group (PO;) is ‘
attached to an organic
molecule.

ATP-ADP
cycle

Phosphoryl can be broken off
an adenosine triphosphate T

Sigma-Aldrich
(ATP) molecule, or exchanged

as part of dephosphorylation of
a phosphorylated molecule.
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Explaining the molecular basis for
signaling
Receptors form a complex on the inside of the cell

with CheA and CheW proteins, which is more stable
without ligand binding. Remember this fact!

1) Stimulus: ligand @ @ 3) Response: changed rotation direction

Extracellular Space >

Cellular membrane

_— A .
Cytoplasm T g CW rotation

-
-

D >
se b\ )C

2) Signaling Events

-
-
o
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Explaining the molecular basis for
signaling

When bound, CheA autophosphorylates, adding a
phosphoryl group to itself — not a strange concept
after autoregulation ©

1) Stimulus: ligand 0 G 3) Response: changed rotation direction
Extracellular Space >
Cellular membrane
/'
Cytoplasm _-~-~" CW rotation

®,
AP ADP > <®

2) Signaling Events
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Explaining the molecular basis for
signaling

When phosphorylated, CheA can pass on the
phosphoryl group to a molecule called CheY.

1) Stimulus: ligand 0 G 3) Response: changed rotation direction
Extracellular Space >
Cellular membrane
/'
Cytoplasm _-~-~" CW rotation

®,
AP ADP > <®

2) Signaling Events
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Explaining the molecular basis for
signaling

When phosphorylated CheY interacts with the
flagellar motor switch protein complex on the
flagellum, it changes rotation from CCW to CW.

1) Stimulus: ligand 0 c 3) Response: changed rotation direction
Extracellular Space >
Cellular membrane
/'
Cytoplasm _-~-~" CW rotation

®,
AP ADP > C@

2) Signaling Events
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Bacterial runs and tumbles

Recall: when the flagella are
all rotating CCW, they form
a bundle and propel the cell
forward at 20 pm/s.

STOP: What happens when
the flagellum rotates CW
instead?

https://www.sciencephoto.com/media/659604/
view/e-coli-bacterium-illustration
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Bacterial runs and tumbles

Recall: when the flagella are
all rotating CCW, they form
a bundle and propel the cell
forward at 20 pm/s.

STOP: What happens when
the flagellum rotates CW
instead?

Answer: Tumble!

https://www.sciencephoto.com/media/659604/

view/e-coli-bacterium-illustration
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Explaining the molecular basis for
signaling

If a ligand is detected, then the cell needs to
decrease CheY concentration to reduce tumbling,
dephosphorylating CheY with the CheZ enzyme.

1) Stimulus: ligand @ @ 3) Response: changed rotation direction

Extracellular Space >

Cellular membrane

p— o - ' i
Cytoplasm e CW rotation
l  CheW ] i

ATP  ADP > C *‘7

2) Signaling Events
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Explaining the molecular basis for
signaling
Remember: this whole process is more likely when

ligand is not present. So, less ligand means more
tumbling, and more ligand means more running.

1) Stimulus: ligand @ @ 3) Response: changed rotation direction

Extracellular Space >

Cellular membrane

_— A .
Cytoplasm T g CW rotation

oy

o e LS

2) Signaling Events
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The model is starting to get pretty
unwieldy and won't fit on one slide ...

We need three particle types corresponding to MCP
molecules, ligands, and bound complexes.

A bound complex molecule binds with CheA and
CheW and can be either phosphorylated or
unphosphorylated.

And CheY can be phosphorylated or
unphosphorylated too ...
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Changing ligand concentrations leads to
a change in molecular concentrations

The figure below plots phosphorylated CheA and
CheY at equilibrium in the absence of ligand.

phosphorylation.gdat

1.00E04
9.00E03
8.00E03
=
S 7.00E03 |
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1.00E03
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time

phosphorylated_CheY phosphorylated_CheA bound_ligand
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Changing ligand concentrations leads to
a change in molecular concentrations

The addition of 5,000 attractant ligand molecules
increases bound receptors, leading to less CheA

autophosphorylation, and less phosphorylated
CheY.

phosphorylation.gdat
1.00E04 4
9.00E03
8.00E03
7.00E03
6.00E03
5.00E03

Concentration

4.00E03
3.00E03 -
2.00E03
1.00E03 |\

0.00E00 . . - ; : , v ' ; : "
0.00E00 2.50E-01 5.00E-01 7.50E-01 1.00E00 1.25€E00 1.50E00 1.75E00 2.00E00 2.25E00 2.50E00 2.75E00 3.00E00

time

phosphorylated_CheY phosphorylated_CheA bound_ligand
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Changing ligand concentrations leads to
a change in molecular concentrations

If we instead add 100,000 attractant molecules, then

we see an even more drastic decrease in
phosphorylated CheA and CheY.

1.00E04 4
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time
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Changing ligand concentrations leads to
a change in molecular concentrations

So far, none of this is surprising, other than how fast
the cell can react. But what we have shown is just
part of the story ...

phosphorylation.gdat
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METHYLATION HELPS A
BACTERIUM ADAPT TO DIFFERING
CONCENTRATIONS
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E. coli is smarter than you think

Recall that in the absence of an attractant, CheW
and CheA readily bind to an MCP, leading to greater
autophosphorylation of CheA, which
phosphorylates CheY, increasing tumbling.

1) Stimulus: ligand 0 G 3) Response: changed rotation direction

A .
Cytoplasm _nmaie CW rotation

| v ‘\
ATP  ADP

Extracellular Space

Cellular membrane

2) Signaling Events
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E. coli is smarter than you think

E. coli also
through a c

nas a “memory” of past concentrations
nemical process called methylation, in

which (-CH

;) is added to a molecule.
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E. coli is smarter than you think

Every MCP receptor has four methylation sites. The
more sites that are methylated, the higher the

phosphorylation rate of CheA, therefore the higher
the phosphorylation of CheY, and higher tumbling.
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E. coli is smarter than you think

CheR methylates ligand-MCP complexes, so that if
the attractant concentration is high but stable, this
methylation will boost CheA autophosphorylation,
raising tumbling frequency to default levels.
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E. coli is smarter than you think

Methylation should be temporary and can be
undone with CheB, which works faster when
methylation is high.
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E. coli is smarter than you think

Tumbling frequency can be increased in two ways:
1. Phosphorylation cascade (low attractant)

2. Increased MCP methylation (when attractant
stabilizes).
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E. coli is smarter than you think

Tumbling frequency can be increased in two ways:
1. Phosphorylation cascade (low attractant)

2. Increased MCP methylation (when attractant
stabilizes).

#1 allows the cell to respond to absolute changes in
attractant concentration, and #2 means that the cell
can adapt based on relative changes in this

concentration.
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Building this model from scratch would
be a nightmare!

Each MCP could have one of 40 states:

* is it bound to a ligand? (2 states)

* is it bound to CheR? (2 states)

* is it phosphorylated? (2 states)

 which methylation state is it in? (5 states)

Adaptation Initially: Feed-forward
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Building this model from scratch would
be a nightmare!

Each MCP could have one of 40 states:

* is it bound to a ligand? (2 states)

* is it bound to CheR? (2 states)

* is it phosphorylated? (2 states)

 which methylation state is it in? (5 states)

STOP: Say that we only want to model the MCP-
ligand binding reaction, T + L — TL. How many of
the 40 possible states does this affect?
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Building this model from scratch would
be a nightmare!

Each MCP could have one of 40 states:

* is it bound to a ligand? (2 states)

* is it bound to CheR? (2 states)

* is it phosphorylated? (2 states)

 which methylation state is it in? (5 states)

Answer: 20, since it corresponds to the half of the
MCP states in which the MCP is unbound to ligand.
And so we will need 20 different reactions!

© 2024 Phillip Compeau




Building this model from scratch would

be a nightmare!

Fach MCP could have one of 40 states:

e s it
e |s it
e |s it

DOUNC
bouno

to a ligand? (2 states)
to CheR? (2 states)

phosp

nhorylated? (2 states)

 which methylation state is it in? (5 states)

The number of reactions needed to represent a
complex system grows very fast. This principle is
called combinatorial explosion.
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Building this model from scratch would
be a nightmare!

Each MCP could have one of 40 states:

* is it bound to a ligand? (2 states)

* is it bound to CheR? (2 states)

* is it phosphorylated? (2 states)

 which methylation state is it in? (5 states)

And yet, all 20 reactions can be summarized by one
rule: “regardless of the other states, allow unbound
MCPs to bind to ligand at some rate”.
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Rule-based modeling fixes
combinatorial explosion

Rule-based modeling: a modeling approach that
uses a small set of “rules” to generate a potentially
huge number of different reactions automatically.

Rule-based modeling of biochemical systems with BioNetGen

by JR Faeder - 2009 - Cited by 491 — Rule-based modeling involves the representation of
molecules as structured objects and molecular interactions as rules for transforming the...

If you're interested in seeing how to use rule-based
modeling to build a complete model of chemotaxis,

check out http://biologicalmodeling.org.
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Our bacterium can return to default
tumbling even with huge attractant boost

First, we add a relatively small amount of attractant,
setting [, equal to 10,000, which has essentially no
effect.
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Our bacterium can return to default
tumbling even with huge attractant boost

Setting [, equal to 100,000 causes a change, and
equilibrium is achieved in a few minutes.
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Our bacterium can return to default
tumbling even with huge attractant boost

With [, =1,000,000, the initial drop is bigger, but the
system still returns to equilibrium quickly.
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Our bacterium can return to default
tumbling even with huge attractant boost

When [, = 10,000,000, we see an even bigger jolt.
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Our bacterium can return to default
tumbling even with huge attractant boost

The system is still robust if /[, =100,000,000.

adaptation.gdat
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Yet it seems like we are missing
something

But according to the run and tumble model, the

direction that a bacterium is moving at any point in
time is random! So why would a decrease in
tumbling frequency help E. coli move toward an

attractant?
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THE BEAUTY OF E. COLI’'S ROBUST
RANDOMIZED EXPLORATION
ALGORITHM
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Let's model the chemotaxis algorithm!

Recall the “run and tumble model”: E. coli alternates
between running and tumbling in place.
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Courtesy: Sandy Parkinson
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A simple chemotaxis algorithm

Take the following actions for a finite number n of
steps.

* Select a random direction of movement (uniform
random decimal between 0 and 360 degrees)

* Randomly select a duration of movement.

* Move the bacterium to a new position indicated
by the direction and duration of movement.
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A simple chemotaxis algorithm

Take the following actions for a finite number n of
steps.

* Select a random direction of movement (uniform
random decimal between 0 and 360 degrees)

» Randomly select a duration of movement.

* Move the bacterium to a new position indicated
by the direction and duration of movement.

STOP: How should we select the duration of
movement?
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A simple chemotaxis algorithm

Take the following actions for a finite number n of
steps.

* Select a random direction of movement (uniform
random decimal between 0 and 360 degrees)

» Randomly select a duration of movement.

* Move the bacterium to a new position indicated
by the direction and duration of movement.

Answer: We are waiting for the next change of
direction, so we use an exponential distribution!
(With mean = experimentally verified 1.0 second.)
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Mimicking a real environment

Let’s start a bacterium
at (0,0) in an attractant
gradient that is

maximized at a blue
“goal” (1500, 1500).

poisiton in pm
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Mimicking a real environment

Let’s start a bacterium
at (0,0) in an attractant
gradient that is

maximized at a blue
“goal” (1500, 1500).

This shows three
different walks, ending
at the red points.

poisiton in pm
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This algorithm doesn’t really model

chemotaxis

STOP: This is just a
random walk with

variable run times, so

the bacterium won't
get any closer to a
goal. How does the
real chemotaxis
algorithm differ from
it?
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This doesn’t really model chemotaxis

Answer: Recall that
the duration of a
bacterium’s run
depends on the
relative change in
attractant
concentration that it
detects.
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A more realistic chemotactic algorithm

Take the following actions for a finite number n of
steps.

* Select a random direction of movement (uniform
random decimal between 0 and 360 degrees)

» Randomly select a duration of movement, such
that the larger the difference A[L] between the
concentration at the cell’s current point andits
previous point, the longer the walk.

* Move the bacterium to a new position indicated
by the direction and duration of movement.
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A more realistic chemotactic algorithm

Note: This step may seem tricky, but we still use an
exponential distribution. The mean “wait time” to
stop and tumble is simply proportional to A[L].

» Randomly select a duration of movement, such
that the larger the difference A[L] between the
concentration at the cell’s current point andits
previous point, the longer the walk.
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A tiny change made a big difference

The only change in

our algorithm is “if the
current concentration

is getting larger, run
for longer”. And yet

we are able to hone in

on the goal quickly.
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From 3 to 500 simulations
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From 3 to 500 simulations

STOP: Why do you
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From 3 to 500 simulations

Average distance to highest concentration

STOP: Why do you
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Tumbling frequency is robust to
disturbance across species

If we change the

default tumblin g skl R
frequency (when A[L]
= 0) from 1.0 secs to
0.2 secs, the “rubber 2

band” is too tight.
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Tumbling frequency is robust to
disturbance across species

And if we change it to
every 5.0 secs, then
the rubber band is too
flexible, and cells run
past the goal without
being able to stop.
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Tumbling frequency is robust to

disturbance across species

Trying a collection of
different frequency
values shows that
bacteria are able to
quickly find and stay
at food when they
tumble every ~1.0
second.
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Bacteria are even smarter than we

thought

Saragosti et al. 2011: When moving toward an
attractant, the bacterium makes only small
directional changes.

https://www.youtube.com/watch?v=F6QMU3KD7zw
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A remark on solving computational
problems

Note: If our problem is to find a sugar cube, then
there isn't a computational problem to solve — just
move greedily in the direction of largest increase.
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A remark on solving computational
problems

Note: If our problem is to find a sugar cube, then
there isn't a computational problem to solve — just
move greedily in the direction of largest increase.

And yet what nature has evolved is somehow a
more robust approach that relies on probability,
despite having no real intelligence/communication.
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A remark on solving computational
problems

Note: If our problem is to find a sugar cube, then
there isn't a computational problem to solve — just
move greedily in the direction of largest increase.

And yet what nature has evolved is somehow a
more robust approach that relies on probability,
despite having no real intelligence/communication.

This will be a theme of our work when we discuss
more about algorithms in nature.
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CONCLUSION: TOWARD A
COMPLETE MODEL OF THE
BACTERIAL CELL
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Once we have a model of chemotaxis,
what should we do with it?

We could model every process for a very simple
bacterium (M. genitalum, only 525 genes).
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Once we have a model of chemotaxis,
what should we do with it?

We could model every process for a very simple
bacterium (M. genitalum, only 525 genes).

I//

Then build a “super-model” that links up these
smaller models into a model of the cell.

HT™ML] A whole-cell computational model predicts phenotype from genotype
JR Karr, JC Sanghvi, DN Macklin, MV Gutschow... - Cell, 2012 - Elsevier

Understanding how complex phenotypes arise from individual molecules and their
interactions is a primary challenge in biology that computational approaches are poised to
tackle. We report a whole-cell computational model of the life cycle of the human pathogen
Mycoplasma genitalium that includes all of its molecular components and their interactions.
An integrative approach to modeling that combines diverse mathematics enabled the
simultaneous inclusion of fundamentally different cellular processes and experimental ...

v Y9 Cited by 1249 Related articles All 39 versions
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‘ ‘member replication?

The whole cell model showed that the lengths of
initiation and replication are inversely correlated. In
other words, the length of replication is robust to
small stochastic changes in the cell.
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‘ ‘member replication?

Why? If initiation of replication is slow, the cell
builds up a larger surplus of ANTP molecule used by
DNA polymerase during replication.
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Doing biological research with a
computational model

Key point: This was a new biological observation
made by a purely computational model that was
outside known research at the time.
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And yet biology remains difficult ...

Key point: This was a new biological observation
made by a purely computational model that was
outside known research at the time.

Unfortunately, still no model of this sophistication
for E. coli has been published.

HT™ML] A whole-cell computational model predicts phenotype from genotype
JR Karr, JC Sanghvi, DN Macklin, MV Gutschow... {Cell, 2012|- Elsevier

Understanding how complex phenotypes arise from individual molecules and their

interactions is a primary challenge in biology that computational approaches are poised to
tackle. We report a whole-cell computational model of the life cycle of the human pathogen
Mycoplasma genitalium that includes all of its molecular components and their interactions.

An integrative approach to modeling that combines diverse mathematics enabled the
simultaneous inclusion of fundamentally different cellular processes and experimental ...

v YY Cited by 1249 Related articles All 39 versions
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As of 2021, they were 43% finished

The E. coli Whole-Cell Modeling Project

Gwanggyu Sun # 1 Travis A Ahn-Horst # 1, Markus W Covert '

Affiliations + expand
PMID: 34242084 DOI: 10.1128/ecosalplus.ESP-0001-2020

Abstract

The Escherichia coli whole-cell modeling project seeks to create the most detailed computational
model of an E. coli cell in order to better understand and predict the behavior of this model
organism. Details about the approach, framework, and current version of the model are discussed.
Currently, the model includes the functions of 43% of characterized genes,|with ongoing efforts to
include additional data and mechanisms. As additional information is incorporated in the model, its
utility and predictive power will continue to increase, which means that discovery efforts can be
accelerated by community involvement in the generation and inclusion of data. This project will be
an invaluable resource to the E. coli community that could be used to verify expected physiological
behavior, to predict new outcomes and testable hypotheses for more efficient experimental design
iterations, and to evaluate heterogeneous data sets in the context of each other through deep
curation.
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