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Central Dogma of Molecular Biology:
DNA = RNA = Protein
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Central Dogma of Molecular Biology:
DNA = RNA - Protein

Transcribed RNA

DNA

Transcribed RNA

GUGAAACUUUUUCCUUGGUUUAAUCAAUAU

5' GTGAAACTTTTTCCTTGGTTTAATCAATAT 3
3' CACTTTGAAAAAGGAACCAAATTAGTTATA 5

CACUUUGAAAAAGGAACCAAAUUAGUUAUA
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Central Dogma of Molecular Biology:
DNA = RNA - Protein

Translated peptides

Transcribed RNA
DNA

Transcribed RNA

Translated peptides

—>
GluThrPheSerLeuVal***SerIle

***AsnPhePheLeuGlyLeulleAsn
ValTyrGlnAsnPheTrpProPheLeulys

GUGAAACUUUUUCCUUGGUUUAAUCAAUAU

5' GTGAAACTTTTTCCTTGGTTTAATCAATAT 3'
3' CACTTTGAAAAAGGAACCAAATTAGTTATA 5'

CACUUUGAAAAAGGAACCAAAUUAGUUAUA

HisPheLysLysArgProLysIleLeulle
PheSerLysGlyGlnAsnLeu***Tyr
SerValLysGluLysThr***AspIle

e S—
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The Central Dogma in Action

DNA is transcribed
Into messenger RNA
(MRNA), which then
leaves the nucleus.

Ribosomes pass down
the mRNA strand and
build a growing strand
of amino acids based
on codons (triplets of
nucleosides).

"‘ é‘. \ ‘::"\ ,'-: ‘:\ ‘:‘\ J\'»{“\x{
NN NN NGRS
AR DU INEVN T

mRNA Transcription

AT

Cell membrane
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Distribution of Human Protein Lengths

Length heavily skews
toward shorter proteins
(much like synteny
block fragment lengths). | | =

. Range: 50 — 34000
amino acids.

* Median length: 375
amino acids (= 1125 o, Gene Lo

base pa i rS Of D NA) . https://biology.stackexchange.com/questions/48110/how-is-the-size-of-a-

gene-defined/48117#48117
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The Estimate of Human Genes Has
Decreased Over Time

GENE TALLY

Scientists still don’t agree on how many protein-making genes the human
genome holds, but the range of their estimates has narrowed in recent years.
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Fruit Fly A
44% oo 23andMe

98%

What percent
of your genes
do you share?

www.23andme.com




This is Misleading

Mouse and Human Genetic Similarities

Mouse chromosomes Human chromosomes
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Courtesy Lisa Stubbs
Oak Ridge National Laboratory
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Three Questions

STOP: What practical purpose might rearranging
genes serve for an organism¢
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Three Questions

STOP: What practical purpose might rearranging
genes serve for an organism¢

STOP: Your cells all have (essentially) the same
genome, so how can they perform different
functions?
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Three Questions

STOP: What practical purpose might rearranging
genes serve for an organism¢

STOP: Your cells all have (essentially) the same
genome, so how can they perform different
functions?

STOP: How can the same cell perform different
functions at different times?
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One Answer to Three Questions: Gene
Regulation (a.k.a. “Expression”)

Gene regulation: ¢ T
o o ossRIMN\&
the ability of the e
cell to increase - oG b =
M é\'v\d'w\o) sye Tafosﬂ:\' RN
(activate) or D Ao

decrease (repress)
the production of

RNA/protein (- >

No tvanscription

corresponding to a . e &) — >
I 3 Binding sire e
glven gene° foc -\'\r\'\fs3 YePressov ,Kﬂc?resso‘( et

eneral dvanscaipfion

acYors k' ANA polymerase

https://www.khanacademy.org/science/biology/gene-regulation/gene-regulation-in-
eukaryotes/a/eukaryotic-transcription-factors
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From Genomes to Protein Analysis

Classic analogy:
* Genome: sum total of a cell’s DNA = cookbook

* Transcriptome: a cell’s mRNA = photocopied
recipe

 Proteome: set of proteins present in given cell =
today’s menu
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From Genomes to Protein Analysis

Classic analogy:

* Genome: sum total of a cell’s DNA = cookbook

* Transcriptome: a cell’s mRNA = photocopied
recipe

 Proteome: set of proteins present in given cell =
today’s menu

Our question: we have worked largely with
genomes, but how can we measure the amount of
each type of protein in a cell at a given time?
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Genome Sequencing Had a Revolution,
But Proteins are Still Waiting

Although we can read long genomes with 10 billion
base pairs, isolating and reading proteins is very

difficult.
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Genome Sequencing Had a Revolution,
But Proteins are Still Waiting

Although we can read long genomes with 10 billion
base pairs, isolating and reading proteins is very
difficult. For now...

0 Quantumsi
nautitus "\’
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Genome Sequencing Had a Revolution,
But Proteins are Still Waiting

Although we can read long genomes with 10 billion

base pairs, isolating and reading proteins is very
difficult. For now...

Instead, we will take a middle ground and use RNA-
sequencing: reading the RNA present in a given
biological sample as a proxy for protein levels.
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Genome Sequencing Had a Revolution,
But Proteins are Still Waiting

Although we can read long genomes with 10 billion

base pairs, isolating and reading proteins is very
difficult. For now...

Instead, we will take a middle ground and use RNA-
sequencing: reading the RNA present in a given
biological sample as a proxy for protein levels.

But why is reading RNA easier than reading the
protein that it produces?
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It's Called a “Dogma” for a Reason

DNA replication
(DNA -> DNA)

DNA Polymerase

DO dNA
RNA replication

reverse transcription
Lranscription (DNA -> RNA) (RNA-> RNA)

Rev.Transcriptase RNA Polymerase

LAY (+) Sense RNA (-) Sense RNA pfTT IupfTT P T,

translation RNA Dependent
(RNA -> Protein) RNA Polymerase
Ribosomes

O-0-0-0-0-0-0O rrotein

https://en.wikipedia.org/wiki/Central_dogma_of_molecular_biology#/media/File:
Extended_Central_Dogma_with_Enzymes.jpg
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Retroviruses Use Reverse Transcriptase
to Convert their RNA to DNA

Reverse Transcriptase
Retrovirus

* 9. @

Integration into
host cell genome

29

duplicates of
% vural RNA

Retrovirus
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RNA Sequencing = RNA fragments +
DNA Transcriptase + DNA Sequencing

Extract many copies of —
different RNA transcripts e

from a sample

Note: The lengths of transcripts vary, and the
amount of each transcript varies due to expression.
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RNA Sequencing = RNA fragments +
DNA Transcriptase + DNA Sequencing

Extract many copies of —
different RNA transcripts e

from a sample

Fragment into smaller il
pieces (to match length — S

demanded by sequencer) S i e
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RNA Sequencing = RNA fragments +
DNA Transcriptase + DNA Sequencing

Extract many copies of
different RNA transcripts
from a sample

Fragment into smaller T Pt
pieces (to match length — _—
demanded by sequencer) — —

Apply reverse transcriptase, s eemaaleniin el el

sequence, and infer RNA
fragments by complementarity ...UGCCUAGUA...  ...AUGCUCGA...
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RNA Sequencing = RNA fragments +
DNA Transcriptase + DNA Sequencing

So now we have a bunch of RNA fragments
corresponding to our sample. What do we do?

Apply reverse transcriptase, SmcteamenTe o apEer GO
sequence, and infer RNA
fragments by complementarity ...UGCCUAGUA... . +AUGCUCGA...
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PART 1: SPLICE JUNCTION
IDENTIFICATION
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We Have RNA ... So What Do We Do?

Once again, we use DNA to help us ...

* Input: a collection of RNA strings.

* Output: for each RNA string, a collection of
locations where the reverse transcription of these
strings (or their reverse complements) “align well”
against the reference genome.
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We Have RNA ... So What Do We Do?

Once again, we use DNA to help us ...

* Input: a collection of RNA strings.

* Output: for each RNA string, a collection of
locations where the reverse transcription of these
strings (or their reverse complements) “align well”
against the reference genome.

STOP: Where have we seen this problem before?
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We Have RNA ... So What Do We Do?

Once again, we use DNA to help us ...

* Input: a collection of RNA strings.

* Output: for each RNA string, a collection of
locations where the reverse transcription of these
strings (or their reverse complements) “align well”
against the reference genome.

Answer: It seems like it is just read mapping!
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Aligning Sequenced Fragments to a
Reference Genome

Aligning fragments Sl i S

against reference =

genome e e

STOP (biologists): There is a major flaw in this
picture ... what is it?
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Aligning Sequenced Fragments to a
Reference Genome

Aligning fragments eenn L

against reference = =

genome e L

STOP (biologists): There is a major flaw in this
picture ... what is it?

Answer: Most of the human genome (98-99%) is not
made of genes!
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Viruses and Prokaryotes Have Dense
Genomes

J Scale 18 kb} | wuhCori
NC_0845512v2: 5, 000| 16, 808| 15, aaa| 20, 008| 25, 000|
UniFrot Froteins (repib missing due to frameshift)
LB >> 55555555555 533353 533353353353 353 35333335333 33333333333333333333333353 )] S glycoprote in DRI ESRRREE nsé i [ 355355
pR1ab [ >>> ] BE N 0

E protein; sM proteinl nsSl B
M protein [EEE

| ns7o |
UniProt highlighted "Regions of Interest"
Receptor-bindi... B RNA-b indinc Bl
binds ACE2 Dimerization |§

Fusion peptide |
Heptad repeat 1]
Heptad repeat 2|
UniProt Protein Annotations (configure track to show more)

Transmembrane N | | 1] | 111] m 1 Il |

SARS-CoV

f» 7y fﬁﬂﬂ? e,

10,000

Courtesy: EcoCyc 42,000 ' 44,000

E. Coli (first 50k bp)

e D — 1 i e —"
46, 48,000
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Human Genes are Sparse, So We Need
an Updated Picture

Gene 1 Gene 2 Gene 3
Aligning fragments S e
against reference e Wil —
genome ——— petm il
|} |28 n |48 1 le’@ M [s@ puu M [12¢

7 T R YT TR WSRO TS VWV T VW T W WY TR W VI_—nT W W W@ ury v —"" e vrww ey v rew v

Genes, NCBI Homo sapiens Annotation Release 109.20200228
tMTOR
TMTHFR
NFPE

1 ESTML

First ~100M bp of human chromosome 1

STOP (biologists): This is still totally wrong. Why?
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The Problem is "Split Genes”

1993 Nobel: in eukaryotes, most genes are split
between exons (coding) and introns (non-coding).

m Intron

e Exon boh BNA o

_——

mRNA

Intron
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Borrowing a Slide from Carl Kingsford

Prokaryotic (bacterial) genes look like this:

Eukaryotic genes usually look like this:

exon intron intron intron exon

Introns are
thrown away

mRNA:

Exons are concatenated together

This spliced RNA is what is
translated into a protein.
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Exon/Intron Statistics

* Genes have on average ~9 exons (and ~8 introns).

* Introns tend to be longer than exons.

 Exon lengths are also skewed shorter.

Frequency

Human intron length distribution (Expanded)
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https://www.researchgate.net/figure/a-Frequency-of-intron-length-distributions-for-human-genome-a-and-its-expansion-b_fig4_7498905
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Two Possibilities for Where Fragment

Aligns
Hypothetical gene in reference genome
Exon Intron Exon | Intron ] Exon
fragment 1

So, we have two possibilities for an RNA fragment.
1. The fragment falls entirely within an exon.

© 2024 Phillip Compeau




Two Possibilities for Where Fragment

Aligns
Hypothetical gene in reference genome
Exon | Intron | Exon I Intron I Exon
fragment 1 fragment 2 (solid ends)

So, we have two possibilities for an RNA fragment.
1. The fragment falls entirely within an exon.
2. The fragment spans exons across an intron(s).
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Two Possibilities for Where Fragment

Aligns
Hypothetical gene in reference genome
Exon Intron Exon | Intron ]l Exon
fragment 1 fragment 2 (solid ends)

So, we have two possibilities for an RNA fragment.
1. The fragment falls entirely within an exon.
2. The fragment spans exons across an intron(s).

STOP: Which of these will align well against the
reference genome?
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Two Possibilities for Where Fragment

Aligns
Hypothetical gene in reference genome
Exon Intron Exon | Intron ]l Exon
fragment 1 fragment 2 (solid ends)

So, we have two possibilities for an RNA fragment.
1. The fragment falls entirely within an exon.
2. The fragment spans exons across an intron(s).

Answer: Type 1 will align against the reference, but
type 2 does not occur contiguously in the genome.
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Two Possibilities for Where Fragment

Aligns
Hypothetical gene in reference genome
Exon | Intron | Exon I Intron I Exon
fragment 1 fragment 2 (solid ends)

So, we have two possibilities for an RNA fragment.
1. The fragment falls entirely within an exon.
2. The fragment spans exons across an intron(s).

Splice junction: the boundary between an exon and
an intron.
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Two Possibilities for Where Fragment

Aligns
Hypothetical gene in reference genome
Exon Intron Exon | Intron || Exon
fragment 1 fragment 2 (solid ends)

This is a feature, not a bug — after finding all the
“type 1” reads that align well, the remaining
fragments can help us find splice junctions!

Splice junction: the boundary between an exon and
an intron.
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An Overview of “TopHat” for Splice
Junction Discovery

www.ncbi.nlm.nih.gov » pmc » articles » PMC2672628 v

TopHat: discovering splice junctions with RNA-Seq - NCBI
by C Trapnell - 2009 - Cited by 9942 - Related articles

Mar 16, 2009 - TopHat maps reads to splice sites in a mammalian genome at a rate of ~2.2
million reads per CPU hour. Rather than filtering out possible splice ...
INTRODUCTION - METHODS - RESULTS - DISCUSSION

Step 1: Assemble Exons

1. Align everything that aligns to the reference
genome (and form a consensus of fragments).
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An Overview of “TopHat” for Splice
Junction Discovery

www.ncbi.nlm.nih.gov » pmc » articles » PMC2672628 v

TopHat: discovering splice junctions with RNA-Seq - NCBI
by C Trapnell - 2009 - Cited by 9942 - Related articles

Mar 16, 2009 - TopHat maps reads to splice sites in a mammalian genome at a rate of ~2.2
million reads per CPU hour. Rather than filtering out possible splice ...
INTRODUCTION - METHODS - RESULTS - DISCUSSION

Step 1: Assemble Exons

1. Align everything that aligns to the reference
genome (and form a consensus of fragments).

2. If we see a gap < ~70 nt, then join the two

fragments, since odds are that this is not an
Intron.

© 2024 Phillip Compeau




An Overview of “TopHat” for Splice
Junction Discovery

Step 2: Find splice junctions with “type 2” fragments

Exon " GT AG | Exon

Type 2 fragment alignment

98% of introns start with GT and end with AG, so we

can find all such candidate introns between exons
and try to align type 2 fragments against them.
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An Overview of “TopHat” for Splice
Junction Discovery

Step 2: Find splice junctions with “type 2” fragments

Exon " GT AG | Exon

Type 2 fragment alignment

98% of introns start with GT and end with AG, so we

can find all such candidate introns between exons
and try to align type 2 fragments against them.

STOP (biologists): Why is this wrong?
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Just Because Exons are Consecutive
Doesn’t Mean They Are Spliced Together

[ Exon 1 n2 3 Exon4 n5
DNA \WMMWWWWWWWW
Exon 1 Exon 2 Exon 3 Exon4 Exon 5
RNA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
I Alternative Splicing ]
1 2 3 4 5 1 2 4 5 1 2 3 5
MRNA ettt gy e T e s e

Translation Translation Translation

Protein A Protein B Protein C

Alternative splicing: exons can be chained in
different ways to produce multiple protein isoforms.
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Just Because Exons are Consecutive
Doesn’t Mean They Are Spliced Together

[ Exon 1 n2 3 Exon4 n5
DNA \WMMWWWWWWWW
Exon 1 Exon 2 Exon 3 Exon4 Exon 5
RNA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
I Alternative Splicing ]
1 2 3 4 5 1 2 4 5 1 2 3 5
MRNA ettt gy e T e s e

Translation Translation Translation

Protein A Protein B Protein C

Wang et al., 2008: alternative splicing may affect as
many as 95% of human genes.
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Just Because Exons are Consecutive
Doesn’t Mean They Are Spliced Together

[ Exon 1 n2 3 Exon4 n5
DNA WWW%WW%%%WWWWN%W
Exon 1 Exon 2 Exon 3 Exon 4 Exon 5
RNA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
I Alternative Splicing ]
1 2 3 4 5 1 2 4 5 1 2 3 5
MRNA e e e B e e e e A T

Translation Translation Translation

Protein A Protein B Protein C

Ponomarenko et al., 2016: there could be between
600,000 and 6 million human isoforms.
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Hunting for Splice Junctions

Exon Intron Exon | Intron || Exon

STOP: How can we use our RNA fragments to find
splicing junctions?
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Hunting for Splice Junctions

Exon Intron Exon | Intron || Exon

STOP: How can we use our RNA fragments to find
splicing junctions?

Answer: Perform a special “spliced” alignment of
type 2 fragments against the ends of “nearby” exons.

© 2024 Phillip Compeau




Hunting for Splice Junctions

Exon Intron Exon | Intron || Exon

STOP: In the above picture, which exon pairs do we
conclude are splice junctions?
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Hunting for Splice Junctions

Exon Intron Exon | Intron || Exon

STOP: In the above picture, which exon pairs do we
conclude are splice junctions?

Answer: Exons 1 and 3, as well as exons 2 and 3.
But exons 1 and 2 aren’t a splice junction.
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Performing a Spliced Alignment

Step 2: Find splice junctions with “type 2” fragments

1. For every exon produced in step 1, use GT-AG
rule to find all potential neighbor exons up to m
nucleotides downstream (m ~20k bp in practice).

Exon Exon
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Performing a Spliced Alignment

Step 2: Find splice junctions with “type 2” fragments

1. For every exon produced in step 1, use GT-AG
rule to find all potential neighbor exons up to m
nucleotides downstream (m ~20k bp in practice).

2. Form 2k-mer x by joining k-mers (k ~5 bp) at
ends of two exons and search through all type 2
RNA-seq reads for exact matches against x.

< m nucleotides apart

Hunt through reads for CAGTAAATGC
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Performing a Spliced Alignment

Step 2: Find splice junctions with “type 2” fragments

1. For every exon produced in step 1, use GT-AG
rule to find all potential neighbor exons up to m
nucleotides downstream (m ~20k bp in practice).

2. Form 2k-mer x by joining k-mers (k ~5 bp) at
ends of two exons and search through all type 2
RNA-seq reads for exact matches against x.

STOP: Once we find these exact matches, what do
we do?
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Performing a Spliced Alignment

Step 2: Find splice junctions with “type 2” fragments

1. For every exon produced in step 1, use GT-AG
rule to find all potential neighbor exons up to m
nucleotides downstream (m ~20k bp in practice).

2. Form 2k-mer x by joining k-mers (k ~5 bp) at
ends of two exons and search through all type 2
RNA-seq reads for exact matches against x.

Answer: We have found seeds, so now we just need
to extend.
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Extending Seed Alignments
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Extending Seed Alignments

< m nucleotides apart

Hunt through reads for
CAGTAAATGC
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Extending Seed Alignments

Hunt through reads for

CAGTAAATGC
Perform alignment of
concatenated exons | [~ CAGTAIRATGC. e

against any fragments N T
that match seed. Keep | .. CAGTA AATGC.rvcrnrnrens
if above a threshold.
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Tophat Step 2 in Summary

Step 2: Find splice junctions with “type 2” fragments

1. For every exon produced in step 1, use GT-AG
rule to find all potential neighbor exons up to m
nucleotides downstream (m ~20k bp in practice).

2. Form 2k-mer x by joining k-mers (k ~5 bp) at
ends of two exons, and search through all type 2
RNA-seq reads for exact seed matches against x.

3. Determine whether any of the seed hits are valid
oy extending these seeds in either direction.
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Tophat Step 2 in Summary

Results: We mapped the RNA-Seq reads from a recent mammalian RNA-Seq experiment and recovered
more than 72% of the splice junctions reported by the annotation-based software from that study, along
with nearly 20 000 previously unreported junctions. The TopHat pipeline is much faster than previous
systems, mapping nearly 2.2 million reads per CPU hour, which is sufficient to process an entire RNA-Seq
experiment in less than a day on a standard desktop computer. We describe several challenges unique to ab
initio splice site discovery from RNA-Seq reads that will require further algorithm development.

Au/ton@tipn
of years of
rese‘ﬁrch in one day

ER
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PART 2: TRANSCRIPT ASSEMBLY
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Recall Our Original Problem

Extract many copies of
different RNA transcripts
from a sample

Fragment into smaller T Pt
pieces (to match length — _—
demanded by sequencer) — —

Apply reverse transcriptase, P oeae e L e Nete

sequence, and infer RNA
fragments by complementarity ...UGCCUAGUA...  ...AUGCUCGA...
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Recall Our Original Problem

Extract many copies of
different RNA transcripts

from a sample

Goal: Can we re-assemble these transcripts?
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Recall Our Original Problem

Extract many copies of —
different RNA transcripts e

from a sample

Goal: Can we re-assemble these transcripts?

* Given: A collection of RNA-sequencing reads.
 Find: The RNA transcripts present in the dataset.
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Another Way of Asking this Question

Note that we have already learned two things from
the sequencing reads.

 Sequence identity of exons (and location in
genome).

» Splice junctions between exons in dataset.

* Given: A collection of RNA-sequencing reads.
 Find: The RNA transcripts present in the dataset.
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Another Way of Asking this Question

Note that we have already learned two things from
the sequencing reads.

Sequence identity of exons (and location in
genome).

Splice junctions between exons in dataset.

Given: The exons and splice junctions produced
from a collection of RNA-sequencing reads.

Find: The RNA transcripts present in the dataset.
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Another Way of Asking this Question

[ Exon 1 n2 3 Exon4 n5
DNA WMNWWD&WW%WWM\WW\{%W
E 1 Exon 2 Exon 3 Exon 4 Exon 5
N o O N
I Alternative Splicing ]
1 2 3 4 5 1 2 4 5 1 2 3 5
mMRNA  —+—— e e e el iideiaisiisioisiiisisiialol -

so, inferring transcripts = knowing exon order.

Given: The exons and splice junctions produced
from a collection of RNA-sequencing reads.

Find: The RNA transcripts present in the dataset.
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Another Way of Asking this Question

[_> Exon 1 Exon 2 Exon 3 Exon4 Exon 5
DNA  DREMREN T DD PRI P DD RBMRING O P DD DB DD DD ODPDDP DGR
Exon 1 Exon 2 Exon 3 Exon4 Exon 5
RNA llllllllllllllllllllllllllllllllllllllllllllllllll
I Alternative Splicing ]
1 2 3 4 5 1 2 4 5 1 2 3 5
MRNA  sisiisisisisisisislinisinbeaisiniisiinisisislaiioy -y Eammma e s a— . i e N

A

so, inferring transcripts = knowing exon order.

Given: The exons and splice junctions produced
from a collection of RNA-sequencing reads.

Find: The ordering of exons for each transcript
present in the data.
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Another Way of Asking this Question

That is, the following two problems are equivalent
(although they aren’t well-defined computationally).

* Given: A collection of RNA-sequencing reads.
 Find: The RNA transcripts present in the dataset.

* Given: The exons and splice junctions produced
from a collection of RNA-sequencing reads.

* Find: The ordering of exons for each transcript
present in the data.
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Cufflinks Uses a Splice Graph to
Assemble Transcripts

www.nature.com » nature biotechnology » letters

Transcript assembly and quantification by RNA-Seq reveals ...

by C Trapnell - 2010 - Cited by 9562 - Related articles
May 2, 2010 - To test Cufflinks, we sequenced and analyzed >430 million paired 75-bp RNA-
Seq reads from a mouse myoblast cell line over a differentiation ...

Given the exons and splice junctions we have
inferred, we can form a splice graph for each gene:

 Nodes: exons

» Edges: connect exon x to y with a directed edge if
there is a splice junction x | v.

© 2024 Phillip Compeau




Cufflinks Uses a Splice Graph to
Assemble Transcripts

STOP: What type of graph is the splice graph?

Given the exons and splice junctions we have
inferred, we can form a splice graph for each gene:

 Nodes: exons

» Edges: connect exon x to y with a directed edge if
there is a splice junction x | v.

© 2024 Phillip Compeau




Cufflinks Uses a Splice Graph to
Assemble Transcripts

Answer: A DAG - a cycle would mean that order of
exons in original gene isn’t preserved in RNA.

©,

©
\\< a0
(4 (®
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Example Splice Graph

Courtesy: Carl Kingsford

Splice graphs can be complicated for real genes.
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Example Splice Graph

=== . /ﬁ\'
= . ﬁ//

0 ....w...
0 0 0-0
0

Courtesy: Carl Kingsford

STOP: What are we looking for in this graph if we
are trying to reconstruct all transcripts?
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Path Edge Covers = Sets of Transcripts

Given a DAG, a path edge cover is a collection of
paths whose union contains all edges.

The paths (2, 4, 5, 8), (1,6,9), (1,4, 5, 9),
(1,4,7,8), (3,7, 8) form a path edge cover below.

©
\\< a0
(4 (®

© 2024 Phillip Compeau
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Path Edge Covers = Sets of Transcripts

Given a DAG, a path edge cover is a collection of
paths whose union contains all edges.

STOP: What kind of path edge cover are we looking
for in a splice graph?

* Given: The exons and splice junctions produced
from a collection of RNA-sequencing reads.

* Find: The ordering of exons for each transcript
present in the data.
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Path Edge Covers = Sets of Transcripts

Given a DAG, a path edge cover is a collection of
paths whose union contains all edges.

Answer: If we follow parsimony, then we want a
path edge cover to have as few paths as possible!

Minimum Path Edge Cover Problem
* Input: A directed graph.

* Output: A path edge cover of the graph having as
few paths as possible.
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Path Edge Covers = Sets of Transcripts

Given a DAG, a path edge cover is a collection of
paths whose union contains all edges.

Unfortunately, this problem is NP-Hard ... ®

Minimum Path Edge Cover Problem
* Input: A directed graph.

* Output: A path edge cover of the graph having as
few paths as possible.
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Path Edge Covers = Sets of Transcripts

Given a DAG, a path edge cover is a collection of
paths whose union contains all edges.

Unfortunately, this problem is NP-Hard ... but it is
polynomial-time solvable for a DAG (Dilworth’s
theorem).

Minimum Path Edge Cover Problem
* Input: A directed acyclic graph.

* Output: A path edge cover of the graph having as
few paths as possible.

© 2024 Phillip Compeau




This Might Seem Simplistic, but ...

www.nature.com » nature biotechnology » letters

Transcript assembly and quantification by RNA-Seq reveals ...
by C Trapnell - 2010 - Cited by 9562 - Related articles

May 2, 2010 - To test Cufflinks, we sequenced and analyzed >430 million paired 75-bp RNA-
Seq reads from a mouse myoblast cell line over a differentiation ...

... (a version of) this approach became the software
program Cufflinks, which found over 3,000 new
putative mouse transcripts in 2010.
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PART 3: TRANSCRIPT
QUANTIFICATION

2024 Phillip Compeau



Recall our Original Figure

Extract many copies of
different RNA transcripts
from a sample

Fragment into smaller T Pt
pieces (to match length — _—
demanded by sequencer) — —

Apply reverse transcriptase, P oeae e L e Nete

sequence, and infer RNA
fragments by complementarity ...UGCCUAGUA...  ...AUGCUCGA...
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Now That We Know the Transcripts, Can
We Determine Their Abundances?

Extract many copies of —
different RNA transcripts e

from a sample

Fragment into smaller Pt
pieces (to match length - —_— s S
demanded by sequencer) — T e

» Given: A collection of RNA-sequencing reads and
a collection of transcripts inferred from them.

* Find: The abundance of each transcript present.
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Let’s Quantify What We Want to Infer

Extract many copies of —
different RNA transcripts e

from a sample

* 9 red transcripts x 500 nt = 4500 nt
* 4 green transcripts x 750 nt = 3000 nt
* 6 blue transcripts x 1000 nt = 6000 nt

© 2024 Phillip Compeau



Let’s Quantify What We Want to Infer

Extract many copies of —
different RNA transcripts e
from a sample

* 9 red transcripts x 500 nt = 4500 nt
* 4 green transcripts x 750 nt = 3000 nt
* 6 blue transcripts x 1000 nt = 6000 nt

As percentage of the total, we have
@ = (4500/13500, 3000/13500, 6000/13500)
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Let’s Quantify What We Want to Infer

Extract many copies of —
different RNA transcripts e
from a sample

* 9 red transcripts x 500 nt = 4500 nt
* 4 green transcripts x 750 nt = 3000 nt
* 6 blue transcripts x 1000 nt = 6000 nt

As percentage of the total, we have

@ = (4500/13500, 3000/13500, 6000/13500)
=(0.333, 0.222, 0.444)
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Tweaking our Problem a Bit

Extract many copies of Dol A
different RNA transcripts T

from a sample

* Given: A collection of RNA-sequencing reads and
a collection of transcripts inferred from them.

* Find: The “abundance vector” 8 of the transcripts.

As percentage of the total, we have

@ = (4500/13500, 3000/13500, 6000/13500)
=(0.333, 0.222, 0.444)
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A Simple Example with Three Isoforms

Transcript (a)

1 ) 3

Transcript (b)

L
4 5 6 — 9
8

Transcript (c) |
| | I

10

STOP: If we know which fragment
each read came from, what is 6?¢
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A Simple Example with Three Isoforms

Transcript (a)

Transcript (b)

L
4 5 6 — 9
8

Transcript (c)

10

We can log each read’s assignment
to a transcript in matrix Z.

© 2024 Phillip Compeau
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A Simple Example with Three Isoforms

Transcript (a) Z
| | I @]k ©
s T s 1 1 0 0O
2 1 O O
Transcript (b) o | 1| U]
| | | 4 0 1 0
— — e L_ T 5 0 1 0
8 6 0 1 0
Transcript (c) /0 1 0
l I | 8 0 1 0
? 9 0 1 0
We can log each read’s assignment SN
. . . Tofalss 6 =
to a transcript In matrix Z. 6=(023 0.6 01)
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A Simple Example with Three Isoforms

Transcript (a)

Transcript (b)

=7
4 5 6 L
8

Transcript (c)

10

Key Point: Inferring 6 from Z is
“trivial”.

© 2024 Phillip Compeau

—
2
3
4
5
6
7
8
9

10

w O 0o o o o o o = = =K
N
-—xﬁoooooooooa

Totals

6 =(0.3, 0.6,0.1)




But Z is Hidden from Us ...

Transcript (a)

1¢

Transcript (b)

1¢

Transcript (c)

1¢

A read is consistent with a transcript
if it maps well to the transcript.

© 2024 Phillip Compeau
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But Z is Hidden from Us ...

Transcript (a) ¥
| | | @) ©
12 11
2
Transcript (b) 3
] I I 4
e 5
6
Transcript (c) 7
| I | 8
e 9

—q
-

We form matrix Y, where Y, =1 if
read / is consistent with transcript k.
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Identifying Consistent Transcripts for

Each Read
Transcript (a) ¥
| | | o 0o
92 R
21 O O
Transcript (b) 3
] I | A
5
6
Transcript (c) 7
| | | 8
9
10

We form matrix Y, where Y, =1 if
read / is consistent with transcript k.
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Identifying Consistent Transcripts for

Fach Read
Transcript (a)
I | |
e
Transcript (b)
| I |
T
Transcript (c)
| [ I
=i

We form matrix Y, where Y, =1 if

read / is consistent with transcript k.

© 2024 Phillip Compeau

.
@) ©
T 1 1

1T 0 O
T 1 1

1
2
3
4
5
6
7
8
9

10



Identifying Consistent Transcripts for

Fach Read
Transcript (a) ¥
e w— — o ) |
e e 3 ERERE
2 1 0 O
Transcript (b) 3 1 1 1
] | | 4
e R e e i
4 5 6 L 9 g
S 6
Transcript (c) 7
I [ | 8
0 9

10

Exercise: Enter the remaining values.
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Identifying Consistent Transcripts for

Each Read

Transcript (a) Y
| ) I @b ©
i s Hal EREE
2 1 0 0
Transcript (b) 3 1 1 1
| | [ 4 1 1 1

= L S i =

4 = . o 9 5 0 1 0
5 6 1 1 0
Transcript (c) 7 1 1 1
| | | 8 0 1 1
10 9 0 1 1
10 1 0 1

© 2024 Phillip Compeau



From an Initial Guess of 8 to Z

Let’s start with an
initial guess of 69 =
(1/3, 1/3, 1/3) since
we know nothing a
priori about the
correct parameters.

STOP: How would we
estimate Z from 6?

© 2024 Phillip Compeau
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Initial Guess of @ 2 7

: Z1 Y
jnswer: assign EODO O
confidence” of each

. 1/3 1/3 1/3 1 1 1 1
transcript to each read, SRR BT
based on weighted . R
average of 6: 2 s e hs
5 0 1 0 5 0 1 0
1 B o 10 6 6 1 1 0
Zi,k—Yi,k 0% /s, 7 AR
8 g 0 1 1
9 9 0 1 1
(Si — z:transcriptsjYi,j * Hoj) 10 10 1 0 1
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Initial Guess of @ > 7

Exercise: Fill in th .

xercise: Fill in the

remaining values of Z'. - -
2 1 0 0 > 1 0 o0
B RTER RTERRTEN I N
R O
5 0 1 0 5 0 1 0
6 6 1 1 0
% 7 1 1 1
S 8 0 1 1
9 9 0 1 1
10 10 1 0 1
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Initial Guess of @ > 7

/1
- -

1/3 1/3 1/3

Exercise: Fill in the
remaining values of Z'.

1T 0 O
1/3 1/3 1/3
1/3 1/3 1/3

O 1 O
o 2 0
1/3 1/3 1/3

0O %2

0 2
0 A

O© &0 N O U1 B~ W o
O© 0 N o U =~ W b

1
0
1
1
0
0
1
1
1
1

OAAA—\AA—\O

—
-
—q
-
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Initial Guess of @ 2 7

: Z1 Z
STOP: Is this a
reasonable estimate of - L@ 0o
1/3 1/3 1/3 1 1 0O O
the real Z?2 How can BERERE NERERE
we tell? e R
4 1/3 1/3 1/3 4 0 1 0
5 0 1 0 5 0 1 0
6 1% 1 0 60 1 0
/7 1/3 1/3 1/3 7/ 0 1 0
8 0 Vo 14 g 0 1 0
9 0O v W 9 0 1 0
10 % 0 ¥ 10 0 O 1
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Initial Guess of @ 2 7

: /1 7
STOP: Is this a
. -- - ) - (a) (b) (C)
reasonable estimate of
) H 1/3 1/3 1/3 1 1 0 0
the real Z? How can BEREEGE R
we tell? B ERERERE
4 1/3 1/3 1/3 4 0 1 0
Answer: The totals 5.0 1 0 > 010
follow the same ENECH - N
/7 1/3 1/3 1/3 7 0 1 0
pattern as the correct
i Z 8 O 1 1A 8 0 1 0
matrix £ ... 9 0 % % 9 0 1 0
10 % 0 1A 10 O 0 1
Totals 20/6 23/6 17/6 Totals 3 6 1

© 2024 Phillip Compeau



Recomputing 6% from ZU

/1 /
ETOP. Now .that we EODE ErOrs
ave our estimate of
T 1/3 1/3 1/3 1 1 0 0
Z, how can we NERERE EI I e
improve our guess for BEEEIEE R
6? 4 1/3 1/3 1/3 40 1 0
5 0 1 0 5 0 1 0
6 1 Y% 0 60 1 0
/7 1/3 1/3 1/3 /70 1 0
8 0 Vo 14 g 0 1 0
9 0O v W 9 0 1 0
10 % 0 ¥ 10 0 O 1
Totals 20/6 23/6 17/6 Totals 3 6 1
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Recomputing 8% from Z

/1 /
?]TOP. Now .that we EODE ErOrs
ave our estimate of

T 1/3 1/3 1/3 1 1 0 0
Z, how can we NERERE EI I e
improve our guess for BEEEIEE R
6? 4 1/3 1/3 1/3 40 1 0
5 0 1 0 5 0 1 0
Answer: Normalize SRR e e
. /7 1/3 1/3 1/3 /70 1 0
the totals in each T
column by the HEEEEEE R
number of transcripts. 10 % 0 % 10 0 0 I
Totals 20/6 23/6 17/6 Totals 3 6 1

6 = (333, .383, .283)
© 2024 Phillip Compeau




Working with a Simpler Example

So if we have a guess Z1 !

f EODO O

or 6, we can make a

1/3 1/3 1/3 1 1 1 1

guess for Z. EEREIE] AT
3 1/3 1/3 1/3 3 1 1 1
4 1/3 1/3 1/3 4 1 1 1
5 0 1 0 5 0 1 0
6 V2 2 0 6 1 1 0
/7 1/3 1/3 1/3 7/ 1 1 1
8 0 1 W g 0 1 1
9 0 T2 9 0 1 1
10 ¥ 0 A 10 1 0 1

Totals 20/6 23/6 17/6

0 = (333, .383, .283)
© 2024 Phillip Compeau




Working with a Simpler Example

So if we have a guess Z1 .
for 8, we can make a - IO
! 173 1/3 173 11T
guess for Z. NERE B I e
3 1/3 1/3 1/3 3 1 1 1
And If e have 3 4 1/3 1/3 1/3 4 1 1 1
5 0 1 0 5 0 1 0
guess for Z, we can P T v BEEERE
make a guess for 6. SR RTERRFERRTEY I N
3 0O W W 3 0 1 1
9 0O v W 9 0 1 1
10 % 0 ¥ 10 1 0 1

Totals 20/6 23/6 17/6
6 = (333, .383, .283)
© 2024 Phillip Compeau




Working with a Simpler Example

So if we have a guess Z1 .

for 68, we can make a - EEc)

/ 1/3 1/3 1/3 1 1 1 1

guess for Z. EEREIE] AT

5 1/3 1/3 1/3 30001 1 1

And If e have 3 4 1/3 1/3 1/3 4 1 1 1

5 0 1 0 5 0 1 0

guess for Z, we can EFATAT]. R

make a guess for 6. SR RTERRFERRTEY I N

: 8 0 B 8 0 1 1

STOP: What does this oo w ' wn lolo 1 1

remind you of? 10 % 0 % 10 1 0 1

Totals 20/6 23/6 17/6

6 = (333, .383, .283)
© 2024 Phillip Compeau




Working with a Simpler Example

So if we have a guess Z1 .

for 8, we can make a - ECICIC)

/ 1/3 1/3 1/3 1 1 1 1

guess for Z. EEREIE] AT

3 1/3 1/3 1/3 3 1 1 1

And If e have 3 4 1/3 1/3 1/3 4 1 1 1

5 0 1 0 5 0 1 0

guess for Z, we can EFATAT]. R

make a guess for 6. SR RTERRFERRTEY I N

. 8 0 % 8 0 1 1

Answer: Expectation 9 0 1 1 9 0 1 1

maximization! 10" N2 Nol S2NE el N N

Totals 20/6 23/6 17/6
6" =(.333,.383, .283)

© 2024 Phillip Compeau




Carrying out a Few More Steps

7
E-step: compute Z0
P a0 -
5 333.383.283
ZENNcERoR: SR ER NG RD
0 Y.  * Q1 3 1333.383.283 (3 1 |1 1
29 =Y * 0D /s
4 333.383.283 4 1 1 1
DR PR
_ *0 (t-1
S = Pt | Vi, A >j 6 .465.535 0 6 1 1 0
BEEEEE R
SN PoN 5751425 NEN RGN N
9 |0 575425 9 0 1 1
10 541 0 459 10 1 0 1

6 = (333, .383, .283)
© 2024 Phillip Compeau




Carrying out a Few More Steps

M-step: sum each
column of ZY and
normalize by the

number of rows

(reads) to produce g%

7

- -

2
3
4
5
6
7
8
9

.333.383.283
1T 0 O

.333.383.283
.333.383.283

O 1T O

465.535 0
.333.383.283

0 .575.425
0 .575.425

10 .541 0 .459
Totals 3.338 4.217 2.441

)

= (334, .422, .244)

© 2024 Phillip Compeau
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Carrying out a Few More Steps

ZB
- -

M-step: sum each
column of ZY and
normalize by the

2 2 1 0 O
number of rows 3 EEERE
(reads) to produce 9 4 4 1 1 1

5 5 0 1T O
Exercise: Apply one 6 6 1 1 0
more E-step and one 7 AR
more M-step to find Z3 8 8 0 1 1
and 93. 9 9 0 1 1

10 10 1 0 1

02 = (.334, .422, .244)
© 2024 Phillip Compeau




Carrying out a Few More Steps

73
M-step: sum each
Columpn of ZV and - -
normalize by the , 313 j o AR
number of rows 3 .334.422.244 301 1 1
(reads) to produce 6% 4 334422244 4 1 1 1
5 0 1 0 5 0 1 0
Exercise: Apply one 6 442558 0 6 1 1 0
more E-step and one 2S84 00 Dz N BT R
more M-step to find Z3 N EENARNE
and 93. 9 0 .634.366 9 0 1 1
10 .578 0 .422 10 1 0 1

02 = (.334, .422, .244)
© 2024 Phillip Compeau




Carrying out a Few More Steps

M-step: sum each
column of Z¥ and
normalize by the
number of rows

(reads) to produce g%

e

- -

Exercise: Apply one
more E-step and one

more M-step to find Z3

and 63.

2
3
4
5
6
7
8
9

334 .422 .244
1T 0 O

334.422 244
334.422 .244

O 1T O

442 .558 0
.334.422 244

0 .634.366
0 .634.366

10 .578 0 .422

Totals 3.356 4.514 2.130

© 2024 Phillip Compeau
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Carrying out a Few More Steps

M-step: sum each
column of Z¥ and
normalize by the

number of rows

(reads) to produce g%

Exercise: Apply one
more E-step and one

more M-step to find Z3

and 63.

e

- -

2
3
4
5
6
7
8
9

334 .422 .244
1T 0 O

334.422 244
334.422 .244

O 1T O

442 .558 0
.334.422 244

0 .634.366
0 .634.366

10 .578 0 .422
Totals 3.356 4.514 2.130

2JE)

=(.336, .451, .213)

© 2024 Phillip Compeau
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Convergence of the Algorithm

e

STOP: When will we
stop this algorithm?

- -

334.422 244

21T 0 O
3 .334.422 .244
4 .334.422 .244
5 0 1T O
6 .442.558 O
/.334.422 244
8 0 .634.366
9 0 .634.366

10 .578 0 .422
Totals 3.356 4.514 2.130

08 =(.336, .451, .213)
© 2024 Phillip Compeau
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Convergence of the Algorithm

73
Tor el | i
P GOl 334 .422 244
2 1 0 0 2 1 0 0
Answer: When the 3 334422244 3 1 1 1
difference between g% 4 334422244 4 1 1 1
and 6tV sinks beneath 5.0 1 0 5 0 1 0
some threshold ¢. 6 442558 0 6 1 1 0
7 334422244 7 1 1 1
o EdecE Pl e
BEIETE AR
10 578 0 422 10 1 0 1

Totals 3.356 4.514 2.130

03 = (336, .451, .213)
© 2024 Phillip Compeau




Convergence of the Algorithm

STOP: Any guesses on
what you think 6
might converge to in
this case?

e

- -

334.422 244
21T 0 O
3 .334.422 .244
4 .334.422 .244
5 0 1T O
6 .442.558 O
/.334.422 244
8 0 .634.366
9 0 .634.366

10 .578 0 .422
Totals 3.356 4.514 2.130

© o N O U &~ W b
— NN O I — Bl — e —
ol B B Bl e
—_a a0 = = O

—q
-

2JE)

=(.336, .451, .213)
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Convergence of the Algorithm

STOP: Any guesses on
what you think 6
might converge to in
this case?

Answer (thanks Eric
Xu): 6 = (.4, .6, 0).

e

- -

334.422 244
21T 0 O
3 .334.422 .244
4 .334.422 .244
5 0 1T O
6 .442.558 O
/.334.422 244
8 0 .634.366
9 0 .634.366

10 .578 0 .422
Totals 3.356 4.514 2.130

© o N O U &~ W b
— NN O I — Bl — e —
ol B B Bl e
—_a a0 = = O

—q
-

2JE)

=(.336, .451, .213)
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Running EM Multiple Times

73
STOP. EM IS run - -
multiple times on — T T
different inputs. What SRR AR
are our inputs, and 3 334422244 (3 1 1 |1
how would we 4 334.422244 4 1 1 1
change them? HEAREEE EREERNE
6 .442.558 O 6 1 1T 0
/.334.422 244 7 1 1 1
g 0 .634.366 8 0 1 1
9 0 .634.366 9 0 1 1
10 .578 0 .422 10 1T 0 1

Totals 3.356 4.514 2.130

03 = (336, .451, .213)
© 2024 Phillip Compeau




Running EM Multiple Times

73
STOP: EM is run
multiple times on - -
different inputs. What SRR AR
are our inputs, and 3 334422244 (3 1 1 |1
how would we 4 334422244 4 1 1 1
change them? HEEREEE ENEREE
6 .442.558 O 6 1 1T 0
Answer: This example 7 334422244 [ 7 11
used 69 = (1/3, 1/3, 8§ 0 634366 8 0 1 1
1/3), but we could run 9 0 .634366 9 0 1 1
o e el
different possible 69. |5~ 53 451 213

© 2024 Phillip Compeau



Running EM Multiple Times

73
But how woulld we mme -
choose the “best — T
possible final 8 and Z NEREIE] EEEEEET
over all these runs? 3 334.422244 3 1 1 1
What are we 4 334422244 4 1 1 1
optimizing?! > (0 1T 0 570 10
6 .442 558 0 6 1 1 0
/ .334 .422 .244 7 1 1 1
3 0 .634.366 o) 0 1 1
9 0 .634.366 9 0 1 1
10 578 0 .422 10 1 0 1

Totals 3.356 4.514 2.130

03 = (336, .451, .213)
© 2024 Phillip Compeau




Expectation Maximization Has Same
Structure in Different Contexts

In both problems, we want to find something
hidden in the data that best “explains” the data.

Motif Finding RNA-Seq Quantification

Given: set of strings * Given: RNA reads

*  Want: profile *  Want: abundance
matrix vector 6
Hidden: starting * Hidden: matrix Z
position of motif in containing
each string assignment of reads

to transcripts

© 2024 Phillip Compeau



Expectation Maximization Has Same
Structure in Different Contexts

In both problems, we want to find something
hidden in the data that best “explains” the data.

Motif Finding

RNA-Seq Quantification

* Given: set of strings

*  Want: profile
matrix

* Hidden: starting
position of motif in
each string

Scoring motifs gives us
a way of comparing
different results.

Given: RNA reads

Want: abundance
vector 6

Hidden: matrix Z
containing
assignment of reads
to transcripts
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Expectation Maximization Has Same
Structure in Different Contexts

In both problems, we want to find something
hidden in the data that best “explains” the data.

Motif Finding RNA-Seq Quantification

* Given: set of strings * Given: RNA reads
*  Want: profile *  Want: abundance

matrix vector 6
* Hidden: starting * Hidden: matrix Z

position of motif in containing

each string assignment of reads

to transcripts
Scoring motifs gives us
a way of comparing How do we “score”
different results. different abundance
vectors?

© 2024 Phillip Compeau



A Probabilistic Model for RNA-Seq

sequencing machine

will randomly pick a

nucleotide at which to
Mixture of mMRNA start sequencing
molecules (transcripts) /

in the cell

a short read (=100nt)
will be sequenced
there and output

Courtesy: Carl Kingsford

Given a fixed abundance vector 0, Pr(x|6) is the
probability that this model would have generated
the RNA-sequencing reads x that we observe.



A Probabilistic Model for RNA-Seq

sequencing machine

will randomly pick a
nucleotide at which to
Mixture of mMRNA start sequencing
molecules (transcripts) /
in the cell
»fg

a short read (=100nt)
will be sequenced
there and output

Courtesy: Carl Kingsford

Key Point: If 8 were heavily weighted toward red,
then Pr(x|8) would be much lower than if 8 were
heavily weighted toward blue.




A Probabilistic Model for RNA-Seq

sequencing machine

will randomly pick a

nucleotide at which to
Mixture of mMRNA start sequencing
molecules (transcripts) /

in the cell

a short read (=100nt)
will be sequenced
there and output

Courtesy: Carl Kingsford

Determining Pr(x|0) is beyond our work here, but it
allows us to compare abundance vectors resulting
from running EM on different initial vectors 6.




Finally, A Point about Timing

Cufflinks uses this EM approach for quantification
prediction, but an earlier paper described the
method and perhaps was too early to get the credit
that it deserves.

www.ncbi.nim.nih.gov » pmc» articles » PMC1475746 v

An expectation-maximization algorithm for probabilistic ...

by Y Xing - 2006 { Cited by 107|- Related articles

Jun 6, 2006 - and Christopher Lee ... In fact, over 80% of alternative splicing events in the
human transcriptome are detected ... We describe an EM algorithm to estimate the probability
for each ... Probabilistic formulation and EM algorithm ...
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PART 4: COMPARING
EXPRESSION ACROSS SAMPLES

2024 Phillip Compeau



How do we compare RNA-seq samples?

Sample 1 el el L

Sample 2

Say that we want to compare the gene expression in
two samples. How can we infer this difference from
the fragments resulting from these samples?
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How do we compare RNA-seq samples?

Sample 1

Sample 2 T —

Key point: We need to use what we have already

learned about inferring information from a sample’s
fragments in order to differentiate the samples.

© 2024 Phillip Compeau




Comparing two samples gene by gene

Let’s focus on a single gene, which may have
multiple isoforms with exons of differing lengths.

Isoform (a)

Isoform (b)

Isoform (c)
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The Exon Union Model is a Simple Way
of Quantifying Expression of a Gene

Exon union model: Chain all exons of a gene
together, even if no isoform contains them all.

Chained exons
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The Exon Union Model is a Simple Way
of Quantifying Expression of a Gene

Exon union model: Chain all exons of a gene
together, even if no isoform contains them all.

Chained exons

We can set the expression of a gene in a sample
equal to the number of reads from the sample
mapping to the gene.
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Let’s Consider an Example

Exercise: What is the expression of a gene in a
sample where fragments map as below?

Chained exons

We can set the expression of a gene in a sample
equal to the number of reads from the sample
mapping to the gene.
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Let’s Consider an Example

Answer: 20 reads mapped.

STOP: Why is this metric flawed?

Chained exons

We can set the expression of a gene in a sample
equal to the number of reads from the sample
mapping to the gene.
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Let’s Consider an Example

Key point: long genes will receive more reads, so
we should normalize expression by gene length.

Chained exons

We can set the expression of a gene in a sample
equal to the number of reads from the sample
mapping to the gene, per kilobase.
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Let’s Consider an Example

Exercise: What is the expression of a gene of length
800 bp in a sample where fragments map as below?

Chained exons

We can set the expression of a gene in a sample
equal to the number of reads from the sample
mapping to the gene, per kilobase.
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| et’s Consider an Exam

ple

Answer: (20 reads mapped)/(0.8 kilobases) = 25

reads per kilobase.

Chained exons

We set the expression of a gene in a sam
the number of reads from the sample ma
the gene, divided by the total length of a

© 2024 Phillip Compeau
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pping to
| exons.




Let’s Consider an Example

Answer: (20 reads mapped)/(0.8 kilobases) = 25
reads per kilobase.

Chained exons

STOP: How could we compare the expression of a
gene across two different samples?

© 2024 Phillip Compeau




Log? Fold Change Compares Expression
of a Gene in Two Samples

To compare the expression of a gene in two
samples, we use log2 fold change: the base-2
logarithm of the ratio of the expression values.
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Log? Fold Change Compares Expression
of a Gene in Two Samples

To compare the expression of a gene in two
samples, we use log2 fold change: the base-2
logarithm of the ratio of the expression values.

If the expression x of a gene in sample 1 is greater

than the expression y of this gene in sample 2,then
log,(x / y) will be > 0.

< : > Log?2 fold
change

Gene in sample y has Gene in sample x has
greater expression greater expression
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Problems with the current model

Isoform (a)
Isoform (b) Sample 1
Isoform (a)
Isoform (b) Sample 2

STOP: What
is the log?2
fold change
of this gene in
the two
samples
under the
exon union
model?
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Problems with the current model

Isoform (a)

T TS oo Answer: Zero,

Sample 1 because they
have the same

Isoform (b)

c1or —  expression
under the
Isoform (a) exon union

model.

Isoform (b) Sample 2
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Problems with the current model

Isoform (a)
Isoform (b) Sample 1
Isoform (a)
Isoform (b) Sample 2

STOP: Why is
this an issue?
What
biological fact
have we
missed in
these
samples?
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Problems with the current model

Isoform (a)
Isoform (b) Sample 1
Isoform (a)
Isoform (b) Sample 2

© 2024 Phillip Compeau

Answer:
Reads map
only to one
isoform in
sample 1, and
this isoform’s
expression Is
far greater
than in
sample 1.




Problems with the current model

Isoform (a)

T e s Key point:

Isoform (b) Sample 1 We nee.d
transcript

— — — | level

comparison

Isoform (a) of expression.

Isoform (b) Sample 2
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Fortunately, Cuftlinks gives us
abundance estimates for each transcript

Recall that the EM algorithm
gives us 8, which estimates the
fraction of reads that map to
each individual transcript.

If EM estimates that 33.6% of
1000 reads mapping to a gene
come from one transcript, we
get a simple expression value
of 336 fragments mapped.

2?3

-

2
3
4
5
6
7
8
9

334 .422 .244
1T 0 O
334 .422 .244
334.422 .244
o 1T O
442 .558 0
334.422 .244
0 .634.366
0 .634.366

10 .578 0 .422
Totals 3.356 4.514 2.130

© 2024 Phillip Compeau
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Fortunately, Cuftlinks gives us
abundance estimates for each transcript

STOP: How can we improve
this metric for expression?

If EM estimates that 33.6% of
1000 reads mapping to a gene
come from one transcript, we
get a simple expression value
of 336 fragments mapped.

2Z3

-

2
3
4
5
6
7
8
9

334 .422 .244
1T 0 O
334 .422 .244
334.422 .244
O 1T O
442 .558 0
334.422 .244
0 .634.366
0 .634.366

10 .578 0 .422
Totals 3.356 4.514 2.130
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Improving our simple expression metric

73
Answer: Take number of reads @ || ©

1

2

3

4

5

6

/

3

9

mapped to a transcript per 334.422 244

kilobase of the transcript. 1 0 0
334 .422 .244

334 .422 .244
O 1T O

442 .558 0

334 .422 .244
0 .634.366
0 .634.366

10 .578 0 .422
| I i i | Totals 3.356 4.514 2.130

I I I frreiat

Isoform (a)

I e I |

Isoform (b)

Isoform (c) 60 = (.336, .451, .213)
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Improving our simple expression metric

Exercise: Using 6%

. what is

each isoform’s expression for

1000 reads, if (a), (
respective lengths
1000 bp, and 800

DP?

n), (c) have
1200 bp,

Isoform (a)

Isoform (b)

Isoform (c)

Z3
@b ©
1 .334.422 244
21T 0 O
3 .334.422 .244
4 .334.422 .244
5 0 1T O
6 .442.558 O
/ .334.422 244
8 0 .634.366
9 0 .634.366

10 .578 0 .422
Totals 3.356 4.514 2.130
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Improving our simple expression metric

7o

Answer: @ || ©
a) 336 reads / 1.2 kbp = 280 reads/kbp | |asalan| el
b) 451 reads / 1 kbp = 451 reads/kbp 21 0 O
c) 213 reads / 0.8 kbp = 266.25 reads/kbp 3 .334.422.244

4 .334.422 244

S IO
| || | o 6 .442.558 0
e 7 334.422 244

8 0 .634.366
| ' " 9 0 .634.366

Isoform (b)

10 .578 0 .422
| I i i | Totals 3.356 4.514 2.130

Isoform (c) 60 = (.336, .451, .213)
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Improving our simple expression metric

7o
Answer: @ B ©
a) 336 reads / 1.2 kbp = 280 reads/kbp | |38l A A
b) 451 reads / 1 kbp = 451 reads/kbp 2 1.0 0
c) 213 reads / 0.8 kbp = 266.25 reads/kbp B e s
4 .334.422 .244
: : 5.0 1 0
STOP: Say experiment 2 gives us
6 .442.558 O
these values. Are the? values very I P
different from experiment 1?¢ 8 0 634366
a) 29000 reads/kbp 9 0 .634.366
b) 46000 reads/kbp 10 .578 0 .422
c) 26000 reads/kbp Totals 3.356 4.514 2.130

03 =(.336, .451, .213)
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Improving our simple expression metric

7o

Answer: @ B ©
a) 336 reads / 1.2 kbp = 280 reads/kbp | |38l A A

b) 451 reads / 1 kbp = 451 reads/kbp 2 1.0 0
c) 213 reads / 0.8 kbp = 266.25 reads/kbp B e s
4 .334.422.244

: 5.0 1 0

STOP: But what if | told you that

. 6 .442.558 O
experiment 2 generaj[ed 100x as N Y R
many reads as experiment 17 8 0 .634.366
a) 29000 reads/kbp 9 0 .634.366
b) 46000 reads/kbp 10 .578 0 .422
c) 26000 reads/kbp Totals 3.356 4.514 2.130

03 =(.336, .451, .213)
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Improving our simple expression metric

Key point: Expression of every gene will be higher
on average in experiments that generate more reads,
so we need to normalize by the number of reads

sequenced.
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Improving our simple expression metric

Key point: Expression of every gene will be higher
on average in experiments that generate more reads,
so we need to normalize by the number of reads
sequenced.

The expression value used by Cuftlinks is RPKM:
reads mapped per kilobase of transcript, per million
mapped reads.
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Comparing our improved expression
metric for two samples

Experiment 1 (1M reads): Experiment 2 (100M reads):
a) 280 reads/kbp a) 29000 reads/kbp
b)451 reads/kbp b)46000 reads/kbp
) 266.25 reads/kbp c) 26000 reads/kbp

The expression value used by Cuftlinks is RPKM:
reads mapped per kilobase of transcript, per million
mapped reads.

Exercise: What is the RPKM of each isoform in each
of the two experiments?
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Comparing our improved expression
metric for two samples

Experiment 1 (1M reads):
a) 280 reads/kbp

b)451 reads/kbp
€)266.25 reads/kbp

Experiment 2 (100M reads):
a) 29000 reads/kbp
b) 46000 reads/kbp
c) 26000 reads/kbp

Answer:

a) (280 reads/kbp)/(TM
reads) = 280 RPKM

b) (451 reads/kbp)/(1M
reads) = 451 RPKM

) (266.25 reads/kbp)/(1TM
reads) = 266.25 RPKM

Answer:

a) (29000 reads/kbp)/(100M
reads) = 290 RPKM

b) (46000 reads/kbp)/(100M
reads) = 460 RPKM

c) (26000 reads/kbp)/(100M
reads) = 260 RPKM
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Comparing our improved expression
metric for two samples

Now we can make a fair comparison of the resulting
expression levels with log2foldchange!

STOP: Are these RPKMs similar? What's missing?

Answer: Answer:

a) (280 reads/kbp)/(TM a) (29000 reads/kbp)/(100M
reads) = 280 RPKM reads) = 290 RPKM

b) (451 reads/kbp)/(1M b) (46000 reads/kbp)/(100M
reads) = 451 RPKM reads) = 460 RPKM

) (266.25 reads/kbp)/(1TM c) (26000 reads/kbp)/(100M
reads) = 266.25 RPKM reads) = 260 RPKM
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We need to incorporate stochasticity
into differential expression

sequencing machine

will randomly pick a
nucleotide at which to
Mixture of mMRNA start sequencing
molecules (transcripts) '
in the cell
y“?

a short read (=100nt)
will be sequenced
there and output

Courtesy: Carl Kingsford

Key Point: We should not expect the same result
from different RNA-seq runs on the same sample.
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We use high-powered statistics to build
a curve around expression estimate

Increased
likelihood of

sample having
given expression

I
|
I 1 1

Expression of isoform
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We use high-powered statistics to build
a curve around expression estimate

Instead of “Is the expression of two transcripts
different?” we ask “How likely would random
chance have caused the difference we see?”
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We use high-powered statistics to build
a curve around expression estimate

Instead of “Is the expression of two transcripts
different?” we ask “How likely would random
chance have caused the difference we see?”

STOP: What does this remind us of?
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We use high-powered statistics to build
a curve around expression estimate

Instead of “Is the expression of two transcripts
different?” we ask “How likely would random
chance have caused the difference we see?”

STOP: What does this remind us of?

Answer: BLAST!
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Our problem then reduces to curve
comparison

Sample 1 Sample 2

>
Expression of isoform

STOP: How sure are we that the isoform is
differentially expressed in the two samples?
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Our problem then reduces to curve
comparison

Sample 1 Sample 2

>
Expression of isoform

STOP: What about now?
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Our problem then reduces to curve
comparison

Sample 1 Sample 2

|
|

>
Expression of isoform

This is a big simplification of a very
complicated process.
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This idea is the engine of “Cuffdift”

p-value: The likelihood that we observe an outcome
due to random chance.
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This idea is the engine of “Cuffdift”

p-value: The likelihood that we observe an outcome
due to random chance.

When comparing two samples, we compute a p-
value for every transcript in the samples, and focus
on isoforms with low p-values.

Differential analysis of gene regulation at transcript resolution with RNA-seq
C Trapnell, DG Hendrickson, M Sauvageau... - Nature ..., 2013 - nature.com

... Here we introduce Cuffdiff 2, which addresses both problems simultaneously by modeling
variability in the number of fragments generated by each transcript across replicates ... Cuffdiff
2 identified genes that Differential analysis of gene regulation at transcript ...

v Y9 Cited by 2939 Related articles All 26 versions
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Quick p-value quiz

STOP: Say that we have the following p-values for a
differential expression analysis of 20,000 human
genes. Which ones would you want to include?

Gene p-value
A 0.79
B 0.07
C 0.01
D 0.0031
E 0.00000079
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Quick p-value quiz

STOP: Say you play a casino game 20,000 times
with the following probability of success. Which
games would you not expect to win?

Game Probability
A 0.79
B 0.07
C 0.01
D 0.0031
E 0.0000007/9
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Many trials means many chances for a
low probability event to occur

Popularity of the first name Alaina

correlates with

Popularity of the 'troliface' meme

2.0K
1.8K

1.7K

Babies born
=
Awueindod aAnejey

I | I | I | I
2006 2008 2010 2012 2014 2016 2018 2020 2022

© 2024 Phillip Compeau



Correcting our p-values with Bonferroni

Bonferroni Correction: When running n statistical
tests simultaneously, we multiply all p-values by n.

Gene p-value Corrected Value
A 0.79 15800
B 0.07 1400
C 0.01 200
D 0.0031 62
E 0.00000079 0.0158
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Correcting our p-values with Bonferroni

STOP: Now which genes would we report as
differentially expressed?

Gene p-value Corrected Value
A 0.79 15800
B 0.07 1400
C 0.01 200
D 0.0031 62
E 0.00000079 0.0158
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TWO X TWITTER STORIES, AND
CLUSTERING CELLS
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A short RNA-seq story

STOP: Would you
expect the same tissue
in two similar species to
have more similar gene
expression, or different
tissues in the same
species? Heart
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Heatmap of differential expression shows
intraspecies similarity across tissue

L ] | | : ] ] | | mouse_testis_Stanford 1
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Lin et al., 2014
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The problem is batch effects!

RNA-seq is sensitive
to batch effects, in
which experimental
conditions can
influence the results
of the experiment.

STOP: What should

researchers have
done instead?

D87PMIN1
(run 253,

lane 7)

heart
kidney

liver

small
bowel

spleen

testis

D87PMIN1
(run 253,
lane 8)

adipose
adrenal
sigmoid
colon

lung

ovary

Sequence study design (sequencer ID, run ID, lane number):

DALHBFN1 | MONK
(run 276, | (run 312,
lane 4) lane 6)

adipose
adrenal
sigmoid
colon

lung

ovary

pancreas

heart brain

kidney pancreas

liver brain

small spleen

bowel

testis ® human
® mouse

https://twitter.com/Y_Gilad/status/593088451462963202
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Heatmap after “batch correction” shows
human and mouse cluster by tissue
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https://twitter.com/Y_Gilad/status/593088451462963202
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All this played out on Twitter ... and the
original paper was never retracted!

Yoav Gilad
@Y_Gilad

We reanalyzed the data from pnas.org/content/111/48...
and found the following:

ilysis in the paper, considering only the samples that were
anford (data cluster by species): (nnm
lane 4)

-5- olon
ne spleen
--
--- rrrrrrrrr ® human
=
e - . e |
--
--Hq_

12:24 PM - Apr 28, 2015 - Twitter Web Client

126 Retweets 3 Quote Tweets 117 Likes

O 0 v J
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From batch RNA-seq to “single cell”
RNA-seq

2009: researchers find a way to measure expression
of transcripts in a single cell.
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From batch RNA-seq to “single cell”
RNA-seq

2009: researchers find a way to measure expression
of transcripts in a single cell.

For each cell, we obtain a vector of expression
values x, where x; is the expression value of the i-th
gene/isoform.
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From batch RNA-seq to “single cel
RNA-seq

2009: researchers find a way to measure expression
of transcripts in a single cell.

For each cell, we obtain a vector of expression
values x, where x; is the expression value of the i-th
gene/isoform.

STOP: Having an expression vector for ~1TM cells
gives us a lot of data. So how do we visualize it?
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Dimension

Reduction Produces Beautiful

Plots Differentiating Cells by Type

t-SNE 1
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Ductal
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3‘@dblet%, < it Alpha
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http://www.nature.com/articles/s41586-018-0590-4
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Dimension reduction is the subject of
another controversy ... more later!

Lior Pachter
@lpachter

It's time to stop making t-SNE & UMAP plots. In a new preprint w/ Tara
Chari we show that while they display some correlation with the
underlying high-dimension data, they don't preserve local or global
structure & are misleading. They're also arbitrary. J§

biorxiv.org/content/10.110...

2:41PM - Aug 27,2021
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Lior Pachter

@lpachter
On t-SNE & UMAP preserving structure: 1) we show massive distortion by
examining what happens to equidistant cells and cell types. 2) neighbors

aren't preserved. 3) Biologically meaningful metrics are distorted. E.g.,
see below:

b © Near and Equidistant

3040 |

‘Near and Equidistant’ Cells

“o1 1,511,502 groups

© Far and Equidistant
‘Far and Equidistant’ Cels

‘ 0020 1,020,120 groups

................
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