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the discovery of both universal and organ-specific gene modules within 
these shared cell types.

To demonstrate an example of investigating common cell types 
across organs, we collectively analysed all FACS cells annotated as  
T cells, which revealed five clusters (Fig. 4). Cluster 0 comprises thymic 
cells undergoing VDJ recombination characterized by the expression 
of Rag1, Rag2 and Dntt, and includes uncommitted double-positive  
T cells (Cd4+ and Cd8a+). Cluster 4 contains predominantly prolif-
erating thymic T cells, which may represent pre-T cells expanding 
after VDJ recombination. Clusters 1–3 contain mostly single-positive 
T cells (Cd4+ or Cd8a+). Cluster 3 contains Cd5hi thymic T cells that 
are possibly undergoing positive selection, whereas Cluster 2 contains 
mostly non-thymic T cells expressing the high-affinity IL2 receptor 
(encoded by the genes Il2ra and Il2rb), which suggests that they are 
activated. Notably, they also express MHC class II genes (H2-Aa and 
H2-Ab1). Although this is known in human T cells, MHC class II was 
previously thought to be restricted to professional antigen-presenting 
cells in mice22. Finally, Cluster 1 also represents mature T cells, but 
primarily splenic.

Global transcription factor analysis
One major goal of defining cell identities is to understand the under-
lying regulatory networks. We investigated how transcription factors 
contribute to cell-type identity by clustering averaged gene-expression 
profiles for each cell type using only the 1,016 transcription factors 
expressed in our dataset (Fig. 5a). The resulting dendrogram closely 
resembles the dendrogram produced using all expressed genes, indicat-
ing that transcription factors can be used to reconstruct known cell- 
ontology relationships between bulk populations (entanglement = 0.11; 
Extended Data Fig. 10a). By contrast, when we repeated the analysis 
using cell-surface markers, RNA splicing factors, or the two groups 

combined (equivalent to a random set of genes), the entanglement 
was 0.22, 0.25 and 0.34, respectively, which suggests that none of 
these molecular classes define cell type to the extent that transcription  
factors do.

We then analysed organ-specific transcription factors by performing 
correlation analysis on shared cell types between organs23 (epithelial 
cells, endothelial cells, B cells and T cells; Fig. 5b–e, Extended Data 
Fig. 10b–i). To understand which transcription factors were most 
informative for specifying cell types, we performed variable selec-
tion using random forest models (Methods) and determined that 136 
transcription factors are needed to simultaneously define all cell types 
across all organs (Fig. 5f, Supplementary Table 3). We then determined 
the transcription factor sets that distinguish each individual cell type 
from all other cells. These sets vary substantially in size (from 2 to 813 
transcription factors) and are not necessarily unique to each cell type 
(Fig. 5g–i, Supplementary Table 4).

A possible application for such transcription factor networks is the 
design of reprogramming protocols. Indeed, the transcription factors 
used in published methods are found in the cell-type-specific transcrip-
tion factors sets we discovered (Supplementary Table 5). For some cell 
types, such as hepatocytes, satellite cells and oligodendrocytes, those 
reprogramming factors are the top variables segregating cell types 
(Fig. 5g–i). In fact, for nearly all reprogramming protocols the tran-
scription factors used also specified the targeted cell type in our data 
(Supplementary Table 5), which suggests that our data can inform novel 
reprogramming schemes.

Discussion
A key challenge for single-cell studies is to understand transcriptomic 
changes caused by dissociation. A previous study showed that quiescent 
limb-muscle satellite cells activate upon dissociation and consequently 
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Fig. 2 | t-SNE visualization of all FACS cells. t-SNE plot of all cells collected by FACS, coloured by organ, overlaid with the predominant cell type 
composing each cluster; n = 44,949 individual cells.
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Central Dogma of Molecular Biology: 
DNA à RNA à Protein

© 2024 Phillip Compeau

GTGAAACTTTTTCCTTGGTTTAATCAATAT
CACTTTGAAAAAGGAACCAAATTAGTTATA

DNA

Translated peptides

CACUUUGAAAAAGGAACCAAAUUAGUUAUA

GUGAAACUUUUUCCUUGGUUUAAUCAAUAU

HisPheLysLysArgProLysIleLeuIle
 PheSerLysGlyGlnAsnLeu***Tyr
  SerValLysGluLysThr***AspIle

Transcribed RNA

  GluThrPheSerLeuVal***SerIle
 ***AsnPhePheLeuGlyLeuIleAsn
ValTyrGlnAsnPheTrpProPheLeuLys

5'
5'3'
3'

Transcribed RNA

Translated peptides
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The Central Dogma in Action
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DNA is transcribed 
into messenger RNA 
(mRNA), which then 
leaves the nucleus.

Ribosomes pass down 
the mRNA strand and 
build a growing strand 
of amino acids based 
on codons (triplets of 
nucleosides). 



Distribution of Human Protein Lengths
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Length heavily skews 
toward shorter proteins 
(much like synteny 
block fragment lengths).
• Range: 50 – 34000 

amino acids.
• Median length: 375 

amino acids (= 1125 
base pairs of DNA). https://biology.stackexchange.com/questions/48110/how-is-the-size-of-a-

gene-defined/48117#48117



The Estimate of Human Genes Has 
Decreased Over Time
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This is Misleading
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STOP: What practical purpose might rearranging 
genes serve for an organism?
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Three Questions

© 2024 Phillip Compeau

STOP: How can the same cell perform different 
functions at different times?  

STOP: Your cells all have (essentially) the same 
genome, so how can they perform different 
functions?

STOP: What practical purpose might rearranging 
genes serve for an organism?



One Answer to Three Questions: Gene 
Regulation (a.k.a. “Expression”)
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https://www.khanacademy.org/science/biology/gene-regulation/gene-regulation-in-
eukaryotes/a/eukaryotic-transcription-factors

Gene regulation: 
the ability of the 
cell to increase 
(activate) or 
decrease (repress) 
the production of 
RNA/protein 
corresponding to a 
given gene.



From Genomes to Protein Analysis
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Classic analogy:
• Genome: sum total of a cell’s DNA = cookbook
• Transcriptome: a cell’s mRNA = photocopied 

recipe
• Proteome: set of proteins present in given cell = 

today’s menu 



From Genomes to Protein Analysis

© 2024 Phillip Compeau

Our question: we have worked largely with 
genomes, but how can we measure the amount of 
each type of protein in a cell at a given time?

Classic analogy:
• Genome: sum total of a cell’s DNA = cookbook
• Transcriptome: a cell’s mRNA = photocopied 

recipe
• Proteome: set of proteins present in given cell = 

today’s menu 



Genome Sequencing Had a Revolution, 
But Proteins are Still Waiting
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Although we can read long genomes with 10 billion 
base pairs, isolating and reading proteins is very 
difficult.
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Although we can read long genomes with 10 billion 
base pairs, isolating and reading proteins is very 
difficult. For now…

Instead, we will take a middle ground and use RNA-
sequencing: reading the RNA present in a given 
biological sample as a proxy for protein levels.



Genome Sequencing Had a Revolution, 
But Proteins are Still Waiting
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But why is reading RNA easier than reading the 
protein that it produces?

Although we can read long genomes with 10 billion 
base pairs, isolating and reading proteins is very 
difficult. For now…

Instead, we will take a middle ground and use RNA-
sequencing: reading the RNA present in a given 
biological sample as a proxy for protein levels.



It’s Called a “Dogma” for a Reason
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https://en.wikipedia.org/wiki/Central_dogma_of_molecular_biology#/media/File:
Extended_Central_Dogma_with_Enzymes.jpg



Retroviruses Use Reverse Transcriptase 
to Convert their RNA to DNA
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RNA Sequencing = RNA fragments + 
DNA Transcriptase + DNA Sequencing
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Extract many copies of 
different RNA transcripts 
from a sample

Note: The lengths of transcripts vary, and the 
amount of each transcript varies due to expression.
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Extract many copies of 
different RNA transcripts 
from a sample

Fragment into smaller 
pieces (to match length 
demanded by sequencer)

Apply reverse transcriptase, 
sequence, and infer RNA 
fragments by complementarity

…ACGGATCAT… …TACGAGCT…

…UGCCUAGUA… …AUGCUCGA…



RNA Sequencing = RNA fragments + 
DNA Transcriptase + DNA Sequencing

© 2024 Phillip Compeau

Apply reverse transcriptase, 
sequence, and infer RNA 
fragments by complementarity

…ACGGATCAT… …TACGAGCT…

…UGCCUAGUA… …AUGCUCGA…

So now we have a bunch of RNA fragments 
corresponding to our sample. What do we do?



PART 1: SPLICE JUNCTION 
IDENTIFICATION
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We Have RNA … So What Do We Do?
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Once again, we use DNA to help us …

• Input: a collection of RNA strings.
• Output: for each RNA string, a collection of 

locations where the reverse transcription of these 
strings (or their reverse complements) “align well” 
against the reference genome.



We Have RNA … So What Do We Do?
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Once again, we use DNA to help us …

STOP: Where have we seen this problem before?

• Input: a collection of RNA strings.
• Output: for each RNA string, a collection of 

locations where the reverse transcription of these 
strings (or their reverse complements) “align well” 
against the reference genome.



We Have RNA … So What Do We Do?
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Once again, we use DNA to help us …

Answer: It seems like it is just read mapping!

• Input: a collection of RNA strings.
• Output: for each RNA string, a collection of 

locations where the reverse transcription of these 
strings (or their reverse complements) “align well” 
against the reference genome.



Aligning Sequenced Fragments to a 
Reference Genome
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Aligning fragments 
against reference 
genome

STOP (biologists): There is a major flaw in this 
picture … what is it?



Aligning Sequenced Fragments to a 
Reference Genome
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Aligning fragments 
against reference 
genome

STOP (biologists): There is a major flaw in this 
picture … what is it?

Answer: Most of the human genome (98-99%) is not 
made of genes!



Viruses and Prokaryotes Have Dense 
Genomes

© 2024 Phillip Compeau

SARS-CoV

E. Coli (first 50k bp)

Courtesy: EcoCyc



Human Genes are Sparse, So We Need 
an Updated Picture
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First ~100M bp of human chromosome 1

Aligning fragments 
against reference 
genome

STOP (biologists): This is still totally wrong. Why?

Gene 1 Gene 2 Gene 3



The Problem is ”Split Genes”
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DNA

mRNA

IntronIntron

Intron

Exon Exon Exon

1993 Nobel: in eukaryotes, most genes are split 
between exons (coding) and introns (non-coding).



Borrowing a Slide from Carl Kingsford
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Eukaryotic Genes & Exon Splicing

ATG TAG

ATG TAGintron intron intronexonexon exon exon

Prokaryotic (bacterial) genes look like this:

Eukaryotic genes usually look like this:

AUG UAG

Exons are concatenated together

Introns are 
thrown away

This spliced RNA is what is 
translated into a protein.

mRNA:

 5



Exon/Intron Statistics
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• Genes have on average ~9 exons (and ~8 introns).
• Introns tend to be longer than exons.
• Exon lengths are also skewed shorter.

https://www.researchgate.net/figure/a-Frequency-of-intron-length-distributions-for-human-genome-a-and-its-expansion-b_fig4_7498905



Two Possibilities for Where Fragment 
Aligns

© 2024 Phillip Compeau

So, we have two possibilities for an RNA fragment.
1. The fragment falls entirely within an exon.

Exon Exon ExonIntronIntron

fragment 1

Hypothetical gene in reference genome



Two Possibilities for Where Fragment 
Aligns
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So, we have two possibilities for an RNA fragment.
1. The fragment falls entirely within an exon.
2. The fragment spans exons across an intron(s).  

Exon Exon ExonIntronIntron

fragment 1 fragment 2 (solid ends)

Hypothetical gene in reference genome



Two Possibilities for Where Fragment 
Aligns

© 2024 Phillip Compeau

So, we have two possibilities for an RNA fragment.
1. The fragment falls entirely within an exon.
2. The fragment spans exons across an intron(s).  

Exon Exon ExonIntronIntron

fragment 1 fragment 2 (solid ends)

STOP: Which of these will align well against the 
reference genome?

Hypothetical gene in reference genome



Two Possibilities for Where Fragment 
Aligns
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So, we have two possibilities for an RNA fragment.
1. The fragment falls entirely within an exon.
2. The fragment spans exons across an intron(s).  

Exon Exon ExonIntronIntron

fragment 1 fragment 2 (solid ends)

Answer: Type 1 will align against the reference, but 
type 2 does not occur contiguously in the genome.

Hypothetical gene in reference genome



Two Possibilities for Where Fragment 
Aligns
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Exon Exon ExonIntronIntron

fragment 1 fragment 2 (solid ends)

Splice junction: the boundary between an exon and 
an intron.

Hypothetical gene in reference genome

So, we have two possibilities for an RNA fragment.
1. The fragment falls entirely within an exon.
2. The fragment spans exons across an intron(s).  



Two Possibilities for Where Fragment 
Aligns
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This is a feature, not a bug – after finding all the 
”type 1” reads that align well, the remaining 
fragments can help us find splice junctions! 

Exon Exon ExonIntronIntron

fragment 1 fragment 2 (solid ends)

Splice junction: the boundary between an exon and 
an intron.

Hypothetical gene in reference genome



An Overview of “TopHat” for Splice 
Junction Discovery
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Step 1: Assemble Exons
1. Align everything that aligns to the reference 

genome (and form a consensus of fragments).



An Overview of “TopHat” for Splice 
Junction Discovery
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Step 1: Assemble Exons
1. Align everything that aligns to the reference 

genome (and form a consensus of fragments).
2. If we see a gap < ~70 nt, then join the two 

fragments, since odds are that this is not an 
intron.



An Overview of “TopHat” for Splice 
Junction Discovery
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Step 2: Find splice junctions with “type 2” fragments

98% of introns start with GT and end with AG, so we 
can find all such candidate introns between exons 
and try to align type 2 fragments against them. 

GT AGExon Exon

Type 2 fragment alignment



An Overview of “TopHat” for Splice 
Junction Discovery
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Step 2: Find splice junctions with “type 2” fragments

98% of introns start with GT and end with AG, so we 
can find all such candidate introns between exons 
and try to align type 2 fragments against them. 

GT AGExon Exon

Type 2 fragment alignment

STOP (biologists): Why is this wrong?



Just Because Exons are Consecutive 
Doesn’t Mean They Are Spliced Together
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Alternative splicing: exons can be chained in 
different ways to produce multiple protein isoforms.



Just Because Exons are Consecutive 
Doesn’t Mean They Are Spliced Together

© 2024 Phillip Compeau

Wang et al., 2008: alternative splicing may affect as 
many as 95% of human genes.



Just Because Exons are Consecutive 
Doesn’t Mean They Are Spliced Together
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Ponomarenko et al., 2016: there could be between 
600,000 and 6 million human isoforms.



Hunting for Splice Junctions
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Exon Exon ExonIntronIntron

STOP: How can we use our RNA fragments to find 
splicing junctions?



Hunting for Splice Junctions
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Exon Exon ExonIntronIntron

STOP: How can we use our RNA fragments to find 
splicing junctions?

Answer: Perform a special “spliced” alignment of 
type 2 fragments against the ends of “nearby” exons. 



Hunting for Splice Junctions
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Exon Exon ExonIntronIntron

STOP: In the above picture, which exon pairs do we 
conclude are splice junctions?



Hunting for Splice Junctions

© 2024 Phillip Compeau

Exon Exon ExonIntronIntron

STOP: In the above picture, which exon pairs do we 
conclude are splice junctions?

Answer: Exons 1 and 3, as well as exons 2 and 3. 
But exons 1 and 2 aren’t a splice junction.



Performing a Spliced Alignment
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Step 2: Find splice junctions with “type 2” fragments
1. For every exon produced in step 1, use GT-AG 

rule to find all potential neighbor exons up to m 
nucleotides downstream (m ~20k bp in practice).

< m nucleotides apart

Exon Exon
GT AG



Performing a Spliced Alignment
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Step 2: Find splice junctions with “type 2” fragments
1. For every exon produced in step 1, use GT-AG 

rule to find all potential neighbor exons up to m 
nucleotides downstream (m ~20k bp in practice).

2. Form 2k-mer x by joining k-mers (k ~5 bp) at 
ends of two exons and search through all type 2 
RNA-seq reads for exact matches against x.

< m nucleotides apart

Exon Exon
………………CAGTA AATGC……………………

Hunt through reads for CAGTAAATGC 

GT AG



Performing a Spliced Alignment
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Step 2: Find splice junctions with “type 2” fragments
1. For every exon produced in step 1, use GT-AG 

rule to find all potential neighbor exons up to m 
nucleotides downstream (m ~20k bp in practice).

2. Form 2k-mer x by joining k-mers (k ~5 bp) at 
ends of two exons and search through all type 2 
RNA-seq reads for exact matches against x.

STOP: Once we find these exact matches, what do 
we do?



Performing a Spliced Alignment
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Step 2: Find splice junctions with “type 2” fragments
1. For every exon produced in step 1, use GT-AG 

rule to find all potential neighbor exons up to m 
nucleotides downstream (m ~20k bp in practice).

2. Form 2k-mer x by joining k-mers (k ~5 bp) at 
ends of two exons and search through all type 2 
RNA-seq reads for exact matches against x.

Answer: We have found seeds, so now we just need 
to extend.



Extending Seed Alignments
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< m nucleotides apart

Exon Exon
………………CAGTA AATGC……………………GT AG



Extending Seed Alignments
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< m nucleotides apart

Exon Exon
………………CAGTA AATGC……………………GT AG

Hunt through reads for 
CAGTAAATGC 



Extending Seed Alignments
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< m nucleotides apart

Exon Exon
………………CAGTA AATGC……………………GT AG

Hunt through reads for 
CAGTAAATGC 

………………CAGTA AATGC……………………

AATGC…………………CAGTA
||||||||||||

Perform alignment of 
concatenated exons 
against any fragments 
that match seed. Keep 
if above a threshold.



Tophat Step 2 in Summary
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Step 2: Find splice junctions with “type 2” fragments
1. For every exon produced in step 1, use GT-AG 

rule to find all potential neighbor exons up to m 
nucleotides downstream (m ~20k bp in practice).

2. Form 2k-mer x by joining k-mers (k ~5 bp) at 
ends of two exons, and search through all type 2 
RNA-seq reads for exact seed matches against x.

3. Determine whether any of the seed hits are valid 
by extending these seeds in either direction.



Tophat Step 2 in Summary
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PART 2: TRANSCRIPT ASSEMBLY
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Recall Our Original Problem
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Extract many copies of 
different RNA transcripts 
from a sample

Fragment into smaller 
pieces (to match length 
demanded by sequencer)

Apply reverse transcriptase, 
sequence, and infer RNA 
fragments by complementarity

…ACGGATCAT… …TACGAGCT…

…UGCCUAGUA… …AUGCUCGA…
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Goal: Can we re-assemble these transcripts?



Recall Our Original Problem
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Extract many copies of 
different RNA transcripts 
from a sample

• Given: A collection of RNA-sequencing reads.
• Find: The RNA transcripts present in the dataset.

Goal: Can we re-assemble these transcripts?



Another Way of Asking this Question
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Note that we have already learned two things from 
the sequencing reads.
• Sequence identity of exons (and location in 

genome).
• Splice junctions between exons in dataset.

• Given: A collection of RNA-sequencing reads.
• Find: The RNA transcripts present in the dataset.
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• Given: The exons and splice junctions produced 
from a collection of RNA-sequencing reads.

• Find: The RNA transcripts present in the dataset.

Note that we have already learned two things from 
the sequencing reads.
• Sequence identity of exons (and location in 

genome).
• Splice junctions between exons in dataset.
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• Given: The exons and splice junctions produced 
from a collection of RNA-sequencing reads.

• Find: The RNA transcripts present in the dataset.

Also, inferring transcripts = knowing exon order.
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• Given: The exons and splice junctions produced 
from a collection of RNA-sequencing reads.

• Find: The ordering of exons for each transcript 
present in the data.

Also, inferring transcripts = knowing exon order.



Another Way of Asking this Question
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• Given: The exons and splice junctions produced 
from a collection of RNA-sequencing reads.

• Find: The ordering of exons for each transcript 
present in the data.

• Given: A collection of RNA-sequencing reads.
• Find: The RNA transcripts present in the dataset.

That is, the following two problems are equivalent 
(although they aren’t well-defined computationally).



Cufflinks Uses a Splice Graph to 
Assemble Transcripts
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Given the exons and splice junctions we have 
inferred, we can form a splice graph for each gene:
• Nodes: exons
• Edges: connect exon x to y with a directed edge if 

there is a splice junction x | y. 



Cufflinks Uses a Splice Graph to 
Assemble Transcripts
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Given the exons and splice junctions we have 
inferred, we can form a splice graph for each gene:
• Nodes: exons
• Edges: connect exon x to y with a directed edge if 

there is a splice junction x | y. 

STOP: What type of graph is the splice graph?



Cufflinks Uses a Splice Graph to 
Assemble Transcripts
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Answer: A DAG – a cycle would mean that order of 
exons in original gene isn’t preserved in RNA.

1

2

3

4 6

7

5

8

9



Example Splice Graph
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Alternative Splicing: It can get pretty complex…
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• Splice graph of a nurexin, which is a presynaptic protein that helps to 
connect neurons at the synapse.


• Node = exon (or part of an exon)


• Edge (a,b) = sequence b can follow sequence a in some transcript

!6

Splice graphs can be complicated for real genes.

Courtesy: Carl Kingsford



Example Splice Graph
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Alternative Splicing: It can get pretty complex…
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127

128

129
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131

132

133

134
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136

137

138
140

141
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• Splice graph of a nurexin, which is a presynaptic protein that helps to 
connect neurons at the synapse.


• Node = exon (or part of an exon)


• Edge (a,b) = sequence b can follow sequence a in some transcript

!6

STOP: What are we looking for in this graph if we 
are trying to reconstruct all transcripts?

Courtesy: Carl Kingsford



Path Edge Covers = Sets of Transcripts
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Given a DAG, a path edge cover is a collection of 
paths whose union contains all edges.

Example: The paths (2, 4, 5, 8), (1, 6, 9), (1, 4, 5, 9), 
(1, 4, 7, 8), (3, 7, 8) form a path edge cover below.

1

2

3

4 6

7

5

8

9



Path Edge Covers = Sets of Transcripts

© 2024 Phillip Compeau

STOP: What kind of path edge cover are we looking 
for in a splice graph?

• Given: The exons and splice junctions produced 
from a collection of RNA-sequencing reads.

• Find: The ordering of exons for each transcript 
present in the data.

Given a DAG, a path edge cover is a collection of 
paths whose union contains all edges.



Path Edge Covers = Sets of Transcripts

© 2024 Phillip Compeau

Answer: If we follow parsimony, then we want a 
path edge cover to have as few paths as possible!

Minimum Path Edge Cover Problem
• Input: A directed graph.
• Output: A path edge cover of the graph having as 

few paths as possible.

Given a DAG, a path edge cover is a collection of 
paths whose union contains all edges.



Path Edge Covers = Sets of Transcripts
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Unfortunately, this problem is NP-Hard … L

Minimum Path Edge Cover Problem
• Input: A directed graph.
• Output: A path edge cover of the graph having as 

few paths as possible.

Given a DAG, a path edge cover is a collection of 
paths whose union contains all edges.



Path Edge Covers = Sets of Transcripts
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Unfortunately, this problem is NP-Hard … but it is 
polynomial-time solvable for a DAG (Dilworth’s 
theorem).

Minimum Path Edge Cover Problem
• Input: A directed acyclic graph.
• Output: A path edge cover of the graph having as 

few paths as possible.

Given a DAG, a path edge cover is a collection of 
paths whose union contains all edges.



This Might Seem Simplistic, but …
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… (a version of) this approach became the software 
program Cufflinks, which found over 3,000 new 
putative mouse transcripts in 2010.



PART 3: TRANSCRIPT 
QUANTIFICATION

© 2024 Phillip Compeau



Recall our Original Figure
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Extract many copies of 
different RNA transcripts 
from a sample

Fragment into smaller 
pieces (to match length 
demanded by sequencer)

Apply reverse transcriptase, 
sequence, and infer RNA 
fragments by complementarity

…ACGGATCAT… …TACGAGCT…

…UGCCUAGUA… …AUGCUCGA…



Now That We Know the Transcripts, Can 
We Determine Their Abundances?

© 2024 Phillip Compeau

Extract many copies of 
different RNA transcripts 
from a sample

Fragment into smaller 
pieces (to match length 
demanded by sequencer)

• Given: A collection of RNA-sequencing reads and 
a collection of transcripts inferred from them.

• Find: The abundance of each transcript present.



Let’s Quantify What We Want to Infer
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Extract many copies of 
different RNA transcripts 
from a sample

• 9 red transcripts x 500 nt = 4500 nt
• 4 green transcripts x 750 nt = 3000 nt
• 6 blue transcripts x 1000 nt = 6000 nt



Let’s Quantify What We Want to Infer

© 2024 Phillip Compeau

Extract many copies of 
different RNA transcripts 
from a sample

• 9 red transcripts x 500 nt = 4500 nt
• 4 green transcripts x 750 nt = 3000 nt
• 6 blue transcripts x 1000 nt = 6000 nt

As percentage of the total, we have 
θ = (4500/13500, 3000/13500, 6000/13500)



Let’s Quantify What We Want to Infer

© 2024 Phillip Compeau

Extract many copies of 
different RNA transcripts 
from a sample

• 9 red transcripts x 500 nt = 4500 nt
• 4 green transcripts x 750 nt = 3000 nt
• 6 blue transcripts x 1000 nt = 6000 nt

As percentage of the total, we have 
θ = (4500/13500, 3000/13500, 6000/13500)
   = (0.333, 0.222, 0.444)



Tweaking our Problem a Bit

© 2024 Phillip Compeau

Extract many copies of 
different RNA transcripts 
from a sample

As percentage of the total, we have 
θ = (4500/13500, 3000/13500, 6000/13500)
   = (0.333, 0.222, 0.444)

• Given: A collection of RNA-sequencing reads and 
a collection of transcripts inferred from them.

• Find: The “abundance vector” θ of the transcripts.



A Simple Example with Three Isoforms
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Transcript (a)

Transcript (b)

Transcript (c)

1 2 3

4 5 6
7

8
9

10

STOP: If we know which fragment 
each read came from, what is θ?



A Simple Example with Three Isoforms
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Transcript (a)

Transcript (b)

Transcript (c)

(a) (b) (c)

1 1 0 0

2 1 0 0

3 1 0 0

4 0 1 0

5 0 1 0

6 0 1 0

7 0 1 0

8 0 1 0

9 0 1 0

10 0 0 1

1 2 3

4 5 6
7

8
9

10

Z

We can log each read’s assignment 
to a transcript in matrix Z.



A Simple Example with Three Isoforms

© 2024 Phillip Compeau

Transcript (a)

Transcript (b)

Transcript (c)

(a) (b) (c)

1 1 0 0

2 1 0 0

3 1 0 0

4 0 1 0

5 0 1 0

6 0 1 0

7 0 1 0

8 0 1 0

9 0 1 0

10 0 0 1

1 2 3

4 5 6
7

8
9

10

Totals 3 6 1

Z

We can log each read’s assignment 
to a transcript in matrix Z. θ = (0.3,  0.6, 0.1)



A Simple Example with Three Isoforms
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Transcript (a)

Transcript (b)

Transcript (c)

(a) (b) (c)

1 1 0 0

2 1 0 0

3 1 0 0

4 0 1 0

5 0 1 0

6 0 1 0

7 0 1 0

8 0 1 0

9 0 1 0

10 0 0 1

1 2 3

4 5 6
7

8
9

10

Totals 3 6 1

Z

Key Point: Inferring θ from Z is 
“trivial”. θ = (0.3,  0.6, 0.1)



But Z is Hidden from Us ...
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Transcript (a)

Transcript (b)

Transcript (c)

(a) (b) (c)

1

2

3

4

5

6

7

8

9

10

1?

1?

1?

Y

A read is consistent with a transcript 
if it maps well to the transcript.



But Z is Hidden from Us ...
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Transcript (a)

Transcript (b)

Transcript (c)

(a) (b) (c)

1 1 1 1

2

3

4

5

6

7

8

9

10

1?

1?

1?

Y

We form matrix Y, where Yi,k = 1 if 
read i is consistent with transcript k.



Identifying Consistent Transcripts for 
Each Read

© 2024 Phillip Compeau

Transcript (a)

Transcript (b)

Transcript (c)

(a) (b) (c)

1 1 1 1

2 1 0 0

3

4

5

6

7

8

9

10

2?

Y

We form matrix Y, where Yi,k = 1 if 
read i is consistent with transcript k.



Identifying Consistent Transcripts for 
Each Read
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Transcript (a)

Transcript (b)

Transcript (c)

(a) (b) (c)

1 1 1 1

2 1 0 0

3 1 1 1

4

5

6

7

8

9

10

3?

3?

3?

Y

We form matrix Y, where Yi,k = 1 if 
read i is consistent with transcript k.



Identifying Consistent Transcripts for 
Each Read

© 2024 Phillip Compeau

(a) (b) (c)

1 1 1 1

2 1 0 0

3 1 1 1

4

5

6

7

8

9

10

YTranscript (a)

Transcript (b)

Transcript (c)

1 2 3

4 5 6
7

8
9

10

Exercise: Enter the remaining values.



Identifying Consistent Transcripts for 
Each Read
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(a) (b) (c)

1 1 1 1

2 1 0 0

3 1 1 1

4 1 1 1

5 0 1 0

6 1 1 0

7 1 1 1

8 0 1 1

9 0 1 1

10 1 0 1

YTranscript (a)

Transcript (b)

Transcript (c)

1 2 3

4 5 6
7

8
9

10



From an Initial Guess of θ to Z 

© 2024 Phillip Compeau

(a) (b) (c)

1 1 1 1

2 1 0 0

3 1 1 1

4 1 1 1

5 0 1 0

6 1 1 0

7 1 1 1

8 0 1 1

9 0 1 1

10 1 0 1

YLet’s start with an 
initial guess of θ(0) = 
(1/3, 1/3, 1/3) since 
we know nothing a 
priori about the 
correct parameters.

STOP: How would we 
estimate Z from θ?



Initial Guess of θ à Z 

© 2024 Phillip Compeau

(a) (b) (c)

1 1 1 1

2 1 0 0

3 1 1 1

4 1 1 1

5 0 1 0

6 1 1 0

7 1 1 1

8 0 1 1

9 0 1 1

10 1 0 1

YAnswer: assign 
”confidence” of each 
transcript to each read, 
based on weighted 
average of θ:

Z1
i,k = Yi,k * θ0

k / si

(si = Σtranscripts j Yi,j * θ0
j) 

(a) (b) (c)

1 1/3 1/3 1/3

2 1 0 0

3 1/3 1/3 1/3

4 1/3 1/3 1/3

5 0 1 0

6

7

8

9

10

Z1



Initial Guess of θ à Z 

© 2024 Phillip Compeau

(a) (b) (c)

1 1 1 1

2 1 0 0

3 1 1 1

4 1 1 1

5 0 1 0

6 1 1 0

7 1 1 1

8 0 1 1

9 0 1 1

10 1 0 1

YExercise: Fill in the 
remaining values of Z1.

(a) (b) (c)

1 1/3 1/3 1/3

2 1 0 0

3 1/3 1/3 1/3

4 1/3 1/3 1/3

5 0 1 0

6

7

8

9

10

Z1



Initial Guess of θ à Z 

© 2024 Phillip Compeau

(a) (b) (c)

1 1/3 1/3 1/3

2 1 0 0

3 1/3 1/3 1/3

4 1/3 1/3 1/3

5 0 1 0

6 ½ ½ 0

7 1/3 1/3 1/3

8 0 ½ ½

9 0 ½ ½

10 ½ 0 ½

Z1

(a) (b) (c)

1 1 1 1

2 1 0 0

3 1 1 1

4 1 1 1

5 0 1 0

6 1 1 0

7 1 1 1

8 0 1 1

9 0 1 1

10 1 0 1

YExercise: Fill in the 
remaining values of Z1.



Initial Guess of θ à Z 

© 2024 Phillip Compeau

(a) (b) (c)

1 1/3 1/3 1/3

2 1 0 0

3 1/3 1/3 1/3

4 1/3 1/3 1/3

5 0 1 0

6 ½ ½ 0

7 1/3 1/3 1/3

8 0 ½ ½

9 0 ½ ½

10 ½ 0 ½

Z1
STOP: Is this a 
reasonable estimate of 
the real Z? How can 
we tell?

(a) (b) (c)

1 1 0 0

2 1 0 0

3 1 0 0

4 0 1 0

5 0 1 0

6 0 1 0

7 0 1 0

8 0 1 0

9 0 1 0

10 0 0 1

Z



Initial Guess of θ à Z 

© 2024 Phillip Compeau

(a) (b) (c)

1 1/3 1/3 1/3

2 1 0 0

3 1/3 1/3 1/3

4 1/3 1/3 1/3

5 0 1 0

6 ½ ½ 0

7 1/3 1/3 1/3

8 0 ½ ½

9 0 ½ ½

10 ½ 0 ½

Z1
STOP: Is this a 
reasonable estimate of 
the real Z? How can 
we tell?

(a) (b) (c)

1 1 0 0

2 1 0 0

3 1 0 0

4 0 1 0

5 0 1 0

6 0 1 0

7 0 1 0

8 0 1 0

9 0 1 0

10 0 0 1

Totals 3 6 1

Z

Totals 20/6 23/6 17/6

Answer: The totals 
follow the same 
pattern as the correct 
matrix Z …



Recomputing θ(t) from Z(t) 
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(a) (b) (c)

1 1/3 1/3 1/3

2 1 0 0

3 1/3 1/3 1/3

4 1/3 1/3 1/3

5 0 1 0

6 ½ ½ 0

7 1/3 1/3 1/3

8 0 ½ ½

9 0 ½ ½

10 ½ 0 ½

Z1
STOP: Now that we 
have our estimate of 
Z, how can we 
improve our guess for 
θ? 

(a) (b) (c)

1 1 0 0

2 1 0 0

3 1 0 0

4 0 1 0

5 0 1 0

6 0 1 0

7 0 1 0

8 0 1 0

9 0 1 0

10 0 0 1

Totals 3 6 1

Z

Totals 20/6 23/6 17/6



Recomputing θ(t) from Z(t) 

© 2024 Phillip Compeau

(a) (b) (c)

1 1/3 1/3 1/3

2 1 0 0

3 1/3 1/3 1/3

4 1/3 1/3 1/3

5 0 1 0

6 ½ ½ 0

7 1/3 1/3 1/3

8 0 ½ ½

9 0 ½ ½

10 ½ 0 ½

Z1
STOP: Now that we 
have our estimate of 
Z, how can we 
improve our guess for 
θ? 

(a) (b) (c)

1 1 0 0

2 1 0 0

3 1 0 0

4 0 1 0

5 0 1 0

6 0 1 0

7 0 1 0

8 0 1 0

9 0 1 0

10 0 0 1

Totals 3 6 1

Z

Totals 20/6 23/6 17/6

Answer: Normalize 
the totals in each 
column by the 
number of transcripts.

θ (1) = (.333, .383, .283)



Working with a Simpler Example

© 2024 Phillip Compeau

(a) (b) (c)

1 1 1 1

2 1 0 0

3 1 1 1

4 1 1 1

5 0 1 0

6 1 1 0

7 1 1 1

8 0 1 1

9 0 1 1

10 1 0 1

Y
(a) (b) (c)

1 1/3 1/3 1/3

2 1 0 0

3 1/3 1/3 1/3

4 1/3 1/3 1/3

5 0 1 0

6 ½ ½ 0

7 1/3 1/3 1/3

8 0 ½ ½

9 0 ½ ½

10 ½ 0 ½

Z1
So if we have a guess 
for θ, we can make a 
guess for Z.

Totals 20/6 23/6 17/6

θ (1) = (.333, .383, .283)



Working with a Simpler Example

© 2024 Phillip Compeau

(a) (b) (c)

1 1 1 1

2 1 0 0

3 1 1 1

4 1 1 1

5 0 1 0

6 1 1 0

7 1 1 1

8 0 1 1

9 0 1 1

10 1 0 1

Y
(a) (b) (c)

1 1/3 1/3 1/3

2 1 0 0

3 1/3 1/3 1/3

4 1/3 1/3 1/3

5 0 1 0

6 ½ ½ 0

7 1/3 1/3 1/3

8 0 ½ ½

9 0 ½ ½

10 ½ 0 ½

Z1
So if we have a guess 
for θ, we can make a 
guess for Z.

And if we have a 
guess for Z, we can 
make a guess for θ.  

Totals 20/6 23/6 17/6

θ (1) = (.333, .383, .283)



Working with a Simpler Example

© 2024 Phillip Compeau

(a) (b) (c)

1 1 1 1

2 1 0 0

3 1 1 1

4 1 1 1

5 0 1 0

6 1 1 0

7 1 1 1

8 0 1 1

9 0 1 1

10 1 0 1

Y

STOP: What does this 
remind you of?

(a) (b) (c)

1 1/3 1/3 1/3

2 1 0 0

3 1/3 1/3 1/3

4 1/3 1/3 1/3

5 0 1 0

6 ½ ½ 0

7 1/3 1/3 1/3

8 0 ½ ½

9 0 ½ ½

10 ½ 0 ½

Z1
So if we have a guess 
for θ, we can make a 
guess for Z.

And if we have a 
guess for Z, we can 
make a guess for θ.  

Totals
θ (1) = (.333, .383, .283)

20/6 23/6 17/6



Working with a Simpler Example

© 2024 Phillip Compeau

(a) (b) (c)

1 1 1 1

2 1 0 0

3 1 1 1

4 1 1 1

5 0 1 0

6 1 1 0

7 1 1 1

8 0 1 1

9 0 1 1

10 1 0 1

Y

Answer: Expectation 
maximization!

(a) (b) (c)

1 1/3 1/3 1/3

2 1 0 0

3 1/3 1/3 1/3

4 1/3 1/3 1/3

5 0 1 0

6 ½ ½ 0

7 1/3 1/3 1/3

8 0 ½ ½

9 0 ½ ½

10 ½ 0 ½

Z1
So if we have a guess 
for θ, we can make a 
guess for Z.

And if we have a 
guess for Z, we can 
make a guess for θ.  

Totals 20/6 23/6 17/6

θ (1) = (.333, .383, .283)



Carrying out a Few More Steps
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(a) (b) (c)

1 1 1 1

2 1 0 0

3 1 1 1

4 1 1 1

5 0 1 0

6 1 1 0

7 1 1 1

8 0 1 1

9 0 1 1

10 1 0 1

Y
(a) (b) (c)

1 .333 .383 .283

2 1 0 0

3 .333 .383 .283

4 .333 .383 .283

5 0 1 0

6 .465 .535 0

7 .333 .383 .283

8 0 .575 .425

9 0 .575 .425

10 .541 0 .459

Z2
E-step: compute Z(t) 

from θ(t-1) using

Z(t)
i,k = Yi,k * θ(t-1)

k / si

si = Σtranscripts j Yi,j*θ (t-1) 
j 

θ (1) = (.333, .383, .283)



Carrying out a Few More Steps

© 2024 Phillip Compeau

(a) (b) (c)

1 1 1 1

2 1 0 0

3 1 1 1

4 1 1 1

5 0 1 0

6 1 1 0

7 1 1 1

8 0 1 1

9 0 1 1

10 1 0 1

Y
(a) (b) (c)

1 .333 .383 .283

2 1 0 0

3 .333 .383 .283

4 .333 .383 .283

5 0 1 0

6 .465 .535 0

7 .333 .383 .283

8 0 .575 .425

9 0 .575 .425

10 .541 0 .459

Z2
M-step: sum each 
column of Z(t) and 
normalize by the 
number of rows 
(reads) to produce θ(t) .

Totals
θ (2) = (.334, .422, .244)

3.338 4.217 2.441



Carrying out a Few More Steps
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(a) (b) (c)

1 1 1 1

2 1 0 0

3 1 1 1

4 1 1 1

5 0 1 0

6 1 1 0

7 1 1 1

8 0 1 1

9 0 1 1

10 1 0 1

Y
(a) (b) (c)

1

2

3

4

5

6

7

8

9

10

Z3
M-step: sum each 
column of Z(t) and 
normalize by the 
number of rows 
(reads) to produce θ(t) .

θ (2) = (.334, .422, .244)

Exercise: Apply one 
more E-step and one 
more M-step to find Z3 
and θ3.



Carrying out a Few More Steps

© 2024 Phillip Compeau

(a) (b) (c)

1 1 1 1

2 1 0 0

3 1 1 1

4 1 1 1

5 0 1 0

6 1 1 0

7 1 1 1

8 0 1 1

9 0 1 1

10 1 0 1

Y
(a) (b) (c)

1 .334 .422 .244

2 1 0 0

3 .334 .422 .244

4 .334 .422 .244

5 0 1 0

6 .442 .558 0

7 .334 .422 .244

8 0 .634 .366

9 0 .634 .366

10 .578 0 .422

Z3
M-step: sum each 
column of Z(t) and 
normalize by the 
number of rows 
(reads) to produce θ(t) .

θ (2) = (.334, .422, .244)

Exercise: Apply one 
more E-step and one 
more M-step to find Z3 
and θ3.



Carrying out a Few More Steps

© 2024 Phillip Compeau

(a) (b) (c)

1 1 1 1

2 1 0 0

3 1 1 1

4 1 1 1

5 0 1 0

6 1 1 0

7 1 1 1

8 0 1 1

9 0 1 1

10 1 0 1

Y
(a) (b) (c)

1 .334 .422 .244

2 1 0 0

3 .334 .422 .244

4 .334 .422 .244

5 0 1 0

6 .442 .558 0

7 .334 .422 .244

8 0 .634 .366

9 0 .634 .366

10 .578 0 .422

Z3
M-step: sum each 
column of Z(t) and 
normalize by the 
number of rows 
(reads) to produce θ(t) .

Exercise: Apply one 
more E-step and one 
more M-step to find Z3 
and θ3.

Totals 3.356 4.514 2.130



Carrying out a Few More Steps

© 2024 Phillip Compeau

(a) (b) (c)

1 1 1 1

2 1 0 0

3 1 1 1

4 1 1 1

5 0 1 0

6 1 1 0

7 1 1 1

8 0 1 1

9 0 1 1

10 1 0 1

Y
(a) (b) (c)

1 .334 .422 .244

2 1 0 0

3 .334 .422 .244

4 .334 .422 .244

5 0 1 0

6 .442 .558 0

7 .334 .422 .244

8 0 .634 .366

9 0 .634 .366

10 .578 0 .422

Z3
M-step: sum each 
column of Z(t) and 
normalize by the 
number of rows 
(reads) to produce θ(t) .

Exercise: Apply one 
more E-step and one 
more M-step to find Z3 
and θ3.

Totals 3.356 4.514 2.130

θ (3) = (.336, .451, .213)



Convergence of the Algorithm
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(a) (b) (c)

1 1 1 1

2 1 0 0

3 1 1 1

4 1 1 1

5 0 1 0

6 1 1 0

7 1 1 1

8 0 1 1

9 0 1 1

10 1 0 1

Y
(a) (b) (c)

1 .334 .422 .244

2 1 0 0

3 .334 .422 .244

4 .334 .422 .244

5 0 1 0

6 .442 .558 0

7 .334 .422 .244

8 0 .634 .366

9 0 .634 .366

10 .578 0 .422

Z3

Totals 3.356 4.514 2.130

θ (3) = (.336, .451, .213)

STOP: When will we 
stop this algorithm?



Convergence of the Algorithm
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(a) (b) (c)

1 1 1 1

2 1 0 0

3 1 1 1

4 1 1 1

5 0 1 0

6 1 1 0

7 1 1 1

8 0 1 1

9 0 1 1

10 1 0 1

Y
(a) (b) (c)

1 .334 .422 .244

2 1 0 0

3 .334 .422 .244

4 .334 .422 .244

5 0 1 0

6 .442 .558 0

7 .334 .422 .244

8 0 .634 .366

9 0 .634 .366

10 .578 0 .422

Z3

Totals 3.356 4.514 2.130

θ (3) = (.336, .451, .213)

STOP: When will we 
stop this algorithm?

Answer: When the 
difference between θ(t) 
and θ(t-1) sinks beneath 
some threshold ε.



Convergence of the Algorithm
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(a) (b) (c)

1 1 1 1

2 1 0 0

3 1 1 1

4 1 1 1

5 0 1 0

6 1 1 0

7 1 1 1

8 0 1 1

9 0 1 1

10 1 0 1

Y
(a) (b) (c)

1 .334 .422 .244

2 1 0 0

3 .334 .422 .244

4 .334 .422 .244

5 0 1 0

6 .442 .558 0

7 .334 .422 .244

8 0 .634 .366

9 0 .634 .366

10 .578 0 .422

Z3

Totals 3.356 4.514 2.130

θ (3) = (.336, .451, .213)

STOP: Any guesses on 
what you think θ 
might converge to in 
this case?



Convergence of the Algorithm
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(a) (b) (c)

1 1 1 1

2 1 0 0

3 1 1 1

4 1 1 1

5 0 1 0

6 1 1 0

7 1 1 1

8 0 1 1

9 0 1 1

10 1 0 1

Y
(a) (b) (c)

1 .334 .422 .244

2 1 0 0

3 .334 .422 .244

4 .334 .422 .244

5 0 1 0

6 .442 .558 0

7 .334 .422 .244

8 0 .634 .366

9 0 .634 .366

10 .578 0 .422

Z3

Totals 3.356 4.514 2.130

θ (3) = (.336, .451, .213)

STOP: Any guesses on 
what you think θ 
might converge to in 
this case?

Answer (thanks Eric 
Xu): θ = (.4, .6, 0).



Running EM Multiple Times
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(a) (b) (c)

1 1 1 1

2 1 0 0

3 1 1 1

4 1 1 1

5 0 1 0

6 1 1 0

7 1 1 1

8 0 1 1

9 0 1 1

10 1 0 1

YSTOP: EM is run 
multiple times on 
different inputs. What 
are our inputs, and 
how would we 
change them?

(a) (b) (c)

1 .334 .422 .244

2 1 0 0

3 .334 .422 .244

4 .334 .422 .244

5 0 1 0

6 .442 .558 0

7 .334 .422 .244

8 0 .634 .366

9 0 .634 .366

10 .578 0 .422

Z3

Totals 3.356 4.514 2.130

θ (3) = (.336, .451, .213)



Running EM Multiple Times

© 2024 Phillip Compeau

(a) (b) (c)

1 1 1 1

2 1 0 0

3 1 1 1

4 1 1 1

5 0 1 0

6 1 1 0

7 1 1 1

8 0 1 1

9 0 1 1

10 1 0 1

YSTOP: EM is run 
multiple times on 
different inputs. What 
are our inputs, and 
how would we 
change them?

Answer: This example 
used θ(0) = (1/3, 1/3, 
1/3), but we could run 
multiple times with 
different possible θ(0).

(a) (b) (c)

1 .334 .422 .244

2 1 0 0

3 .334 .422 .244

4 .334 .422 .244

5 0 1 0

6 .442 .558 0

7 .334 .422 .244

8 0 .634 .366

9 0 .634 .366

10 .578 0 .422

Z3

Totals 3.356 4.514 2.130

θ (3) = (.336, .451, .213)



Running EM Multiple Times

© 2024 Phillip Compeau

(a) (b) (c)

1 1 1 1

2 1 0 0

3 1 1 1

4 1 1 1

5 0 1 0

6 1 1 0

7 1 1 1

8 0 1 1

9 0 1 1

10 1 0 1

YBut how would we 
choose the “best” 
possible final θ and Z 
over all these runs? 
What are we 
optimizing?!

(a) (b) (c)

1 .334 .422 .244

2 1 0 0

3 .334 .422 .244

4 .334 .422 .244

5 0 1 0

6 .442 .558 0

7 .334 .422 .244

8 0 .634 .366

9 0 .634 .366

10 .578 0 .422

Z3

Totals 3.356 4.514 2.130

θ (3) = (.336, .451, .213)



Expectation Maximization Has Same 
Structure in Different Contexts

© 2024 Phillip Compeau

• Given: set of strings
• Want: profile 

matrix
• Hidden: starting 

position of motif in 
each string

Motif Finding RNA-Seq Quantification

• Given: RNA reads
• Want: abundance 

vector θ
• Hidden: matrix Z 

containing 
assignment of reads 
to transcripts

In both problems, we want to find something 
hidden in the data that best “explains” the data.



Expectation Maximization Has Same 
Structure in Different Contexts

© 2024 Phillip Compeau

• Given: set of strings
• Want: profile 

matrix
• Hidden: starting 

position of motif in 
each string

Motif Finding RNA-Seq Quantification

• Given: RNA reads
• Want: abundance 

vector θ
• Hidden: matrix Z 

containing 
assignment of reads 
to transcripts

Scoring motifs gives us 
a way of comparing 
different results.

In both problems, we want to find something 
hidden in the data that best “explains” the data.



Expectation Maximization Has Same 
Structure in Different Contexts

© 2024 Phillip Compeau

• Given: set of strings
• Want: profile 

matrix
• Hidden: starting 

position of motif in 
each string

Motif Finding RNA-Seq Quantification

• Given: RNA reads
• Want: abundance 

vector θ
• Hidden: matrix Z 

containing 
assignment of reads 
to transcripts

How do we “score” 
different abundance 
vectors? 

In both problems, we want to find something 
hidden in the data that best “explains” the data.

Scoring motifs gives us 
a way of comparing 
different results.



A Probabilistic Model for RNA-Seq

© 2024 Phillip Compeau

Model of Sequencing

 11

Mixture of mRNA 
molecules (transcripts) 
in the cell

sequencing machine 
will randomly pick a 
nucleotide at which to 
start sequencing

a short read (≈100nt) 
will be sequenced 
there and output

Courtesy: Carl Kingsford

Given a fixed abundance vector θ, Pr(x|θ) is the 
probability that this model would have generated 
the RNA-sequencing reads x that we observe.



A Probabilistic Model for RNA-Seq
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Model of Sequencing

 11

Mixture of mRNA 
molecules (transcripts) 
in the cell

sequencing machine 
will randomly pick a 
nucleotide at which to 
start sequencing

a short read (≈100nt) 
will be sequenced 
there and output

Courtesy: Carl Kingsford

Key Point: If θ were heavily weighted toward red, 
then Pr(x|θ) would be much lower than if θ were 
heavily weighted toward blue.



A Probabilistic Model for RNA-Seq
Model of Sequencing

 11

Mixture of mRNA 
molecules (transcripts) 
in the cell

sequencing machine 
will randomly pick a 
nucleotide at which to 
start sequencing

a short read (≈100nt) 
will be sequenced 
there and output

Courtesy: Carl Kingsford

Determining Pr(x|θ) is beyond our work here, but it 
allows us to compare abundance vectors resulting 
from running EM on different initial vectors θ.



Finally, A Point about Timing

© 2024 Phillip Compeau

Cufflinks uses this EM approach for quantification 
prediction, but an earlier paper described the 
method and perhaps was too early to get the credit 
that it deserves.



PART 4: COMPARING 
EXPRESSION ACROSS SAMPLES

© 2024 Phillip Compeau



How do we compare RNA-seq samples?

© 2024 Phillip Compeau

Sample 1

Sample 2

Say that we want to compare the gene expression in 
two samples. How can we infer this difference from 
the fragments resulting from these samples?



How do we compare RNA-seq samples?

© 2024 Phillip Compeau

Sample 1

Sample 2

Key point: We need to use what we have already 
learned about inferring information from a sample’s 
fragments in order to differentiate the samples.



Comparing two samples gene by gene

© 2024 Phillip Compeau

Let’s focus on a single gene, which may have 
multiple isoforms with exons of differing lengths.

Isoform (a)

Isoform (b)

Isoform (c)



The Exon Union Model is a Simple Way 
of Quantifying Expression of a Gene

© 2024 Phillip Compeau

Exon union model: Chain all exons of a gene 
together, even if no isoform contains them all.

Chained exons



The Exon Union Model is a Simple Way 
of Quantifying Expression of a Gene

© 2024 Phillip Compeau

Exon union model: Chain all exons of a gene 
together, even if no isoform contains them all.

We can set the expression of a gene in a sample 
equal to the number of reads from the sample 
mapping to the gene.

Chained exons



Let’s Consider an Example

© 2024 Phillip Compeau

Chained exons

Exercise: What is the expression of a gene in a 
sample where fragments map as below?

We can set the expression of a gene in a sample 
equal to the number of reads from the sample 
mapping to the gene.



Let’s Consider an Example

© 2024 Phillip Compeau

Chained exons

We can set the expression of a gene in a sample 
equal to the number of reads from the sample 
mapping to the gene.

Answer: 20 reads mapped.

STOP: Why is this metric flawed?



Let’s Consider an Example

© 2024 Phillip Compeau

Chained exons

Key point: long genes will receive more reads, so 
we should normalize expression by gene length.

We can set the expression of a gene in a sample 
equal to the number of reads from the sample 
mapping to the gene, per kilobase.



Let’s Consider an Example

© 2024 Phillip Compeau

Chained exons

Exercise: What is the expression of a gene of length 
800 bp in a sample where fragments map as below?

We can set the expression of a gene in a sample 
equal to the number of reads from the sample 
mapping to the gene, per kilobase.



Let’s Consider an Example

© 2024 Phillip Compeau

We set the expression of a gene in a sample equal to 
the number of reads from the sample mapping to 
the gene, divided by the total length of all exons.

Chained exons

Answer: (20 reads mapped)/(0.8 kilobases) = 25 
reads per kilobase.



Let’s Consider an Example

© 2024 Phillip Compeau

STOP: How could we compare the expression of a 
gene across two different samples?

Chained exons

Answer: (20 reads mapped)/(0.8 kilobases) = 25 
reads per kilobase.



Log2 Fold Change Compares Expression 
of a Gene in Two Samples

© 2024 Phillip Compeau

To compare the expression of a gene in two 
samples, we use log2 fold change: the base-2 
logarithm of the ratio of the expression values.



Log2 Fold Change Compares Expression 
of a Gene in Two Samples

© 2024 Phillip Compeau

To compare the expression of a gene in two 
samples, we use log2 fold change: the base-2 
logarithm of the ratio of the expression values.

If the expression x of a gene in sample 1 is greater 
than the expression y of this gene in sample 2,then 
log2(x / y) will be > 0.

Log2 fold 
change

0

Gene in sample x has 
greater expression

Gene in sample y has 
greater expression



Problems with the current model

© 2024 Phillip Compeau

Isoform (a)

Isoform (b) Sample 1

Isoform (a)

Isoform (b) Sample 2

STOP: What 
is the log2 
fold change 
of this gene in 
the two 
samples 
under the 
exon union 
model?



Problems with the current model

© 2024 Phillip Compeau

Isoform (a)

Isoform (b) Sample 1

Isoform (a)

Isoform (b) Sample 2

Answer: Zero, 
because they 
have the same 
expression 
under the 
exon union 
model.



Problems with the current model

© 2024 Phillip Compeau

Isoform (a)

Isoform (b) Sample 1

Isoform (a)

Isoform (b) Sample 2

STOP: Why is 
this an issue? 
What 
biological fact 
have we 
missed in 
these 
samples?



Problems with the current model

© 2024 Phillip Compeau

Isoform (a)

Isoform (b) Sample 1

Isoform (a)

Isoform (b) Sample 2

Answer: 
Reads map 
only to one 
isoform in 
sample 1, and 
this isoform’s 
expression is 
far greater 
than in 
sample 1.



Problems with the current model

© 2024 Phillip Compeau

Isoform (a)

Isoform (b) Sample 1

Isoform (a)

Isoform (b) Sample 2

Key point: 
We need 
transcript 
level 
comparison 
of expression.



Fortunately, Cufflinks gives us 
abundance estimates for each transcript 

© 2024 Phillip Compeau

Recall that the EM algorithm 
gives us θ, which estimates the 
fraction of reads that map to 
each individual transcript.

(a) (b) (c)

1 .334 .422 .244

2 1 0 0

3 .334 .422 .244

4 .334 .422 .244

5 0 1 0

6 .442 .558 0

7 .334 .422 .244

8 0 .634 .366

9 0 .634 .366

10 .578 0 .422

Z3

Totals 3.356 4.514 2.130

θ (3) = (.336, .451, .213)

If EM estimates that 33.6% of 
1000 reads mapping to a gene 
come from one transcript, we 
get a simple expression value 
of 336 fragments mapped.



Fortunately, Cufflinks gives us 
abundance estimates for each transcript 

© 2024 Phillip Compeau

(a) (b) (c)

1 .334 .422 .244

2 1 0 0

3 .334 .422 .244

4 .334 .422 .244

5 0 1 0

6 .442 .558 0

7 .334 .422 .244

8 0 .634 .366

9 0 .634 .366

10 .578 0 .422

Z3

Totals 3.356 4.514 2.130

θ (3) = (.336, .451, .213)

If EM estimates that 33.6% of 
1000 reads mapping to a gene 
come from one transcript, we 
get a simple expression value 
of 336 fragments mapped.

STOP: How can we improve 
this metric for expression?



Improving our simple expression metric

© 2024 Phillip Compeau

(a) (b) (c)

1 .334 .422 .244

2 1 0 0

3 .334 .422 .244

4 .334 .422 .244

5 0 1 0

6 .442 .558 0

7 .334 .422 .244

8 0 .634 .366

9 0 .634 .366

10 .578 0 .422

Z3

Totals 3.356 4.514 2.130

θ (3) = (.336, .451, .213)

Answer: Take number of reads 
mapped to a transcript per 
kilobase of the transcript.  

Isoform (a)

Isoform (b)

Isoform (c)



Improving our simple expression metric

© 2024 Phillip Compeau

(a) (b) (c)

1 .334 .422 .244

2 1 0 0

3 .334 .422 .244

4 .334 .422 .244

5 0 1 0

6 .442 .558 0

7 .334 .422 .244

8 0 .634 .366

9 0 .634 .366

10 .578 0 .422

Z3

Totals 3.356 4.514 2.130

θ (3) = (.336, .451, .213)

Exercise: Using θ(3), what is 
each isoform’s expression for 
1000 reads, if (a), (b), (c) have 
respective lengths 1200 bp, 
1000 bp, and 800 bp? 

Isoform (a)

Isoform (b)

Isoform (c)



Improving our simple expression metric

© 2024 Phillip Compeau

(a) (b) (c)

1 .334 .422 .244

2 1 0 0

3 .334 .422 .244

4 .334 .422 .244

5 0 1 0

6 .442 .558 0

7 .334 .422 .244

8 0 .634 .366

9 0 .634 .366

10 .578 0 .422

Z3

Totals 3.356 4.514 2.130

θ (3) = (.336, .451, .213)

Answer: 
a) 336 reads / 1.2 kbp = 280 reads/kbp
b) 451 reads / 1 kbp = 451 reads/kbp
c) 213 reads / 0.8 kbp = 266.25 reads/kbp

Isoform (a)

Isoform (b)

Isoform (c)



Improving our simple expression metric

© 2024 Phillip Compeau

(a) (b) (c)

1 .334 .422 .244

2 1 0 0

3 .334 .422 .244

4 .334 .422 .244

5 0 1 0

6 .442 .558 0

7 .334 .422 .244

8 0 .634 .366

9 0 .634 .366

10 .578 0 .422

Z3

Totals 3.356 4.514 2.130

θ (3) = (.336, .451, .213)

Answer: 
a) 336 reads / 1.2 kbp = 280 reads/kbp
b) 451 reads / 1 kbp = 451 reads/kbp
c) 213 reads / 0.8 kbp = 266.25 reads/kbp

STOP: Say experiment 2 gives us 
these values. Are the values very 
different from experiment 1?
a) 29000 reads/kbp
b) 46000 reads/kbp
c) 26000 reads/kbp



Improving our simple expression metric

© 2024 Phillip Compeau

(a) (b) (c)

1 .334 .422 .244

2 1 0 0

3 .334 .422 .244

4 .334 .422 .244

5 0 1 0

6 .442 .558 0

7 .334 .422 .244

8 0 .634 .366

9 0 .634 .366

10 .578 0 .422

Z3

Totals 3.356 4.514 2.130

θ (3) = (.336, .451, .213)

Answer: 
a) 336 reads / 1.2 kbp = 280 reads/kbp
b) 451 reads / 1 kbp = 451 reads/kbp
c) 213 reads / 0.8 kbp = 266.25 reads/kbp

STOP: But what if I told you that 
experiment 2 generated 100x as 
many reads as experiment 1?
a) 29000 reads/kbp
b) 46000 reads/kbp
c) 26000 reads/kbp



Improving our simple expression metric

© 2024 Phillip Compeau

Key point: Expression of every gene will be higher 
on average in experiments that generate more reads, 
so we need to normalize by the number of reads 
sequenced.



Improving our simple expression metric

© 2024 Phillip Compeau

Key point: Expression of every gene will be higher 
on average in experiments that generate more reads, 
so we need to normalize by the number of reads 
sequenced.

The expression value used by Cufflinks is RPKM: 
reads mapped per kilobase of transcript, per million 
mapped reads.



Comparing our improved expression 
metric for two samples

© 2024 Phillip Compeau

The expression value used by Cufflinks is RPKM: 
reads mapped per kilobase of transcript, per million 
mapped reads.

Experiment 2 (100M reads):
a) 29000 reads/kbp
b)46000 reads/kbp
c) 26000 reads/kbp

Exercise: What is the RPKM of each isoform in each 
of the two experiments?

Experiment 1 (1M reads):
a) 280 reads/kbp
b)451 reads/kbp
c) 266.25 reads/kbp



Comparing our improved expression 
metric for two samples

© 2024 Phillip Compeau

Experiment 2 (100M reads):
a) 29000 reads/kbp
b)46000 reads/kbp
c) 26000 reads/kbp

Experiment 1 (1M reads):
a) 280 reads/kbp
b)451 reads/kbp
c) 266.25 reads/kbp

Answer:
a) (29000 reads/kbp)/(100M 

reads) = 290 RPKM
b)(46000 reads/kbp)/(100M 

reads) = 460 RPKM
c) (26000 reads/kbp)/(100M 

reads) = 260 RPKM

Answer:
a) (280 reads/kbp)/(1M 

reads) = 280 RPKM
b)(451 reads/kbp)/(1M 

reads) = 451 RPKM
c) (266.25 reads/kbp)/(1M 

reads) = 266.25 RPKM



Comparing our improved expression 
metric for two samples

© 2024 Phillip Compeau

Answer:
a) (280 reads/kbp)/(1M 

reads) = 280 RPKM
b)(451 reads/kbp)/(1M 

reads) = 451 RPKM
c) (266.25 reads/kbp)/(1M 

reads) = 266.25 RPKM

Answer:
a) (29000 reads/kbp)/(100M 

reads) = 290 RPKM
b)(46000 reads/kbp)/(100M 

reads) = 460 RPKM
c) (26000 reads/kbp)/(100M 

reads) = 260 RPKM

Now we can make a fair comparison of the resulting 
expression levels with log2foldchange!

STOP: Are these RPKMs similar? What’s missing?



We need to incorporate stochasticity 
into differential expression

© 2024 Phillip Compeau

Model of Sequencing

 11

Mixture of mRNA 
molecules (transcripts) 
in the cell

sequencing machine 
will randomly pick a 
nucleotide at which to 
start sequencing

a short read (≈100nt) 
will be sequenced 
there and output

Courtesy: Carl Kingsford

Key Point: We should not expect the same result 
from different RNA-seq runs on the same sample.



We use high-powered statistics to build 
a curve around expression estimate

© 2024 Phillip Compeau

Increased
likelihood of
sample having
given expression

Expression of isoform



We use high-powered statistics to build 
a curve around expression estimate

© 2024 Phillip Compeau

Instead of “Is the expression of two transcripts 
different?” we ask “How likely would random 
chance have caused the difference we see?”



We use high-powered statistics to build 
a curve around expression estimate

© 2024 Phillip Compeau

Instead of “Is the expression of two transcripts 
different?” we ask “How likely would random 
chance have caused the difference we see?”

STOP: What does this remind us of?



We use high-powered statistics to build 
a curve around expression estimate

© 2024 Phillip Compeau

Instead of “Is the expression of two transcripts 
different?” we ask “How likely would random 
chance have caused the difference we see?”

STOP: What does this remind us of?

Answer: BLAST!



Our problem then reduces to curve 
comparison

© 2024 Phillip Compeau

Sample 1 Sample 2

Expression of isoform

STOP: How sure are we that the isoform is 
differentially expressed in the two samples?  



Our problem then reduces to curve 
comparison

© 2024 Phillip Compeau

Sample 1 Sample 2

Expression of isoform

STOP: What about now?  



Our problem then reduces to curve 
comparison

© 2024 Phillip Compeau

Sample 1 Sample 2

Expression of isoform

Note: This is a big simplification of a very 
complicated process.  



This idea is the engine of “Cuffdiff”

© 2024 Phillip Compeau

p-value: The likelihood that we observe an outcome 
due to random chance.



This idea is the engine of “Cuffdiff”

© 2024 Phillip Compeau

When comparing two samples, we compute a p-
value for every transcript in the samples, and focus 
on isoforms with low p-values.

p-value: The likelihood that we observe an outcome 
due to random chance.



Quick p-value quiz

© 2024 Phillip Compeau

STOP: Say that we have the following p-values for a 
differential expression analysis of 20,000 human 
genes. Which ones would you want to include? 

Gene p-value
A 0.79
B 0.07
C 0.01
D 0.0031
E 0.00000079



Quick p-value quiz

© 2024 Phillip Compeau

STOP: Say you play a casino game 20,000 times 
with the following probability of success. Which 
games would you not expect to win?

Game Probability
A 0.79
B 0.07
C 0.01
D 0.0031
E 0.00000079



Many trials means many chances for a 
low probability event to occur

© 2024 Phillip Compeau



Correcting our p-values with Bonferroni

© 2024 Phillip Compeau

Bonferroni Correction: When running n statistical 
tests simultaneously, we multiply all p-values by n.

Gene p-value Corrected Value
A 0.79 15800
B 0.07 1400
C 0.01 200
D 0.0031 62
E 0.00000079 0.0158



Correcting our p-values with Bonferroni

© 2024 Phillip Compeau

Gene p-value Corrected Value
A 0.79 15800
B 0.07 1400
C 0.01 200
D 0.0031 62
E 0.00000079 0.0158

STOP: Now which genes would we report as 
differentially expressed?



TWO X TWITTER STORIES, AND 
CLUSTERING CELLS

© 2024 Phillip Compeau



A short RNA-seq story

© 2024 Phillip Compeau

STOP: Would you 
expect the same tissue 
in two similar species to 
have more similar gene 
expression, or different 
tissues in the same 
species?



Heatmap of differential expression shows 
intraspecies similarity across tissue

© 2024 Phillip Compeau

Lin et al., 2014



The problem is batch effects!

© 2024 Phillip Compeau

https://twitter.com/Y_Gilad/status/593088451462963202

RNA-seq is sensitive 
to batch effects, in 
which experimental 
conditions can 
influence the results 
of the experiment.

STOP: What should 
researchers have 
done instead?



Heatmap after “batch correction” shows 
human and mouse cluster by tissue

© 2024 Phillip Compeau

https://twitter.com/Y_Gilad/status/593088451462963202



All this played out on Twitter … and the 
original paper was never retracted!

© 2024 Phillip Compeau



From batch RNA-seq to “single cell” 
RNA-seq

© 2024 Phillip Compeau

2009: researchers find a way to measure expression 
of transcripts in a single cell.



From batch RNA-seq to “single cell” 
RNA-seq

© 2024 Phillip Compeau

2009: researchers find a way to measure expression 
of transcripts in a single cell.

For each cell, we obtain a vector of expression 
values x, where xi is the expression value of the i-th 
gene/isoform.



From batch RNA-seq to “single cell” 
RNA-seq

© 2024 Phillip Compeau

2009: researchers find a way to measure expression 
of transcripts in a single cell.

For each cell, we obtain a vector of expression 
values x, where xi is the expression value of the i-th 
gene/isoform.

STOP: Having an expression vector for ~1M cells 
gives us a lot of data. So how do we visualize it?



Dimension Reduction Produces Beautiful 
Plots Differentiating Cells by Type

© 2024 Phillip Compeau

ARTICLE RESEARCH

the discovery of both universal and organ-specific gene modules within 
these shared cell types.

To demonstrate an example of investigating common cell types 
across organs, we collectively analysed all FACS cells annotated as  
T cells, which revealed five clusters (Fig. 4). Cluster 0 comprises thymic 
cells undergoing VDJ recombination characterized by the expression 
of Rag1, Rag2 and Dntt, and includes uncommitted double-positive  
T cells (Cd4+ and Cd8a+). Cluster 4 contains predominantly prolif-
erating thymic T cells, which may represent pre-T cells expanding 
after VDJ recombination. Clusters 1–3 contain mostly single-positive 
T cells (Cd4+ or Cd8a+). Cluster 3 contains Cd5hi thymic T cells that 
are possibly undergoing positive selection, whereas Cluster 2 contains 
mostly non-thymic T cells expressing the high-affinity IL2 receptor 
(encoded by the genes Il2ra and Il2rb), which suggests that they are 
activated. Notably, they also express MHC class II genes (H2-Aa and 
H2-Ab1). Although this is known in human T cells, MHC class II was 
previously thought to be restricted to professional antigen-presenting 
cells in mice22. Finally, Cluster 1 also represents mature T cells, but 
primarily splenic.

Global transcription factor analysis
One major goal of defining cell identities is to understand the under-
lying regulatory networks. We investigated how transcription factors 
contribute to cell-type identity by clustering averaged gene-expression 
profiles for each cell type using only the 1,016 transcription factors 
expressed in our dataset (Fig. 5a). The resulting dendrogram closely 
resembles the dendrogram produced using all expressed genes, indicat-
ing that transcription factors can be used to reconstruct known cell- 
ontology relationships between bulk populations (entanglement = 0.11; 
Extended Data Fig. 10a). By contrast, when we repeated the analysis 
using cell-surface markers, RNA splicing factors, or the two groups 

combined (equivalent to a random set of genes), the entanglement 
was 0.22, 0.25 and 0.34, respectively, which suggests that none of 
these molecular classes define cell type to the extent that transcription  
factors do.

We then analysed organ-specific transcription factors by performing 
correlation analysis on shared cell types between organs23 (epithelial 
cells, endothelial cells, B cells and T cells; Fig. 5b–e, Extended Data 
Fig. 10b–i). To understand which transcription factors were most 
informative for specifying cell types, we performed variable selec-
tion using random forest models (Methods) and determined that 136 
transcription factors are needed to simultaneously define all cell types 
across all organs (Fig. 5f, Supplementary Table 3). We then determined 
the transcription factor sets that distinguish each individual cell type 
from all other cells. These sets vary substantially in size (from 2 to 813 
transcription factors) and are not necessarily unique to each cell type 
(Fig. 5g–i, Supplementary Table 4).

A possible application for such transcription factor networks is the 
design of reprogramming protocols. Indeed, the transcription factors 
used in published methods are found in the cell-type-specific transcrip-
tion factors sets we discovered (Supplementary Table 5). For some cell 
types, such as hepatocytes, satellite cells and oligodendrocytes, those 
reprogramming factors are the top variables segregating cell types 
(Fig. 5g–i). In fact, for nearly all reprogramming protocols the tran-
scription factors used also specified the targeted cell type in our data 
(Supplementary Table 5), which suggests that our data can inform novel 
reprogramming schemes.

Discussion
A key challenge for single-cell studies is to understand transcriptomic 
changes caused by dissociation. A previous study showed that quiescent 
limb-muscle satellite cells activate upon dissociation and consequently 
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Fig. 2 | t-SNE visualization of all FACS cells. t-SNE plot of all cells collected by FACS, coloured by organ, overlaid with the predominant cell type 
composing each cluster; n = 44,949 individual cells.
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Dimension reduction is the subject of 
another controversy … more later!
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