Neural Networks

and the Evolution
\\ el of Modularity
X

\ Output

X

>
7,
y
e

=
e

© 2024 Phillip Compeau



MODULARITY WUT?
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Quick Review Question

—_—

5’ 3’
1 a ! !
3’ 5’

I —————

Reverse Complement Problem

* Input: A DNA string s.
* Qutput: The reverse complement of s.

STOP: How would you write code to solve this?
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A “Modular” Reverse Complement
Function is Best!

—_—

5 3’
T a ! !
3’ 5

e ——————————

ReverseComplement(s)
return Reverse(Complement(s))

STOP: What does it mean for code to be “modular”?
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Modularity is everywhere in biology
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We already know that modularity occurs
in biological networks

The “network
motifs” that we
saw in TF networks
are their own form
of modularity.
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Modularity in Graphs

S %*/

/
Modular A, \
i A

STOP: What should it mean for a graph to be
“modular”?
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Modularity in Graphs

g(\/-—-—<//

L %i |

{
Modular I\
y

.

Answer: It should divide into subgraphs so that two
nodes from one subgraph are more likely to be
connected than two nodes from different subgraphs.

© 2024 Phillip Compeau




Modular Code is Best, Right?

STOP: Is our

ReverseComplement()
function the best way to
reverse complement a string?

ReverseComplement(s)
return Reverse(Complement(s))
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Not if we care about speed!

ReverseComplement(s):
revComp = ""

complementMap = {

‘At T,
'T': 'AY,
'c': 'GY,
'‘G': 'C'

}

for i = Length(DNAString) - 1 to ©
currentChar = DNAString[i]
complementChar = complementMap|[currentChar]
revComp = revComp + ComplementChar

return revComp
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Modular code is good practice, but
optimized code can be non-modular

<!doctype html><html itemscope="" itemtype="http://schema.org/WebPage" lang="en"><head><meta charset="UTF-8"><meta content="origin" name="referrer"><meta
content="Search the world's information, including webpages, images, videos and more. Google has many special features to help you find exactly what you're
looking for." name="description"><meta content="noodp" name="robots"><meta content="/images/branding/googleg/1x/googleg_standard_color_128dp.png"
itemprop="image"><meta content="origin" name="referrer"><title>Google</title><script nonce="U235inrFmU2AB7s/

N08z0Q==">(function(){window.google={KkEI: 'CYaCXYX-L8-1ggezkIJw',6KEXPI:'31',authuser:0,kscs:'790932f9_CYaCXYX-L8-

1ggezkIJw',u: '790932f9"',kGL: 'US',kBL: 'q48m'};google.sn="webhp';google.kHL="'en';google.jsfs="Ffpdje';})(); (function(){google.lc=[];google.1i=0;google.getEI=f
unction(a){for(var b;a&&(!a.getAttribute||!(b=a.getAttribute("eid")));)a=a.parentNode;return b||google.kEI};google.getLEI=function(a){for(var
b=null;a&&('a.getAttribute||!(b=a.getAttribute("leid")));)a=a.parentNode; return
b};google.https=function(){return"https:"==window.location.protocol};google.ml=function(){return null};google.time=function(){return(new
Date).getTime()};google. log=function(a,b,e,c,g){if (a=google. logUrl(a,b,e,c,g)){b=new Image;var

d=google. lc, f=google.li;d[f]=b;b.onerror=b.onload=b.onabort=function(){delete
d[f]};google.vel&&google.vel. lu&&google.vel. lu(a);b.src=a;google. li=f+1}}; google. logurl=function(a,b,e,c,g){var d="",f=google.ls||"";e||-
1!=b.search("&ei=") | | (d="&ei="+google.getEI(c),-1==b.search("&lei=")&&(c=google.getLEI(c))&&(d+="&lei="+c));c=""; !e&&google.cshid&&~
1==b.search("&cshhd=")&&"slh"!=a&&(c="&cshid="+google.cshid);a=e||"/"+(g||"gen_204")+"?atyp=i&ct="+a+"&cad="+b+d+f+"&zx="+google.time()+c;/Ahttp:/
i.test(a)&&google.https()&&(google.ml(Error("a"),!1,{src:a,glmm:1}),a=""); return a};}).call(this); (function(){google.y={};google.x=function(a,b){if(a)var
c=a.id;else{do

c=Math. random() ;while(google.y[c])}google.yl[cl=[a,b];return!1};google.lm=[];google.plm=function(a){google.lm.push.apply(google.lm,a)};google.lg=[];google. lo
ad=function(a,b,c){google. 1q.push([[al,b,c])};google. loadAll=function(a,b){google.lq.push([a,b]l)};}).call(this);google.f={}; (function(){google.hs={h:true};}
) (); (function(){google.c={}; (function(){var f=window.performance;var

g=function(a,b,c){a.addEventListener?a.addEventListener(b,c, !1):a.attachEvent&&a.attachEvent("on"+b,c)};google. timers={};google.startTick=function(a){google
.timers[al={t:{start:google.time()},e:{},m:{}}};google. tick=function(a,b,c){google.timers[a] | |google.startTick(a);c=void @!==c?c:google.time();b instanceof
Array| | (b=[b]);for(var e=0,d;d=b[e++];)google.timers[a].t[d]=c};google.c.e=function(a,b,c){google.timers[al.e[b]l=c};google.c.b=function(a){var
b=google.timers.load.m;b[a]&&google.ml(Error("a"),!1,{m:a});bl[al=!0};google.c.u=function(a){var b=google.timers.load.m;if(b[a]l){b[al=!1;for(a in
b)if(b[al)return;google.csiReport()}else google.ml(Error("b"),!1,{m:a})};google.rll=function(a,b,c){var
e=function(d){c(d);d=e;a.addEventListener?a.removeEventListener("load",d,!1):a.attachEvent&&a.detachEvent("onload",d);d=e;a.addEventListener?a. removeEventLi
stener("error",d, !1):a.attachEvent&&a.detachEvent("onerror",d)};g(a,"load",e);b&&g(a,"error",e)};google.aft=function(a){a.setAttribute("data-
iml",google.time())};google.startTick("load");var h=google.timers.load;a:{var k=h.t;if(f){var 1=f.timing;if(1){var
m=1.navigationStart,n=1.responseStart;if(n>m&&n<=k.start){k.start=n;h.wsrt=n-m;break
a}}f.now&&(h.wsrt=Math.floor(f.now()))2}}google.c.b("pr");google.c.b("xe");}).call(this);})(); (function(){var
b=[function(){google.tick&&google.tick("load","dc1")}];google.dclc=function(a){b.length?b.push(a):a()};function c(){for(var
aja=b.shift();)a()}window.addEventListener?(document.addEventListener("DOMContentLoaded",c,!1),window.addEventListener("load",c,!1)):window.attachEvent&&win
dow.attachEvent("onload",c);}).call(this); (function(){var

Here is some HTML source code from google.com.
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Much of biology is hyper-optimized ...

BIOLOGY' 1S (ARGELY SOWVED,
DNA 15 THE SOURCE CODE
FOR OUR BODIES, NOW THAT
GENE SEQUENCING IS ERSY,
WE JUST HAVE. TO READ IT.

IT'S NOT JUST “SOURCE
CODE" THERES A TON
OF FEEDBACK AND
EXTERNAL PROCESSING.

l

BUT EVEN IF IT WERE, DNA IS THE
RESULT OF THE MOST AGBRESSIVE
OPTIMIZATION PROCESS IN THE
UNIVERSE, RUNNING IN PARALLEL
AT EVERY' LEVEL, IN EVERY LIVING
THING, FOR FOUR BILLION YEARS.

ITS STILL JUST CODE.

»
Fer

OK, TRY OPENING GOOGLE.COM
AND CLICKING "VIEW SOURCE.”

| okz.onrveon

THATS JUST A FEW YEARS OF
OPTIMIZATION BY GOOGLE. DEVS.
DNA 1S THOUSANDS OF TIMES
LONGER AND LAY, LAY WORSE..

\ Lo, BIOLOGY
IS IMPRSSIBLE.

—"

https://xkcd.com/1605/
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... and yet modularity in some contexts
must be worth preserving

Although modularity is important to many biological
processes, no one built a model in which modularity
spontaneously evolved until 2005.

https://www.pnas.org » content

Spontaneous evolution of modularity and network motifs | PNAS

by N Kashtan - 2005 - Cited by 899 — Nadav Kashtan and Uri Alon ... To understand the origin
of modularity and network motifs in biology one has to understand how these features ...
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MCCULLOCH-PITTS NEURONS: THE
HUMBLE FOUNDATIONS OF Al
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Neurons form a network of cells

exchanging information

Terminal buttons

(form junctions
with other cells)

Cell body Dendrites
(soma) (receive messages
from other cells)

Axon

(passes messages away
from the cell body to
other neurons, muscles,
or glands)

Action potential

(electrical signal

traveling down  Myelin sheath

the axon) (covers the axon of some
neurons and helps speed
neural impulses)

https://en.wikipedia.org/wiki/Neuron#/media/File:Components_of_neuron.jpg

Dendrites
(from another
neuron)

/N
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Hooray for interdisciplinary research

A logical calculus of the ideas immanent in nervous activity
WS McCulloch, W Pitts - The bulletin of mathematical biophysics, 1943 - Springer

Because of the “all-or-none” character of nervous activity, neural events and the relations
among them can be treated by means of propositional logic. It is found that the behavior of
every net can be described in these terms, with the addition of more complicated logical ...

v YY Cited by 20281 Related articles All 36 versions 99

Walter Pitts
Warren McCulloch
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McCulloch-Pitts Neurons

A McCulloch-Pitts (MP)
neuron takes as input n | input
binary variables x;, ..., | Variables
x,. For a threshold 0, it
fires (returns 1) if x; +
... + x, > 0; otherwise, it|
1
returns 0.

Example: At right is an

MP neuron for n =2
and 6 = 2.

@G G e
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Xy X1+ X, Output
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0 1 0

1 1 0

0 0 0



McCulloch-Pitts Neurons

Example: And here is ()

the MP neuron forn =2

and 6 = 1.

Input \ O - S

Variables /
@ Threshold

X Xy X1+ X, Output
1 1 2 1
1 0 1 1
0 1 1 1
0 0 0 0
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McCulloch-Pitts Neurons

Example: And here is ()

the MP neuron for n =2 \

Input
and 6 = 1. Variables

o
@/Threshold

STOP: Do these neurons
remind you of anything?

X X X1+ Xy Output
1 1 2 1

1 0 1 1

0 1 1 1

0 0 0 0
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McCulloch-Pitts Neurons

Example: And here is ()
the MP neuron for n = 2 o \a _ Ouput

and 8 =1. Variables /
@ Threshold

STOP: Do these neurons
remind you of anything?

X X X1+ Xy Output

1 1 2 1
Answer: The output is 1 0 1 1
just x; V X,. 0 1 1 1

0 0 0 0
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McCulloch-Pitts Neurons

And the output of the
MP neuron when 6 = 2
1S X1 A Xo.

We say that an MP
neuron represents a
truth table if the inputs
and outputs of the
neuron and the truth
table are the same.

Input
Variables

@G G e
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A Quick Exercise

Exercise: The AND of n input variables returns true if
all of the input variables are true, and false
otherwise; the OR of n input variables returns true if
at least one of them is true, and false if they are
all false. Construct MP neurons representing the
AND and OR of n binary input variables.
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An Even Simpler Logical Connective:
NOT

A1 T K]

Here is a truth table representing e g

the logical connective NOT.
false true
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An Even Simpler Logical Connective:
NOT

X1 o X
true false
false true

Here is a truth table representing
the logical connective NOT.

Theorem: There is no McCulloch-Pitts neuron
representing NOT.
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An Even Simpler Logical Connective:
NOT

X1 o X
true false
false true

Here is a truth table representing
the logical connective NOT.

Theorem: There is no McCulloch-Pitts neuron
representing NOT.

Proof: Assume that there is such an MP neuron with
one input variable x;.
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An Even Simpler Logical Connective:
NOT

X1 o X
true false
false true

Here is a truth table representing
the logical connective NOT.

Theorem: There is no McCulloch-Pitts neuron
representing NOT.

Proof: Assume that there is such an MP neuron with
one input variable x;. There must be some threshold
0 such that when x; =1, x; < 6, and when x; = 0, X,
> 0. In other words, 1 < 6 <0, a contradiction. o
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FROM MCCULLOCH-PITTS
NEURONS TO PERCEPTRONS
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Perceptrons Generalize MP Neurons

Perceptron: A neuron having a threshold 8 and
constants wy, w;, ..., w,, which fires if and only if
Wi Xy +Wy X+ ...+ W, X,>0.

CORNELL AERONAUTICAL LABORATORY, INC.

Report Ko, 85=L60-1

THE PERCEPTRON
A PERCEIVING AND RECOGNIZING AUTOMATON

(PROJECT PARA)

x January, 1957
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Perceptrons Generalize MP Neurons

Perceptron: A neuron having a threshold 8 and
constants wy, w,, ..., w,, which fires if and only if w,
X1 +F Wy X+ ...+ w, - x, > 0.

STOP: Why does a perceptron generalize the MP
neuron¢
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Perceptrons Generalize MP Neurons

Perceptron: A neuron having a threshold 8 and
constants wy, w,, ..., w,, which fires if and only if
Wi Xy +Wy X+ ...+ W, X,>0.

STOP: Why does a perceptron generalize the MP
neuron¢

Answer: An MP neuron is a perceptron with all
weights w; equal to 1.
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Perceptrons Generalize MP Neurons

Perceptron: A neuron having a threshold 8 and

constants wy, w,, ..., w,, which fires if and only if
Wi Xy +Wy X+ ...+ W, X,>0.

Input il L
Although an MP el > @ >
neuron cannot Threshold
represent NOT, here
: X -x;  Output
IS a perceptron

: 1 -1 0
representing NOT.

0 0 1

© 2024 Phillip Compeau




Consider the ambiguity of the word “or”

“Would you like ketchup or mustard with your hot
dog?”

“Would you like to visit the beach or the mountains
on vacation¢”
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Consider the ambiguity of the word “or”

“Would you like ketchup or mustard with your hot
dog?”

“Would you like to visit the beach or the mountains
on vacation¢”

STOP: What is the difference in “or” in these two
questions?
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/

Consider the ambiguity of the word “or’

“Would you like ketchup or mustard with your hot
dog?”

“Would you like to visit the beach or the mountains
on vacation¢”

STOP: What is the difference in “or” in these two
questions?

Answer: The first question implies that both options
are possible (“and/or”).
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Introducing XOR

Exclusive or (XOR): x; ¥ x, is true precisely when
exactly one of x; and x, is true (i.e., when x; # x,).

X1 X2 e Lo
true true true false
true false true true
false true true true
false false false false
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Introducing XOR

Exclusive or (XOR): x; ¥ x, is true precisely when
exactly one of x; and x, is true (i.e., when x; # x,).

X1 X2 e Lo
true true true false
true false true true
false true true true
false false false false

Exercise: Find a perceptron that models x; ¥ x,.
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Perceptrons have limits too

Theorem: There is no perceptron representing XOR.

Proof: Assume there is,
so there must be Q. .
constants w,, w,, such \
that /
* when x; = x,, Q@ ~»

Wi X1+ Wy Xy, < 0 Input Output
* when x; # X,

Wi X1+ Wy X, >0
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Perceptrons have limits too

Theorem: There is no perceptron representing XOR.

Proof: When x, = x,, the
neuron doesn’t fire, and ©

X1 \_/X2
(0 >

e
w0 + wy-0=0< 0 .

wil +wy 1T =w;+w, <0  x2)

Input Output
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Perceptrons have limits too

Theorem: There is no perceptron representing XOR.

Proof: When x; # x,, the
neuron fires, and ©

X1 \_/X2
(0 >

e
w1 +w,0=w,>0 /

w0+ wy,1T=w,>0 2]

Input Output
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Perceptrons have limits too

Theorem: There is no perceptron representing XOR.

Proof: In summary:

° W129
° WQZG
c 0<0©6

* wi+w, <0

Adding egs. 1 and 2
gives w,+w, > 20, which
contradicts w;+w, < 0
since O Is positive. O

Input

© 2024 Phillip Compeau

e
P

X1 \_/X2
(0 >

Output




A less rigorous view of this proof

Note: The collection of 4
all points (x5, x,) such L © O
thatw; - x; + w, - x, = 0
must form a line. The
points such that w; - x;
+ w, - X, > 0 fall on one
side of this line.

O @
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A less rigorous view of this proof

We color the points (x;,

X2

X,) by whether x; ¥ x, is 1
true (black) or false 1 @ O
(white).

O o—

© 2024 Phillip Compeau



A less rigorous view of this proof

We color the points (x;,

X2

X,) by whether x; ¥ x, is 1
true (black) or false 1 @ O
(white).

There is no line through
the points such that
shaded points are on
one side; i.e., XOR is not

O @

linearly separable.
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Linear Separability of AND and OR

STOP: Draw lines that

separate points based 1
on the values of x; V. x5. | 1 ¢ O
Do the same for x; A x,.

O

© 2024 Phillip Compeau
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Linear Separability of AND and OR

STOP: Draw lines that
separate points based
on the values of x; V x,.
Do the same for x; A x,.

Answer: Shown at right.

A \\
\\X1 N\ X5
10O N
\
\
N
\
\
\\X1 \% X
\
\
\
\
O =
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Linear Separability of AND and OR

STOP: Draw lines that

separate points based
on the values of x; V x,.

Do the same for x; A x,.

Answer: Shown at right.

You may be wondering
how useful perceptrons
can be if they can't
model XOR. Sit tight!

A \\
\\X1 N\ X5
10 N
\
\
N
\
\
\\X1 \% X
\
\
\
\
O =
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A BIT MORE LOGIC
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Propositions use logical connectives as

building blocks

Proposition: A combination of logical connectives
in which outputs of one connective can be used as
inputs of another (e.g., (x; A (X, V ~X3)) ¥ (x4 V X5).

© 2024 Phillip Compeau




Propositions use logical connectives as

building blocks

Proposition: A combination of logical connectives
in which outputs of one connective can be used as
inputs of another (e.g., (x; A (X, V ~X3)) ¥ (x4 V X5).

Truth table below demonstrates one of
DeMorgan’s Laws: ~(x; A X3) = ~x; V ~X,.

X1 X XAH ~mAn) X ~% Mo
true true true false false false false
true false false true false true true
false true false true true false true
false false false true true true true

© 2024 Phillip Compeau




Propositions use logical connectives as

building blocks

Note: Here “=" denotes logical equivalence,
meaning that the truth table values are the same.

Truth table below demonstrates one of
DeMorgan’s Laws: ~(x; A X3) = ~x; V ~X,.

X1 X XAH ~mAn) X ~% Mo
true true true false false false false
true false false true false true true
false true false true true false true
false false false true true true true
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Propositions use logical connectives as

building blocks

The expression ~(x; A x,) is so common that it has
Its own connective, NAND (“not AND”): x; T X,.

Truth table below demonstrates one of
DeMorgan’s Laws: ~(x; A X3) = ~x; V ~X,.

X1 X XAH ~mAn) X ~% Mo
true true true false false false false
true false false true false true true
false true false true true false true
false false false true true true true

© 2024 Phillip Compeau




Let’s do a couple of exercises!

The expression ~(x; A x,) is so common that it has
Its own connective, NAND (“not AND”): x; T X,.

Exercise 1: Find a perceptron representing x; 1 X,.

Exercise 2: Find a proposition using connectives
other than V that is logically equivalent to x; ¥ x,.

© 2024 Phillip Compeau




LINKING PERCEPTRONS INTO
NEURAL NETWORKS MAKES THEM
MORE POWERFUL

© 2024 Phillip Compeau



One solution to exercise 1

Exercise 1: Find a perceptron representing x; 1 X,.

X1 T X2
(1) > \
@ \
N

Input Output

o N\
\
\
\ .
-
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One solution to exercise 2

Exercise 2: Find a proposition using connectives
other than V that is logically equivalent to x; ¥ x,.

One common solution is that x; ¥ x, = (x; V x,) A
(~X; V ~X,), which in turn is just (x; V Xx;) A (x; T Xy).

© 2024 Phillip Compeau




One solution to exercise 2

Exercise 2: Find a proposition using connectives
other than V that is logically equivalent to x; ¥ x,.

One common solution is that x; ¥ x, = (x; V x,) A
(~X; V ~X,), which in turn is just (x; V Xx;) A (x; T Xy).

Note: Although we don’t have a perceptron
representing ¥, we do have perceptrons representing
V, A, and 1 ...

© 2024 Phillip Compeau




Constructing a network of perceptrons
representing x; VY x,

Yi=X1VXp

@%1

Yo = X1 X
X1 X2 X1+ X3 Y1 X1 - X2 Y2
1 1 2 1 -2 0
1 0 1 1 -1 1
0 1 1 1 -1 1
0 0 0 0 0 1
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Constructing a network of perceptrons
representing x; VY x,

Yi=X1 VX
0 i 1 Output: y1 AVs =
1 X1 V X2) X1 T X2
X1 v X9
>
a /
—1
Y2=X1 T X2
X1 X3 X1+ X9 Y1 -X1 = X9 Y2 y1+ Yy, Output
1 1 7 1 2 0 1 0
1 0 1 1 1 1 2 1
0 1 1 1 -1 1 7 1
0 0 0 0 0 1 1 0
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Constructing a network of perceptrons
representing x; VY x,

i VD
@ ;) 1 Output: v A vy =

1 \ (1 VX3) A (X1 T X5) =
X1 v X9
@ >
1 /

@_—1)—1

Ya=x1 T X2

Neural network: a network of artificial neurons in
which neuron outputs are inputs into other neurons.
The above network has a single hidden layer of
neurons (gray) that are not input variables or output.
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THE UNIVERSALITY OF
PERCEPTRON NEURAL NETWORKS
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Binary Functions

Binary function: a function having n binary
variables as input and producing a binary output.

1(0,0)=1; f0,1)=1; #(1,0) =0; f(1,1) = 1.

STOP: How many different binary functions are
there with n input variables?

© 2024 Phillip Compeau



Binary Functions

Binary function: a function having n binary
variables as input and producing a binary output.

1(0,0)=1; f0,1)=1; #(1,0) =0; f(1,1) = 1.

STOP: How many different binary functions are
there with n input variables?

Answer: There are 2" different possible inputs. Each
input can produce a 1 or 0; therefore, there are
2"{21} total binary functions.
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Our building blocks can be used to
build any binary function

Note: this binary function can be represented by the
proposition ~x; V x,, with 1 = true and 0 = false.

1(0,0)=1; f0,1)=1; #(1,0) =0; f(1,1) = 1.

© 2024 Phillip Compeau




Our building blocks can be used to
build any binary function

Note: this binary function can be represented by the
proposition ~x; V x,, with 1 = true and 0 = false.

1(0,0)=1; f0,1)=1; #(1,0) =0; f(1,1) = 1.

Theorem: Any binary function can be represented
by some proposition formed by a finite number of
the logical connectives A, vV, and ~.
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Our building blocks can be used to
build any binary function

Note: this binary function can be represented by the
proposition ~x; V x,, with 1 = true and 0 = false.

1(0,0)=1; f0,1)=1; #(1,0) =0; f(1,1) = 1.

Theorem: Any binary function can be represented
by some proposition formed by a finite number of
the logical connectives A, vV, and ~.

Key point: All these connectives can be represented
by single perceptrons...
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Our building blocks can be used to
build any binary function

Note: this binary function can be represented by the
proposition ~x; V x,, with 1 = true and 0 = false.

1(0,0)=1; f0,1)=1; #(1,0) =0; f(1,1) = 1.

Corollary: Any binary function can be represented
by a neural network of finitely many perceptrons.

Key point: All these connectives can be represented
by single perceptrons...
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The only building block we need is NAND

Recall that ~(x; A x,) is
abbreviated as x; 1 x,.

OO.A.A
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The only building block we need is NAND

X1 X2 X1 T X,

Recall that ~(x; A x,) is

1
0
abbreviated as x; 1 x,. 1
0

OO.A.A

1
1
1

Theorem: Any binary function can be represented
by some proposition formed exclusively by a finite
number of 1 connectors.
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The only building block we need is NAND

X1 X2 X1 1 X,

1 1 0
Recall that ~(x; A x,) is 1 0 1
abbreviated as x; 1 x,. 0 1 1

0 0 1

Proof: We will show that each of the expressions
~X1, (X; A X3), and (xq V x,) can be represented with
just NAND (1) connectors.
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The only building block we need is NAND

X1 X2 X1 T X,

Recall that ~(x; A x,) is

1

0 1
abbreviated as x; 1 x,. 1 :
0 1

OO.A.A

Proof: We will show that each of the expressions
~X1, (X; A X3), and (xq V x,) can be represented with
just NAND (1) connectors.

STOP: Find a proposition formed only of 1
connectors that is logically equivalent to ~x; .
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The only building block we need is NAND

X1 X2 X1 T X,

Recall that ~(x; A x,) is

1
0 1
abbreviated as x; 1 x,. 1 :
0 1

OO.A.A

Proof: We will show that each of the expressions
~X1, (X; A X3), and (xq V x,) can be represented with
just NAND (1) connectors.

Answer: ~x; = x; T Xq.
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The only building block we need is NAND

X1 X2 X1 T X,

Recall that ~(x; A x,) is

1

0 1
abbreviated as x; 1 x,. 1 1
0 1

OO.A.A

Proof: We will show that each of the expressions

~X1, (X; A X3), and (xq V x,) can be represented with
just NAND (1) connectors.

Exercise: Find propositions of 1 connectors that are
logically equivalent to (x; A x5;) and (x; V x,).
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The only building block we need is NAND

X1 X XiAXy x1Tx3 (Tx) 7 (7 xp)
1 0 1

ot

0 1 0
0 1 0
0 1 0

X1 X2 x1Vxp x1x x7xp 7x) 1T 0T X)
1 0 0 1

0 1 1
1 0 1
1 1 0

s T (R
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The only building block we need is NAND

X1 X2 X1 1 X,

1 1 0
Recall that ~(x; A x,) is 1 0 1
abbreviated as x; 1 x,. 0 1 1

0 0 1

Theorem: Any binary function can be represented

by some proposition formed exclusively by a finite
number of 1 connectors.

STOP: Now that we have proven this theorem, what
is the corollary?
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The only building block we need is NAND

X1 X2 X1 T X,

Recall that ~(x; A x,) is

1
0
abbreviated as x; 1 x,. 1
0

OO.A.A

1
1
1

Corollary: Any binary function can be represented
by a neural network of NAND perceptrons.

bt it Note: [ is called

= e a NAND gate.
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MODELING THE EVOLUTION
OF BIOLOGICAL MODULARITY
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Returning to our original question

Can we build a (simple) model in which modularity
spontaneously evolves as an optimal solution?

https://www.pnas.org » content

Spontaneous evolution of modularity and network motifs | PNAS

by N Kashtan - 2005 - Cited by 899 — Nadav Kashtan and Uri Alon ... To understand the origin
of modularity and network motifs in biology one has to understand how these features ...
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The Kashtan-Alon Model

Organisms: all 4-input networks of NAND perceptrons

|

=
i el ¢

;

Output
e

e
-
-
/DO

/

DO Note: [ is called
a NAND gate.
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The Kashtan-Alon Model

Organisms: all 4-input networks of NAND perceptrons

Goal (G): correctly “compute” as many inputs as
possible for the proposition (x; ¥ x;) A (X3 ¥ x,).
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The Kashtan-Alon Model

Organisms: all 4-input networks of NAND perceptrons

Goal (G): correctly “compute” as many inputs as
possible for the proposition (x; ¥ x;) A (X3 ¥ x,).

STOP: How many different choices of input are
there for this proposition?
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The Kashtan-Alon Model

Organisms: all 4-input networks of NAND perceptrons

Goal (G): correctly “compute” as many inputs as
possible for the proposition (x; ¥ x;) A (X3 ¥ x,).

STOP: How many different choices of input are
there for this proposition?

Answer: Two possibilities for each variable, so 24 =
16.
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One way of reaching the goal

Recall that (x; ¥ x5) = (x; V Xo) A (X1 T Xy).

By the theorem from previously, there is some neural
network of NAND gates for (x; V x5) A (X3 T X»).

@Q—[ >

>
>
o — >o/
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One way of reaching the goal

And yet there is a simpler network for x; ¥ x,, which
is [x; 1 (x; Tx)] 1 [x, 7 (X1 T Xy)], as shown below.

\
\DO/DO\DOM
//\DO/

© 2024 Phillip Compeau



One way of reaching the goal

And yet there is a simpler network for x; ¥ x,, which
is [x; 1 (x; Tx)] 1 [x, 7 (X1 T Xy)], as shown below.

Key point: we should prioritize this smaller network
because it would be easier to have evolved.

°\

@// .-
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One way of reaching the goal

And yet there is a simpler network for x; ¥ x,, which
is [x; 1 (x; Tx)] 1 [x, 7 (X1 T Xy)], as shown below.

Key point: we should prioritize this smaller network
because it would be easier to have evolved.

To prefer a smaller network over a larger network,
Kashtan and Alon defined a fitness function for a
network as the fraction of the 16 input assignments
whose output matches the goal G, minus a small
positive € times the number m of NAND gates.

© 2024 Phillip Compeau



The Kashtan-Alon Algorithm

1. Construct 100 random initial networks.
2. Run the following algorithm for 10,000 “generations”.
1. Consider only the 50 networks having highest fitness.
2. Use these networks to produce 100 “children”
networks that have mutations compared to the parent
networks.
3. Atthe end, return the network(s) having maximum fitness
as the winner(s).

© 2024 Phillip Compeau




The Kashtan-Alon Algorithm

1. Construct 100 random initial networks.
2. Run the following algorithm for 10,000 “generations”.
1. Consider only the 50 networks having highest fitness.
2. Use these networks to produce 100 “children”
networks that have mutations compared to the parent
networks.
3. Atthe end, return the network(s) having maximum fitness
as the winner(s).

This type of search heuristic, which mimics
evolution, is called a genetic algorithm.
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Our winner isn’t very modular... ®




Life changes, and fitness should change
too

Key point: a more realistic model of a competitive
landscape would use a variable fitness function.
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Life changes, and fitness should change
too

Key point: a more realistic model of a competitive
landscape would use a variable fitness function.

Previous goal (G): correctly “compute” as many
inputs as possible for (x; ¥ x,) A (X3 ¥ Xxy).
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Life changes, and fitness should change
too

Key point: a more realistic model of a competitive
landscape would use a variable fitness function.

Previous goal (G): correctly “compute” as many
inputs as possible for (x; ¥ x,) A (X3 ¥ Xxy).

Alternate goal (H): correctly “compute” as many
inputs as possible for (x; ¥ x,) V (x5 ¥ xy).
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Adapting the algorithm to incorporate
variable fitness

1. Construct 100 random initial networks.
2. Run the following algorithm for 10,000 “generations”.
1. Consider only the 50 networks having highest fitness.
2. Use these networks to produce 100 “children”
networks that have mutations compared to the parent
networks.
3. Every e generations (e = 20 in original paper), switch
the goal function from G to H or vice-versa.
3. Atthe end, return the network(s) having maximum fitness
as the winner(s).
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With the static goal G, we found a non-
modular solution

\

e

o
N T

©
60/Key point:
/ when the goal
/ B is H, we need
.
@ many mutations
to this network.
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Dynamic fitness leads to a modular
solution to G in ~5000 generations

\
2 S o
e

\
DO/

e o

/DO
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Switching the goal to H yields a very
slightly different modular solution

o
\
e
@4/ i \Do\ o
o g e
e
e
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A great idea leads to more questions

1. What is the extent to which real fitness functions
reward modularity?

2. What are the limits of modularity in biology?

3. And what happens when we start building
models of consciousness that are more advanced
than the neural networks presented here?
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EPILOGUE: PRACHCAL
APPHCAHONS-OFNEURAL
NEFPWORKS Al MAGIC IN 20
MINUTES
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Many problems can be framed as
classification

Classification Problem

* Input: A collection of data divided into a training
set and a test set. Each training data point is
labeled into one of k classes.

* Output: a predictive labeling of all the points in
the test set into one of k classes.

Our data might be images of skin lesions,
which we want to classify as non-neoplastic, a
benign tumor, or malignant (cancer).
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Converting data into a manageable form

RGB(0,0,0)
RGB(255,255,255)
RGB(255,0,0)
RGB(0,255,0)
RGB(0,0,255)
RGB(255,255,0)
RGB(255,0,255)
RGB(0,255,255)
RGB(128,0,0)
RGB(0,128,0)
RGB(0,0,128)

We then need to vectorize our data
in some way, converting each
object into a collection of
variables.

0O~ O U b W N

RGB(128,128,0)
RGB(128,0,128)

RGB(0,128,128)
RGB(192,192,192)
RGB(128,128,128)
RGB(153,153,255)

RGB(153,51,102)
RGB(255,255,204)
RGB(204,255,255)

RGB(102,0,102)
RGB(255,128,128)

RGB(0,102,204)
RGB(204,204,255)

RGB(0,0,128)

RGB(255,0,255)

RGB(255,255,0)

RGB(0,255,255)

Example: If each image has n
pixels, then each pixel has three
RGB values, representing the
amount of red, green, and blue in
each pixel. This produces 3n 0-1
decimal values for each image.

18
19
20
21
22

N
w

N NN NN
0 N o B

e https://excelatfinance.com/xlf/xlf-colors-1.php



Generalizing neural networks

A generalized neuron allows n arbitrary decimal
inputs (often between 0 and 1) and fires f(w; - x; +
W, * X, + ... + W, - X, — b) for an activation function
f and a constant bias b.

Wi
\ f(W1'X1+W2'X2—b)
b >

o

Input Output
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Generalizing neural networks

One common activation function is the logistic
function: f(x) = 1/(1 + e*), shown below.

1-
f(W1'X1+W2'X2—b) ﬁ

S e

lnput Output -6 -4 -2 0 2 4 6
https://en.wikipedia.org/wiki/Logistic_function

© 2024 Phillip Compeau



Generalizing neural networks

STOP: What was the “activation function” that we
were using with perceptrons?

1-
f(W1'X1+W2'X2—b) ﬁ

S

Input Output -6 -4 -2 0 2 4 6
https://en.wikipedia.org/wiki/Logistic_function
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Generalizing neural networks

Answer: The “step function” S(x) that outputs 1 if x is
>0 and outputs O if x < 6.
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Generalizing neural networks

even though it’'s simple, researchers now often
use a “rectifier” function: f(x) = max(0, x).
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We then build some gigantic network
with several hidden layers

@ - non-
v
\

n neoplastic
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/ Iy I Iy v Ny
\ By | | L7 B li
/ \ y Y K malignant
/ LS L_SF L_Y =—=—==>E) —------= >
-
II”’ .
@ s Hidden Neurons Output

Input

Congrats! You are now a deep learning expert.
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We then build some gigantic network
with several hidden layers

D

Input

\———>
.

Hidden Neurons

non-
neoplastic

For a data value x, its output is a vector P(x).
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We then build some gigantic network
with several hidden layers

0.
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@ - Hidden Neurons Output
Input

We want P(x) for a benign image similar to (0, 1, 0).
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We have a lot of freedom in parameter
selection

Note: For every neuron in our network, all of the
input weights w; are parameters.

Network Parameter Learning Problem

* Input: A collection of vectorized data and a
neural network.

* Output: a collection of weights and biases that
minimizes the average RMSD between an object
x's correct label vector, L(x), and the prediction
from the network, P(x), over all objects x.

© 2024 Phillip Compeau



We have a lot of freedom in parameter
selection

STOP: Does “distance between two vectors” ring
any bells?

Network Parameter Learning Problem

* Input: A collection of vectorized data and a
neural network.

* Output: a collection of weights and biases that
minimizes the average RMSD between an object
x's correct label vector, L(x), and the prediction
from the network, P(x), over all objects x.
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We have a lot of freedom in parameter
selection

Answer: RMSD is one way of quantifying this
distance.

Network Parameter Learning Problem

* Input: A collection of vectorized data and a
neural network.

* Output: a collection of weights and biases that
minimizes the average RMSD between an object
x's correct label vector, L(x), and the prediction
from the network, P(x), over all objects x.
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We have a lot of freedom in parameter
selection

STOP: What kind of computational problem is this?

Network Parameter Learning Problem

* Input: A collection of vectorized data and a
neural network.

* Output: a collection of weights and biases that
minimizes the average RMSD between an object
x's correct label vector, L(x), and the prediction
from the network, P(x), over all objects x.
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We have a lot of freedom in parameter
selection

Answer: It's an optimization problem, where the
search space is the collection of weights/biases.

Network Parameter Learning Problem

* Input: A collection of vectorized data and a
neural network.

* Output: a collection of weights and biases that
minimizes the average RMSD between an object
x's correct label vector, L(x), and the prediction
from the network, P(x), over all objects x.
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We have a lot of freedom in parameter
selection

Note: Much of deep learning is just “build a big
network and apply a local search heuristic”.

Network Parameter Learning Problem

* Input: A collection of vectorized data and a
neural network.

* Output: a collection of weights and biases that
minimizes the average RMSD between an object
x's correct label vector, L(x), and the prediction
from the network, P(x), over all objects x.
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Still, deep learning can be impressive...

Deelend > Blog > AlphaFold: a solution to a 50-year-old grand challenge in biology

BLOG POST
30 NOV 2020
@ RESEARCH

AlphaFold: a solution to
a 50-year-old grand
challenge in biology
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... .and a fancier version of our skin
lesion network was a real paper!

https://www.nature.com » letters » article

Dermatologist-level classification of skin cancer with ... - Nature

by A Esteva - 2017 - Cited by 5697 — Using a single convolutional neural network trained on
general skin lesion classification, we match the performance of at least 21 dermatologists
tested across three critical diagnostic tasks: keratinocyte carcinoma classification, melanoma
classification and melanoma classification using dermoscopy.

STOP: Any guesses on how
accurate their algorithm was?
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... .and a fancier version of our skin
lesion network was a real paper!

https://www.nature.com » letters » article  :

Dermatologist-level classification of skin cancer with ... - Nature

by A Esteva - 2017 - Cited by 5697 — Using a single convolutional neural network trained on
general skin lesion classification, we match the performance of at least 21 dermatologists
tested across three critical diagnostic tasks: keratinocyte carcinoma classification, melanoma
classification and melanoma classification using dermoscopy.

STOP: Any guesses on how
accurate their algorithm was?

Answer: Around 70%
accurate, compared to 67%
accuracy for a dermatologist.
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Deep Learning + CB = 0 Great Ideas?

© Royal Society
https://royalsocietypublishing.org » doi » rsif.2017.0387

Opportunities and obstacles for deep learning in biology and ...

by T Ching - 2018 - Cited by 1906 — We examine applications of deep learning to a variety of
biomedical problems—patient classification, fundamental biological processes and ...
Abstract - Deep learning and patient... - Deep learning to study the... - Conclusion

“Following from an extensive literature review, we
find that deep learning has yet to revolutionize
biomedicine or definitively resolve any of the most
pressing challenges in the field, but promising
advances have been made on the prior state of the
art.”
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This Might Not Age the Best!

Deelend > Blog > AlphaFold: a solution to a 50-year-old grand challenge in biology

BLOG POST
@ RESEARCH 30 NOV 2020

AlphaFold: a solution to
a 50-year-old grand
challenge in biology
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« AlphaFold2
+ Next Best Method

Source: Mohammed AlQuraishi, https:/bit.ly/39Mnym3.
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https://bit.ly/39Mnym3

... but is this really a model of
intelligence?
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https://www.reddit.com/r/MachineLearning/comments/2fxi6v/ama_michael_i_jordan/

“Let's not impose artificial constraints based on
cartoon models of topics in science that we don't
yet understand.” — Michael I. Jordan, 2014
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... but is this really a model of
intelligence?
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Idea: if nature is good at solving problems, why
don’t we study the algorithms that it has developed
over the course of evolution?
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