
© 2024 Phillip Compeau

x1

x2
Output

x3

x4

Neural Networks
and the Evolution

of Modularity

MODULARITY WUT?

© 2024 Phillip Compeau

Quick Review Question

© 2024 Phillip Compeau

Reverse Complement Problem
• Input: A DNA string s.
• Output: The reverse complement of s.

STOP: How would you write code to solve this?

A “Modular” Reverse Complement
Function is Best!

© 2024 Phillip Compeau

ReverseComplement(s)
 return Reverse(Complement(s))

STOP: What does it mean for code to be “modular”?

Modularity is everywhere in biology

© 2024 Phillip Compeau

We already know that modularity occurs
in biological networks

© 2024 Phillip Compeau

The “network
motifs” that we
saw in TF networks
are their own form
of modularity.

Modularity in Graphs

© 2024 Phillip Compeau

Modular Non-modular

STOP: What should it mean for a graph to be
“modular”?

Modularity in Graphs

© 2024 Phillip Compeau

Modular Non-modular

STOP: What should it mean for a graph to be
“modular”?

Answer: It should divide into subgraphs so that two
nodes from one subgraph are more likely to be
connected than two nodes from different subgraphs.

Modular Code is Best, Right?

© 2024 Phillip Compeau

ReverseComplement(s)
 return Reverse(Complement(s))

STOP: Is our
ReverseComplement()
function the best way to
reverse complement a string?

Not if we care about speed!

© 2024 Phillip Compeau

ReverseComplement(s):
 revComp = ""

 complementMap = {
 'A': 'T',
 'T': 'A',
 'C': 'G',
 'G': 'C'
 }

 for i = Length(DNAString) – 1 to 0
 currentChar = DNAString[i]
 complementChar = complementMap[currentChar]
 revComp = revComp + ComplementChar

 return revComp

Modular code is good practice, but
optimized code can be non-modular

© 2024 Phillip Compeau

Here is some HTML source code from google.com.

Much of biology is hyper-optimized …

© 2024 Phillip Compeau

https://xkcd.com/1605/

… and yet modularity in some contexts
must be worth preserving

© 2024 Phillip Compeau

Although modularity is important to many biological
processes, no one built a model in which modularity
spontaneously evolved until 2005.

MCCULLOCH-PITTS NEURONS: THE
HUMBLE FOUNDATIONS OF AI

© 2024 Phillip Compeau

Neurons form a network of cells
exchanging information

© 2024 Phillip Compeau

https://en.wikipedia.org/wiki/Neuron#/media/File:Components_of_neuron.jpg

Hooray for interdisciplinary research

© 2024 Phillip Compeau

Warren McCulloch
Walter Pitts

McCulloch-Pitts Neurons

© 2024 Phillip Compeau

A McCulloch-Pitts (MP)
neuron takes as input n
binary variables x1, ...,
xn. For a threshold θ, it
fires (returns 1) if x1 +
… + xn ≥ θ; otherwise, it
returns 0.

Example: At right is an
MP neuron for n = 2
and θ = 2.

x1 x2 x1 + x2 Output

1 1 2 1

1 0 1 0

0 1 1 0

0 0 0 0

x1

x2

Input
Variables

Threshold

2
Output

McCulloch-Pitts Neurons

© 2024 Phillip Compeau

Example: And here is
the MP neuron for n = 2
and θ = 1.

x1 x2 x1 + x2 Output

1 1 2 1

1 0 1 1

0 1 1 1

0 0 0 0

x1

x2

Input
Variables

Threshold

1
Output

McCulloch-Pitts Neurons

© 2024 Phillip Compeau

Example: And here is
the MP neuron for n = 2
and θ = 1.

STOP: Do these neurons
remind you of anything?

x1

x2

Input
Variables

Threshold

1

x1 x2 x1 + x2 Output

1 1 2 1

1 0 1 1

0 1 1 1

0 0 0 0

Output

McCulloch-Pitts Neurons

© 2024 Phillip Compeau

Example: And here is
the MP neuron for n = 2
and θ = 1.

STOP: Do these neurons
remind you of anything?

Answer: The output is
just x1 ∨ x2.

x1

x2

Input
Variables

Threshold

1

x1 x2 x1 + x2 Output

1 1 2 1

1 0 1 1

0 1 1 1

0 0 0 0

Output

McCulloch-Pitts Neurons

© 2024 Phillip Compeau

And the output of the
MP neuron when θ = 2
is x1 ∧ x2.

We say that an MP
neuron represents a
truth table if the inputs
and outputs of the
neuron and the truth
table are the same.

x1 x2 x1 + x2 Output

1 1 2 1

1 0 1 0

0 1 1 0

0 0 0 0

x1

x2

Input
Variables

Threshold

2
Output

A Quick Exercise

© 2024 Phillip Compeau

Exercise: The AND of n input variables returns true if
all of the input variables are true, and false
otherwise; the OR of n input variables returns true if
at least one of them is true, and false if they are
all false. Construct MP neurons representing the
AND and OR of n binary input variables.

An Even Simpler Logical Connective:
NOT

© 2024 Phillip Compeau

CHAPTER 3. THE EVOLUTION OF MODULARITY 40

x1 x2 x1 ^ x2 x1 _ x2
true true true true

true false false true

false true false true

false false false false

Figure 3.4 All four pairs of truth values for two binary variables,
and the associated values of AND (^) and OR (_) for each pair.

Because of this correspondence between McCulloch-Pitts neu-
rons and logic, for the rest of this chapter, we will use the “1” and “0”
inputs and outputs of neurons interchangeably with true and false.
We will also say that a neuron represents a truth table if the inputs
and outputs of the neuron and the truth table are the same.

STOP: The AND of n input variables returns true if all of the input
variables are true, and false otherwise; the OR of n input variables
is defined as being true if at least one of them is true and false if
they are all false. Construct neurons representing the AND and OR of
n binary input variables.

An even simpler logical connective is NOT, denoted by ⇠. Its truth
table, which returns the opposite of an input variable’s value, is shown
in Figure 3.5. Can we represent this connective with a McCulloch-
Pitts neuron? The answer to this question is “no”, and it is a statement
that we can prove by contradiction.

x1 ⇠ x1
true false

false true

Figure 3.5 The truth table for NOT, denoted by⇠, which takes the
opposite of an input truth value.

Theorem. There is no McCulloch-Pitts neuron representing the con-
nective NOT.

Essential Mathematics © 2020 Phillip Compeau.

Here is a truth table representing
the logical connective NOT.

An Even Simpler Logical Connective:
NOT

© 2024 Phillip Compeau

CHAPTER 3. THE EVOLUTION OF MODULARITY 40

x1 x2 x1 ^ x2 x1 _ x2
true true true true

true false false true

false true false true

false false false false

Figure 3.4 All four pairs of truth values for two binary variables,
and the associated values of AND (^) and OR (_) for each pair.

Because of this correspondence between McCulloch-Pitts neu-
rons and logic, for the rest of this chapter, we will use the “1” and “0”
inputs and outputs of neurons interchangeably with true and false.
We will also say that a neuron represents a truth table if the inputs
and outputs of the neuron and the truth table are the same.

STOP: The AND of n input variables returns true if all of the input
variables are true, and false otherwise; the OR of n input variables
is defined as being true if at least one of them is true and false if
they are all false. Construct neurons representing the AND and OR of
n binary input variables.

An even simpler logical connective is NOT, denoted by ⇠. Its truth
table, which returns the opposite of an input variable’s value, is shown
in Figure 3.5. Can we represent this connective with a McCulloch-
Pitts neuron? The answer to this question is “no”, and it is a statement
that we can prove by contradiction.

x1 ⇠ x1
true false

false true

Figure 3.5 The truth table for NOT, denoted by⇠, which takes the
opposite of an input truth value.

Theorem. There is no McCulloch-Pitts neuron representing the con-
nective NOT.

Essential Mathematics © 2020 Phillip Compeau.

Here is a truth table representing
the logical connective NOT.

Theorem: There is no McCulloch-Pitts neuron
representing NOT.

An Even Simpler Logical Connective:
NOT

© 2024 Phillip Compeau

CHAPTER 3. THE EVOLUTION OF MODULARITY 40

x1 x2 x1 ^ x2 x1 _ x2
true true true true

true false false true

false true false true

false false false false

Figure 3.4 All four pairs of truth values for two binary variables,
and the associated values of AND (^) and OR (_) for each pair.

Because of this correspondence between McCulloch-Pitts neu-
rons and logic, for the rest of this chapter, we will use the “1” and “0”
inputs and outputs of neurons interchangeably with true and false.
We will also say that a neuron represents a truth table if the inputs
and outputs of the neuron and the truth table are the same.

STOP: The AND of n input variables returns true if all of the input
variables are true, and false otherwise; the OR of n input variables
is defined as being true if at least one of them is true and false if
they are all false. Construct neurons representing the AND and OR of
n binary input variables.

An even simpler logical connective is NOT, denoted by ⇠. Its truth
table, which returns the opposite of an input variable’s value, is shown
in Figure 3.5. Can we represent this connective with a McCulloch-
Pitts neuron? The answer to this question is “no”, and it is a statement
that we can prove by contradiction.

x1 ⇠ x1
true false

false true

Figure 3.5 The truth table for NOT, denoted by⇠, which takes the
opposite of an input truth value.

Theorem. There is no McCulloch-Pitts neuron representing the con-
nective NOT.

Essential Mathematics © 2020 Phillip Compeau.

Here is a truth table representing
the logical connective NOT.

Theorem: There is no McCulloch-Pitts neuron
representing NOT.

Proof: Assume that there is such an MP neuron with
one input variable x1.

An Even Simpler Logical Connective:
NOT

© 2024 Phillip Compeau

CHAPTER 3. THE EVOLUTION OF MODULARITY 40

x1 x2 x1 ^ x2 x1 _ x2
true true true true

true false false true

false true false true

false false false false

Figure 3.4 All four pairs of truth values for two binary variables,
and the associated values of AND (^) and OR (_) for each pair.

Because of this correspondence between McCulloch-Pitts neu-
rons and logic, for the rest of this chapter, we will use the “1” and “0”
inputs and outputs of neurons interchangeably with true and false.
We will also say that a neuron represents a truth table if the inputs
and outputs of the neuron and the truth table are the same.

STOP: The AND of n input variables returns true if all of the input
variables are true, and false otherwise; the OR of n input variables
is defined as being true if at least one of them is true and false if
they are all false. Construct neurons representing the AND and OR of
n binary input variables.

An even simpler logical connective is NOT, denoted by ⇠. Its truth
table, which returns the opposite of an input variable’s value, is shown
in Figure 3.5. Can we represent this connective with a McCulloch-
Pitts neuron? The answer to this question is “no”, and it is a statement
that we can prove by contradiction.

x1 ⇠ x1
true false

false true

Figure 3.5 The truth table for NOT, denoted by⇠, which takes the
opposite of an input truth value.

Theorem. There is no McCulloch-Pitts neuron representing the con-
nective NOT.

Essential Mathematics © 2020 Phillip Compeau.

Here is a truth table representing
the logical connective NOT.

Theorem: There is no McCulloch-Pitts neuron
representing NOT.

Proof: Assume that there is such an MP neuron with
one input variable x1. There must be some threshold
θ such that when x1 =1, x1 < θ, and when x1 = 0, x1
≥ θ. In other words, 1 < θ ≤ 0, a contradiction. □

FROM MCCULLOCH-PITTS
NEURONS TO PERCEPTRONS

© 2024 Phillip Compeau

Perceptrons Generalize MP Neurons

© 2024 Phillip Compeau

Perceptron: A neuron having a threshold θ and
constants w1, w2, ..., wn, which fires if and only if
w1 · x1 + w2 · x2 + … + wn · xn ≥ θ.

Perceptrons Generalize MP Neurons

© 2024 Phillip Compeau

Perceptron: A neuron having a threshold θ and
constants w1, w2, ..., wn, which fires if and only if w1
· x1 + w2 · x2 + … + wn · xn ≥ θ.

STOP: Why does a perceptron generalize the MP
neuron?

Perceptrons Generalize MP Neurons

© 2024 Phillip Compeau

Perceptron: A neuron having a threshold θ and
constants w1, w2, ..., wn, which fires if and only if
w1 · x1 + w2 · x2 + … + wn · xn ≥ θ.

STOP: Why does a perceptron generalize the MP
neuron?

Answer: An MP neuron is a perceptron with all
weights wi equal to 1.

Perceptrons Generalize MP Neurons

© 2024 Phillip Compeau

Perceptron: A neuron having a threshold θ and
constants w1, w2, ..., wn, which fires if and only if
w1 · x1 + w2 · x2 + … + wn · xn ≥ θ.

x1
Input

Variable
Threshold

0
Outputw1 = -1Although an MP

neuron cannot
represent NOT, here
is a perceptron
representing NOT.

x1 -x1 Output

1 -1 0

0 0 1

Consider the ambiguity of the word “or”

© 2024 Phillip Compeau

“Would you like ketchup or mustard with your hot
dog?”

“Would you like to visit the beach or the mountains
on vacation?”

Consider the ambiguity of the word “or”

© 2024 Phillip Compeau

“Would you like ketchup or mustard with your hot
dog?”

“Would you like to visit the beach or the mountains
on vacation?”

STOP: What is the difference in “or” in these two
questions?

Consider the ambiguity of the word “or”

© 2024 Phillip Compeau

“Would you like ketchup or mustard with your hot
dog?”

“Would you like to visit the beach or the mountains
on vacation?”

STOP: What is the difference in “or” in these two
questions?

Answer: The first question implies that both options
are possible (“and/or”).

Introducing XOR

© 2024 Phillip Compeau

CHAPTER 3. THE EVOLUTION OF MODULARITY 40

x1 x2 x1 ^ x2 x1 _ x2
true true true true

true false false true

false true false true

false false false false

Figure 3.4 All four pairs of truth values for two binary variables,
and the associated values of AND (^) and OR (_) for each pair.

Because of this correspondence between McCulloch-Pitts neu-
rons and logic, for the rest of this chapter, we will use the “1” and “0”
inputs and outputs of neurons interchangeably with true and false.
We will also say that a neuron represents a truth table if the inputs
and outputs of the neuron and the truth table are the same.

STOP: The AND of n input variables returns true if all of the input
variables are true, and false otherwise; the OR of n input variables
is defined as being true if at least one of them is true and false if
they are all false. Construct neurons representing the AND and OR of
n binary input variables.

An even simpler logical connective is NOT, denoted by ⇠. Its truth
table, which returns the opposite of an input variable’s value, is shown
in Figure 3.5. Can we represent this connective with a McCulloch-
Pitts neuron? The answer to this question is “no”, and it is a statement
that we can prove by contradiction.

x1 ⇠ x1
true false

false true

Figure 3.5 The truth table for NOT, denoted by⇠, which takes the
opposite of an input truth value.

Theorem. There is no McCulloch-Pitts neuron representing the con-
nective NOT.

Essential Mathematics © 2020 Phillip Compeau.

CHAPTER 3. THE EVOLUTION OF MODULARITY 40

x1 x2 x1 ^ x2 x1 _ x2
true true true true

true false false true

false true false true

false false false false

Figure 3.4 All four pairs of truth values for two binary variables,
and the associated values of AND (^) and OR (_) for each pair.

Because of this correspondence between McCulloch-Pitts neu-
rons and logic, for the rest of this chapter, we will use the “1” and “0”
inputs and outputs of neurons interchangeably with true and false.
We will also say that a neuron represents a truth table if the inputs
and outputs of the neuron and the truth table are the same.

STOP: The AND of n input variables returns true if all of the input
variables are true, and false otherwise; the OR of n input variables
is defined as being true if at least one of them is true and false if
they are all false. Construct neurons representing the AND and OR of
n binary input variables.

An even simpler logical connective is NOT, denoted by ⇠. Its truth
table, which returns the opposite of an input variable’s value, is shown
in Figure 3.5. Can we represent this connective with a McCulloch-
Pitts neuron? The answer to this question is “no”, and it is a statement
that we can prove by contradiction.

x1 ⇠ x1
true false

false true

Figure 3.5 The truth table for NOT, denoted by⇠, which takes the
opposite of an input truth value.

Theorem. There is no McCulloch-Pitts neuron representing the con-
nective NOT.

Essential Mathematics © 2020 Phillip Compeau.

CHAPTER 3. THE EVOLUTION OF MODULARITY 42

it returns false.

x1 x2 x1 Y x2
true true false

true false true

false true true

false false false

Figure 3.7 All four pairs of truth values for two binary variables,
and the associated values of XOR (denoted Y) for each pair.

The word “or” offers an excellent microcosm for the ambiguity
of human language; after all, consider how its meaning differs in the
following two questions.

• “Would you like ketchup or mustard with your hot dog?”

• “Would you like to visit the beach or the mountains on vaca-
tion?”

There is nothing other than context clues to indicate it, but the first
question implies that both alternatives are allowed, which we think of
as OR; California aside, the second question implies that only a single
alternative is allowed, which we think of as XOR.

STOP: Find a perceptron representing XOR.

If you tried the preceding question, then you may be perplexed.
We have tricked you once again.

Theorem. There is no perceptron representing XOR.

Proof. We proceed by contradiction. Assume that there is some per-
ceptron representing XOR. By definition, there must be some real num-
bers w1, w2, and q such that the perceptron outputs 1 when w1 · x1 +
w2 · x2 � q and the perceptron outputs 0 otherwise.

Because the perceptron represents XOR, it outputs 0 when x1 = x2,
in which case w1 · x1 +w2 · x2 < q . In other words,

w1 ·0+w2 ·0 = 0 < q
w1 ·1+w2 ·1 = w1 +w2 < q

Essential Mathematics © 2020 Phillip Compeau.

Exclusive or (XOR): x1 ⊻ x2 is true precisely when
exactly one of x1 and x2 is true (i.e., when x1 ≠ x2).

Introducing XOR

© 2024 Phillip Compeau

CHAPTER 3. THE EVOLUTION OF MODULARITY 40

x1 x2 x1 ^ x2 x1 _ x2
true true true true

true false false true

false true false true

false false false false

Figure 3.4 All four pairs of truth values for two binary variables,
and the associated values of AND (^) and OR (_) for each pair.

Because of this correspondence between McCulloch-Pitts neu-
rons and logic, for the rest of this chapter, we will use the “1” and “0”
inputs and outputs of neurons interchangeably with true and false.
We will also say that a neuron represents a truth table if the inputs
and outputs of the neuron and the truth table are the same.

STOP: The AND of n input variables returns true if all of the input
variables are true, and false otherwise; the OR of n input variables
is defined as being true if at least one of them is true and false if
they are all false. Construct neurons representing the AND and OR of
n binary input variables.

An even simpler logical connective is NOT, denoted by ⇠. Its truth
table, which returns the opposite of an input variable’s value, is shown
in Figure 3.5. Can we represent this connective with a McCulloch-
Pitts neuron? The answer to this question is “no”, and it is a statement
that we can prove by contradiction.

x1 ⇠ x1
true false

false true

Figure 3.5 The truth table for NOT, denoted by⇠, which takes the
opposite of an input truth value.

Theorem. There is no McCulloch-Pitts neuron representing the con-
nective NOT.

Essential Mathematics © 2020 Phillip Compeau.

CHAPTER 3. THE EVOLUTION OF MODULARITY 40

x1 x2 x1 ^ x2 x1 _ x2
true true true true

true false false true

false true false true

false false false false

Figure 3.4 All four pairs of truth values for two binary variables,
and the associated values of AND (^) and OR (_) for each pair.

Because of this correspondence between McCulloch-Pitts neu-
rons and logic, for the rest of this chapter, we will use the “1” and “0”
inputs and outputs of neurons interchangeably with true and false.
We will also say that a neuron represents a truth table if the inputs
and outputs of the neuron and the truth table are the same.

STOP: The AND of n input variables returns true if all of the input
variables are true, and false otherwise; the OR of n input variables
is defined as being true if at least one of them is true and false if
they are all false. Construct neurons representing the AND and OR of
n binary input variables.

An even simpler logical connective is NOT, denoted by ⇠. Its truth
table, which returns the opposite of an input variable’s value, is shown
in Figure 3.5. Can we represent this connective with a McCulloch-
Pitts neuron? The answer to this question is “no”, and it is a statement
that we can prove by contradiction.

x1 ⇠ x1
true false

false true

Figure 3.5 The truth table for NOT, denoted by⇠, which takes the
opposite of an input truth value.

Theorem. There is no McCulloch-Pitts neuron representing the con-
nective NOT.

Essential Mathematics © 2020 Phillip Compeau.

CHAPTER 3. THE EVOLUTION OF MODULARITY 42

it returns false.

x1 x2 x1 Y x2
true true false

true false true

false true true

false false false

Figure 3.7 All four pairs of truth values for two binary variables,
and the associated values of XOR (denoted Y) for each pair.

The word “or” offers an excellent microcosm for the ambiguity
of human language; after all, consider how its meaning differs in the
following two questions.

• “Would you like ketchup or mustard with your hot dog?”

• “Would you like to visit the beach or the mountains on vaca-
tion?”

There is nothing other than context clues to indicate it, but the first
question implies that both alternatives are allowed, which we think of
as OR; California aside, the second question implies that only a single
alternative is allowed, which we think of as XOR.

STOP: Find a perceptron representing XOR.

If you tried the preceding question, then you may be perplexed.
We have tricked you once again.

Theorem. There is no perceptron representing XOR.

Proof. We proceed by contradiction. Assume that there is some per-
ceptron representing XOR. By definition, there must be some real num-
bers w1, w2, and q such that the perceptron outputs 1 when w1 · x1 +
w2 · x2 � q and the perceptron outputs 0 otherwise.

Because the perceptron represents XOR, it outputs 0 when x1 = x2,
in which case w1 · x1 +w2 · x2 < q . In other words,

w1 ·0+w2 ·0 = 0 < q
w1 ·1+w2 ·1 = w1 +w2 < q

Essential Mathematics © 2020 Phillip Compeau.

Exercise: Find a perceptron that models x1 ⊻ x2.

Exclusive or (XOR): x1 ⊻ x2 is true precisely when
exactly one of x1 and x2 is true (i.e., when x1 ≠ x2).

Perceptrons have limits too

© 2024 Phillip Compeau

Theorem: There is no perceptron representing XOR.

x1

x2

Input Output

θ

w1

w2

x1 ⊻ x2

Proof: Assume there is,
so there must be
constants w1, w2, such
that
• when x1 = x2,

w1 · x1 + w2 · x2 < θ
• when x1 ≠ x2,

w1 · x1 + w2 · x2 ≥ θ

Perceptrons have limits too

© 2024 Phillip Compeau

x1

x2

Input Output

θ

w1

w2

x1 ⊻ x2

Proof: When x1 = x2, the
neuron doesn’t fire, and

w1·0 + w2·0 = 0 < θ
w1·1 + w2·1 = w1+w2 < θ

Theorem: There is no perceptron representing XOR.

Perceptrons have limits too

© 2024 Phillip Compeau

x1

x2

Input Output

θ

w1

w2

x1 ⊻ x2

Proof: When x1 ≠ x2, the
neuron fires, and

w1·1 + w2·0 = w1 ≥ θ
w1·0 + w2·1 = w2 ≥ θ

Theorem: There is no perceptron representing XOR.

Perceptrons have limits too

© 2024 Phillip Compeau

x1

x2

Input Output

θ

w1

w2

x1 ⊻ x2

Proof: In summary:
• w1 ≥ θ
• w2 ≥ θ
• 0 < θ
• w1+w2 < θ
Adding eqs. 1 and 2
gives w1+w2 ≥ 2θ, which
contradicts w1+w2 < θ
since θ is positive. □

Theorem: There is no perceptron representing XOR.

A less rigorous view of this proof

© 2024 Phillip Compeau

1

1

x1

x2

Note: The collection of
all points (x1, x2) such
that w1 · x1 + w2 · x2 = θ
must form a line. The
points such that w1 · x1
+ w2 · x2 ≥ θ fall on one
side of this line.

A less rigorous view of this proof

© 2024 Phillip Compeau

1

1

x1

x2
We color the points (x1,
x2) by whether x1 ⊻ x2 is
true (black) or false
(white).

A less rigorous view of this proof

© 2024 Phillip Compeau

1

1

x1

x2
We color the points (x1,
x2) by whether x1 ⊻ x2 is
true (black) or false
(white).

There is no line through
the points such that
shaded points are on
one side; i.e., XOR is not
linearly separable.

Linear Separability of AND and OR

© 2024 Phillip Compeau

1

1

x1

x2
STOP: Draw lines that
separate points based
on the values of x1 ∨ x2.
Do the same for x1 ∧ x2.

Linear Separability of AND and OR

© 2024 Phillip Compeau

1

1

x1

x2
STOP: Draw lines that
separate points based
on the values of x1 ∨ x2.
Do the same for x1 ∧ x2.

Answer: Shown at right.
x1 ∨ x2

x1 ∧ x2

Linear Separability of AND and OR

© 2024 Phillip Compeau

1

1

x1

x2
STOP: Draw lines that
separate points based
on the values of x1 ∨ x2.
Do the same for x1 ∧ x2.

Answer: Shown at right.
x1 ∨ x2

x1 ∧ x2

You may be wondering
how useful perceptrons
can be if they can’t
model XOR. Sit tight!

A BIT MORE LOGIC

© 2024 Phillip Compeau

Propositions use logical connectives as
building blocks

© 2024 Phillip Compeau

Proposition: A combination of logical connectives
in which outputs of one connective can be used as
inputs of another (e.g., (x1 ∧ (x2 ∨ ~x3)) ⊻ (x4 ∨ x5).

Propositions use logical connectives as
building blocks

© 2024 Phillip Compeau

Proposition: A combination of logical connectives
in which outputs of one connective can be used as
inputs of another (e.g., (x1 ∧ (x2 ∨ ~x3)) ⊻ (x4 ∨ x5).

CHAPTER 3. THE EVOLUTION OF MODULARITY 44

nective that separates points (x1,x2) depending on whether x1 ^ x2 is
true or false. Do the same for the connective OR.

It might seem that perceptrons are not very powerful if they can-
not model something as simple as the XOR logical connective. How
can such a weak model of neurons serve as the foundation of modern
artificial intelligence research? Hold onto that thought.

A Bit More about Logic, and Two Additional Proof Techniques

Before continuing our discussion of artificial neurons, we will make
an aside to further discuss logic. The logical connectives we have in-
troduced become much more powerful when we start combining them
together into more complicated expressions of connectives called propo-
sitions.

For example, note what happens when we consider the nega-
tion of an AND statement to produce ⇠ (x1 ^ x2), as shown in Fig-
ure 3.9. There are three cases when this formula outputs true, and
one case when it outputs false (when x1 and x2 are both false). In
other words, as we show in the last three columns of Figure 3.9, the
proposition ⇠ (x1 ^ x2) has the same truth values as the proposition
⇠ x1_ ⇠ x2.

x1 x2 x1 ^ x2 ⇠ (x1 ^ x2) ⇠ x1 ⇠ x2 ⇠ x1_ ⇠ x2
true true true false false false false

true false false true false true true

false true false true true false true

false false false true true true true

Figure 3.9 Truth tables demonstrating the �rst of DeMorgan’s
laws, that⇠ (x1 ^ x2)⌘⇠ x1_ ⇠ x2.

The particular equivalence in Figure 3.9 is one of DeMorgan’s
laws, the other being that ⇠ (x1 _ x2) has the same truth values as ⇠
x1^⇠ x2. If two propositions have the same truth values, then we say
that the two propositions are logically equivalent and use the symbol

Essential Mathematics © 2020 Phillip Compeau.

Example: Truth table below demonstrates one of
DeMorgan’s Laws: ~(x1 ∧ x2) ≡ ~x1 ∨ ~x2.

Propositions use logical connectives as
building blocks

© 2024 Phillip Compeau

Note: Here “≡” denotes logical equivalence,
meaning that the truth table values are the same.

CHAPTER 3. THE EVOLUTION OF MODULARITY 44

nective that separates points (x1,x2) depending on whether x1 ^ x2 is
true or false. Do the same for the connective OR.

It might seem that perceptrons are not very powerful if they can-
not model something as simple as the XOR logical connective. How
can such a weak model of neurons serve as the foundation of modern
artificial intelligence research? Hold onto that thought.

A Bit More about Logic, and Two Additional Proof Techniques

Before continuing our discussion of artificial neurons, we will make
an aside to further discuss logic. The logical connectives we have in-
troduced become much more powerful when we start combining them
together into more complicated expressions of connectives called propo-
sitions.

For example, note what happens when we consider the nega-
tion of an AND statement to produce ⇠ (x1 ^ x2), as shown in Fig-
ure 3.9. There are three cases when this formula outputs true, and
one case when it outputs false (when x1 and x2 are both false). In
other words, as we show in the last three columns of Figure 3.9, the
proposition ⇠ (x1 ^ x2) has the same truth values as the proposition
⇠ x1_ ⇠ x2.

x1 x2 x1 ^ x2 ⇠ (x1 ^ x2) ⇠ x1 ⇠ x2 ⇠ x1_ ⇠ x2
true true true false false false false

true false false true false true true

false true false true true false true

false false false true true true true

Figure 3.9 Truth tables demonstrating the �rst of DeMorgan’s
laws, that⇠ (x1 ^ x2)⌘⇠ x1_ ⇠ x2.

The particular equivalence in Figure 3.9 is one of DeMorgan’s
laws, the other being that ⇠ (x1 _ x2) has the same truth values as ⇠
x1^⇠ x2. If two propositions have the same truth values, then we say
that the two propositions are logically equivalent and use the symbol

Essential Mathematics © 2020 Phillip Compeau.

Example: Truth table below demonstrates one of
DeMorgan’s Laws: ~(x1 ∧ x2) ≡ ~x1 ∨ ~x2.

Propositions use logical connectives as
building blocks

© 2024 Phillip Compeau

CHAPTER 3. THE EVOLUTION OF MODULARITY 44

nective that separates points (x1,x2) depending on whether x1 ^ x2 is
true or false. Do the same for the connective OR.

It might seem that perceptrons are not very powerful if they can-
not model something as simple as the XOR logical connective. How
can such a weak model of neurons serve as the foundation of modern
artificial intelligence research? Hold onto that thought.

A Bit More about Logic, and Two Additional Proof Techniques

Before continuing our discussion of artificial neurons, we will make
an aside to further discuss logic. The logical connectives we have in-
troduced become much more powerful when we start combining them
together into more complicated expressions of connectives called propo-
sitions.

For example, note what happens when we consider the nega-
tion of an AND statement to produce ⇠ (x1 ^ x2), as shown in Fig-
ure 3.9. There are three cases when this formula outputs true, and
one case when it outputs false (when x1 and x2 are both false). In
other words, as we show in the last three columns of Figure 3.9, the
proposition ⇠ (x1 ^ x2) has the same truth values as the proposition
⇠ x1_ ⇠ x2.

x1 x2 x1 ^ x2 ⇠ (x1 ^ x2) ⇠ x1 ⇠ x2 ⇠ x1_ ⇠ x2
true true true false false false false

true false false true false true true

false true false true true false true

false false false true true true true

Figure 3.9 Truth tables demonstrating the �rst of DeMorgan’s
laws, that⇠ (x1 ^ x2)⌘⇠ x1_ ⇠ x2.

The particular equivalence in Figure 3.9 is one of DeMorgan’s
laws, the other being that ⇠ (x1 _ x2) has the same truth values as ⇠
x1^⇠ x2. If two propositions have the same truth values, then we say
that the two propositions are logically equivalent and use the symbol

Essential Mathematics © 2020 Phillip Compeau.

Example: Truth table below demonstrates one of
DeMorgan’s Laws: ~(x1 ∧ x2) ≡ ~x1 ∨ ~x2.

The expression ~(x1 ∧ x2) is so common that it has
its own connective, NAND (“not AND”): x1 ↑ x2.

Let’s do a couple of exercises!

© 2024 Phillip Compeau

The expression ~(x1 ∧ x2) is so common that it has
its own connective, NAND (“not AND”): x1 ↑ x2.

Exercise 2: Find a proposition using connectives
other than ⊻ that is logically equivalent to x1 ⊻ x2.

Exercise 1: Find a perceptron representing x1 ↑ x2.

LINKING PERCEPTRONS INTO
NEURAL NETWORKS MAKES THEM
MORE POWERFUL

© 2024 Phillip Compeau

One solution to exercise 1

© 2024 Phillip Compeau

Exercise 1: Find a perceptron representing x1 ↑ x2.

1

1

x1

x2

x1

x2

Input Output

-1

-1

-1

x1 ↑ x2

One solution to exercise 2

© 2024 Phillip Compeau

Exercise 2: Find a proposition using connectives
other than ⊻ that is logically equivalent to x1 ⊻ x2.

One common solution is that x1 ⊻ x2 ≡ (x1 ∨ x2) ∧
(∼x1 ∨ ∼x2), which in turn is just (x1 ∨ x2) ∧ (x1 ↑ x2).

One solution to exercise 2

© 2024 Phillip Compeau

Exercise 2: Find a proposition using connectives
other than ⊻ that is logically equivalent to x1 ⊻ x2.

One common solution is that x1 ⊻ x2 ≡ (x1 ∨ x2) ∧
(∼x1 ∨ ∼x2), which in turn is just (x1 ∨ x2) ∧ (x1 ↑ x2).

Note: Although we don’t have a perceptron
representing ⊻, we do have perceptrons representing
∨, ∧, and ↑ …

Constructing a network of perceptrons
representing x1 ⊻ x2

© 2024 Phillip Compeau

1x1

1

1

-1

-1
y2 = x1 ↑ x2

y1 = x1 ∨ x2

x2 -1

x1 x2 x1 + x2 y1 -x1 - x2 y2
1 1 2 1 -2 0

1 0 1 1 -1 1

0 1 1 1 -1 1

0 0 0 0 0 1

Constructing a network of perceptrons
representing x1 ⊻ x2

© 2024 Phillip Compeau

1x1

1

1

-1

-1
y2 = x1 ↑ x2

y1 = x1 ∨ x2

2

1

x2 -1
1

x1 x2 x1 + x2 y1 -x1 - x2 y2 y1 + y2 Output

1 1 2 1 -2 0 1 0

1 0 1 1 -1 1 2 1

0 1 1 1 -1 1 2 1

0 0 0 0 0 1 1 0

Output: y1 ∧ y2 =
(x1 ∨ x2) ∧ (x1 ↑ x2) =

x1 ⊻ x2

Constructing a network of perceptrons
representing x1 ⊻ x2

© 2024 Phillip Compeau

1x1

1

1

-1

-1
y2 = x1 ↑ x2

y1 = x1 ∨ x2

2

1

x2 -1
1

Output: y1 ∧ y2 =
(x1 ∨ x2) ∧ (x1 ↑ x2) =

x1 ⊻ x2

Neural network: a network of artificial neurons in
which neuron outputs are inputs into other neurons.
The above network has a single hidden layer of
neurons (gray) that are not input variables or output.

THE UNIVERSALITY OF
PERCEPTRON NEURAL NETWORKS

© 2024 Phillip Compeau

Binary Functions

© 2024 Phillip Compeau

Binary function: a function having n binary
variables as input and producing a binary output.

STOP: How many different binary functions are
there with n input variables?

Example: f(0,0) = 1; f(0,1) = 1; f(1,0) = 0; f(1,1) = 1.

Binary Functions

© 2024 Phillip Compeau

Binary function: a function having n binary
variables as input and producing a binary output.

Example: f(0,0) = 1; f(0,1) = 1; f(1,0) = 0; f(1,1) = 1.

STOP: How many different binary functions are
there with n input variables?

Answer: There are 2n different possible inputs. Each
input can produce a 1 or 0; therefore, there are
2^{2n} total binary functions.

Our building blocks can be used to
build any binary function

© 2024 Phillip Compeau

Note: this binary function can be represented by the
proposition ~x1 ∨ x2, with 1 = true and 0 = false.

Example: f(0,0) = 1; f(0,1) = 1; f(1,0) = 0; f(1,1) = 1.

Our building blocks can be used to
build any binary function

© 2024 Phillip Compeau

Example: f(0,0) = 1; f(0,1) = 1; f(1,0) = 0; f(1,1) = 1.

Theorem: Any binary function can be represented
by some proposition formed by a finite number of
the logical connectives ∧, ∨, and ∼.

Note: this binary function can be represented by the
proposition ~x1 ∨ x2, with 1 = true and 0 = false.

Our building blocks can be used to
build any binary function

© 2024 Phillip Compeau

Example: f(0,0) = 1; f(0,1) = 1; f(1,0) = 0; f(1,1) = 1.

Theorem: Any binary function can be represented
by some proposition formed by a finite number of
the logical connectives ∧, ∨, and ∼.

Note: this binary function can be represented by the
proposition ~x1 ∨ x2, with 1 = true and 0 = false.

Key point: All these connectives can be represented
by single perceptrons…

Our building blocks can be used to
build any binary function

© 2024 Phillip Compeau

Example: f(0,0) = 1; f(0,1) = 1; f(1,0) = 0; f(1,1) = 1.

Corollary: Any binary function can be represented
by a neural network of finitely many perceptrons.

Key point: All these connectives can be represented
by single perceptrons…

Note: this binary function can be represented by the
proposition ~x1 ∨ x2, with 1 = true and 0 = false.

The only building block we need is NAND

© 2024 Phillip Compeau

Recall that ~(x1 ∧ x2) is
abbreviated as x1 ↑ x2.

x1 x2 x1 ↑ x2
1 1 0

1 0 1

0 1 1

0 0 1

The only building block we need is NAND

© 2024 Phillip Compeau

Theorem: Any binary function can be represented
by some proposition formed exclusively by a finite
number of ↑ connectors.

Recall that ~(x1 ∧ x2) is
abbreviated as x1 ↑ x2.

x1 x2 x1 ↑ x2
1 1 0

1 0 1

0 1 1

0 0 1

The only building block we need is NAND

© 2024 Phillip Compeau

Proof: We will show that each of the expressions
~x1 , (x1 ∧ x2), and (x1 ∨ x2) can be represented with
just NAND (↑) connectors.

Recall that ~(x1 ∧ x2) is
abbreviated as x1 ↑ x2.

x1 x2 x1 ↑ x2
1 1 0

1 0 1

0 1 1

0 0 1

The only building block we need is NAND

© 2024 Phillip Compeau

Proof: We will show that each of the expressions
~x1 , (x1 ∧ x2), and (x1 ∨ x2) can be represented with
just NAND (↑) connectors.

Recall that ~(x1 ∧ x2) is
abbreviated as x1 ↑ x2.

x1 x2 x1 ↑ x2
1 1 0

1 0 1

0 1 1

0 0 1

STOP: Find a proposition formed only of ↑
connectors that is logically equivalent to ~x1 .

The only building block we need is NAND

© 2024 Phillip Compeau

Proof: We will show that each of the expressions
~x1 , (x1 ∧ x2), and (x1 ∨ x2) can be represented with
just NAND (↑) connectors.

Recall that ~(x1 ∧ x2) is
abbreviated as x1 ↑ x2.

x1 x2 x1 ↑ x2
1 1 0

1 0 1

0 1 1

0 0 1

Answer: ~x1 ≡ x1 ↑ x1 .

The only building block we need is NAND

© 2024 Phillip Compeau

Proof: We will show that each of the expressions
~x1 , (x1 ∧ x2), and (x1 ∨ x2) can be represented with
just NAND (↑) connectors.

Recall that ~(x1 ∧ x2) is
abbreviated as x1 ↑ x2.

x1 x2 x1 ↑ x2
1 1 0

1 0 1

0 1 1

0 0 1

Exercise: Find propositions of ↑ connectors that are
logically equivalent to (x1 ∧ x2) and (x1 ∨ x2).

The only building block we need is NAND

© 2024 Phillip Compeau

x1 x2 x1 ∧ x2 x1 ↑ x2 (x1 ↑ x2) ↑ (x1 ↑ x2)
1 1 1 0 1

1 0 0 1 0

0 1 0 1 0

0 0 0 1 0

x1 x2 x1 ∨ x2 x1 ↑ x1 x2 ↑ x2 (x1 ↑ x1) ↑ (x2 ↑ x2)
1 1 1 0 0 1

1 0 1 0 1 1

0 1 1 1 0 1

0 0 0 1 1 0

The only building block we need is NAND

© 2024 Phillip Compeau

Theorem: Any binary function can be represented
by some proposition formed exclusively by a finite
number of ↑ connectors.

Recall that ~(x1 ∧ x2) is
abbreviated as x1 ↑ x2.

x1 x2 x1 ↑ x2
1 1 0

1 0 1

0 1 1

0 0 1

STOP: Now that we have proven this theorem, what
is the corollary?

The only building block we need is NAND

© 2024 Phillip Compeau

Corollary: Any binary function can be represented
by a neural network of NAND perceptrons.

Recall that ~(x1 ∧ x2) is
abbreviated as x1 ↑ x2.

x1 x2 x1 ↑ x2
1 1 0

1 0 1

0 1 1

0 0 1

Note: is called
a NAND gate.

x1

x2

x1 ↑ x2

MODELING THE EVOLUTION
OF BIOLOGICAL MODULARITY

© 2024 Phillip Compeau

Returning to our original question

© 2024 Phillip Compeau

Can we build a (simple) model in which modularity
spontaneously evolves as an optimal solution?

The Kashtan-Alon Model

© 2024 Phillip Compeau

Organisms: all 4-input networks of NAND perceptrons

x1

x2 Output

x3

x4

Note: is called
a NAND gate.

The Kashtan-Alon Model

© 2024 Phillip Compeau

Organisms: all 4-input networks of NAND perceptrons

Goal (G): correctly ”compute” as many inputs as
possible for the proposition (x1 ⊻ x2) ∧ (x3 ⊻ x4).

The Kashtan-Alon Model

© 2024 Phillip Compeau

Organisms: all 4-input networks of NAND perceptrons

STOP: How many different choices of input are
there for this proposition?

Goal (G): correctly ”compute” as many inputs as
possible for the proposition (x1 ⊻ x2) ∧ (x3 ⊻ x4).

The Kashtan-Alon Model

© 2024 Phillip Compeau

Organisms: all 4-input networks of NAND perceptrons

STOP: How many different choices of input are
there for this proposition?

Answer: Two possibilities for each variable, so 24 =
16.

Goal (G): correctly ”compute” as many inputs as
possible for the proposition (x1 ⊻ x2) ∧ (x3 ⊻ x4).

One way of reaching the goal

© 2024 Phillip Compeau

Recall that (x1 ⊻ x2) ≡ (x1 ∨ x2) ∧ (x1 ↑ x2).

By the theorem from previously, there is some neural
network of NAND gates for (x1 ∨ x2) ∧ (x1 ↑ x2).

x1

x2

Output

One way of reaching the goal

© 2024 Phillip Compeau

And yet there is a simpler network for x1 ⊻ x2, which
is [x1 ↑ (x1 ↑ x2)] ↑ [x2 ↑ (x1 ↑ x2)], as shown below.

x1

x2

Output

One way of reaching the goal

© 2024 Phillip Compeau

And yet there is a simpler network for x1 ⊻ x2, which
is [x1 ↑ (x1 ↑ x2)] ↑ [x2 ↑ (x1 ↑ x2)], as shown below.

x1

x2

Output

Key point: we should prioritize this smaller network
because it would be easier to have evolved.

One way of reaching the goal

© 2024 Phillip Compeau

And yet there is a simpler network for x1 ⊻ x2, which
is [x1 ↑ (x1 ↑ x2)] ↑ [x2 ↑ (x1 ↑ x2)], as shown below.

Key point: we should prioritize this smaller network
because it would be easier to have evolved.

To prefer a smaller network over a larger network,
Kashtan and Alon defined a fitness function for a
network as the fraction of the 16 input assignments
whose output matches the goal G, minus a small
positive ε times the number m of NAND gates.

The Kashtan-Alon Algorithm

© 2024 Phillip Compeau

1. Construct 100 random initial networks.
2. Run the following algorithm for 10,000 “generations”.

1. Consider only the 50 networks having highest fitness.
2. Use these networks to produce 100 “children”

networks that have mutations compared to the parent
networks.

3. At the end, return the network(s) having maximum fitness
as the winner(s).

The Kashtan-Alon Algorithm

© 2024 Phillip Compeau

1. Construct 100 random initial networks.
2. Run the following algorithm for 10,000 “generations”.

1. Consider only the 50 networks having highest fitness.
2. Use these networks to produce 100 “children”

networks that have mutations compared to the parent
networks.

3. At the end, return the network(s) having maximum fitness
as the winner(s).

This type of search heuristic, which mimics
evolution, is called a genetic algorithm.

Our winner isn’t very modular… L

© 2024 Phillip Compeau

x1

x2 Output

x3

x4

Life changes, and fitness should change
too

© 2024 Phillip Compeau

Key point: a more realistic model of a competitive
landscape would use a variable fitness function.

Life changes, and fitness should change
too

© 2024 Phillip Compeau

Key point: a more realistic model of a competitive
landscape would use a variable fitness function.

Previous goal (G): correctly ”compute” as many
inputs as possible for (x1 ⊻ x2) ∧ (x3 ⊻ x4).

Life changes, and fitness should change
too

© 2024 Phillip Compeau

Key point: a more realistic model of a competitive
landscape would use a variable fitness function.

Alternate goal (H): correctly ”compute” as many
inputs as possible for (x1 ⊻ x2) ∨ (x3 ⊻ x4).

Previous goal (G): correctly ”compute” as many
inputs as possible for (x1 ⊻ x2) ∧ (x3 ⊻ x4).

Adapting the algorithm to incorporate
variable fitness

© 2024 Phillip Compeau

1. Construct 100 random initial networks.
2. Run the following algorithm for 10,000 “generations”.

1. Consider only the 50 networks having highest fitness.
2. Use these networks to produce 100 “children”

networks that have mutations compared to the parent
networks.

3. Every e generations (e = 20 in original paper), switch
the goal function from G to H or vice-versa.

3. At the end, return the network(s) having maximum fitness
as the winner(s).

With the static goal G, we found a non-
modular solution

© 2024 Phillip Compeau

x1

x2 Output

x3

x4

Key point:
when the goal
is H, we need
many mutations
to this network.

Dynamic fitness leads to a modular
solution to G in ~5000 generations

© 2024 Phillip Compeau

x1

x2
Output

x3

x4

Switching the goal to H yields a very
slightly different modular solution

© 2024 Phillip Compeau

x1

x2
Output

x3

x4

A great idea leads to more questions

© 2024 Phillip Compeau

1. What is the extent to which real fitness functions
reward modularity?

2. What are the limits of modularity in biology?
3. And what happens when we start building

models of consciousness that are more advanced
than the neural networks presented here?

EPILOGUE: PRACTICAL
APPLICATIONS OF NEURAL
NETWORKS AI MAGIC IN 20
MINUTES

© 2024 Phillip Compeau

Many problems can be framed as
classification

© 2024 Phillip Compeau.

Classification Problem
• Input: A collection of data divided into a training

set and a test set. Each training data point is
labeled into one of k classes.

• Output: a predictive labeling of all the points in
the test set into one of k classes.

Example: Our data might be images of skin lesions,
which we want to classify as non-neoplastic, a
benign tumor, or malignant (cancer).

Converting data into a manageable form

© 2024 Phillip Compeau

Example: If each image has n
pixels, then each pixel has three
RGB values, representing the
amount of red, green, and blue in
each pixel. This produces 3n 0-1
decimal values for each image.

We then need to vectorize our data
in some way, converting each
object into a collection of
variables.

https://excelatfinance.com/xlf/xlf-colors-1.php

Generalizing neural networks

© 2024 Phillip Compeau

x1

x2

Input Output

b

w1

f(w1 · x1 + w2 · x2 – b)

w2

A generalized neuron allows n arbitrary decimal
inputs (often between 0 and 1) and fires f(w1 · x1 +
w2 · x2 + … + wn · xn – b) for an activation function
f and a constant bias b.

Generalizing neural networks

© 2024 Phillip Compeau

One common activation function is the logistic
function: f(x) = 1/(1 + e-x), shown below.

https://en.wikipedia.org/wiki/Logistic_function

x1

x2

Input Output

b

w1

f(w1 · x1 + w2 · x2 – b)

w2

Generalizing neural networks

© 2024 Phillip Compeau

https://en.wikipedia.org/wiki/Logistic_function

x1

x2

Input Output

b

w1

f(w1 · x1 + w2 · x2 – b)

w2

STOP: What was the “activation function” that we
were using with perceptrons?

Generalizing neural networks

© 2024 Phillip Compeau

Answer: The “step function” S(x) that outputs 1 if x is
≥ θ and outputs 0 if x < θ.

θ

1

Generalizing neural networks

© 2024 Phillip Compeau

Note: even though it’s simple, researchers now often
use a “rectifier” function: f(x) = max(0, x).

1

We then build some gigantic network
with several hidden layers

© 2024 Phillip Compeau

Output

Input

Hidden Neurons

...

x1

x3n

...
... b3

b1

b2

non-
neoplastic

benign

malignant

...

Congrats! You are now a deep learning expert.

We then build some gigantic network
with several hidden layers

© 2024 Phillip Compeau

Output

Input

Hidden Neurons

...

x1

x3n

...
... b3

b1

b2

non-
neoplastic

benign

malignant

...

For a data value x, its output is a vector P(x).

We then build some gigantic network
with several hidden layers

© 2024 Phillip Compeau

Output

Input

Hidden Neurons

...

x1

x3n

...
... b3

b1

b2

non-
neoplastic

benign

malignant

...

We want P(x) for a benign image similar to (0, 1, 0).

We have a lot of freedom in parameter
selection

© 2024 Phillip Compeau

Note: For every neuron in our network, all of the
input weights wi are parameters.

Network Parameter Learning Problem
• Input: A collection of vectorized data and a

neural network.
• Output: a collection of weights and biases that

minimizes the average RMSD between an object
x’s correct label vector, L(x), and the prediction
from the network, P(x), over all objects x.

We have a lot of freedom in parameter
selection

© 2024 Phillip Compeau

STOP: Does “distance between two vectors” ring
any bells?

Network Parameter Learning Problem
• Input: A collection of vectorized data and a

neural network.
• Output: a collection of weights and biases that

minimizes the average RMSD between an object
x’s correct label vector, L(x), and the prediction
from the network, P(x), over all objects x.

We have a lot of freedom in parameter
selection

© 2024 Phillip Compeau

Answer: RMSD is one way of quantifying this
distance.

Network Parameter Learning Problem
• Input: A collection of vectorized data and a

neural network.
• Output: a collection of weights and biases that

minimizes the average RMSD between an object
x’s correct label vector, L(x), and the prediction
from the network, P(x), over all objects x.

We have a lot of freedom in parameter
selection

© 2024 Phillip Compeau

Network Parameter Learning Problem
• Input: A collection of vectorized data and a

neural network.
• Output: a collection of weights and biases that

minimizes the average RMSD between an object
x’s correct label vector, L(x), and the prediction
from the network, P(x), over all objects x.

STOP: What kind of computational problem is this?

We have a lot of freedom in parameter
selection

© 2024 Phillip Compeau

Network Parameter Learning Problem
• Input: A collection of vectorized data and a

neural network.
• Output: a collection of weights and biases that

minimizes the average RMSD between an object
x’s correct label vector, L(x), and the prediction
from the network, P(x), over all objects x.

Answer: It’s an optimization problem, where the
search space is the collection of weights/biases.

We have a lot of freedom in parameter
selection

© 2024 Phillip Compeau

Network Parameter Learning Problem
• Input: A collection of vectorized data and a

neural network.
• Output: a collection of weights and biases that

minimizes the average RMSD between an object
x’s correct label vector, L(x), and the prediction
from the network, P(x), over all objects x.

Note: Much of deep learning is just “build a big
network and apply a local search heuristic”.

Still, deep learning can be impressive…

© 2024 Phillip Compeau

... and a fancier version of our skin
lesion network was a real paper!

© 2024 Phillip Compeau

STOP: Any guesses on how
accurate their algorithm was?

... and a fancier version of our skin
lesion network was a real paper!

© 2024 Phillip Compeau

STOP: Any guesses on how
accurate their algorithm was?

Answer: Around 70%
accurate, compared to 67%
accuracy for a dermatologist.

Deep Learning + CB = 0 Great Ideas?

© 2024 Phillip Compeau

“Following from an extensive literature review, we
find that deep learning has yet to revolutionize
biomedicine or definitively resolve any of the most
pressing challenges in the field, but promising
advances have been made on the prior state of the
art.”

This Might Not Age the Best!

© 2024 Phillip Compeau

Source: Mohammed AlQuraishi, https://bit.ly/39Mnym3.

https://bit.ly/39Mnym3

… but is this really a model of
intelligence?

© 2024 Phillip Compeau

≠

“Let's not impose artificial constraints based on
cartoon models of topics in science that we don't
yet understand.” – Michael I. Jordan, 2014

https://www.reddit.com/r/MachineLearning/comments/2fxi6v/ama_michael_i_jordan/

Output

Input

Hidden Neurons

...

x1

x3n

...
...

b3

b1

b2

non-
neoplastic

benign

malignant

...

… but is this really a model of
intelligence?

© 2024 Phillip Compeau

≠

Idea: if nature is good at solving problems, why
don’t we study the algorithms that it has developed
over the course of evolution?

Output

Input

Hidden Neurons

...

x1

x3n

...
...

b3

b1

b2

non-
neoplastic

benign

malignant

...

