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Abstract 

Lung cancer is one of the most common cancers with a relatively high mortality rate, where lung 

adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) are the two most common lung 

cancer subtypes. Despite both being classified as non-small cell lung cancer (NSCLC), they are 

different in pathogenesis, prevalence, and prognosis, and thus should be treated differently under the 

goal of precision medicine. At the same time, machine learning shows great potential in biomedical-

related tasks, especially in cancer type classification. How well can these methods be integrated and 

what interesting insights can they provide about LUAD and LUSC is the driving question of this 

project. To answer it, we first applied Differential Gene Expression Analysis (DGE) on a subset of the 

LUAD and LUSC datasets, respectively, where identified features were used to perform pathway 

enrichment analysis. Meanwhile, these features, together with the rest of the samples served as the 

dataset for building three classifiers, Logistic regression, Random forest, and XGBoost. Three 

classifiers all had good performance because of the clear expression patterns detected, especially for 

the Logistic regression model, which performed best with an F1 score higher than 0.95. Furthermore, 

explorations on feature importance suggested some features with large weights have biological 

significance, which might be the reason why logistic regression performed so well. And we also found 

that feature importance might serve as a tool for finding biomarkers. 

1  Introduction 

Cancer is the second leading cause of death worldwide, among which lung cancer, with a high 

mortality rate and low 5-year relative survival rate, is the leading cause of cancer-associated 

mortality[1]. More than 85% of lung cancer cases are classified as non-small cell lung cancer (NSCLC), 

which mainly contains two subtypes, lung adenocarcinoma (LUAD) and lung squamous cell 

carcinoma (LUSC)[2]. Although LUAD and LUSC are NSCLC, they do differ in many aspects, for 

example, LUAD has a higher metastatic rate[3] while LUSC is more closely associated with smoking, 

and affects male more than female[4]. And one study believes that we should abandon the notion of 

NSCLC to develop more effective therapeutic procedures because LUAD and LUSC appear to be 

vastly distinct diseases at the molecular, pathological, and clinical level[5]. 

Performing Differential Gene Expression Analysis (DGE) on RNA-seq dataset is a standard 

method in silico for identifying possible biomarkers that can aid diagnosis and therapy, and further 

downstream analysis reveals which biological pathways the differentially expressed genes are enriched 

in. Meanwhile, with the advancement of machine learning and its wide application in a variety of 

domains, a number of classifiers for predicting cancer types based on RNA-seq data have been 

developed. By combining differential expression, pathway enrichment, and classification of LUAD 

and LUSC, we may be able to gain a new viewpoint on understanding them. 



In this project, we downloaded both raw count and FPKM data of LUAD and LUSC from The 

Cancer Genome Atlas (TCGA)[6] and conducted a series of analyses. The differentially expressed 

features obtained through DGE on LUAD and LUSC datasets separately were not only used for Gene 

Ontology (GO)[7] enrichment analysis, but also treated as features for classification after taking the 

intersection. Then, three machine models, Logistic regression, Random forest, and Extreme Gradient 

Boosting (XGBoost) were built to classify LUAD, LUSC, and normal samples. Finally, the good 

performance of Logistic regression classifier was demonstrated by the following analyses of feature 

importance. 

2  Study design and overview 

To begin with, we downloaded the raw count and FPKM RNA-seq data of LUAD and LUSC from 

TCGA. The raw count data was divided into two subsets for both cancer types, one subset was then 

used to conduct differential expression analysis and GO enrichment analysis (Figure 1). The 

intersection of differentially expressed features in LUAD and LUSC, along with FPKM data of 

samples in the other subset were used for building three classifiers, Logistic regression, Random forest, 

and XGBoost. Then the model was evaluated using different performance metrics. Finally, we 

conducted feature importance exploration through feature weights in the Logistic regression model.  

 

             Figure 1. Project workflow. 

3  Data pre-processing 

There are 585 samples in the LUAD dataset and 550 samples in the LUSC dataset, both contain 60,489 

features. Samples from Formalin-fixed paraffin-embedded (FFPE) tissue were eliminated to improve 

the precision of the study because FFPE tissue processing and sample storage have been suggested to 

substantially degrade RNA[8]. Then features with total counts less than the number of normal samples 

were removed to improve the efficiency of differential expression analysis. 



To avoid overfitting, two raw count datasets were divided into two subsets, one subset was for 

the expression pattern detection, and the other subset was for classification. The criterion for the 

division was to have as similar LUAD and LUSC samples and tumor to normal ratio in classification 

task as possible (Table 1). 

Table 1. Sample distribution after splitting 

T: tumor sample, N: normal sample 

Dataset Pattern detection Classification 

LUAD 124T, 16N 388T, 42N 

LUSC 111T, 14N 385T, 35N 

4  Expression pattern detection for LUAD and LUSC 

4.1  DGE analysis 

DGE was carried out separately for LUAD and LUSC using R package DESeq2[9], and features with 

absolute log2 FC > 2, adjusted p-value < 0.05 were reported. Furthermore, genes with Ensembl ID 

were converted to gene symbols for easier identification, whereas genes without gene symbols retained 

their Ensembl IDs. 

DGE identified 1042 down-regulated and 3349 up-regulated features in LUAD, while the 

numbers for LUSC are 2480 and 4475, respectively. Clear patterns were detected (Figure 2), and many 

differentially expressed genes (DEGs) in this project are associated with the corresponding lung cancer 

type, which is consistent with the results from previous studies. For example, the PTPRH gene (log2 

FC = 6.13, adjusted_p_value = 1.89E-37) that encodes receptor-type protein tyrosine phosphatase was 

one of the most significant up-regulated genes in LUAD dected in this project, and it was found to be 

overexpressed in LUAD and might have prognostic implications[10]. In addition, NEK2 gene (log2 FC 

= 4.13 and adjusted_p_value = 1.12E-35 in LUAD, log2FC = 6.83 and adjusted_p_value = 6.8E-83 in 

LUSC), which was found to be overexpressed in both LUAD and LUSC, was identified as an effective 

tumor proliferation marker of poor prognosis for NSCLC patients that can also help with therapeutic 

intervention[11].  

  

Figure 2. Heatmap of feature expression levels in (A) LUAD and (B) LUSC. Expression level of 20 most 

significant up-regulated and 20 down-regulated DEGs in LUAD and LUSC. 

  
    

     

      

      

      

     

   

     

     

       

     

    

   

     

      

     

     

    

      

       

               

         

      

     

      

     

     

      

     

     

     

    

     

     

     

      

          

     

     

    

     

     

      

     

  

  

  

 

 

 

 

               

    

     

    

        

    

    

      

     

      

    

    

      

      

     

     

     

     

     

    

     

     

     

    

     

     

     

     

    

     

    

     

     

   

    

               

      

     

               

      

     

     

      

     

  

  

  

 

 

 

 



4.2  GO enrichment analysis 

Go enrichment analysis was conducted through "enrichGO" function embedded R package 

clusterProfiler[12], with all three ontologies include Biological Process (BP), Molecular Function (MF), 

and Cellular Component (CC). 

Results of GO enrichment analysis of DEGs showed differences between LUAD and LUSC at 

the biological pathway level (Figure 3). Most genes differentially expressed in LUAD were enriched 

in pathways related to the immune system, such as humoral immune response and defense response to 

the bacterium, while pathways related to cell development were enriched in LUSC. These observations 

are consistent with a study found that cell cycle promoting genes showed faster up-regulation in LUSC, 

whereas immune response promoting genes were more rapidly repressed in LUSC compared to 

LUAD[13]. Besides, keratinization-related pathways were also enriched in LUSC, which makes sense 

if most of the LUSC samples analyzed in this project belong to keratinizing squamous cell carcinomas 

(SCC), a subtype of SCC[14]. And keratinization of LUSC has been proved to be associated with poor 

clinical outcomes[15]. 

Figure 3. GO enrichment analysis on features differentially expressed in (A) LUAD and (B) LUSC. Top 10 

pathways that the DEGs are enriched in (ontology = "all").  

5  Multi classification of LUAD, LUSC, and normal sample 

The data for building classifiers came from a combination of samples in the second subset of raw 

LUAD and LUSC data, along with the intersection of features identified in LUAD and LUSC through 

DGE (2699 features). Normal samples from either LUAD or LUSC were labeled as "normal". 

Before model construction, we first compared different procedures for handling two sets of DEGs 

by measuring their performance metrics. Although taking the union or difference of DEGs in LUAD 

and LUSC performed better, features with large weights failed to identify all three types of samples 

under the aforesaid circumstances, which can only be achieved by taking the intersection of two sets 

of DEGs. Models with log-transformed data performed better on average than models with the original 

data when it came to data scaling, hence log-transformation was applied to the data before model 

training. 

With a 4:1 ratio of training and testing data, we developed three classifiers: Logistic regression, 
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Random forest, and XGBoost. 5-fold cross-validation was used during training to get the optimal set 

of model parameters. In addition, class weight = "balanced" was set for each model to address the data 

imbalance issue. A micro score was employed to generate performance metrics in the evaluation 

section, which is a weighted score that can better reveal their performance without bias. 

The Logistic regression model outperformed the other two classifiers, scoring the highest on all 

evaluation metrics. Furthermore, the majority of misclassifications for the Logistic regression model 

were between LUAD and LUSC, and all 15 normal samples were correctly classified (Figure 4). We 

believe there are two reasons for its success: 1) feature selection through DGE successfully selected 

features with great contributions to classification, enabling simple model to achieve relatively high 

scores; 2) the data became linearly separable after feature selection, making linear regression-based 

model the best among the three. 

Figure 4. Performance of three classifiers. (A) Accuracy, auROC, F1 score, MCC, Precision and Recall of 

Logistic regression, Random forest, and XGBoost classifiers. (B) Confusion matrix of three classifiers 

6  Feature importance exploration of Logistic regression model 

In the Logistic regression classifier, we collected the weight of each feature for LUAD and LUSC 

classification, ordered absolute weights in descending order, and examined top features (Figure 5). 

Unsurprisingly, many features with large weights have been found in other studies to be associated 

with LUAD or LUSC. For example, GCNT3 gene, which encodes a member of the N-

acetylglucosaminyltransferase family, was found to be highly expressed in both NSCLC tissues, and 

its higher expression correlated significantly with advanced tumor-node-metastasis (TNM) stage[16]. 

Besides, VWF has been identified as a biomarker for LUAD[17], and its pseudogene VWFP1 turned out 

to have a large weight in LUAD classification. 

In terms of LUSC classification, S100A7 and KRT6A caught our attention. S100A7 encodes a 

calcium-binding protein and is highly expressed in lung cancer, especially in LUSC compared to 

LUAD[18]. And it also plays a role in biological pathways that are enriched by DEGs in LUSC, 

including skin development and epidermal cell differentiation. In addition, S100A7 was found to 

negatively contribute to LUAD classification. The other gene KRT6A belongs to the keratin gene 

family. In LUAD, KRT6A was upregulated with increasing TNM stages, but its expression was 
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significantly increased in advanced LUSC tumors[19], suggesting its stronger association with LUSC 

compared to LUAD.  

Figure 5. Features with top 10 positive weights and top 10 negative weights for LUAD class and LUSC class 

in Logistic regression classifier. (A) Top features and their weights for LUAD class. GCNT3 and VWFP1 were 

marked by an orange box. (B) Top features and their weights for LUSC class. S100A7 and KRT6A were marked by 

an orange box. 

Based on these findings, feature importance exploration might work as a tool to select potential 

biomarkers, and S100A7 and KRT6A can be potential biomarkers for distinguishing between all three 

types of samples, LUAD, LUSC and normal sample. 

7  Discussion 

In this project, we focused on the differences between two lung cancer subtypes, LUAD and LUSC, 

in gene expression level, and conducted a series of analyses. DEGs and enriched biological pathways 

identified via DGE and GO enrichment analysis provided clear and different expression patterns for 

LUAD and LUSC. Most of the genes differentially expressed in LUAD were enriched in pathways 

related to immune system, whereas pathways related to cell development and keratinization-related 

pathways, were enriched in LUSC. Furthermore, three machine learning classifiers designed for multi-

classification tasks all performed well, with the logistic regression classifier outperforming the others 

with all measures above or close to 0.95. When analyzing feature importance for the logistic regression 

classifier, the S100A7 gene and KRT6A gene were found to have large weights in LUSC classification, 

and their overexpression in LUSC compared to LUAD was also observed in other studies, making 

them potential biomarkers for distinguishing LUAD and LUSC. This project integrated multiple 

commonly used bioinformatics methods for downstream analysis and machine learning methods to 

conduct a comprehensive analysis of LUAD and LUSC based on RNA-seq data and may provide 

insights on how can different methods be integrated.  

There are several limitations of this project. First, both datasets were split into two parts for pattern 

detection and classification, leading to limited samples for classifier construction. With a small sample 

size, the robustness of models might be affected. Furthermore, we were unable to obtain an external 

dataset to evaluate the models we built because the external dataset did not include all features given 

into the models, making it unable to fit in the model. Lastly, this project can be more thorough if 

comparisons with models from other studies were included.  

Although diagnosis of NSCLC is often through imaging tests including chest x-ray, computed 

tomography (CT) scan magnetic resonance imaging (MRI) scan and so on, in-silico research at gene 

expression level, such as this project, helps us pinpoint the affecting genes for each cancer type, 

  



reducing the search space for experiments at web lab, as well as finding out more risk factors such as 

tobacco smoking[20]. In terms of the treatment of NSCLC, although surgery, chemotherapy, and 

radiation therapy are still the predominant approaches, immunotherapy such as immune checkpoint 

blockade is developing rapidly[21,22]. A study shows that pembrolizumab monotherapy, which targets 

and blocks PD-1 on the surface of T-cells, provided durable antitumor activity and high 5-year OS 

rates in patients with advanced NSCLC [23], and identification of further possible neoantigens can help 

with the immunotherapy for NSCLC. 
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