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Abstract 
 

In the last few years, deep learning has increasingly shown the potential to improve 
healthcare by aiding medical professionals with diagnostic processes and patient interactions. In 
particular, Convolutional Neural Networks (CNNs), a class of deep learning algorithms, have 
successfully been applied to classify images of biological features that are often used to help 
monitor overall health and detect disorders in patients. White blood cells, and more specifically, 
the number of white blood cells and the distribution of their different types that are present in a 
person’s bloodstream are biological markers that are commonly used by doctors to treat their 
patients. A computational model that processes an image of a blood sample to classify and count 
white blood cells, thus, has significant practical applications in the field of medicine. This project 
takes a first step towards creating this model by using deep learning and CNNs to build a model 
that can classify an image that contains a single white blood cell. Three models were created and 
trained using a dataset of 12,500 white blood cell images with the best model achieving 78% 
accuracy with potential for further improvement.  
 
Introduction 
 

White blood cells (WBCs), made in the bone marrow and found in blood and lymph 
tissue, are a major component of the immune system. They play an important role in helping the 
body fight against infectious diseases, pathogens, viruses, bacteria, and other potentially harmful 
foreign invaders. A major feature of white blood cells that distinguishes them from the other 
blood cells, red blood cells and platelets, is that they have nuclei. There are several different 
types of white blood cells -the four most common being neutrophils, eosinophils, lymphocytes, 
and monocytes- that are characterized by their nuclear and cellular structure as seen in Figure 1. 
(“What are White Blood Cells”)  

 
Figure 1: White Blood Cell Types 

 
Neutrophils, which comprise 60% - 70% of the white blood cells in the body, have a 

nucleus with three to five lobes that are connected by slender strands of genetic material, and 
they are typically the first responders to bacterial and fungal infections. Eosinophils, which 
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comprise 3% - 5% of the white blood cells in the body, have a bi-lobed nucleus with large 
granules scattered throughout their cytoplasm, and they are primarily responsible for destroying 
parasites and responding to allergens. Lymphocytes, the smallest of the white blood cells, have a 
large, round nucleus with little surrounding cytoplasm, and they serve the purpose of producing 
antibodies and killing infected cells. Lastly, monocytes, the largest of the white blood cells, have 
a kidney-shaped nucleus with abundant surrounding cytoplasm, and they present pathogens to a 
type of lymphocyte called a T cell so that they can be recognized and killed.  (“White Blood Cell 
Count”) 
 

White blood cells and their different types are of high importance and interest in the 
fields of health and medicine. The number of white blood cells and the percentage of each type 
in a patient’s bloodstream are extremely useful pieces of information that can help doctors detect 
a wide range of disorders including leukemia, HIV, rheumatoid arthritis, anemia, and many 
more. For this reason, doctors commonly have blood samples from their patients sent for testing 
to laboratories in order to receive a WBC count and WBC differential which, respectively, 
provide the number of white blood cells and the percentage of each white blood cell type present 
in their patient’s blood. (“White Blood Cell Count”) Currently, there are two laboratory methods 
used to obtain the WBC count and WBC differential: the manual count and the automated count. 
For the manual count, a lab technician thinly spreads a drop of blood on a glass slide, lets it dry, 
stains the resulting smear, places the slide under a microscope, and manually classifies and 
counts the white blood cells present on the slide. For the automated count, the white blood cells 
are suspended in solution, and a device called a laser flow cytometer beams a laser on them and 
measures the refracted light in order to determine the white blood cell count and distribution. 
(Parthasarathy) Both of these methods, although accurate and reliable, have drawbacks. For the 
former method, manually counting the cells that show up on the slide is, as one might imagine, 
labor-intensive and time-consuming. For the latter method, the laser flow cytometer is expensive, 
typically costing tens of thousands of dollars. (Walter)  
 

 With the recent growth and advancement in the field of machine learning, a 
computational method that utilizes deep learning to train a classification model presents itself as 
a potential alternative that would be both faster and cheaper than the current WBC count and 
WBC differential methods. Once the main computational overhead is invested in training and 
fine-tuning models to create a high-accuracy classifier, obtaining the WBC count and WBC 
differential from a single image of a stained blood smear can occur in real-time, and the imaging 
equipment required to produce the image is significantly cheaper than the machinery required for 
the automated count method. Consequently, the practical implications of a creating a 
computational method are that doctors will be able to detect their patients’ disorders earlier and 
that, especially in underprivileged areas of the world, the reduced cost could increase the number 
of medical professionals and patients that have access to the critical medical information 
contained in the results of WBC counts and WBC differentials.  
 
Computational Problem 
 

As a first step towards creating a computational model that can provide a WBC count and 
WBC differential from an image of a stained blood smear, my project focuses on achieving a 
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simpler goal: classifying images of single white blood cells. Specifically, the objective of my 
project is to create a model that satisfies, with as close to 100% accuracy as possible, the 
following specification: 
  

Input: An unlabeled, stained blood smear image that contains exactly one white blood 
cell that is either a neutrophil, an eosinophil, a lymphocyte, or a monocyte 

 
Output: The label (neutrophil, eosinophil, lymphocyte, monocyte) that correctly 

corresponds with the type of the white blood cell present in the image 
 
Key Algorithms and Background 
 

Deep Learning and Neural Networks 
 

To create my model, I utilized a deep learning algorithm called a convolutional neural 
network. Deep learning is a machine learning technique that allows a computer model to perform 
classification tasks by extracting patterns from large sets of labeled training data, which, in turn, 
allows it to predict the most probable labels for new, unlabeled data. Most deep learning 
approaches involve the use of neural networks which are computational architectures loosely 
modeled after the way neurons transmit and process information in the human brain. (“What is 
deep learning?”) In general, a neural network is comprised of nodes representing artificial 
neurons where the output of each node is the result of some activation function on the sum of its 
inputs. The inputs and outputs are passed along between nodes through connections or edges and 
they typically have weights that are adjusted as the neural network is trained. In a feed-forward 
neural network, the edges only travel one way from input to output as seen in figure 2. 
(Stergiou) 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: A feed-forward neural network with p initial inputs and 1 final output, 

an input layer, a hidden layer, and an output layer with weighted edges 
between nodes. (Stergiou) 

 
In order to learn features from the input data, neural networks are trained through a series 

of forward and backward passes. A forward pass constitutes calculating the output of the neural 
network on the training data and determining the difference between the actual output and the 
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desired output with a loss function. The loss function serves as an error metric for the neural 
network, and the goal is to adjust the neural network in a way that minimizes this loss function. 
This is accomplished in the backward pass where, through a process called backpropagation, the 
weights of the edges in the neural network are updated using an optimization algorithm. 
Generally, these optimization algorithms utilize the derivative of the loss function to find the 
minimum in a process called gradient descent. This procedure of forward and backward passes is 
repeated until convergence, or more specifically, when the weights in the neural network no 
longer change between iterations, signifying that the minimum of the loss function has been 
found. (Moawad) 
 

Convolutional Neural Networks  
 

A convolutional neural network (CNN) is a specific type of neural network that is 
commonly used in image classification and analysis due to its ability to learn relevant features as 
it trains on a set of images. In general, CNNs work by first extracting important features from the 
image and reducing their dimensionality through convolutional and pooling layers before passing 
these features through a fully connected layer to output the classification of the image as seen in 
figure 3. (Saha) 

Figure 3: An overview of the typical layers in a convolutional neural network (Saha) 
 

The convolutional layer is always the first layer in a CNN, and its role is to detect 
features such as edges, color, curves, orientation, etc. that are present in the input image. (Saha) 
Images are matrices of pixel values, and in the case of RGB images, they are comprised of three 
matrices with each matrix corresponding to the three different color channels. Accordingly, 
images are represented as w ✕ h ✕ d arrays of pixel values where w denotes the number of pixels 
along the width of the image, h denotes the number of pixels along the height of the image, and d 
denotes the number of channels in the image’s color space. In the convolutional layer, a filter or 
kernel, an r ✕ c ✕ d array of values where r and c are less than the width and the height of the 
image, is shifted or convolved across the image and during this process, the dot product of each 
overlapping section and the filter is computed. When d is greater than one, these computations 
are summed along all of the channels for each overlapping section, and this process results in a 
matrix where the values indicate the presence of a certain feature depending on the initial values 
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chosen for the filter. To detect more than one feature, multiple filters with different values can be 
used within the same convolutional layer. (Deshpande) 

 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 4: An example of the movement of a filter along a 3-dimensional image array (Saha)  
 
After each convolutional layer, an activation layer is typically added to remove any 

linearity that may have been introduced as a result of the convolution operations. The most 
commonly used activation layer is the rectified linear (ReLu) layer which computes f(x) = 
max(0, x) on each of the values in its input. (Deshpande) 
 

Once the convolutional and ReLu layers have extracted features from the images, the 
next layer, called the pooling layer, is responsible for reducing the size of the convolved features, 
decreasing the amount of parameters in the network and therefore the amount of computation 
required to train the network. The two most common methods to achieve this are max pooling 
and average pooling. For both methods, a filter with smaller dimensions than the dimensions of 
the convolved feature is chosen, and it is shifted across the convolved feature in a similar fashion 
to the convolutional layer. For max pooling, the value that is returned at each overlapping section 
is the largest value in that overlapping section, and for average pooling the value that is returned 
is the average of the values in that overlapping section as demonstrated in figure 5. (Saha) 
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Figure 5: An example of max pooling and average pooling (Saha) 
 

Together, the convolutional, ReLu, and pooling layers form a complete layer of a CNN, 
and a multiple number of these layers can be utilized to extract more complex and abstract 
features that are present in the images. Once the images pass through these layers and the 
features have been detected, the next layer in the CNN, the fully connected layer, is a 
feed-forward neural network that takes the detected features, in a flattened form, as input and, for 
each class, outputs the probability that the image belongs to that class using an activation 
function called the softmax function. (Deshpande) To prevent overfitting, an additional layer 
called the dropout layer, which randomly selects nodes to be ignored during forward and 
backward passes, is also typically included. This network is then trained using forward and 
backward passes with a loss function such as the categorical cross entropy function and an 
optimization algorithm such as the Adam algorithm. (Saha) 
 

In CNNs, there are a large number of parameters, called hyperparameters, that are not 
learned from the training data and have their values set before the CNN is trained. The standard 
set of hyperparameters include the number of layers in the CNN, the number of filters applied in 
the convolution layers, the size of the filters in the convolution and pooling layers, the number of 
epochs or iterations of forward and backward passes, the batch size or the number of images 
used for training in each epoch, and the dropout rate or the probability that a node is chosen to be 
ignored in a dropout layer. All of these hyperparameters affect how the CNN learns features and 
weights from the data and, as a consequence, they impact the accuracy of the CNN. (Deshpande) 
 
Dataset 
 

The dataset utilized to train and test the CNNs for my project was comprised of 12,500 
total images that were augmented from duplicating and rotating a set of 410 original stained 
blood smear images. By increasing the amount of training data and presenting the white blood 
cells in the images in multiple different orientations, this augmentation helps prevent overfitting 
and allows the CNNs to be more robust and less reliant on non-predictive features. For each of 
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the four white blood cell types, the images were approximately split into 2,500 training images 
and 620 test images. (Mooney) 

 
  
 
 
 
 
 
 
 
 
 
 

 
 

 
Figure 6: (Clockwise from top left) An image containing a neutrophil, an image             
containing a lymphocyte, an image containing a eosinophil, and an image           
containing a monocyte. The reddish pink objects are red blood cells and the             
purple object is the white blood cell with the darker purple stain differentiating             
the nucleus from the lighter purple or pink cytoplasm. (Mooney) 

 
The images originally had a dimension of 240 x 320 x 3 with the first two dimensions 

representing the number of rows and columns in the image and the last dimension representing 
the red, green, and blue channels of the RGB image. In order to reduce the amount of 
computation required in the CNNs, the images were preprocessed by resizing the number of 
rows and columns by a factor of 4 to obtain images with a dimension of 60 x 80 x 3.  

  
 
 
Models and Results 
  

For my project, I created and trained three different CNN models with the training data 
and ran them on the test data, achieving accuracies of, respectively, 75%, 78%, and 25% 
correctly classified images. All three models were trained for 150 epochs with a batch size of 64 
using the categorical cross entropy loss function and the Adam optimization algorithm for the 
forward and backward passes. 
 

Model 1 
 

My first model was the simplest of the three and it consisted of the following layers and 
hyperparameters: 
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This model was able to correctly classify 75% of the training images, and examining the 
images that were incorrectly classified provided further indication of the CNN’s ability to extract 
relevant features from the images. Figure 7, shown below, is the confusion matrix representing 
the results from running this model on the test data.  

      Figure 7 
 

For each of the four white blood cell types, the matrix shows the distribution of how the 
images that actually contained that type were classified by the model. The left diagonal of the 
matrix corresponds to the images that were correctly classified, and the remaining values 
represent the incorrectly classified images with darker colors indicating higher percentages than 
lighter colors. As seen in the confusion matrix, the highest percentages reside in the left diagonal 
showing that a majority of the images for each type of white blood cells were classified 
correctly. Additionally, the greatest classification errors occurred with images of eosinophils and 
monocytes being labeled as neutrophils, and relatively small percentages were associated with 
the other possible classification errors. This indicates that the CNN was able to assign 
importance to appropriate and relevant features in the images because both eosinophils and 
monocytes exhibit similarities in their nuclear and cellular structure with neutrophils, making it 
reasonable for the CNN to confuse them. On the other hand, monocytes and lymphocytes 
significantly differ in both their size and nuclear structure which means that the CNN should not 
have trouble distinguishing them, and this was reflected in the confusion matrix with nearly 
non-existent occurences of these errors. 
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Model 2  
 
For my second model, I attempted to improve the accuracy achieved from the first model 

by adding an additional convolutional layer to extract more low-level features from the images 
and increasing the dropout rate in the dropout layers to reduce overfitting. Accordingly, this 
model consisted of the following layers and hyperparameters:  

 
This model was able to correctly classify 78% of the test images, which is a slight 

improvement over the first model. The resulting confusion matrix, as seen in figure 8, showed 
similar trends as the ones discussed in the first model indicating that this CNN was also able to 
learn and distinguish relevant features from the images.  

Figure 8 
 
Model 3 
 
For my third model, I attempted to improve the accuracy achieved from the second model 

by adding another convolutional layer with an increased number of filters along with an 
additional max pooling layer and dropout layer with the hope of extracting even more features 
from the images and further reducing overfitting in the model. However, the actual result after 
training this CNN was that the accuracy dropped to 25% with all of the images in the test data 
being classified as monocytes. This outcome demonstrates one of the limitations of deep learning 
and CNNs. Specifically, when a CNN is trained, due to the complexity of the hidden layers and 
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parameters in the model, it is hard to determine how changing the hyperparameters affects the 
results of the model or what distinguishes one model from being more successful than another 
model. (“What is Deep Learning?”) With my third model, for example, it is unclear which of the 
additional components such as the new layers, the increased number of filters, or the different 
dropout rate caused the accuracy of the model to dramatically drop.  
 
Conclusion and Future Work 
 

The highest-accuracy model that I was able to create had a test accuracy of 78%. 
Currently, this is not good enough to be used as an alternative to the existing methods of 
classifying white blood cells; however, there is considerable potential for improvement. For 
instance, running more models with various adjustments and fine-tuning the hyperparameters 
may very well result in a higher accuracy model. In addition, transfer learning, the method of 
using a pre-trained model as a starting point to train a model for a new classification task, could 
also potentially result in an improved model.  

 
After the successful creation of a model that can classify an image of a single white blood 

cell with as close to perfect accuracy as possible, the next step towards creating a computational 
method for the WBC count and WBC differential is extending the model to classify multiple 
white blood cells that are present in a single image. Because this step would involve 
incorporating both classification and image segmentation in the model, it presents a very 
interesting avenue for future research. Another direction for future work is to include detection 
of abnormal white blood cells as part of the classification model because in addition to the four 
common WBC types, the presence of abnormal WBCs also holds medical significance in helping 
doctors diagnose and treat patients. Ultimately, the goal is to consolidate these directions of 
research to develop an online tool where healthcare professionals can upload an image of a 
stained blood smear, which can be prepared in-house before a patient sees their doctor, and 
receive the results of the WBC count and WBC differential by the time the doctor meets with 
their patient. If this can be achieved, this would be another one of many demonstrations of how 
computational modeling can improve healthcare and patient outcomes. 
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