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Introduction  

Nearly every metagenomic study involving samples of amplified reads has the same first 
step – sample reduction. Sample reduction is the process of using raw reads to produce operational 
taxonomic units (OTUs) and an associated table with abundance counts. This information is 
valuable to researchers because it allows them to deduce which species are present within each 
sample and assess community diversity across all the samples, also known as beta diversity.  

It is difficult to identify species among prokaryotes because there is no means of 
differentiation by sexual reproduction and offspring viability. Thus, current approaches take the 
route of a phylo-phenotypic definition in which species are assigned based on phylogeny and 
primary function and characteristics. Phylogeny based species differentiation is done via 
sequencing specific regions of marker genes such as the V4 region of the 16S marker gene found 
in prokaryotic rRNA.  

These reads offer important insight into how abundant a certain microbial species is in a 
particular location. However, they possess little meaning until organized into OTU tables. The 
process of selecting representative strings for each new species encountered and consolidating 
remaining reads into pre-existing clusters is dependent on a similarity score, a threshold which 
determines how similar two reads must be in order to be considered the same species and placed 
in the same cluster together. Similarity scores of 97% or 98.5% are very commonly seen and yet 
it is unclear why the default cut off is one of the aforementioned quantities. They have become the 
status quo among such studies but there lacks rigorous backing to justify why these thresholds are 
appropriate. 

Aside from clustering methods, there are also denoising algorithms that produce ASVs or 
amplicon sequence variants. ASVs provide finer resolution and are deemed the equivalent of 
enforcing a 100% similarity score, although this is misleading since ASV tables will not be the 
same as an OTU table constructed from 100% similarity threshold. There is currently a shift 
towards using ASVs as they are more scalable but it is unclear how they perform in relation to 
OTUs.  

In the current debate between ASVs and OTUs, there are many factors to consider. The 
biggest issue with lower similarity scores is that they may incorrectly cluster unique sequences 
and estimate lower diversity than intended. Meanwhile, although ASVs are produced by 
algorithms designed to identify differences between machine error and legitimate sequences that 
vary by one nucleotide or are in low abundance within the sample, they are not perfect and may 
overestimate diversity. This also threatens the reliability of higher similarity scores for OTU 
construction because more stringent requirements for clustering will lead to more clusters with 
low abundance counts. OTUs are dataset specific but easily present larger biological trends while 
ASVs allow for seamless cross-study analyses. 

To perform analyses on microbiome data post clustering or denoising, beta diversity 
metrics are used to indicate biodiversity across samples, or within a community. The beta diversity 



metrics included in this project are abundance and set-based indices such as Bray-Curtis, Jaccard, 
and Morisita-Horn, as well as phylogenetic tree-based metrics such as weighted and unweighted 
UniFrac, and finally weighted Jaccard which does not fit into either category. Well-established 
metrics like Bray-Curtis and UniFrac are justifiably popular among researchers, it is unclear to 
that degree these measures are interchangeable. 
 Significance 

 Throughout the initial stages of microbiome analysis, every choice made has a chance of 
introducing error or bias. It is thus crucial that we do not compound upon this with arbitrarily 
chosen parameters if in fact these decisions have a significant downstream effect. With this project, 
the goal is to assess the robustness of commonly utilized similarity scores and distance metrics to 
identify the relatively least volatile parameters when constructing and comparing OTUs.  
 The significance of this project lies in the fact that the biosphere has become increasingly 
relevant in several domains, including agriculture, human health, and manufacturing. In order to 
accurately study the diversity of bacteria in the guts of aging humans, rivers across seasons, and 
in compost throughout decomposition, it is vital that the metrics used to assess said diversity are 
confirmed to be reliable. If similarity scores and distance metrics do indeed impact downstream 
results or restrict cross study analyses, it is vital that researchers take more care in selecting 
measures and become aware of assumptions that are and are not permitted 
 Hypothesis 

 Based on prior research conducted in this area, it is expected that the ASV tables will be 
more stable than the OTU tables constructed at 100% similarity (written as 100% OTUs from here 
on, for the sake of brevity). Stability will be determined by the Spearman correlation between 
pairwise distance matrices such that for the same distance metric, when both ASVs and 100% 
OTUs are plotted against lower similarity score tables, the ASVs will have a stronger correlation.  

 In terms of distance metrics, UniFrac is expected to be unstable compared to the 
abundance-based indices due to the fact that UniFrac only uses an evolutionary tree constructed 
from the OTU sequences themselves. Weighted UniFrac is expected to be stable and considered 
highly interchangeable because it takes both abundance counts and the phylogenetic tree into 
account. The definition of interchangeable here is not that one metric is a near identical 
replacement for another. The way it is used in this project is as following– if one diversity metric 
is replaced by another interchangeable metric, the relative diversity of the entire community will 
be the same, though often shifted significantly up or down in overall reporting of diversity. 

 Lastly, weighted Jaccard is expected to be incompatible with every other distance metric, 
particularly because it is computed by comparing every index of abundance vectors for a pair of 
samples and dividing the sum of the minimum abundance counts over the sum of the maximum 
abundance counts. It is rarely used in beta diversity analysis so it can serve as a bound on the worst 
correlation and treated as the most unstable. 

 

 



Methodology 

 Though there are a wide variety of algorithms for both clustering and denoising, the two 
utilized in this project are VSEARCH, an open source equivalent to USEARCH, and DADA2. The 
data set analyzed consists of river samples collected through the Pre-College Computational 
Biology program at CMU. The reads were sequenced as single end reads using Illumina MiSeq 
technology. 

 The standard pre-processing steps of demultiplexing, quality filtering, chimera removal, 
and dereplicating were performed on the raw reads. Read merging was not needed since the data 
did not include paired end reads. Taxonomy assignment was also not implemented. 

 The pre-processing for both scripts was done exactly the same way. After taking a look at 
the quality plots of the reads, a truncated length of 240 base pairs was selected as the average 
location where a severe drop in read quality was observed across all samples. The maximum 
number of expected errors allowed in each read was set to 1 (this value greatly helped eliminate 
extraneous species counts in VSEARCH that produced very sparse OTU tables). The truncQ 
parameter was assigned a value of 11, meaning that reads would be truncated at the first instance 
of a quality score lower than 11. These parameters are stringent and may not be needed given a 
very high-quality data set. 

 For VSEARCH, there is an additional step of choosing which clustering method to employ. 
Prior research suggests that reference-based assignment underperforms and introduces bias 
depending on which database is utilized, with some common ones being Greengenes, RDP, and 
SILVA. Thus, this project applies de novo clustering, while acknowledging that this method does 
not necessarily extend well for cross study analyses and taxonomy assignment. However, since 
taxonomy assignment is not relevant to the goal of this project, this is not a concern for the time 
being. 

 Once abundancy tables were successfully constructed for ASVs and OTUs at similarity 
scores of 95.5%, 97%, 98.5%, and 100%, R scripts with the vegdist, phangorn, DECIPHER, and 
phyloseq packages were used to compute pairwise distance matrices and further analysis regarding 
single-count variants (see Results section). For UniFrac and weighted Unifrac, multiple alignment 
of the OTUs as well as neighbor joining tree construction were used to construct the phylogenetic 
tree that is used in compute the distance matrices. 

 The Spearman correlation coefficient was utilized in place of Pearson’s to prioritize 
general positive monotonic relationships regardless of whether they are linear relationships. This 
metric was used to assess stability as well, as seen in the next section. 

 

 

 

 



Results and Discussion 

 Part I: Similarity Scores 

The first part of the analysis involved comparing similarity scores while keeping the distance 
metric unchanged. To produce initial plots, the Bray-Curtis dissimilarity index was chosen due to 
its popularity but the drawbacks of the metric will be discussed and a more generalized takeaway 
will be offered. 

 The plots behaved as expected. As the similarity scores along the y-axis approach the 
similarity scores on the x-axis (assume that ASVs are produced at 100% similarity via an alternate 
algorithm), the spread reduces and Spearman’s correlation coefficient increases. Note that the 
ASVs are more compatible with OTUs, as we see a stronger one-to-one correspondence. 
Meanwhile, the pairwise sample diversity reported from 100% OTUs is consistently higher than 
the diversity reported from any lower percentage OTUs, as indicated by a bulk of the points sitting 
below the respective lines in the first row of graphs. In fact, there are some outliers in which the 
pairwise sample diversity expressed through 100% OTUs is significantly higher (.15+ difference) 
than the diversity reported by the lower percentage OTUs. These are roughly found within the red 
ovals on the graphs. 

 To understand why this is the case, the distribution of frequencies in the OTU tables were 
analyzed, specifically between stable and unstable pairwise samples. Stable points are those which 
remain within a certain threshold of the direct correspondence line for all the similarity plots. The 
outliers and stable pairs of samples are listed in the table below. Note that assessing stability was 
tough and restricted this computation to three pairs each. See Challenges section for more 
information. 

Stable (>.15 difference in diversity 
reporting across all graphs) 

Unstable (<.02 difference in diversity 
reporting across all graphs) 

S9/S12 C2/S12 
S9/S14 S9/C2 
S8/S14 C2/S13 



Next, the number of rows in which one sample had only one count of the OTU while the 
other sample had zero counts were computed for each pair and averaged. The overall frequency of 
these “single-count variants” are shown below for each similarity score. 

 100% 98.5% 97% 95.5% 
Stable 318 190 154 136 

Unstable 390 205 162 150 
 The huge difference in the number of single-count variants present in the OTU tables 
displays why diversity is overestimates at a 100% similarity score. As the similarity scores are 
reduced, allowing for more clustering and thus fewer overall OTUs, these extraneous reads do not 
contribute as much to the diversity computation. Thus, the count distribution in the OTU tables for 
the unstable pairs of samples is such that as the similarity score drops, the reads that were identified 
as unique species at 100% are repurposed so that they join pre-existing clusters and reduce net 
differences in the numerator of the Bray-Curtis computation. These results directly translate to the 
Jaccard dissimilarity index as well due to the similarity in how both measures are computed.  

 Thus, the 100% similarity score has a tendency to overreport diversity for pairs of samples 
that happen to have many reads that differ by just a couple bases (most likely due to machine error) 
and just so happen to align in a manner that exacerbates net differences in the numerator of 
abundance based diversity metrics. Do note that the isolated samples within unstable pairs did not 
necessarily have significantly more low abundance counts in comparison to stable samples. It was 
only when they were paired together that distance metrics such as Bray-Curtis, Jaccard, and 
Morisita-Horn fell short. Luckily, weighted UniFrac offsets this because it does not depend solely 
on the abundance counts. Rather, it also utilizes a phylogenetic tree to compute distance. The 
regions bound by the triangles in the Spearman Correlation Heat map indicate that the UniFrac 
metrics, weighted and unweighted, do not at all display variance based on similarity score. This is 

because they more heavily depend on 
presence/absence data will not change based 
on similarity score. 

Not that, as hypothesized, ASVs are 
more stable than 100% OTUs in relation to 
lower similarity OTUs, with the highest 
correlation consistently going to the pairing 
of ASVs with 98.5% OTUs. The fact that 
ASVs and 100% OTUs experience a drop in 
correlation can also be attributed to the 
finding that 100% OTUs overestimate 
diversity. Thus, ASVs can be better viewed 
as equivalents to 98.5% OTUs, in terms of 
stability.  

 Spearman Correlation Heat Map 



The exception to this trend is weighted Jaccard which does significantly better at lower 
similarity scores and performs terribly when ASVs are used. This is because the ASV table 
produces had fewer clusters than any of the OTU tables and was thus relatively much denser, 
which will make the diversity reported by weighted Jaccard more erratic since differences are not 
a matter of single count invariants.  

Part II: Distance Metrics 

The second part of the analysis involves determining 
how “robust” or relatively “interchangeable” these distance 
metrics are among each other.  

  Jaccard and Bray-Curtis display a strong 
correlation due to how similarly the two indices are 
computed. Meanwhile, Morisita-Horn and Jaccard have a 
distribution that fits a sigmoid-function. Morisita-Horn is 
particularly sensitive at the tail ends of these distributions 
and tends to be more conservative in reporting diversity at 
the lower and upper bounds. This is seen in the bottom four 
plots on the right. 

Though it is clear that these metrics are not 
interchangeable because they do not have a one-to-one 
correspondence, they can provide the same relative pairwise 
distances if they have a high Spearman correlation.  

 The heat map can be revisited for further analysis, this 
time with regard to the rectangles outside of the triangular 
regions. It is clear that weighted Jaccard and UniFrac are poor 
alternatives to set-based dissimilarity indices. Additionally, the 
weighted versions of Jaccard and UniFrac have very poor correlation 
with their unweighted dissimilarity indices. 

Note that the correlation heat map cannot be taken at face value. 
When describing how relatively “interchangeable” these distance 
metrics are, merely taking the Spearman correlation into account is not 
sufficient, especially since this correlation coefficient is more forgiving 
with outliers in the tails of our data. Out of the distance metrics 
considered for this project, this consideration is necessitated by the 
Morisita-Horn index which consistently underreports at the tails, a fact 
that would be overlooked if just observing the heat map. Thus, if 
analyzing beta diversity in samples that will include samples that are 
either highly diverse or nearly identical, it would be more appropriate 
to select weighted UniFrac, Bray-Curtis, or Jaccard. 

 

Correlations between Jaccard Dissimilarity Index and 
Horn, Bray-Curtis, UniFrac, and weighted UniFrac  

Correlations between Morisita-Horn Dissimilarity Index 
and Jaccard, Bray-Curtis, UniFrac, and weighted UniFrac  



Challenges and Important Notes 

Scope 

It is important to note that the scope of this project did not involve much exploration into 
pre-processing parameters. However, it must be acknowledged that factors such as min length, 
max length, trimming options and other quality filtering metrics that decide which reads to throw 
out all have a significant role in the construction of OTUs and ASVs, and will need to be modified 
based on the data set. The effects of this were directly observed in this project when the suggested 
quality filtering parameters from one pipeline caused VSEARCH to produce extremely sparse 
abundance tables in which all pairwise sample distance measures indicated maximum diversity. 
Once these parameters were modified based on a separate pipeline, workable tables were attained, 
and then the pre-processing steps for the DADA2 script were updated to mitigate differences in 
pre-processing that could potentially introduce unnecessary variables.  

Additionally, the algorithms chosen for the specific tasks of denoising and clustering can 
modify results. An example of this is the treatment of erroneous sequences between DADA2 and 
Deblur, in which the former alters these sequences to match an ASV they likely originated from, 
thus counting valid strings that would have been discarded by Deblur due to machine error.  

Lastly, this project was conducted only on one data set (for reasons listed below) which is 
very incomplete. Thus, any observations and conclusions made from them in this analysis cannot 
be extrapolated to other data sets or processes until a more complete analysis is achieved.  

Parallelization 

Setting up a highly parallelizable project was not possible at this point in time. Because 
VSEARCH is currently not a package that is built into R, the VSEARCH algorithm was used in a 
Windows batch script and then the OTU tables were loaded into R for beta diversity analysis. In 
the future, a viable alternative would be to use QIIME2 which has both algorithms built in. 
However, because QIIME2 requires the input sample data to obey very specific naming 
conventions that require breaking apart merged FASTQ files into each lane and annotating each 
sample with sequence barcodes, lane numbers, set numbers, and more, an additional script would 
have to be written to ensure that this is done. Additionally, separate scripts would need to be written 
for single end and paired end reads and the data taken from studies would need to be categorized 
accordingly. 

Availability of Data 

In many public metagenomic databases, it is often the case that metadata or pre-constructed 
OTU tables with assigned taxonomy are readily available to perform downstream beta analysis. 
However, since the focus of this project was on the upstream construction of such tables, this 
information was not usable. In order to access the raw FASTQ files, further credentials were 
necessary. Other metagenomic databases contained fully sequenced genomes, which once again 
was not relevant to this project. There is one database called MG-RAST that is a crowd sourced 
repository that also contains Illumina MiSeq single-end reads, though only partial sets are available 
to download. Alternatively, mock data sets can also be generated using CAMISIM and specialized 



to mimic specific sequencing technologies as well. These resources are worth exploring further to 
expand the scope of this project.  

Quantifying Stability 

When assessing outliers in the similarity score plots 
of 98.5%, 97%, and 95.5% against 100%, the most disparate 
Bray-Curtis and Jaccard dissimilarity indices consistently 
belonged to the same six pairs of samples, always found in 
the same order as well. 

Meanwhile, the “stable” samples, or those pairs that 
had as close to a one-to-one correspondence as possible did 
not have the same consistency across similarity scores. In 
fact, there was little to no pattern observed. Thus, selecting 
representative stable samples was tough. They were 
ultimately found by randomly choosing three pairs of 
samples that consistently fell beneath an arbitrary threshold 
for all plots.  

In the future, it is worth reassessing a more concrete 
definition of stability because this dataset heavily favored sample C2 paired with other samples, 
as these pairs were often found under the threshold selected for this project and deemed stable.  

Conclusion 

 The most significant finding from this analysis is that utilizing a 100% similarity score for 
clustering algorithms is unadvisable due to overreporting of diversity for specific pairs of samples. 
Instead, for abundance and set-based distance metrics, if higher resolution is warranted, ASVs 
should be used and if OTUs are preferred, a 98.5% threshold is best as it provides enough 
resolution without overestimating diversity. Similarity scores play little to no role in UniFrac 
dissimilarity which is favorable to researchers who do not wish to deal with the uncertainly of 
choosing between ASVs or OTUs. However, this freedom comes at the loss of abundance counts. 
Weighted UniFrac achieves the advantages of both methods by being resistant to similarity scores 
while taking abundance counts into account. Thus, weighted UniFrac can be considered the most 
flexible or “interchangeable” metric except in relation to weighted Jaccard (which is acceptable as 
it has been established as a poor metric) and unweighted UniFrac (which loses too much relevant 
data). 
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Example of outliers in Bray-Curtis plot of 98.5% OTUs 
plotted against 100% OTUs. The six outliers consistently 
occur in this order for all Bray-Curtis and Jaccard similarity 
score plots in which the x-axis is 100% similarity. 
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