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Abstract 
 
Background: Breast cancer (BC) is the second leading cause of cancer-related deaths worldwide. 
Around 80% of all BC tumors are estrogen receptor positive (ER+); therefore, treatments for 
these cases target the estrogen receptor (SERMs, SERDs, etc.). Immunotherapy, or targeting the 
immune system to treat disease, is a novel approach of cancer therapy that has proven to have 
potential for triple negative breast cancer, but its efficacy in ER+ breast cancer has been 
understudied. Previously, Tamborero et al. curated a set of immune related gene signatures to 
investigate immune infiltration in TCGA tumors. Immune infiltration was quantified by the 
enrichment scores from gene set variation analysis (GSVA). They then used these GSVA scores 
to classify TCGA ER+ BC samples by their immune phenotype: as either low-immune 
phenotype (ImL) tumors or high-immune phenotype (ImH). In a study performed by Oesterreich 
et al., it was found that PDL-1 signaling was upregulated in ImH tumors, thus indicating immune 
evasion. However, it is still not clearly known how ImL BC tumors might be preventing 
infiltration and what other properties distinguish them from ImH tumors. Studies have suggested 
that upregulation of certain extracellular matrix (ECM) factors in ImL tumors might be 
preventing immune infiltration. It is additionally not known what genes are aiding PD1/PDL-1 in 
immune evasion (i.e. genes that are also upregulated when PD1/PDL-1 is upregulated). 
Methods: To identify if ECM factors exist in immune low breast cancer tumors, differential gene 
expression analysis (using DEseq2) was used on RNAseq data of tumor samples to identify 
differentially expressed genes (DEG) in ImH vs ImL tumors that might be driving the immune 
phenotypes. The DEG were filtered by function, and ECM genes were analyzed. To study other 
genes that could be working in combination with PD1/PDL-1, a spearman correlation of different 
genes with PD1/PDL-1 was conducted based on RNAseq expression data in ImH tumors. 
Conclusions: I found that COL2A1, PCSK1, and SLIT1 were significantly upregulated (logFC > 
2, pval < 0.001) in ImL tumors. Additionally, caspase genes and p53 were significantly 
correlated with high PD1/PDL-1 expression (spearman > 0.1, pval < 0.001). A future direction 
would be to validate the protein expression of these genes in-vitro through immuno- 
histochemistry or possibly use them as targets for treatment. 
 
 
 
 



 

Introduction 
 

Breast cancer (BC) is the most commonly diagnosed cancer in women. According to the 
American Cancer Society, about 2 out of every 3 cases of breast cancer are hormone 
receptor-positive1. The estrogen receptor positive (ER+) breast cancer phenotype composes the 
majority (80%) of all cases2. In ER+ tumors, cancer cells receive signals from estrogen that 
promote tumor growth by binding to ER-α. The estrogen receptor is then thought to function as a 
ligand-activated transcription factor to genes that control cell growth and proliferation. 
Currently, treatment for breast cancer has focused on the blockage of the estrogen receptor 
through endocrine therapy; however, resistance to treatment can be seen in some patients as 
tumor progresses2. Immunotherapy is another novel approach that has proven to have potential 
for triple negative BC, but its efficacy in ER+ breast cancer has so far been understudied3. 
Immunotherapy would focus on the activation of immune cells such as T-lymphocytes, 
monocytes, and natural killer cells found in some breast cancer tumors. 

Previously, Tamborero et al. curated a set of immune related gene signatures to 
investigate immune infiltration in tumor samples (from The Cancer Genome Atlas) compared to 
normal tissue samples from GTEX4 (Genotype-Tissue Expression project). For quantifying 
immune infiltration, they used gene set variation analysis (GSVA) to calculate enrichment scores 
of these signatures in each sample. GSVA is a method of quantifying upregulation of a certain 
gene set compared to all other genes, where a positive GSVA score signifies that the gene set in 
question is upregulated. The purpose of GSVA was to determine if the “immune gene set” was 
significantly deregulated compared to baseline genes. The samples were then given an immune 
phenotype score for classification based on GSVA score for each immune signature. These 
immune phenotype scores ranged from 1-6, with 1 representing the lowest immune infiltrate, and 
6 representing the highest immune infiltrate. These immune phenotype scores were then 
extracted to classify tumor samples as either “immune-low” phenotype tumors (immune 
phenotype scores between 1-3) or “immune-high” phenotypes (scores between 4-6).  

 
 
 
 
 
 
 
 
 
 



 

Figure A. Pan-cancer landscape of interactions between solid tumors and infiltrating immune cell 
populations. Based on GSVA score, an immune enrichment score is assigned (1-6, 1 = low immune 
infiltration, 6 = high immune infiltration)4. 

 
However, in a practical sense, both immune phenotype tumors have rapid growth, with 

no difference in patient outcome. This discovery subsequently raised the question of how 
“immune-high” tumors had the capability to proliferate if there truly was a greater amount of 
immune infiltrate in these tumors. In a following study performed by Oesterreich et al., they 
showed that high immune phenotype tumors, despite their greater number of T-cells, were 
potentially able to evade immune responses by up-regulating the receptor PD1 and its ligand 
PD-L1 (programmed-death 1)5. This ligand-receptor checkpoint inhibitor, when activated, blocks 
the activation of T-cells in the tumor, and prevents the anti-cancer immune response in the body. 
These findings suggest that immunotherapy could be used along with other therapeutic methods 
to treat ER+ breast cancer, specifically by targeting the PD1/PD-L1 mechanism in tumors with 
high immune-infiltration6. 

 
 
 
 
 
 
 
 
 
 

Figure B. Immune phenotypes categorized by histology (invasive ductal vs. lobular carcinoma). Tian Du 
et al. found higher activity levels of immune checkpoint pathways in immune high tumors in both 
histological subtypes5. 
 
Questions 
 

Based on current literature, it is still not clearly known what properties distinguish 
immune low breast cancer tumors from immune high tumors, and how immune low tumors 
might be preventing immune infiltration. Studies have suggested that upregulation of certain 
extracellular matrix (ECM) factors in immune low tumors might be preventing immune 
infiltration. One of the main goals in this study is to identify any differentially expressed genes 
between the immune high and immune low phenotypes, or any gene upregulated in the immune 
low phenotype that may play a role in the prevention of immune cell (lymphocyte) infiltration. 



 

Additionally, it is currently known which pathways or genes work in combination with 
PD1/PDL-1 in immune-high tumors. It was recently published by Xu et al. that p53 may have a 
possible role in the pathway of PD1/PDL-1 in cancer, as there was a strong positive association 
between the expression of the two genes in lung adenocarcinoma patients6. Furthermore, in the 
same paper, this relation was confirmed in-vitro in tumor samples through immuno- 
histochemistry staining. The additional goal of this study is to filter gene candidates that are 
positively correlated with high PD1/PDL-1 gene expression in immune-high breast cancer 
tumors.  
 
Methods 
 
Data Selection 
All patient samples were obtained from The Cancer Genome Atlas project on immune 
signatures, originally started by Tambarero et al. 467 patient samples with immune low tumors 
and 277 immune high tumors were used in this study. RNA sequencing data for tumors was the 
primary method of analysis in this study. In addition, for verification purposes, corresponding 
biospecimen data (such as lymphocyte, monocyte, and tumor purity cell count) was obtained for 
each patient tumor sample. 
 
Verifying Immune Classification 
Because the immune classification for the ER+ tumors used in this study is based on gene 
signature, validation of the classification (based on immune cell counts) is necessary in order to 
make any conclusions about immune phenotypes. This verification was done by analyzing 
whether the immune high tumors had a higher percentage of T-lymphocytes and the immune-low 
tumors had a lower percentage of lymphocytes. Using a graphical representation, mean 
lymphocyte concentration was compared between the two phenotypes to see whether a 
significant difference was present. 
 
Differential Gene Expression Analysis 
In order to view what genes were significantly upregulated in the distinct phenotypic groups 
based on RNA sequencing data, differential gene expression analysis was conducted. The 
bioinformatics software DESeq2 was used to accomplish this. The DESeq2 pipeline involves a 
series of steps that first normalizes raw RNAseq counts, estimating gene dispersions, and fitting 
the data to a statistical model to compare mean gene expression between two groups.  
 

DESeq2 Pipeline 
The first step in the pipeline involves normalizing the raw RNAseq counts to account for 
differences in library depth, or the number of RNA reads per tumor samples. Next, the 
algorithm analyzes gene-wide dispersion, or the variability in the data. Dispersion is 
essentially an inverse measure of the mean gene expression, measuring variance in gene 



 

expression for a given mean expression value. To generate more accurate estimates for 
variation, DESeq2 uses a method coined as “shrinkage”, which estimates variation based 
on the mean expression level of the gene. The dispersion estimates are then fitted to 
model a curve, where the expected dispersion value for genes of a given expression 
strength are generated from the plot. The algorithm then “shrinks” the gene-wide 
dispersion estimates to those that match the expected value of the curve. The curve 
allows for a more accurate identification of differentially expressed genes when sample 
sizes are small. Shrinkage of gene dispersions are dependent on the curve’s expected 
estimates, as well as sample size. This step proves very important, as it decreases the 
likelihood of false positives when reporting differentially expressed genes. Once the 
dispersions and means are calculated for each gene (among all tumor samples), the two 
groups are compared for any significant differences in gene expression.  
 

The differentially expressed genes are depicted in a volcano plot, where genes upregulated in 
immune-low and immune-high phenotypes can be analyzed. Because this study aims to answer 
the question of upregulated genes in the immune-low phenotype, special attention was given to 
these genes. From this list of genes, the ones that were both significantly upregulated (based on 
log2 fold change and p-value) and ECM-related genes were filtered. 
 
Spearman Correlation Analysis with PD1/PDL-1 
In order to answer the second question of which genes were significantly correlated with high 
PD1/PDL-1 expression, a spearman correlation analysis was implemented. Using RNA 
sequencing data and the differential gene expression data, a volcano plot was made from 
expression of all immune-high tumors to correlate which other genes were significantly 
upregulated (log2 fold change > 2 and adjusted pal < 0.001) when PD1/PDL-1 expression was 
significantly upregulated. This graphical representation would give the possible genes that are 
working in conjunction with PD1/PDL-1, either within the same pathway in the same biological 
mechanism or as an effect of high PD1/PDL-1 expression.  

 
Spearman Correlation 
The theoretical basis of the spearman correlation is structured on the rank of variables 
being analyzed. In this case, we rank the correlation of different genes (for which 
differential expression differences were calculated) with PD1/PDL-1. This method 
essentially assesses how well two variables are related to each other using a correlation 
function. This correlation is similar to other measures, such as the Pearson correlation, 
that assess the linearity of the relationship between two variables, but differs in the fact 
that it calculates whether a relationship is linear in the first place. The correlation for each 
gene pair, a differentially expressed gene and PD1/PDL-1, is depicted in a graphical 
representation, to see which genes have the highest correlation score in terms of 



 

expression values. A spearman correlation score of 1 or -1 indicates perfect linearity 
between variables being analyzed. 

 
Fisher Exact Test on Extracellular Matrix Genes 
Of all significantly differentially expressed genes, a Fisher’s Exact test was conducted to see if 
there is any nonrandom association in these genes that belong to the ECM category compared to 
all other differentially expressed genes that are not ECM-related. A list of all ECM genes was 
taken from the Matrisome Project, a project led by Harvard University and Massachusetts 
Institute of Technology. The purpose of this project was to characterize and predict (using 
bioinformatics tools) the set of possible genes encoding the "matrisome", or the “ensemble of 
extracellular matrix and ECM-associated proteins”. The results from this study include a 
comprehensive list of genes and gene families that play a vital role in the extracellular 
environment, whose mutated versions could potentially play a role in cancer pathogenesis13.  
In the Fisher’s Exact test, the categorical variables tested were ECM-related genes versus 
non-ECM related genes, in the differentially expressed group of genes and not in the 
differentially expressed group.  

 
Fisher’s Exact Test 
The Fisher’s Exact test is used for categorical data that result from classifying objects in 
two different ways; specifically, it is used to examine the significance of the association 
(contingency) between the two kinds of classification. The structure of this test evaluates 
the probability of the null hypothesis - where there is no association between the 
categorical variables and the relationship is simply due to random chance. A p-value is 
given to test the statistical significance of the association of categories. This type of 
analysis is usually conducted on a small sample size and lower number of categorical 
variables, and a Chi Squared test is used for larger sample sizes. 

 
Results 
 
Immune high phenotype samples have greater lymphocyte infiltration 

To verify the immune classification based on gene expression, available tumor sample 
data from TCGA was analyzed (ImH n = 277; ImL n = 467). Lymphocyte concentration for each 
tumor sample was plotted and segregated between the immune-low and immune-high tumor 
group. The results confirm the classification used, where immune-high tumors had a significantly 
higher lymphocyte concentration compared to immune-low tumors. The results were statistically 
significant to pvalue < 0.01.  

Although there were a few outliers in the immune-low category that had a higher 
percentage of lymphocytes, this could be attributed to the fact that there were a greater number 
of immune-low samples to begin with, and a greater sample size inherently comes with greater 



 

variation. Despite the outliers, the overwhelming majority of immune-low tumors had a lower 
concentration, as indicated by the median value in the boxplot. This result confirms that immune 
phenotypes have a difference both in immune signature and immune cell counts.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. The boxplots depict the percentage of lymphocytes in immune-high and low tumor samples. 
Lymphocyte concentration was significantly higher in immune high tumors compared to immune low 
tumors, pval = 0.0013. 
 
Volcano plot of significantly upregulated genes in immune-low phenotype 

Depicted is the volcano plot that shows the results from DESeq2, where log2fold change 
and adjusted pvalue is measured for each gene between the immune phenotype groups. The 
genes labeled are the ones that cross the threshold of log2 fold change > 2, and adjusted pvalue  
< 10-5. The genes with a significant negative log2 fold change are upregulated in the immune low 
phenotype, and genes with positive log2 fold change are upregulated in the immune high 
phenotype. Some notable genes are SLIT1, PCSK1, and COL2A1. These genes will be further 
analyzed for function to evaluate what role they could be playing in preventing immune 
infiltration in the tumors. 



 

Figure 2. Volcano plot depicts the significantly upregulated genes with log2 fold change > 2 and 
–log(pvalue) < 50. The image on the right shows the genes upregulated in the immune-low phenotype. 
Among these genes are SLIT1, PCSK1, and COL2A1. 
 
Extracellular matrix genes are significantly upregulated between immune phenotypes 
compared to other gene families 

The table below shows the results to the Fisher Exact Test. This statistical test was 
conducted to see if extracellular matrix (ECM) genes as a group were significantly upregulated 
in immune phenotypes compared to all other differentially expressed genes. The pvalue exceeds 
the threshold of < 0.001, which suggests this group of genes is significantly upregulated. The 
ECM genes used for comparison (both DEG and not DEG) were from the ~1000 total genes 
compiled from the Matrisome Project. This result indicates that ECM genes play a role in 
differentiating the immune phenotypes, either by blocking entry of immune cells into 
immune-low tumors, or by promoting mobility of immune cells in the immune-high phenotype. 

 

p-value: 5.523e-08 DEG ImH v ImL Not DEG ImH v ImL 

ECM related 4 990 

Non-ECM related 218 22128 

 
Figure 3. Of all the differentially expressed genes expressed between immune high and low phenotypes, 
ECM genes were significantly enriched (Fisher’s Exact Test). 
 
Volcano plot of genes correlated with high PD1/PDL1 expression 

The volcano plot shows the spearman correlation of genes to PD1/PDL1. The genes that 
exceed a correlation score > 0.1 and a –log(pvalue) > 10 are labeled to be significantly correlated 
with PD1/PDL-1. The purpose of this plot is to show the genes that could be working in the same 
pathway or working in conjunction with PDL1. Caspase genes and P53 are notable correlated 
genes with increased PD1/PDL-1 expression, which suggests a possible biological link in 
function for the proteins encoded by these genes. 
 
Figure 4. The volcano plot shows the spearman correlation scores of all genes with the PD1/PDL-1 
receptor, where the correlations with a correlation score > 0.1 and –log(pvalue) > 10 are labeled. Highly 
correlated genes include Caspase7-Cleaved198, Caspase3, and P53. 
 
 
 
 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Discussion 
 
The results indicate that there are differentially expressed genes between immune-low and 
immune-high tumors that could potentially explain the differences in immune infiltration that are 
seen phenotypically. Figure 2 shows the potential gene candidates that have possible roles in 
immune modulation. There were three significantly upregulated genes in the immune-low 
phenotype: SLIT1, PCSK1, and COL2A1. 
 
SLIT1 and Immune Modulation 
SLIT1, or Slit guidance ligand 1, is a signal receptor binding protein, and acts as a molecular 
guidance cue in cellular migration. SLIT1 and SLIT2 both encode for large secreted proteins that 
function as ligands for Roundabout (Robo) receptors. These transmembrane receptors regulate 
axonal guidance and cell migration in the central nervous system. The SLIT-ROBO signaling 
pathway is implicated in numerous processes such as angiogenesis in endothelial cell migration 
and immune response through dendritic cell migration. In a paper by Katoh et al., which 
compares SLIT1, -2, -3 homologs through computational methods, it was additionally found that 
Mammalian SLIT1 orthologs were identified as part of the WNT/beta-catenin signaling 
pathway9. This signal-transduction pathway directs both cell-cell communication as well as 
same-cell communication. Although further research currently does not exist on this gene with 
immune infiltration, it could play a role in the blockage of immune cell migration into the tumor 
microenvironment. 
 



 

PCSK1 and Immune Modulation 
PCSK1, or Proprotein convertase 1, is thought to be expressed in the secretory pathways of 
neural and endocrine cells. Its main function is in the post-translational processing and activation 
of precursor proteins. In a study by Refaie et al., they found that disruption of Proprotein 
Convertase 1/3 (PC1/3) expression in a mouse model (in which PCSK1 was silenced) results in 
overexpression of the innate immune system, including uncontrolled cytokine secretion. 
Specifically, Plasma levels of proinflammatory cytokines (IL-6, IL-1β, and TNF-α), which are 
key components of the immune system, were shown to be significantly elevated in mice with the 
absence of PCSK1, which indicates the presence of uncontrolled inflammatory response10. Based 
on the results of their in-vivo study, they concluded that the normal function of PCSK1 has an 
important role in the regulation of the innate immune system, most likely through the regulation 
of cytokine secretion in macrophages. Therefore, its overexpression in the immune-low 
phenotype, as shown in this in-silico analysis, is synonymous with these findings of decreased 
immune response in the presence of PCSK1. This protein could play a role in the modulation of 
immune molecules and the prevention of immune penetration in the tumor, possibly by blocking 
lymphocytes, cytokines, and macrophages. 
 
COL2A1 and Immune Modulation 
Collagen 2A1 upregulation is the most interesting finding from this analysis, as it suggests the 
role of ECM genes involved in immune blockage. According to Figure 3, there are multiple 
ECM factors that are differentially expressed in immune phenotypes, although COL2A1 was the 
most significant out of these genes. As a gene family, collagens have been shown to play a role 
in dramatic remodeling of the surrounding extracellular matrix leading to the formation of a 
tumor-specific ECM that causes T-cell prevention. A high-density tumor-specific ECM could 
reduce the ability of T cells to kill cancer cells by making the environment more collagen 
fiber-rich and increasing stiffness of the extracellular matrix. A 3D ECM analysis in a cancer 
tumor was performed by Kuczek et al., where they found that overall, T cell (CD4+ and CD8+) 
proliferation was significantly reduced in a high-density matrix compared to a low-density 
matrix. In mammary tumors, there is a consistent reduction in the number of infiltrating T-cells 
with high collagen-density, which indicates that increased collagen has a role in regulating T cell 
abundance in human breast cancer11. This directly relates to the upregulation of COL2A1 in 
immune-low breast tumors, because of its evident role in preventing immune cells. As suggested 
by the study, remodeling of the ECM could be the factor that differentiates immune phenotypes, 
and the main reason why immune-low tumors continue to have little to no infiltration by the 
immune system. 
 
The second part of this study looked into genes that were significantly correlated with 
PD1/PDL-1 expression. The caspase family of genes as well as p53 were notable genes that had 
significantly high spearman correlation scores. 



 

Caspase Family and Immune Evasion 
Both Caspase7Cleaved98 and Caspase3 are activated and play a role in induced apoptosis. The 
caspase family is categorized into two main functions, and Caspase 3 and caspase 7 are part of 
the apoptotic caspases, which function in the initiation and execution of programmed cell death. 
They are also classified as inflammatory caspases, which regulate the innate immune system. 
Two studies have shown that caspases-9, -3 and -7 involved in the intrinsic apoptotic pathway 
negatively regulate the induction of I-IFNs, a type of immune response, by controlling cGAS and 
STING signaling. STING signaling is a component of the innate immune system that triggers 
expression of inflammatory genes as a defense mechanism in response to pathogens. In addition, 
caspase 3 and 7 are often classified as the “executioner caspases”, named for their role in 
cleaving cytokines in deactivation. This provides an explanation as to why immune-high tumors, 
which have immune evasion, consist of high expression of caspases — because of their 
deactivating function.  In effort to negate any action of immune cells, similar to PD1/PDL-1, it 
has been proposed that these caspases have their own mechanism of killing cytokines, a major 
component of the immune system. 
 
P53 and Immune Evasion 
P53 is the most well-known gene implicated in cancer, where its main function lies in the 
DNA-damage checkpoints in the cell cycle. Additionally, its role is critical in regulating 
apoptosis, DNA damage and modulating immune response. Recent studies (Tojyo et al., Xu et 
al.) have shown the possible correlation between p53 and PD1/PDL-1 expression, and even 
suggested the possible mechanism by which these two proteins relate, where p53 controls 
PD1/PDL-1 expression8,14. In the in-vitro analysis performed by Tojyo et al., their 
immunohistochemical stainings of oral squamous cell carcinoma tissue revealed similar 
expressions of p53 and PD1/PDL-1 at the protein level. When quantified, they observed a 
statistically significant correlation between p53 and PD-L1 expression (p = 0.0009), with similar 
survival patterns in patients (from which the tumor samples belonged to)14. Although the true 
biological mechanism that links these two proteins is currently unknown, there is still evidence 
of similar expression patterns and similar immune response. This positively relates to Figure 4, 
which shows significant correlation between p53 and PD1/PDL-1 activity. 
 
Sources of Error and Future Directions 
 
Sources of Error 
Some possible sources of error of this study could be due to the level of accuracy of the RNA 
reads or the biospecimen data used in the study. Any misreported RNA reads could lead to false 
positive genes upregulated in immune phenotypes. Furthermore, if the biospecimen data were 
inaccurate, then there is insufficient validation as to whether the immune cell counts in the tumor 
itself match the gene classification it received. Lastly, expression values across tumors within 



 

each immune phenotype is heterogeneous, and requires further validation to see if expression 
differences are consistent.Additionally, the immune phenotype groups of immune-low and 
immune-high were classified with phenotype scores of 1-3 and 4-6 respectively. There is a 
possibility that using the middle scores of 3 and 4 could have skewed the data, leading to hidden 
genes that were not significant enough based on log2 fold change and pvalue, but were still 
differentially expressed between the two (false negatives). 
 
Future Directions 
There are multiple ways to expand on and improve the methods of this study. First, instead of 
using immune scores of 1-3 as immune-low and 4-6 as immune-high sample groups, taking the 
extreme groups, of scores 1-2 as immune-low and 5-6 as immune-high, may provide with more 
consistent results of differentially expressed genes between phenotypic groups. In addition, this 
study focused on immune classification based on gene signature. However, classifications can 
also be in transcriptome, epigenomic, and infiltration data. These additional categories could be 
used in conjunction with immune classification to view more concrete expression differences. 
Last, a wet lab confirmation is needed of this in-silico analysis to view protein expression of 
shortlisted upregulated genes in immune low phenotypes, as well as the genes hypothesized to 
work with PD1/PDL-1 in the biological mechanism. Protein expression can be viewed through 
immunohistochemistry staining, trichrome staining (for collagen proteins), or gel electrophoresis. 
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