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Part 1: Discussion Questions 
 
6.3: Demonstrate what the “free taxi rides” should be in the alignment graph for each of 
the fitting and overlap alignment problems.  How do these compare to the local 
alignment free taxi rides? 
 
 
 
 
 
 
 
 
 
 
 
 
6.4: How would we state and solve a “local” version of the affine alignment problem? 
 
  



 
  



Part 2: Discussion Questions 
(Special thanks to Steven Skiena: https://www.youtube.com/watch?v=wkrtXDhVgDI) 
 
There are several different ways to manufacture vaccines, but one of the best forms of 
vaccine is by forming it from a weakened (the technical term is “attenuated”) form of the 
virus.  By exposing a host to the attenuated virus, the host’s immune system builds up 
antibodies and is not overwhelmed when encountering the “wild type” virus. 
 
How, then, can we attenuate a virus?  One way is to iteratively infect monkeys (or the 
tissue of some other mammal) with the wild type virus, so that as the virus grows 
accustomed to the other animal’s immune system over a series of generations, it also 
becomes less adept at infecting humans.  Yet this approach can be costly, time-
consuming, and inhumane. 
 
At the same time, the cost of synthesizing DNA has dropped to the point that 
synthesizing a viral genome may cost just a few thousand dollars.  Can we hope to design 
a viral genome from scratch that is already attenuated? 
 
We have already learned that the genetic code is degenerate, with as many as six RNA 
codons encoding the same amino acid.  As a result, although there is only one way to 
produce the amino acid sequence encoding a given RNA strand, the number of RNA 
strings that can encode a given peptide grows very quickly with the length of the peptide.  
The typical peptide of length n corresponds to on the order of 3n different RNA strings 
that can encode this peptide. 
 
The genetic code’s degeneracy leads us to a strange question: if two RNA strings encode 
the same protein sequence, is it possible that one is more virulent than the other?  If so, 
then we could design an attenuated virus by considering all possible sequences of RNA 
(or DNA, depending on the virus) encoding the same amino acid strand as the virus, and 
synthesize the one that produces the weakest virus!  When we split this problem up into 
multiple genes, we obtain the following “biological problem”. 
 
Attenuated Virus Problem: 

Input: An amino acid string Protein (corresponding to a viral gene).  
Output: The RNA/DNA string translating into Protein that is the “weakest”. 

 
What is missing from this problem to make it a well-defined computational problem is a 
clear metric of what it means for an RNA string to be “weak”, or more importantly, 
whether such a metric even exists – this may all be incoherent rambling. 
 



Scientists have noticed that when we examine the percentage of codons used in real 
genomes, there is a distinctive codon bias in favor of or against certain codons encoding 
the same amino acid.  For a simple example of codon bias, there are two DNA codons 
encoding glutamine, CAA and CAG. Assuming that A and G are approximately just as 
frequent, then we might expect for the codons CAA and CAG to occur about the same 
number of times in human genes.  Yet in the coding regions of the human genome, CAG 
occurs almost three times more often than CAA!1  (And a similar pattern is seen in other 
species.) 
 
Setting possible reasons for codon bias aside for the moment, we can start to see the 
workings of a metric for the “affinity” that a cell would have for translating an RNA (or 
DNA) string into an amino acid string.  In the simplest case, for a single reading frame, 
the score assigned to an RNA string gene formed of codons c1, c2, ..., cn is just the product 
of probabilities of each codon, 
 

Pr(gene) = Pr(c1) Pr(c2) ... Pr(cn). 
 
Codon Bias Attenuation Problem 
 Input: An amino acid string Protein. 

Output: The RNA string s maximizing Pr(s) over all RNA strings encoding Protein. 
 
Exercise: What algorithm would you design to solve this problem? 
 
  

                                                
1 In our dataset of human coding regions, CAA occurs 93,088 times and CAG occurs 259,851 
times. 



A more advanced question that we could ask is, “What about the transitions between 
codons?” In addition to the cell’s preference rate for individual codons, is it possible that 
there is a codon pair bias, meaning that pairs of consecutive codons appear more or less 
often than their frequency in the genome would indicate?  If this is the case, then we could 
attenuate a virus by choosing consecutive pairs of codons that are relatively rare. 
 
To address this question, we must first answer, “What is the expected number of 
occurrences of a given codon pair in a genome, assuming that there is no codon pair bias?”  
If we let (A, B) be a codon pair encoding the respective amino acids x and y, the expected 
number of occurrences of the pair (A, B) in a DNA string should be some fraction of the 
number of occurrences of x and y in the translated protein string, denoted occ(x, y).  If the 
codons are being selected independently (without bias), then the expected fraction of 
occurrences of x and y corresponding to the pair (A, B) must be the frequency with which 
we observe A in the genome, multiplied by the frequency with which we observe B in the 
genome.  In other words, the expected number of occurrences of (A, B) in a bias-free 
genome would be approximately 
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To take an example, say that we would like to compute the expected number of (CGC, 
GAA) pairs in a codon pair bias-free world; this codon pair encodes the respective amino 
acids arginine (R) and glutamic acid (E).  There are 29,700 total pairs of (R, E) amino acid 
pairs in human proteins, out of 424,891 occurrences of R and 529,458 occurrences of E.  By 
counting 80,155 total occurrences of CGC and 226,499 occurrences of GAA, we obtain about 
2,400 expected occurrences of (CGC, GAA) pairs: 
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Yet what do we see when we look at real data?  In coding regions of the human genome, 
there are only 268 (CGC, GAA) pairs!  Such a large discrepancy is far from insignificant, 
and is not isolated; in the opposite direction, we would expect to see only about 2,600 
(CTC, TTC) pairs.  But instead, we see almost 6,500!  We don’t want to get too far into the 
statistical weeds here, but we will say that these two codon pairs are not isolated 
examples of codon pair bias in real genomes. 
 
To make things a bit more precise, we can form a metric of how surprised we are by the 
number of occurrences of a codon pair (A, B) if we divide the number of actual 



occurrences of the pair by the expected number of occurrences in a bias-free genome, 
which we denote by w(A, B): 
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We are now headed toward a computational problem for attenuating a virus by 
exploiting code pair bias.  We simply need to choose successive pairs of codons with low 
values of this weight.  For an RNA string gene formed of the codons c1, c2, ..., cn , we can 
assign a weight to the entire string by forming the product of its codon pair weights, 
 

w(gene) = w(c1, c2) w(c2, c3) … w(cn-1, cn) . 
 
Codon Pair Bias Attenuation Problem 
 Input: An amino acid string Protein. 

Output: The RNA string s minimizing w(s) over all RNA strings encoding Protein. 
 
Exercise: How could we solve this problem via dynamic programming?  Is there a simple 
way that we can change our set up so that this problem can be solved as a Longest Path 
in a DAG Problem? 


