
Structs
02-601

Organizing Contacts

Exercise: Say that you would like to organize a set of
contacts. Each contact has:
•  unique identifier
•  first name
•  last name
•  phone number
•  email address
•  zip code
•  (etc.)
How should we organize the data into a single data
structure?

Frequent Words: Map of Maps

Key Value
“ATGCACGCT” 8!
“GGACGTACG” 1!
“GTACGACAG” 2!
“ATAAATTGC” 6!
“GATACCAGA” 2!

Key Value

Bacterium A!

Bacterium B! •!

Bacterium C! •!

Bacterium D! •!

Bacterium E! •!

Bacterium F! •!

Bacterium G!

Key Value
“GTACGACGA” 1!
“AACATACGG” 3!
“GATACACAC” 7!
“CTACCAGTA” 2!
“TATCATCGG” 4!

Storing Phone Contacts: Map of Maps?

Key Value
firstName “Doc”!
lastName “Watson”!
phone 9835401!

zipCode 27421!
email dwatson@cmu.edu!

Key Value

dwatson

rpetty •!

jcole •!

dearnhardt •!

mjordan

Key Value
firstName “Michael”!
lastName “Jordan”!
phone 3219840!

zipCode 28037!
email mjordan@cmu.edu!

Storing Phone Contacts: Map of Maps?

Key Value
firstName “Doc”!
lastName “Watson”!
phone 9835401!

zipCode 27421!
email dwatson@cmu.edu!

Key Value

dwatson

rpetty •!

jcole •!

dearnhardt •!

mjordan

Key Value
firstName “Michael”!
lastName “Jordan”!
phone 3219840!

zipCode 28037!
email mjordan@cmu.edu!Think: Is this reasonable?

A Better Data Structure

Because every contact has the same properties (of
different types), we should create a Contact object.

type Contact struct {
firstName string
lastName string
phone []int
email string
zipCode [5]int

}

In Go, this is called a struct.

firstName, lastName, etc. are called fields.

A Better Data Structure

This is a generalization of what we saw before, when
we defined a game board as equivalent to a [][]int.

type GameBoard [][]int

Declaring a Struct Variable

var me Contact

Declaring a struct variable is the same as declaring
another variable.

Declaring a Struct Variable

var me Contact

Declaring a struct variable is the same as declaring
another variable.

Accessing the fields of an object can be done with
“objectName.fieldName”

me.firstName = “Phillip”
me.zipCode = [5]int{1, 5, 2, 1, 3}
// etc.

Initializing Struct Fields

Initially, all Contact fields are null. Any slices need to
be “made” or else we will have a runtime error.

var you Contact
fmt.Println(you.firstName) // = “”
fmt.Println(you.Phone) // = []
fmt.Println(you.zipCode) // = [0 0 0 0 0]

Shortcut Declarations

Rather than set fields one at a time, we can do it all at
once using a struct literal.

you := Contact{firstName: ”Anna”,  
lastName: ”Johnson”,
phone: []int{4,1,2,3,4,5,9,8,7,6},
email: “ajohnson@cmu.edu”,
zipCode: [5]int{1,5,2,1,3}, //need comma!
}

A field name
The value for

the field
The name of the

struct type

Structs as Function Input/Output

func PrintContact(c Contact) {
// insert code to print contact fields

}

Taking structs as a function argument:

Structs as Function Input/Output

func PrintContact(c Contact) {
// insert code to print contact fields

}

func CreateContact(name string) Contact {
// create a new contact from name

}

Taking structs as a function argument:

Returning a struct as function output:

Returning to Our Original Question

Exercise: Say that you would like to organize a set of
contacts. Each contact has:
•  unique identifier
•  first name
•  last name
•  phone number
•  email address
•  zip code
•  (etc.)
How should we organize the data into a single data
structure?

Answer: Map Whose Values are Contacts!

firstName “Doc”!
lastName “Watson”!
phone 9835401!

zipCode 27421!
email dwatson@cmu.edu!

Key Value

dwatson Contact1!

rpetty Contact2!

jcole Contact3!

dearnhardt Contact4!

mjordan Contact5!

firstName “Michael”!
lastName “Jordan”!
phone 3219840!

zipCode 28037!
email mjordan@cmu.edu!

Answer: Map Whose Values are Contacts!

firstName “Doc”!
lastName “Watson”!
phone 9835401!

zipCode 27421!
email dwatson@cmu.edu!

Key Value

dwatson Contact1!

rpetty Contact2!

jcole Contact3!

dearnhardt Contact4!

mjordan Contact5!

firstName “Michael”!
lastName “Jordan”!
phone 3219840!

zipCode 28037!
email mjordan@cmu.edu!

var people map[string]Contact

Answer: Map Whose Values are Contacts!

firstName “Doc”!
lastName “Watson”!
phone 9835401!

zipCode 27421!
email dwatson@cmu.edu!

Key Value

dwatson Contact1!

rpetty Contact2!

jcole Contact3!

dearnhardt Contact4!

mjordan Contact5!

firstName “Michael”!
lastName “Jordan”!
phone 3219840!

zipCode 28037!
email mjordan@cmu.edu!

var people map[string]Contact
people[“dwatson”].firstName = “Doc” // ERROR!

Workaround for “Go Issue 3117”

people := make(map[string]Contact)

var tmp Contact
tmp.firstName = “Doc”
// set rest of fields…

people[“dwatson”] = tmp

type Canvas struct {
gc *draw2d.ImageGraphicContext
img image.Image
width int
height int

}

We Have Already Been Working with Structs!

Don’t worry about * for now

An object that
represents the
image

The Game of Life Will Not Die

Last time: we hacked the Game of Life ...

... but how can we see what we have done?

This is Just a Slice of Images...

How to Create an Animated GIF

1.  Given	a	GOL	board,	create	a	canvas	c.	
2.  Place	c.img	into	a	[]image.Image	slice.	
3.  Use	someone	else’s	package	to	convert	a	

[]image.Image	into	an	animated	GIF.	
4.  Enjoy!		

type Canvas struct {
gc *draw2d.ImageGraphicContext
img image.Image
width int
height int

}

Animated GIF Code for GOL: See Piazza

