
Homework 1
02-201: Programming for Scientists

Due Thursday, January 28 at 11:59 PM

In this homework, you will write several functions (and perhaps some helper functions) to compute
various quantities. You should write your functions at the indicated locations in the provided
file functions.go. You must work independently on this homework. You can discuss general
solution techniques with your classmates, but must not show or share code with others or see others’
code.

Background reading:

1. Chapter 3-5 of An Introduction to Programming in Go.

2. “What is a Computer?” by Prof. Carl Kingsford (click here to download). We will discuss
some of these ideas later in the class, but this reading is provided in case you are interested
in what is going on “under the hood” of the computer.

1. Set up your Go workspace (if you haven’t already)

Create a directory called go wherever you want to store your Go files. For this example, I’ll choose
/Users/pcompeau/Desktop/go. Then open a command line and run the following on Linux or
Mac:

export GOPATH=/Users/pcompeau/Desktop/go

cd $GOPATH

or the following for Windows:

> set GOPATH=C:\Users\pcompeau\Desktop\go

> cd %GOPATH%

You should replace the path /Users/pcompeau/Desktop/go above with the path to wherever you
want to put your Go workspace.

2. Get the template for this assignment

You can download the functions.go and functions_test.go templates in a zip file from the
course website (click here to download). After unzipping this file, place the resulting folder (“hw1”)
inside this go/src directory. You should by now have “cd”ed into your GOPATH, so type cd

src/hw1 to enter the hw1 directory.

Tip: When you submit, you must put all your functions into the functions.go file. However,
while you are writing them, you might find it easier to create a separate .go file for each of them
so you can use go run to test them one at a time.

1

http://cs.cmu.edu/~pcompeau/teaching/2016S/02-201/handouts/WhatIsAComputer.pdf
http://cs.cmu.edu/~pcompeau/teaching/2016S/02-201/assignments/hw1.zip

3. Write the following functions in the file functions.go

Note: You have already written some of these functions in pseudocode.

3.1 Sum of the first n integers

Gauss’ formula for the sum of the first n integers is

n(n + 1)

2
.

Write a function to compute this quantity for any positive n. To do this, you should edit functions.go
file where indicated to include the body of the function that has been started:

func SumOfFirstNIntegers(n int) int {

// WRITE YOUR CODE HERE

}

3.2 Time to Run

Write a function TimeToRun(marathonHours, marathonMinutes, miles) that takes: the time
a runner ran a marathon in possibly fractional hours (marathonHours) and possibly fractional
minutes (marathonMinutes) and a possibly fractional number of miles and return the time in
days it should take the runner to run miles if he or she runs at the same pace as they did in the
marathon.

For example: TimeToRun(3.1, 23.2, 107.1) should return 0.5938.

Your function should also print out the answer in the format:

You could run 107.1 miles in 0.5938 days.

Recall that there are 26.2 miles in a marathon.

3.3 Generalized Fibonacci sequences

A generalized Fibonacci sequence is defined by two starting integers a0 and a1 using the rule:

ai = ai−1 + ai−2

for i ≥ 2.

Write a function GenFib(a0, a1, n) that takes 3 integers and returns the nth number in the
generalized Fibonacci sequence defined by a0 and a1.

For this and subsequent problems, you will have to write the function signature in addition to the
body of the function. Please write your functions at the indicated places within the functions.go

file.

2

3.4 Kth Digit

Implement a function KthDigit(n,k) that takes an integer n, and a positive integer k and returns
the kth decimal digit of n, with digit number 1 being the rightmost (least significant) digit.

For example: KthDigit(123, 1) = 3 and KthDigit(124,4) = 0.

Tip: Try not to use any loops and try to use the math library.

3.5 Reversing Integers

Write a function ReverseInteger(n) that takes an integer, and returns the integer formed by
reversing the decimal digits of n. For example:

• 1234 → 4321
• 20000 → 2
• 1331 → 1331
• -60 → -6

3.6 Growth of a population

Suppose we have a population of animals with birth rate r and a maximum population size K. We
can model the size of the population, as a fraction of K, using the following equation:

xt = rxt−1 (1− xt−1)

where x(t) is the fraction (between 0 and 1) of the maximum population size at time t. The
intuition behind this equation is that as the population gets closer to its maximum, the effective
birth rate r [1− x(t− 1)] falls. Write a function PopSize(r, x0, max_t) that prints out the size
of the population x(t) for t = 0, . . . , max_t.

Your function should then return the final population size.

If x(t) ever becomes negative, you should reset it to 0; if x(t) ever increases past 1.0, you should
reset it to 1.0.

Example output of PopSize(2.9, 0.1, 8):

0.261

0.5593491

0.714785284554651

0.5912151164624551

0.7008714273333482

0.607986942075084

0.6911825789896902

0.6190027423234675

0.6839312072265337

An interesting thing about this equation is that very complex behavior can be generated depending
on the parameter r:

3

3.7 The Hailstone function

The Hailstone function h(n) is defined by:

h(n) =

{
n/2 if n is even

3n + 1 if n is odd

The Hailstone sequence for n is defined by repeatedly applying this function:

h(n), h(h(n)), h(h(h(n))), . . .

It’s conjectured that for all n this sequence eventually returns to 1.

Write a function HailstoneReturnsTo1(n) to compute the smallest number of times h must be
applied to n before the sequence returns to 1. For example, for n = 2 your function should
return 1.

Tip: You should create two functions, one to compute h(n) and one to compute the number of
iterations that it takes to return to 1.

3.8 Hailstone function maximum

This problem builds on problem 3.7 above. Consider again the sequence

h(n), h(h(n)), h(h(h(n))), . . .

Write a function, MaxHailstoneValue(n), that returns the maximum value that the above Hail-
stone sequence achieves before it returns to 1. For example, when n = 5, your function should
return 16.

Tip: You should call your function for h(n) that you wrote in the previous problem.

3.9 Hypergeometric distribution

Suppose you have an urn with M red balls and N white balls in it. You randomly draw n balls
from the urn. What’s the probability that you have drawn exactly k red balls? The answer to this
is given by the hypergeometric distribution:

Pr[drew k red balls] =

(
M
k

)(
N

n−k

)(
M+N

n

) .

4

Write a function Hypergeometric(M,N,n,k) that takes 4 integers and returns a float64 which is
the value of the hypergeometric distribution.

Be careful about overflow: Your function should be able to compute:

Hypergeometric(5000, 5000, 25, 15)

Hypergeometric(5000, 5000, 50, 15)

but not necessarily:

Hypergeometric(5000, 5000, 100, 15)

4. Test your functions

As part of this assignment, we have provided a file functions_test.go that contains several
test functions that call the functions you wrote above. These test functions can be run by
executing the following command from within the directory containing the functions.go and
functions_test.go files:

go test -v

This will run each of the Test... functions in the file functions_test.go. (There is no need to
"go build" to test the functions.) If your functions return the correct values, the output of the
go test -v command will end with:

PASS

ok functions 0.005s

This tells you that all the tests passed and ran in 0.005 seconds.

If there are any errors, go back and revise your functions. If you have syntax errors, these will be
printed out by the go test -v command.

Tip: Edit the functions in functions_test.go to test your functions in different ways.

5. Submit your work to Autolab

Submit just the file functions.go containing your solutions to AutoLab.

Tip: Do not assume that if go test -v reports PASS that your functions are 100% correct. There
many be other inputs on which your code fails; you should test it under various inputs.

5

	Set up your Go workspace (if you haven't already)
	Get the template for this assignment
	Write the following functions in the file functions.go
	Sum of the first n integers
	Time to Run
	Generalized Fibonacci sequences
	Kth Digit
	Reversing Integers
	Growth of a population
	The Hailstone function
	Hailstone function maximum
	Hypergeometric distribution

	Test your functions
	Submit your work to Autolab

