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CG-Islands

* Given 4 nucleotides: probability of any one’s occurrence 1s ~
1/4.

* Thus, probability of occurrence of a given dinucleotide (pair
of successive nucleotides 1s ~ 1/16.

« However, the frequencies of dinucleotides in DNA sequences
vary widely.

» In particular, CG is typically underepresented (frequency of CG
is typically < 1/16)



CG-Islands

e CG1s the least frequent dinucleotide because the C in CG 1s
casily methylated and has the tendency to mutate into 7°
afterwards.

 However, methylation 1s suppressed around genes in a
genome. So, CG appears at relatively high frequency within
these CG-islands.

* So, finding the CG-islands in a genome 1s an important
biological problem.



Section 2:
The Fair Bet Casino




The “Fair Bet Casino”’

* The CG-1slands problem can be modeled after a problem
named The Fair Bet Casino.

e The game 1s to flip two coins, which results 1n only two
possible outcomes: Head (H) or Tail(T).

e The Fair coin (F) will give H and T each with probability
Y2, which 1s written P(H | F) = P(T | F) = .

* The Biased coin (B) will give H with probability %4, which
we write as P(H | B) =%, P(T | B) = Ya.

* The crooked dealer changes between F and B coins with
probability 10%.

 How can we tell when the dealer 1s using F and when he 1s
using B?



The Fair Bet Casino Problem

* Input: A sequence x = x,x,x;...x, of coin tosses made by two
possible coins (F or B).

* Output: A sequence & = «; «, 7;... &, with each x; being either
F or B and indicating that x; 1s the result of tossing the Fair or
Biased coin respectively.



Problem...

* Any observed outcome of coin tosses could have been
generated by any sequence of states!

« Example: HHHHHHHHHH could be generated by
BBBBBBBBBB, FFFFFFFFFF, FBFBFBFBFB, etc.

* We need to incorporate a way to grade different sequences
differently.

e This provides us with the decoding problem.



Simple Case: The Dealer Never Switches Coins

* We assume first that the dealer never changes coins:

P(x | F): probability of the dealer using F and generating the
outcome Xx.

P(x | B): probability of the dealer using the B coin and
generating outcome Xx.

Example: Say that in x we observe k heads and n — £ tails:
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When Does P(x | F) = P(x | B)?

P(x ‘ F)=P(x ‘ B)
1 3
o g
2n — 3k
n =log, 3"

n=klog,3

n

log, 3



Log-odds Ratio

* We define the log-odds ratio (L) as follows:

"p(xF)]

\P(x | B)

=lo (i —lo 3
_ g2\2n g2 4n

=—n - |log,(3") ~log, 4"
=—-n—klog,(3)+2n
=n —klog,(3)

L =log,

« From the previous slide, if L > 0 we have reason to believe that
the coin 1s fair, and 1f L < 0 we think the coin 1s biased.



Computing Log-odds Ratio in Sliding Windows

* Consider a sliding window of the outcome sequence and find
the log-odds ratio for this short window.

X XX 35X X X X X g X,
0
ey |_0 (-0 dS ValUE

Biased coin most likely Fair coin most likely
used used

* Key Disadvantages:
* The length of the CG-1sland 1s not known 1n advance.

* Different windows may classify the same position differently.
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Computing Log-odds Ratio in Sliding Windows

* Consider a sliding window of the outcome sequence and find
the log-odds ratio for this short window.

X XX 53X XX X Xg.. X,
0
ey |_0 (-0 dS ValUE

Biased coin most likely Fair coin most likely
used used

* Key Disadvantages:
* The length of the CG-1sland 1s not known 1n advance.

* Different windows may classify the same position differently.
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Hidden Markov Model (HMM)

Can be viewed as an abstract machine with k hidden states that
emits symbols from an alphabet X.

Each state has its own probability distribution, and the
machine switches between states and chooses characters
according to this probability distribution.

While 1n a certain state, the machine makes two decisions:
1. What state should I move to next?
2. What symbol - from the alphabet X - should I emit?



Why “Hidden”?

* Observers can see the emitted symbols of an HMM but have
no ability to know which state the HMM is currently in.

e The goal 1s to infer the most likely hidden states of an HMM
based on the given sequence of emitted symbols.



HMM Parameters

Y. set of emission characters.

Q: set of hidden states, each emitting symbols from X.

A =(a,): a|Q| x |Q| matrix containing the probabilities of
changing from state & to state /.

E = (e (D)): a|Q| x |X| matrix of probability of emitting symbol
b while being in state k.



HMM Parameters

 A=(a,): a|0| x |Q| matrix containing the probabilities of
changing from state & to state /.

* agp=0.9 agg=0.1

* agpr=0.1 agg=0.9

« E=(e(b)): a|Q|x |2] matrix of probability of emitting symbol
b while being in state k.
e ef(0)="2 eg(l)="
 eg(0)=" eg(l)="%



HMM for the Fair Bet Casino

The Fair Bet Casino in HMM terms:

e 2X=1{0,1} (0 for T and 1 for H)

* O=1{F,Bj

Transition Probabilities (A)

Fair

Biased

Emission Probabilities (E)

Fair

ar-=0.9

arz=0.1

Biased

ag-=0.1

ags=0.9

Tails(0) | Heads(1)
Fair er(0)=2|e(1)= 2
Biased |eg(0)=4|ez(1)= %




HMM for the Fair Bet Casino

e HMM model for the Fair Bet Casino Problem:




Hidden Paths

 Apathz =rx,... -, in the HMM i1s defined as a sequence of
states.

« Consider path 7 = FFFBBBBBFFF and sequence x =
01011101001

Probability that x; was emitted from state r7

X 0 1 01 1 1 0 1 0 0 1)
n FFFBBBBBF FF
P(x;In,

P(n_,>n) \ y

Transition probability from state n_, to state n.



Hidden Paths

 Apathz =rx,... -, in the HMM i1s defined as a sequence of
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Probability that x; was emitted from state r7
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Hidden Paths

 Apathz =rx,... -, in the HMM i1s defined as a sequence of
states.

« Consider path 7 = FFFBBBBBFFF and sequence x =
01011101001

Probability that x; was emitted from state r7

X 0 1 01 1 1 0 1 0 0 1)
n FFFB B BB B F FF
P(x/|n. Vo Va Vo 3 3 34 Va 34 V2 Vo

P(ni—l 9 I-I|) N 1/2 9/10 9/10 1/10 9/10 9/10 9/10 9/10 1/10 9/10 9/10 g

Transition probability from state n_, to state n.



P(x | rr) Calculation

* P(x | m): Probability that sequence x was generated 1f we know
that we have the path «.

n

P(x‘ 77:) =P(7r0 %71'1) - HP(xi

=1

n
— ano, T, Hen,- (.X) ' anl-, T
i=1

n)- P(r, —>7.,,)



P(x | rr) Calculation

* P(x | m): Probability that sequence x was generated 1f we know
that we have the path «.

n

P(x|m)=P(m, —>m) - HP(xi

=1

n)- P(m, —>7,,,)

n
— aﬂoa T Heﬂ?i (x) . an'i » il
i=1
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Decoding Problem

* Goal: Find an optimal hidden path of states given observations.

* Input: Sequence of observations x = x,...x, generated by an
HMM M, O, A4, E).

e Qutput: A path that maximizes P(x | ) over all possible paths .



Building Manhattan for Decoding Problem

Andrew Viterbi used the Manhattan edit graph model to solve
the Decoding Problem.

Vertices are composed of n “levels” with |Q| vertices 1n each
level; each vertex represents a different state.

We connect each vertex in level 7 to each vertex in level i + 1
via a directed edge, giving |O]*(n — 1) edges.

Therefore every choice of 7 = x,... =, corresponds to a path in
the graph.
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Edit Graph for Decoding Problem: Example
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Decoding Problem vs. Alignment Problem

Valid Directions in Alignment Valid Directions in Decoding

A




Decoding Problem

» Every path in the graph has the probability P(x | «).

* The Viterb1 algorithm finds the path that maximizes P(x | x)
among all possible paths.

« The Viterbi algorithm runs in O(n |Q]°) time.



Decoding Problem: Weights of Edges

« The weight w 1s given by: ?

o " TSe

(k, 1) ([, i+1)



Decoding Problem: Weights of Edges

« The weight w 1s given by: ?



Decoding Problem: Weights of Edges

« The weight w 1s given by: ?

o " S
(k, 1) (I, i+1)

n—1

P(X ‘ 71') = e”i+1 (XiH) . aﬂ:i’ﬂ:iﬂ
=0

'th t - ( ) .

l crm = enm )Ci+1 a

T; 77:'+1
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Decoding Problem: Weights of Edges

» The weight w is given by: ¢, (x;,;) . a; ,

o " TSe

(k, i) ([, i+1)
n—1

P(.X ‘ 71') = Heﬂm ('xi+1) . aﬂi,”iﬂ
i=0

-th _
l term—eﬁi+1 (xm) "y o

1 l



Decoding Problem and Dynamic Programming

S; ;+; = max probability of all paths of length i + 1 ending in
state / (for the first i + 1 observations).

 Recursion:

S i = IilaQX{Sk, .- weight of edge between (k, i) and (l, [+ 1)}

= I?ax{sk, it € (xi+1)}
€Q

= ez(xm)' maX{Sk,i' a, }
ke Q



Decoding Problem and Dynamic Programming

* The value of the product can become extremely small, which
leads to overflow.

« A computer has only finite storage to store any given
number, and 1f the number 1s too small it runs out of room.

» To avoid overflow, take the logarithm of the right side instead.

5,0 =logle,(x,,,) |+ IgeaQX{log(Sk, ) +log(a, )}



Decoding Problem and Dynamic Programming

e Initialization:

1 ifk =begin
§ =
k,0 O

otherwise

« Let 7" be the optimal path. Then,

P(x‘ T ) :max{sk,n = ak,end}
ke Q
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Forward-Backward Problem

* Given: a sequence of coin tosses generated by an HMM.

e Goal: Find the probability that the dealer was using a biased
coln at a particular time.



Forward Probability

* Detine f; ; (forward probability) as the probability of
emitting the prefix x,...x; and reaching the state 7 = £.

* The recurrence for the forward algorithm:

S _ek( ) Eflzl A i

leQ



Backward Probability

« However, forward probability 1s not the only factor affecting
P(m. =k | x).

* The sequence of transitions and emissions that the HMM
undergoes between r,,; and , also affect P(z, = k | x).

Forward Xi Backward

* Deftine the backward probability b, ; as the probability of
being in state z; = k and emitting the suffix x,, ,...x,. Recurrence:

bk,i = zel(xiﬂ) 'bz,i+1' Ay.1
leQ



Backward-Forward Probability

* The probability that HMM 1is 1n a certain state & at any
moment 7, given that we observe the output x, 1s therefore
influenced by both the forward and backward probabilities.

 We use the mathematical definition of conditional
probability to calculate P(z; = k | x):
P(x,m,=k) fi, b
P(x) P(x)

o1

P(n'l.=k‘x):
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Finding Distant Members of a Protein Family

A distant cousin of functionally related sequences in a protein
family may have weak pairwise similarities with each member
of the family and thus fail a significance test.

However, they may have these weak similarities with many
members of the family, indicating a correlation.

The goal 1s to align a sequence to all members of the family at
once.

A family of related proteins can be represented by their
multiple alignment and the corresponding profile.



Profile Representation of Protein Families

« Aligned DNA sequences can be represented by a 4 x n profile
matrix reflecting the frequencies of nucleotides in every aligned
position.

 Example:
Al.72 .14 0 0 .72 .72 0 0
LT.14 .72 () 0 0 .14 .14 .86
G|.14 .14 86 .44 0 .14 0 ()
C () 0 .14 .56 .28 0 .86 .14

« Similarly, a protein family can be represented by a 20 x n
profile representing frequencies of amino acids.



Protein Family Classification

« Multiple alignment of a protein family shows variations in
conservation along the length of a protein.

« Example: After aligning many globin proteins, biologists
recognized that the helices region in globins are more
conserved than others.



What Is a Profile HMM?

« A profile HMM is a probabilistic representation of a multiple
alignment.

* A given multiple alignment (of a protein family) 1s used to
build a profile HMM.

« This model then may be used to find and score less obvious
potential matches of new protein sequences.



Profile HMM

* A profile HMM has three sets of states:
* Match states: M, ,..., M, (plus begin/end states)
* Insertion states: /,,/,,...,/

, v{iv vv v,
. ;\Z&\M




Building a Profile HMM

1. Multiple alignment 1s used to construct the HMM model.

2. Assign each column to a Match state in HMM. Add Insertion
and Deletion state.

3. Estimate the emission probabilities according to amino acid
counts in column. Different positions in the protein will have
different emission probabilities.

4. Estimate the transition probabilities between Match, Deletion
and Insertion states.



Transition Probabilities in a Profile HMM

e Gap Initiation Penalty: The cost of beginning a gap, which
means that we must have transitions from match state to insertion
state and vice versa.

* Penalty: 10g(a MI) + log(am )

* Gap Extension Penalty: The cost of extending a gap, which
corresponds to maintaining the insertion state for one period.

e Penalty: log (ClH )



Emission Probabilities in a Profile HMM

* Probabilty of emitting a symbol « at an insertion state /..

¢, (a) = pla)

* Here p(a) 1s the frequency of the occurrence of the symbol a
in all the sequences.



Profile HMM Alignment

e Define vM] (i) as the logarithmic likelihood score of the best
path for matching x,..x; to the profile HMM ending with x;
emitted by the state M,

* v.(i) and VP, (i) are defined similarly.



Profile HMM Alignment: Dynamic Programming

rV]J‘-/[_l(i_l)_Flog(an_l,Mj)
M (- Ou, il
o) =tog "2 5 femax) v (i) o,
" e imyeioglay )
R '
‘ (1)
(312
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Profile HMM Alignment: Dynamic Programming

rv]]‘.l (i—1) +10g(an’,j)
e, (x, |
v (i) =log_ ;(x) +max) v’ (i —1)+10g(a,j,,j)

‘ J(i=1)+log(a, , )

RN '/{
IS




Paths in Edit Graph and Profile HMM

* Atrightisa path

through an edit graph

and the corresponding
path through a profile

HMM.

Observe:
* Diagonal->match
e Vertical=2insertion

e Horizontal>deletion ;'.f.j;'..-
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Making a Collection of HMM for Protein Families

.

Use BLAST to separate a protein database into families of related
proteins.

Construct a multiple alignment for each protein family.

Construct a profile HMM model and optimize the parameters of the
model (transition and emission probabilities).

Align the target sequence against each HMM to find the best fit
between a target sequence and an HMM.



Profile HMMs and Modeling Globin Proteins

* Globins represent a large collection of protein sequences.

* 400 globin sequences were randomly selected from all globins
and used to construct a multiple alignment.

e Multiple alignment was used to assign an HMM.

e 625 remaining globin sequences were aligned to the HMM,
resulting in a multiple alignment. This multiple alignment was
in a good agreement with the structurally derived alignment.

* Other proteins, were randomly chosen from the database and
compared against the globin HMM.

« This experiment resulted in an excellent separation between
globin and non-globin families.



PFAM

« Pfam decribes protein domains.
« Each protein domain family in Pfam has:

* Seed alignment: Manually verified multiple alignment of a
representative set of sequences.

« HMM: Built from the seed alignment for further searches.
* Full alignment: Generated automatically from the HMM.

« The distinction between seed and full alignments facilitates
Pfam updates.

* Seed alignments are stable resources.

« HMM profiles and full alignments can be updated with
newly found amino acid sequences.



PFAM Uses

e Pfam HMMs span entire domains that include both well-
conserved motifs and less-conserved regions with insertions
and deletions.

[t results in modeling complete domains that facilitates better
sequence annotation and leads to more sensitive detection.



Section 7:
HMM Parameter
Estimation




HMM Parameter Estimation

* So far, we have assumed that the transition and emission
probabilities are known.

 However, in most HMM applications, the probabilities are not
known. It is very difficult to estimate the probabilities.



HMM Parameter Estimation Problem

* Given: HMM with states and alphabet (emission characters),
as well as independent training sequences x/, ... x™.

* Goal: Find HMM parameters @ (that 1s, a; ,, ¢,(b) that
maximize the joint probability of the training sequences,
which 1s given by the following:

P(xl,...,xm‘G))




Maximize the Likelihood

P(x!, ..., x™| ©) as a function of @ is called the likelihood of
the model.

* The training sequences are assumed independent; therefore,
P(xl,... ,x" ‘ @) = HP(xi ‘ @)
i=1
« The parameter estimation problem seeks @ that realizes

max HP(xi | ©)
O

» In practice the log likelithood 1s computed to avoid underflow
erTors.



Two Situations

1. Known paths for training sequences:
e CpG 1slands marked on training sequences

« (Casino analogue: One evening the dealer allows us to see when
he changes the dice.

2. Unknown paths for training sequences:
e CpG islands are not marked
* We do not see when the casino dealer changes dice



Known Paths

* A,=# of times each k — / 1s taken 1n the training sequences.

« E,(b) =%# of times b 1s emitted from state £ in the training
sequences.

« Compute ay,; and e (b) as maximum likelihood estimators:
E,(b)

Akl
a,, = ’ e (b) =<
o ZA/C,I' k EE/C (b')
[ b'




Pseudocounts

* Some state kK may not appear in any of the training sequences. This
means A, ;= 0 for every state / and a; , cannot be computed with

the given equation.

* To avoid this overfitting, use predetermined pseudocounts ,;, and
r(b) which reflect prior biases about the probability values:

* A, ;= number of transitions k—/ + r; ,

* FE,(b) =number of emissions of b from k + r(D)



Section 8.
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Unknown Paths Method 1: Viterbi Training

» Idea: Use Viterbi decoding to compute the most probable path
for training sequence x.

e Method;

1. Start with some guess for 1nitial parameters and compute
n* = the most probable path for x using initial parameters.

[terate until no change in 7*.
3. Determine A, ;and E (b) as before.

Compute new parameters a; ; and e,(b) using the same
formulas as before.

5. Compute new ©* for x and the current parameters.



Viterbi Training Analysis

e The algorithm converges precisely.
e There are finitely many possible paths.
« New parameters are uniquely determined by the current 7 *.

« There may be several paths for x with the same probability, hence
we must compare the new 7* with all previous paths having highest
probability.

* Does not maximize the likelihood IT. P(x | ®) but rather the
contribution to the likelihood of the most probable path,

II_P(x| ©, %).

* In general, performs less well than Baum-Welch (below).



Section 9;
Baum-Welch Algorithm




Unknown Paths Method 2: Baum-\Welch

e Idea: Guess 1nitial values for parameters.

« This is art and experience, not science.

* We then estimate new (better) values for parameters.
e How?

* We repeat until stopping criterion 1s met.
* What criterion?



Improved Parameters

* We would need the 4, ; and E () values, but the path i1s unknown,
and we do not want to use a most probable path.

» Therefore for all states £, /, symbols b, and training sequences x:

« Compute 4, ; and E(D) as expected values, given the current
parameters.



Probabilistic Setting for A,

« @Given our training sequences x/, ... ,x” consider a discrete
probability space with elementary events ¢, = “k — [1s taken in

x]’ xm b3

 Foreachxin {x/,....x"} and each positioniin x let ¥, ; be a
random variable defined by

1l itrx,=kandrm, =1
(Ekl)—

0 otherwise

* Define Y =% %Y. _.as the random variable which counts the

l Xl

number of times the event ¢, , happens in x/, ..., x™.



The meaning of A,

* Let A,, be the expectation of Y-
A, =L (¥)

2

2.2

- EEP({SX’I 7 =kand 7, = z})
Z:: P(m, =k, 7, =1|x)

* We therefore need to compute P(xw; = k, 7, , =1 | x).



Probabilistic setting for E,(b)

Given x/, ... ,x™ , consider a discrete probability space with
elementary events &.p = b is emitted in state k in x/, ... ,x™.”

For each x in {x/,...,x™} and each positioniinx, let Y, ,be a
random variable defined by

1 ifx,=band w, =k

O otherwise

.

Yx,i(gk,b) ="

Define Y =% 2. Y .as the random variable which counts the

] XZ

number of times the event ¢, , happens in x/, ...,x™.



Computing New Parameters

« Consider a training sequence x = x!, ... , x™.

e Concentrate on positions i and i + 1:

| i | bty |

dy|

. 1 e(X.,1)

X,

 Use the forward-backward values:
fk,i :P('xl xi‘ T, :k)

b, , :P(xm X | T :k)




Compute A, (1)

* The probability £ — [ 1s taken at position i of x:

P(x,m, =k,m,, =)
P(x)

P(ni =k, T, =l‘ X, xn) =

e Compute P(x) using either forward or backward values.

P(x, T, =K, T, = l) =b) - ez( z+1) a v Ji
* Expected number of times k£ — / 1s used 1n training sequences:

22( il ez(xi+1)' a; ;- fk,i)

X
Ak,l _

P(x)



Compute A,(2)

P(x,n'l:k,n'iﬂzl)zP( ‘X, =k, T, —lxm---xn)

:P n.i+1 :laxi.|.1”.'x 'xl.”xi’ﬂ:i :k) P(_xl..-xi’ﬂ'i :k)

n

=P\m, =1x,,x, ﬂi:k)'fk,i
cee ) ni:k,jz'l.H:l)-P(ﬂ'iH:l‘ﬂ'l-:k)-fk,i
=Plx, ;X 7T-+1:l)'akl'fki

:Pxi+2“'xn iv1o iy _l) ( Xin

7Tl+1_l) ak,z'fk,i
=P(x.,x |m, =l)°€(xi+1)'ak,z'fk,i
:bz,i+1'e( l+1) i Ji




Compute E,(b)

 Probability that x; of x 1s emitted 1n state k:
P(n'i =k,x1---xn)
P(x)
P(xlmxl., T, = k,xl.+1--~xn)
XX, T, = k)- P(xl---xl.,n'l. = k)

=k)- fo.

P(n'i :k‘ xl---xn)

P(n'l. = k,xln-xn)

Plx,x,
:P(x. X, | TT

i+1

=Dy fu.
« Expected number of times b is emitted in state £:

E(b) Zkaz k,i

X i:x;=b




Finally, new parameters

* These methods allow us to calculate our new parameters ¢, ,
and e (D):

A E,(b)
i = , e.(b) =<
DA, XE®)
ik b

* We can then add pseudocounts as before.



Stopping criteria

* We cannot actually reach maximum (property of optimization of
continuous functions).

» Therefore we need stopping criteria.

e Compute the log likelihood of the model for current © :
Zlog[P(x ‘ @)]

« Compare with previous log likelihood.
« Stop if small difference.
« Stop after a certain number of iterations to avoid infinite loop.



The Baum-Welch Algorithm Summarized

« Initialization: Pick the best-guess for model parameters (or
arbitrary).

e [teration:

1. Forward for each x
Backward for each x
Calculate 4, ; Ey(b)
Calculate new a, |, e,(b)

A A

Calculate new log-likelihood

» Repeat until log-likelithood does not change much.



Baum-Welch Analysis

* Log-likelihood 1s increased by iterations.

« Baum-Welch is a particular case of the expectation
maximization (EM) algorithm.

e Convergence 1s to local maximum. The choice of initial
parameters determines local maximum to which the algorithm
converges.



Additional Application: Speech Recognition

e Create an HMM of the words 1n a language.
« Each word 1s a hidden state in Q.

« Each of the basic sounds in the language is a symbol in .
* Input: Fragment of speech.

* Goal: Find the most probable sequence of states.



Speech Recognition: Building the Model

* Analyze some large source of English sentences, such as a
database of newspaper articles, to form probability matrices.

« A,: The chance that word i begins a sentence.
* A;: The chance that word j follows word :.

* Analyze English speakers to determine what sounds are
emitted with what words.

* E,(b): the chance that sound b 1s spoken in word £. Allows for
alternate pronunciation of words.



Speech Recognition: Using the Model

» Use the same dynamic programming algorithm as before.

« Weave the spoken sounds through the model the same way
we wove the rolls of the die through the casino model.

« 1 will therefore represent the most likely set of words.



Using the Model

« How well does the model work?

« Common words, such as ‘the’, ‘a’, ‘of” make prediction less
accurate, since there are so many words that follow normally.



Improving Speech Recognition

 Initially, we were using a bigram, or a graph connecting every
two words.

« Expand that to a trigram.
« Each state represents two words spoken 1n succession.

« Each edge joins those two words (4 B) to another state
representing (B C).

« Requires n° vertices and edges, where 7 is the number of
words in the language.

* Much better, but still limited context.
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