

Hidden Markov Models

Outline

1. CG-Islands
2. The “Fair Bet Casino”
3. Hidden Markov Model
4. Decoding Algorithm
5. Forward-Backward Algorithm
6. Profile HMMs
7. HMM Parameter Estimation
8. Viterbi Training
9. Baum-Welch Algorithm

Section 1: CG-Islands

CG-Islands

- Given 4 nucleotides: probability of any one's occurrence is $\sim 1/4$.
- Thus, probability of occurrence of a given **dinucleotide** (pair of successive nucleotides) is $\sim 1/16$.
- However, the frequencies of dinucleotides in DNA sequences vary widely.
- In particular, **CG** is typically underrepresented (frequency of CG is typically $< 1/16$)

CG-Islands

- CG is the least frequent dinucleotide because the C in CG is easily **methylated** and has the tendency to mutate into *T* afterwards.
- However, methylation is suppressed around genes in a genome. So, CG appears at relatively high frequency within these **CG-islands**.
- So, finding the CG-islands in a genome is an important biological problem.

Section 2: The Fair Bet Casino

The “Fair Bet Casino”

- The CG-islands problem can be modeled after a problem named **The Fair Bet Casino**.
 - The game is to flip two coins, which results in only two possible outcomes: Head (**H**) or Tail(**T**).
 - The Fair coin (**F**) will give **H** and **T** each with probability $\frac{1}{2}$, which is written $P(H | F) = P(T | F) = \frac{1}{2}$.
 - The Biased coin (**B**) will give **H** with probability $\frac{3}{4}$, which we write as $P(H | B) = \frac{3}{4}$, $P(T | B) = \frac{1}{4}$.
 - The crooked dealer changes between **F** and **B** coins with probability 10%.
 - How can we tell when the dealer is using **F** and when he is using **B**?

The Fair Bet Casino Problem

- Input: A sequence $x = x_1 x_2 x_3 \dots x_n$ of coin tosses made by two possible coins (**F** or **B**).
- Output: A sequence $\pi = \pi_1 \pi_2 \pi_3 \dots \pi_n$, with each π_i being either **F** or **B** and indicating that x_i is the result of tossing the Fair or Biased coin respectively.

Problem...

- Any observed outcome of coin tosses could have been generated by any sequence of states!
 - **Example:** HHHHHHHHHH could be generated by BBBBBBBBBB, FFFFFFFFFF, FBFBFBFBFB, etc.
- We need to incorporate a way to grade different sequences differently.
- This provides us with the decoding problem.

Simple Case: The Dealer Never Switches Coins

- We assume first that the dealer never changes coins:
 - $P(x | F)$: probability of the dealer using F and generating the outcome x .
 - $P(x | B)$: probability of the dealer using the B coin and generating outcome x .
 - **Example:** Say that in x we observe k heads and $n - k$ tails:

$$P(x | F) = \prod_{i=1}^n \left(\frac{1}{2}\right) = \left(\frac{1}{2}\right)^n$$

$$P(x | B) = \left(\frac{3}{4}\right)^k \left(\frac{1}{4}\right)^{n-k} = \frac{3^k}{4^n}$$

When Does $P(x | F) = P(x | B)$?

$$P(x | F) = P(x | B)$$

$$\frac{1}{2^n} = \frac{3^k}{4^n}$$

$$2^n = 3^k$$

$$n = \log_2 3^k$$

$$n = k \log_2 3$$

$$\therefore k = \frac{n}{\log_2 3}$$

Log-odds Ratio

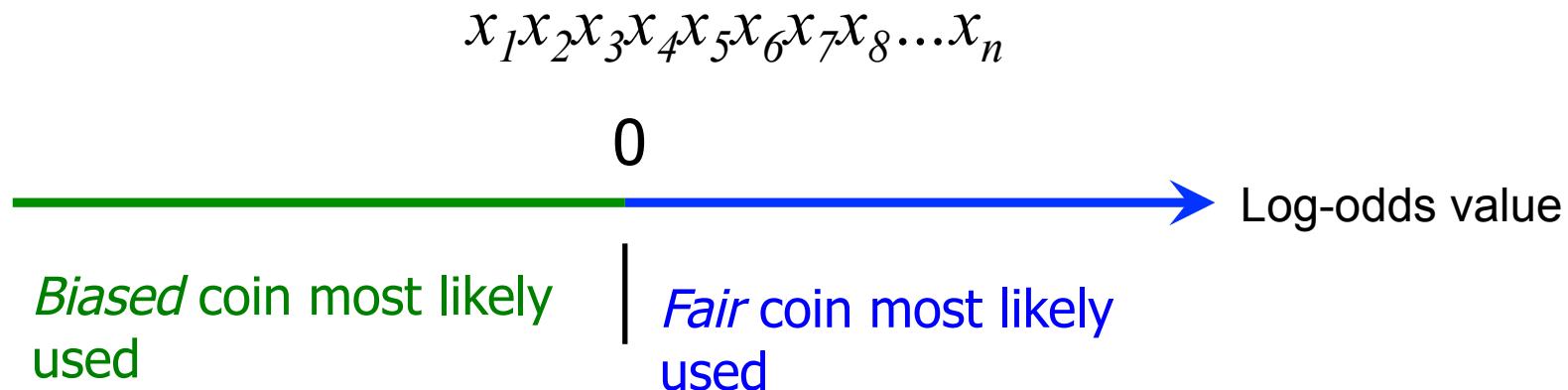
- We define the **log-odds ratio** (L) as follows:

$$\begin{aligned} L &= \log_2 \left(\frac{P(x | F)}{P(x | B)} \right) \\ &= \log_2 \left(\frac{1}{2^n} \right) - \log_2 \left(\frac{3^k}{4^n} \right) \\ &= -n - [\log_2(3^k) - \log_2 4^n] \\ &= -n - k \log_2(3) + 2n \\ &= n - k \log_2(3) \end{aligned}$$

- From the previous slide, if $L > 0$ we have reason to believe that the coin is fair, and if $L < 0$ we think the coin is biased.

Computing Log-odds Ratio in Sliding Windows

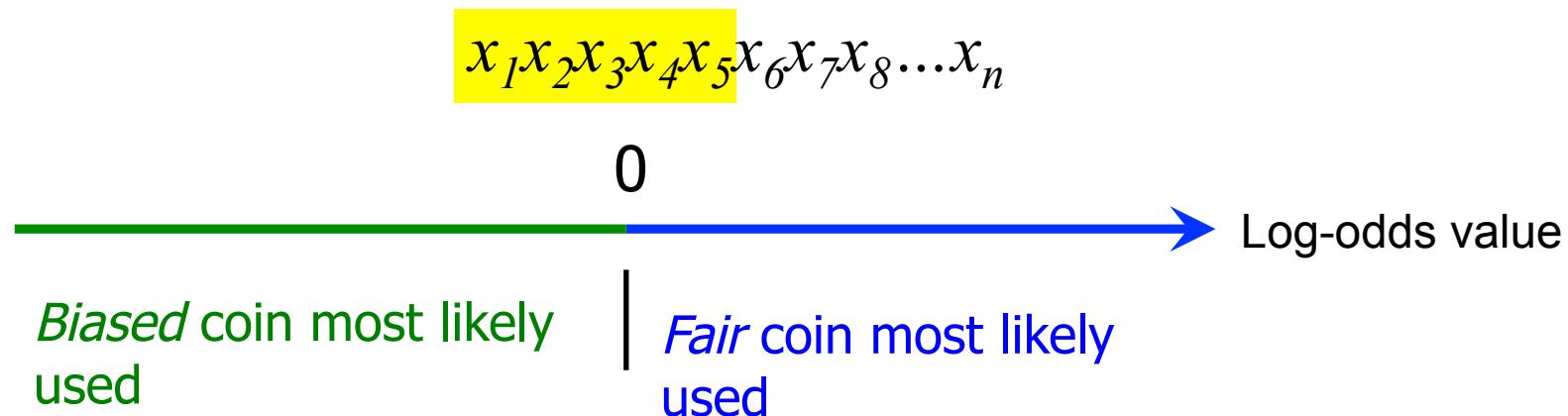
- Consider a *sliding window* of the outcome sequence and find the log-odds ratio for this short window.



- Key Disadvantages:
 - The length of the CG-island is not known in advance.
 - Different windows may classify the same position differently.

Computing Log-odds Ratio in Sliding Windows

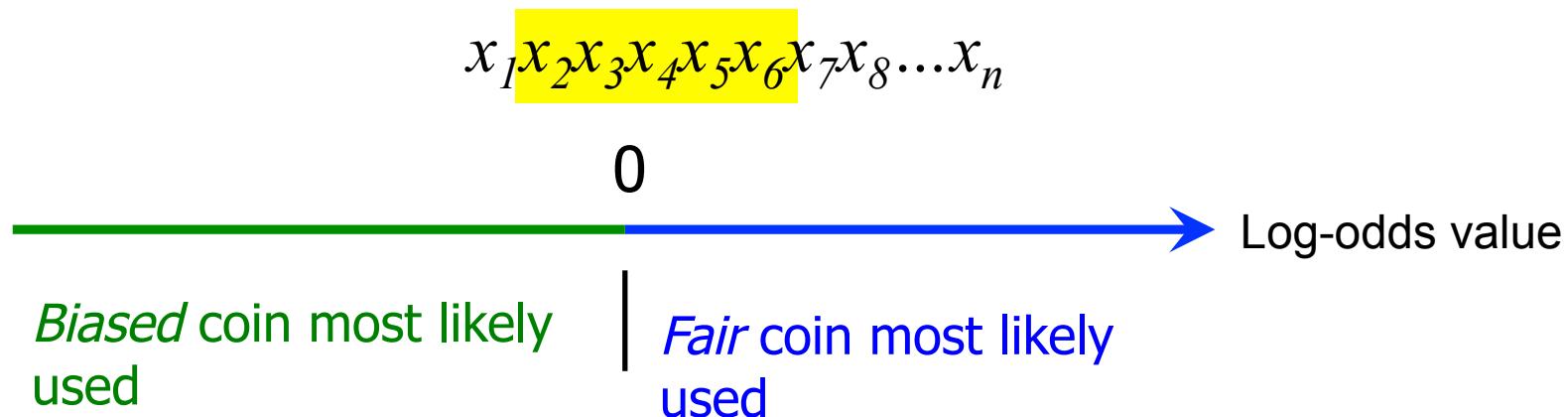
- Consider a *sliding window* of the outcome sequence and find the log-odds ratio for this short window.



- Key Disadvantages:
 - The length of the CG-island is not known in advance.
 - Different windows may classify the same position differently.

Computing Log-odds Ratio in Sliding Windows

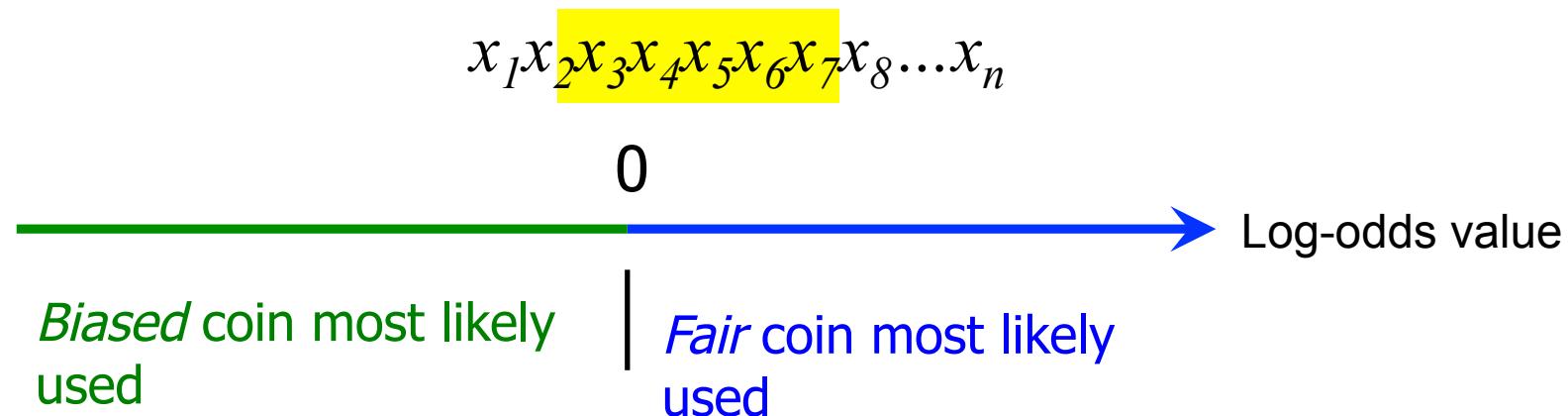
- Consider a *sliding window* of the outcome sequence and find the log-odds ratio for this short window.



- Key Disadvantages:
 - The length of the CG-island is not known in advance.
 - Different windows may classify the same position differently.

Computing Log-odds Ratio in Sliding Windows

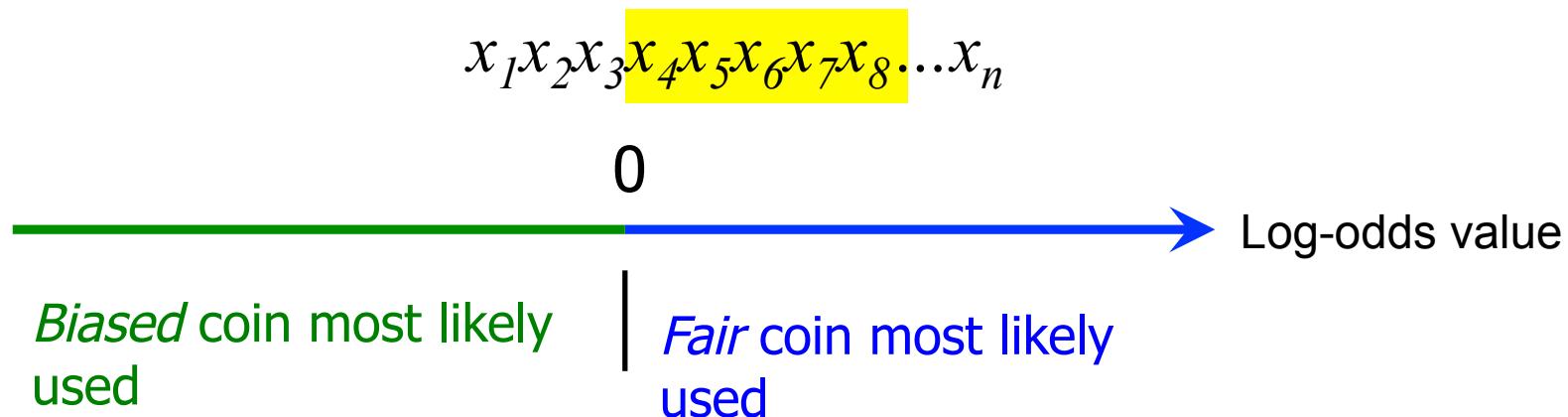
- Consider a *sliding window* of the outcome sequence and find the log-odds ratio for this short window.



- Key Disadvantages:
 - The length of the CG-island is not known in advance.
 - Different windows may classify the same position differently.

Computing Log-odds Ratio in Sliding Windows

- Consider a *sliding window* of the outcome sequence and find the log-odds ratio for this short window.



- Key Disadvantages:
 - The length of the CG-island is not known in advance.
 - Different windows may classify the same position differently.

Section 3: Hidden Markov Models

Hidden Markov Model (HMM)

- Can be viewed as an abstract machine with k *hidden* states that emits symbols from an alphabet Σ .
- Each state has its own probability distribution, and the machine switches between states *and* chooses characters according to this probability distribution.
- While in a certain state, the machine makes two decisions:
 1. What state should I move to next?
 2. What symbol - from the alphabet Σ - should I emit?

Why “Hidden”?

- Observers can see the emitted symbols of an HMM but have *no ability to know which state the HMM is currently in.*
- The goal is to infer the most likely hidden states of an HMM based on the given sequence of emitted symbols.

HMM Parameters

- Σ : set of emission characters.
- Q : set of hidden states, each emitting symbols from Σ .
- $A = (a_{kl})$: a $|Q| \times |Q|$ matrix containing the probabilities of changing from state k to state l .
- $E = (e_k(b))$: a $|Q| \times |\Sigma|$ matrix of probability of emitting symbol b while being in state k .

HMM Parameters

- $A = (a_{kl})$: a $|Q| \times |Q|$ matrix containing the probabilities of changing from state k to state l .
 - $a_{\mathbf{FF}} = 0.9 \quad a_{\mathbf{FB}} = 0.1$
 - $a_{\mathbf{BF}} = 0.1 \quad a_{\mathbf{BB}} = 0.9$
- $E = (e_k(b))$: a $|Q| \times |\Sigma|$ matrix of probability of emitting symbol b while being in state k .
 - $e_{\mathbf{F}}(0) = \frac{1}{2} \quad e_{\mathbf{F}}(1) = \frac{1}{2}$
 - $e_{\mathbf{B}}(0) = \frac{1}{4} \quad e_{\mathbf{B}}(1) = \frac{3}{4}$

HMM for the Fair Bet Casino

- The Fair Bet Casino in HMM terms:
 - $\Sigma = \{0, 1\}$ (0 for **T** and 1 for **H**)
 - $Q = \{F, B\}$

Transition Probabilities (A)

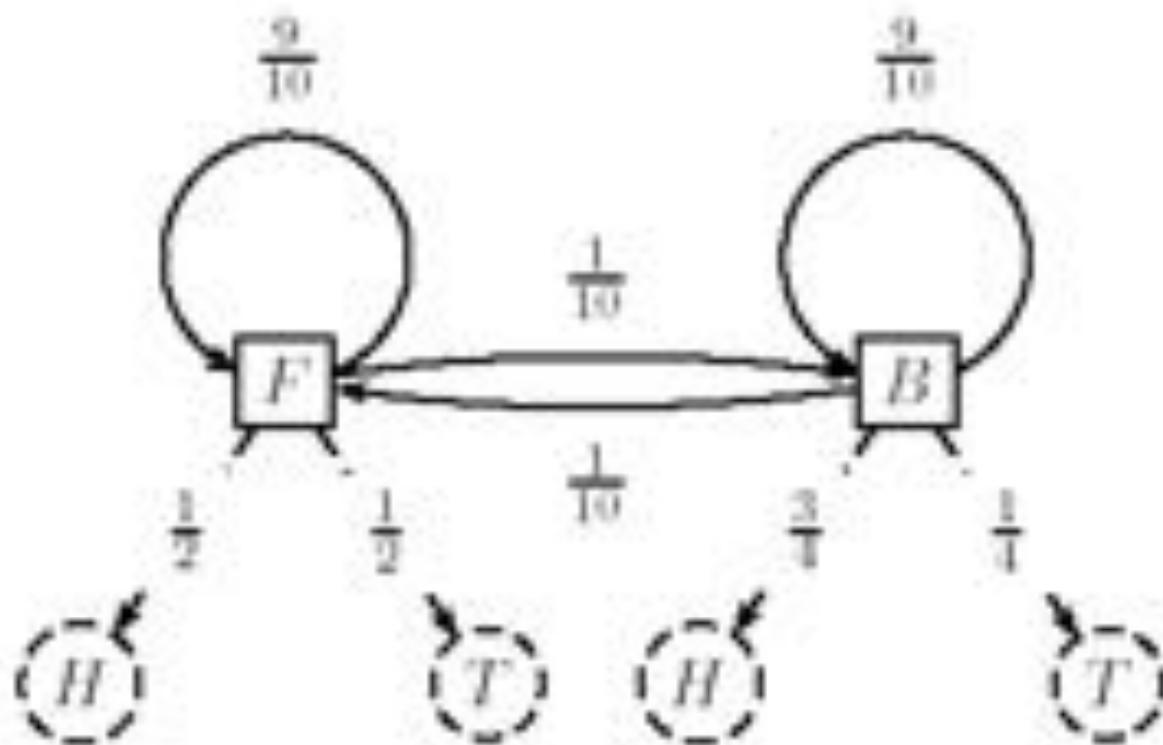
	Fair	Biased
Fair	$a_{FF} = 0.9$	$a_{FB} = 0.1$
Biased	$a_{BF} = 0.1$	$a_{BB} = 0.9$

Emission Probabilities (E)

	Tails(0)	Heads(1)
Fair	$e_F(0) = \frac{1}{2}$	$e_F(1) = \frac{1}{2}$
Biased	$e_B(0) = \frac{1}{4}$	$e_B(1) = \frac{3}{4}$

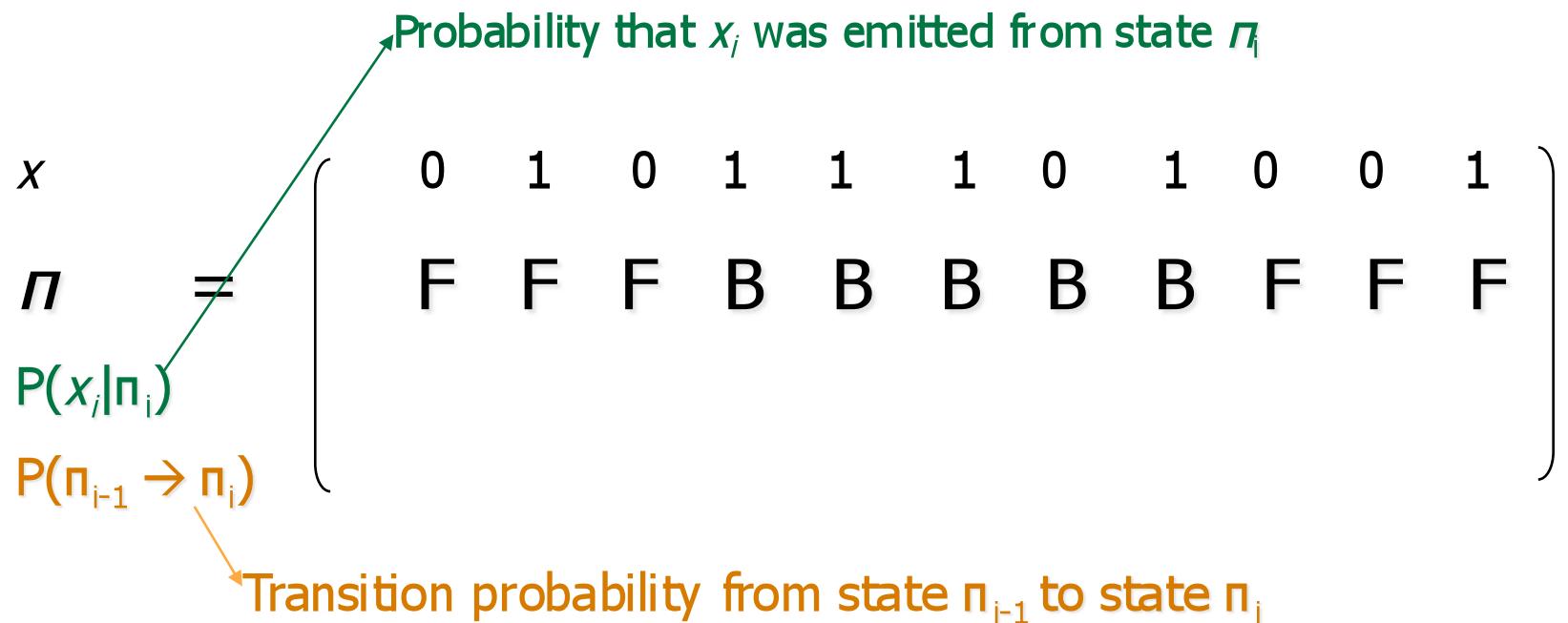
HMM for the Fair Bet Casino

- HMM model for the Fair Bet Casino Problem:



Hidden Paths

- A **path** $\pi = \pi_1 \dots \pi_n$ in the HMM is defined as a sequence of states.
- Consider path $\pi = \text{FFFFBBBBBFFF}$ and sequence $x = 01011101001$



Hidden Paths

- A **path** $\pi = \pi_1 \dots \pi_n$ in the HMM is defined as a sequence of states.
- Consider path $\pi = \text{FFFBBBBBFFF}$ and sequence $x = 01011101001$

Probability that x_i was emitted from state π_i

x

π

$P(x_i|\pi_i)$

$P(\pi_{i-1} \rightarrow \pi_i)$

Transition probability from state π_{i-1} to state π_i

	0	1	0	1	1	1	0	1	0	0	1
	F	F	F	B	B	B	B	B	F	F	F
	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{3}{4}$	$\frac{3}{4}$	$\frac{3}{4}$	$\frac{1}{4}$	$\frac{3}{4}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$

Hidden Paths

- A **path** $\pi = \pi_1 \dots \pi_n$ in the HMM is defined as a sequence of states.
- Consider path $\pi = \text{FFFBBBBBFFF}$ and sequence $x = 01011101001$

		Probability that x_i was emitted from state π_i										
x	π	0	1	0	1	1	1	0	1	0	0	1
π	x_i	F	F	F	B	B	B	B	B	F	F	F
		$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{3}{4}$	$\frac{3}{4}$	$\frac{3}{4}$	$\frac{1}{4}$	$\frac{3}{4}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$
	$P(\pi_i \pi_{i-1})$	$\frac{1}{2}$	$\frac{9}{10}$	$\frac{9}{10}$	$\frac{1}{10}$	$\frac{9}{10}$	$\frac{9}{10}$	$\frac{9}{10}$	$\frac{1}{10}$	$\frac{9}{10}$	$\frac{9}{10}$	$\frac{9}{10}$

Probability that x_i was emitted from state π_i

$P(\pi_i | \pi_{i-1})$

Transition probability from state π_{i-1} to state π_i

P(x | π) Calculation

- $P(x | \pi)$: Probability that sequence x was generated if we know that we have the path π .

$$\begin{aligned} P(x | \pi) &= P(\pi_0 \rightarrow \pi_1) \cdot \prod_{i=1}^n P(x_i | \pi) \cdot P(\pi_i \rightarrow \pi_{i+1}) \\ &= a_{\pi_0, \pi_1} \prod_{i=1}^n e_{\pi_i}(x) \cdot a_{\pi_i, \pi_{i+1}} \end{aligned}$$

P(x | π) Calculation

- $P(x | \pi)$: Probability that sequence x was generated if we know that we have the path π .

$$\begin{aligned} P(x | \pi) &= P(\pi_0 \rightarrow \pi_1) \cdot \prod_{i=1}^n P(x_i | \pi) \cdot P(\pi_i \rightarrow \pi_{i+1}) \\ &= a_{\pi_0, \pi_1} \prod_{i=1}^n e_{\pi_i}(x) \cdot a_{\pi_i, \pi_{i+1}} \\ &= \prod_{i=0}^n e_{\pi_i}(x) \cdot a_{\pi_i, \pi_{i+1}} \end{aligned}$$

Section 4: Decoding Algorithm

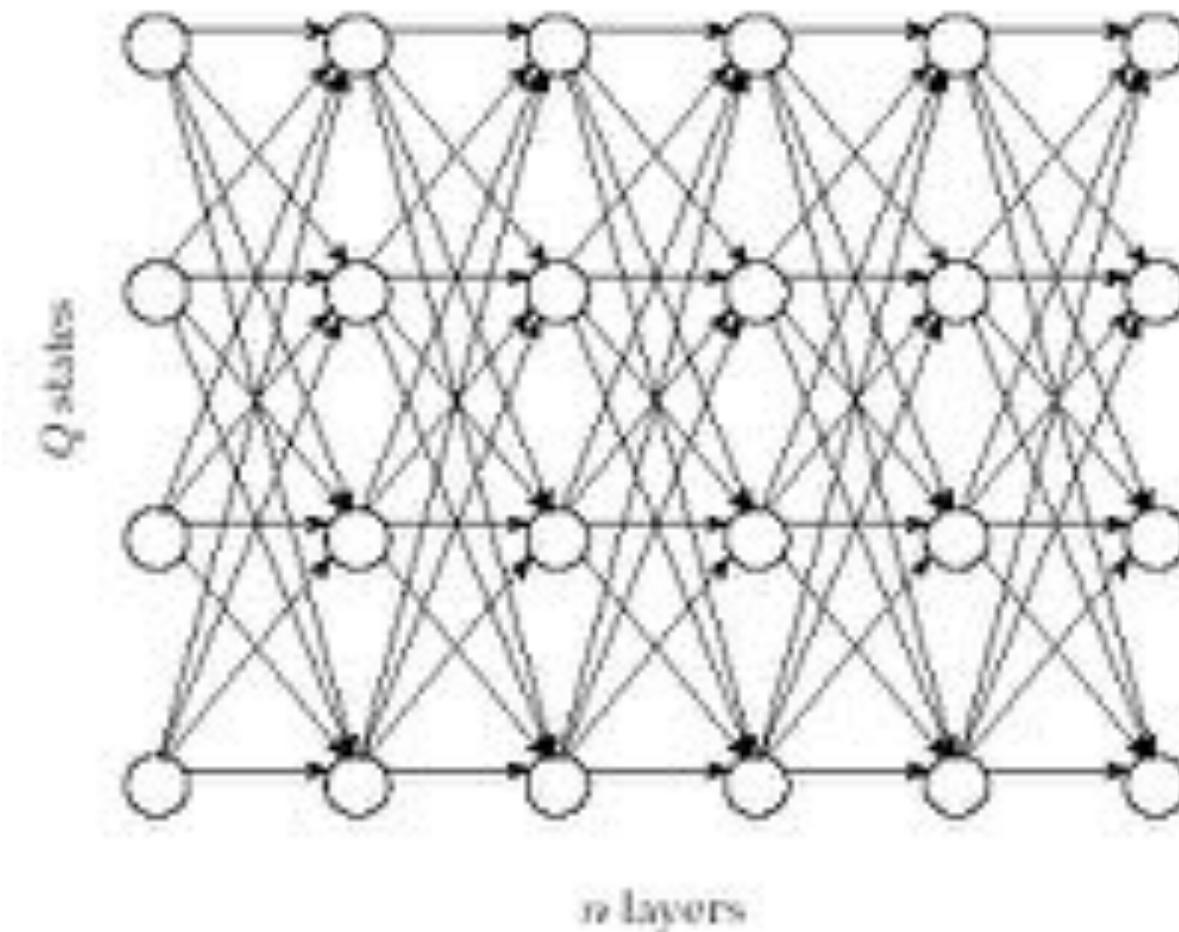
Decoding Problem

- Goal: Find an optimal hidden path of states given observations.
- Input: Sequence of observations $x = x_1 \dots x_n$ generated by an HMM $M(\Sigma, Q, A, E)$.
- Output: A path that maximizes $P(x \mid \pi)$ over all possible paths π .

Building Manhattan for Decoding Problem

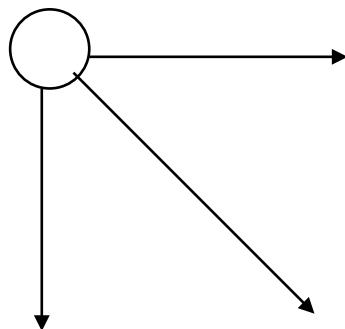
- Andrew Viterbi used the Manhattan edit graph model to solve the Decoding Problem.
- Vertices are composed of n “levels” with $|Q|$ vertices in each level; each vertex represents a different state.
- We connect each vertex in level i to each vertex in level $i + 1$ via a directed edge, giving $|Q|^2(n - 1)$ edges.
- Therefore every choice of $\pi = \pi_1 \dots \pi_n$ corresponds to a path in the graph.

Edit Graph for Decoding Problem: Example

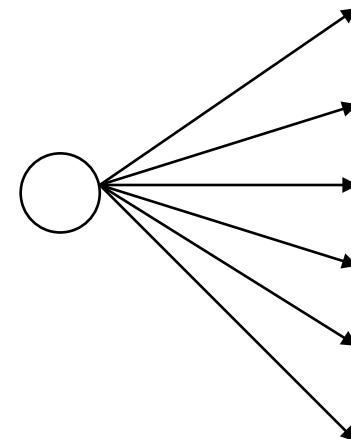


Decoding Problem vs. Alignment Problem

Valid Directions in Alignment



Valid Directions in Decoding

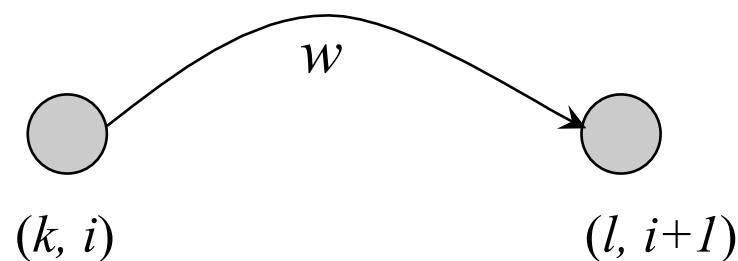


Decoding Problem

- Every path in the graph has the probability $P(x | \pi)$.
- The Viterbi algorithm finds the path that maximizes $P(x | \pi)$ among all possible paths.
- The Viterbi algorithm runs in $O(n |Q|^2)$ time.

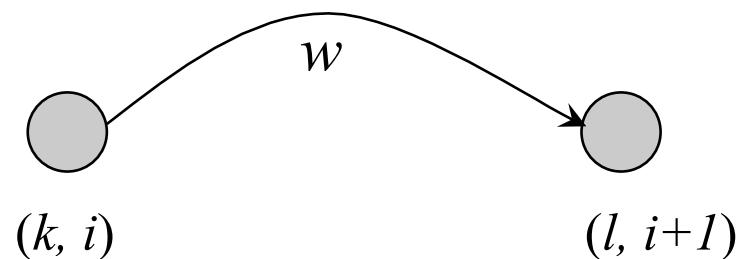
Decoding Problem: Weights of Edges

- The weight w is given by: ?



Decoding Problem: Weights of Edges

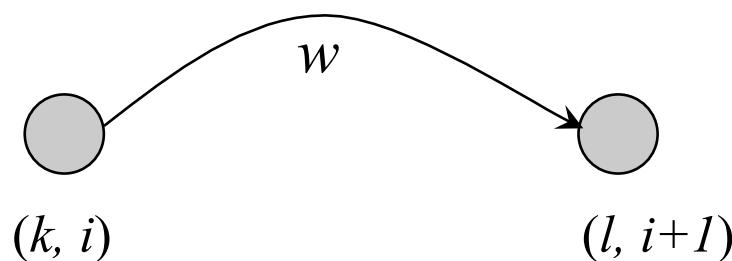
- The weight w is given by: ?



$$P(x \mid \pi) = \prod_{i=0}^{n-1} e_{\pi_{i+1}}(x_{i+1}) \cdot a_{\pi_i, \pi_{i+1}}$$

Decoding Problem: Weights of Edges

- The weight w is given by: ?

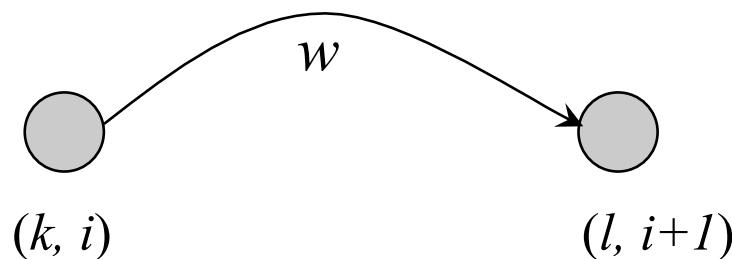


$$P(x \mid \pi) = \prod_{i=0}^{n-1} e_{\pi_{i+1}}(x_{i+1}) \cdot a_{\pi_i, \pi_{i+1}}$$

$$i^{\text{th}} \text{ term} = e_{\pi_{i+1}}(x_{i+1}) \cdot a_{\pi_i, \pi_{i+1}}$$

Decoding Problem: Weights of Edges

- The weight w is given by: $e_l(x_{i+1}) \cdot a_{k, l}$



$$P(x \mid \pi) = \prod_{i=0}^{n-1} e_{\pi_{i+1}}(x_{i+1}) \cdot a_{\pi_i, \pi_{i+1}}$$

$$i^{\text{th}} \text{ term} = e_{\pi_{i+1}}(x_{i+1}) \cdot a_{\pi_i, \pi_{i+1}}$$

Decoding Problem and Dynamic Programming

- $s_{l, i+1}$ = max probability of all paths of length $i + 1$ ending in state l (for the first $i + 1$ observations).
- Recursion:

$$\begin{aligned}s_{l, i+1} &= \max_{k \in Q} \left\{ s_{k, i} \cdot \text{weight of edge between } (k, i) \text{ and } (l, i+1) \right\} \\ &= \max_{k \in Q} \left\{ s_{k, i} \cdot a_{k, l} \cdot e_l(x_{i+1}) \right\} \\ &= e_l(x_{i+1}) \cdot \max_{k \in Q} \left\{ s_{k, i} \cdot a_{k, l} \right\}\end{aligned}$$

Decoding Problem and Dynamic Programming

- The value of the product can become extremely small, which leads to **overflow**.
 - A computer has only finite storage to store any given number, and if the number is too small it runs out of room.
- To avoid overflow, take the logarithm of the right side instead.

$$s_{l, i+1} = \log\left[e_l(x_{i+1})\right] + \max_{k \in Q} \left\{ \log(s_{k, i}) + \log(a_{k, l}) \right\}$$

Decoding Problem and Dynamic Programming

- Initialization:

$$s_{k,0} = \begin{cases} 1 & \text{if } k = \text{begin} \\ 0 & \text{otherwise} \end{cases}$$

- Let π^* be the optimal path. Then,

$$P(x \mid \pi^*) = \max_{k \in Q} \{ s_{k,n} = a_{k,end} \}$$

Section 5: Forward-Backward Algorithm

Forward-Backward Problem

- Given: a sequence of coin tosses generated by an HMM.
- Goal: Find the probability that the dealer was using a biased coin at a particular time.

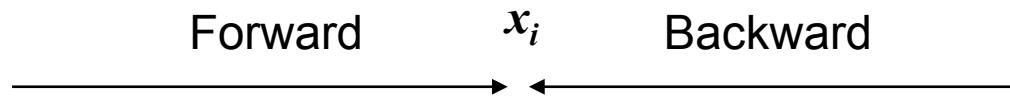
Forward Probability

- Define $f_{k,i}$ (**forward probability**) as the probability of emitting the *prefix* $x_1 \dots x_i$ and reaching the state $\pi = k$.
- The recurrence for the forward algorithm:

$$f_{k,i} = e_k(x_i) \cdot \sum_{l \in Q} f_{l,i-1} \cdot a_{l,k}$$

Backward Probability

- However, forward probability is not the only factor affecting $P(\pi_i = k | x)$.
- The sequence of transitions and emissions that the HMM undergoes between π_{i+1} and π_n also affect $P(\pi_i = k | x)$.



- Define the **backward probability** $b_{k,i}$ as the probability of being in state $\pi_i = k$ and emitting the *suffix* $x_{i+1}...x_n$. Recurrence:

$$b_{k,i} = \sum_{l \in Q} e_l(x_{i+1}) \cdot b_{l,i+1} \cdot a_{k,l}$$

Backward-Forward Probability

- The probability that HMM is in a certain state k at any moment i , given that we observe the output x , is therefore influenced by both the forward and backward probabilities.
- We use the mathematical definition of conditional probability to calculate $P(\pi_i = k | x)$:

$$P(\pi_i = k | x) = \frac{P(x, \pi_i = k)}{P(x)} = \frac{f_{k,i} \cdot b_{k,i}}{P(x)}$$

Section 6: Profile HMMs

Finding Distant Members of a Protein Family

- A distant cousin of functionally related sequences in a protein family may have weak pairwise similarities with each member of the family and thus fail a significance test.
- However, they may have these weak similarities with *many* members of the family, indicating a correlation.
- The goal is to align a sequence to *all* members of the family at once.
- A family of related proteins can be represented by their multiple alignment and the corresponding profile.

Profile Representation of Protein Families

- Aligned DNA sequences can be represented by a $4 \times n$ profile matrix reflecting the frequencies of nucleotides in every aligned position.
 - Example:**

A	.72	.14	0	0	.72	.72	0	0
T	.14	.72	0	0	0	.14	.14	.86
G	.14	.14	.86	.44	0	.14	0	0
C	0	0	.14	.56	.28	0	.86	.14

- Similarly, a protein family can be represented by a $20 \times n$ profile representing frequencies of amino acids.

Protein Family Classification

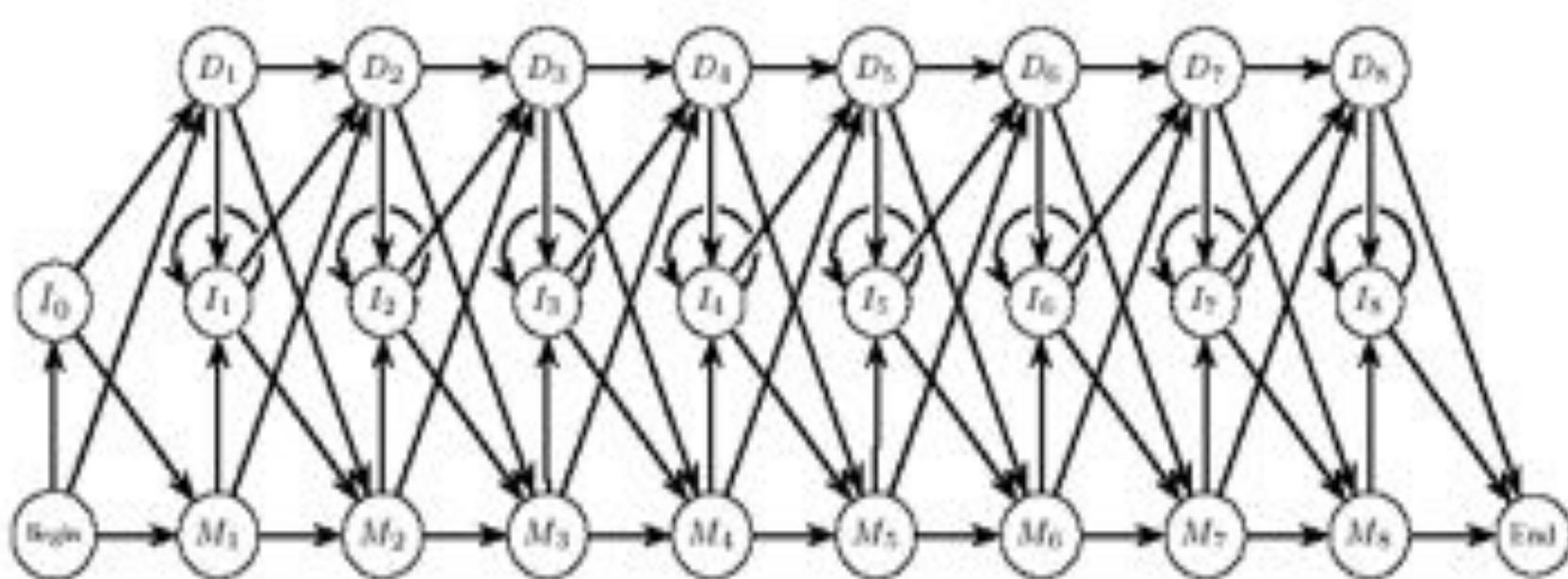
- Multiple alignment of a protein family shows variations in conservation along the length of a protein.
- **Example:** After aligning many globin proteins, biologists recognized that the helices region in globins are more conserved than others.

What Is a Profile HMM?

- A **profile HMM** is a probabilistic representation of a multiple alignment.
- A given multiple alignment (of a protein family) is used to build a profile HMM.
- This model then may be used to find and score less obvious potential matches of new protein sequences.

Profile HMM

- A profile HMM has three sets of states:
 - **Match states:** M_1, \dots, M_n (plus *begin/end* states)
 - **Insertion states:** I_0, I_1, \dots, I_n
 - **Deletion states:** D_1, \dots, D_n



Building a Profile HMM

1. Multiple alignment is used to construct the HMM model.
2. Assign each column to a *Match* state in HMM. Add *Insertion* and *Deletion* state.
3. Estimate the emission probabilities according to amino acid counts in column. Different positions in the protein will have different emission probabilities.
4. Estimate the transition probabilities between *Match*, *Deletion* and *Insertion* states.

Transition Probabilities in a Profile HMM

- **Gap Initiation Penalty:** The cost of beginning a gap, which means that we must have transitions from match state to insertion state and vice versa.
 - Penalty: $\log(a_{MI}) + \log(a_{IM})$
- **Gap Extension Penalty:** The cost of extending a gap, which corresponds to maintaining the insertion state for one period.
 - Penalty: $\log(a_{II})$

Emission Probabilities in a Profile HMM

- Probability of emitting a symbol a at an insertion state I_j :

$$e_{I_j}(a) = p(a)$$

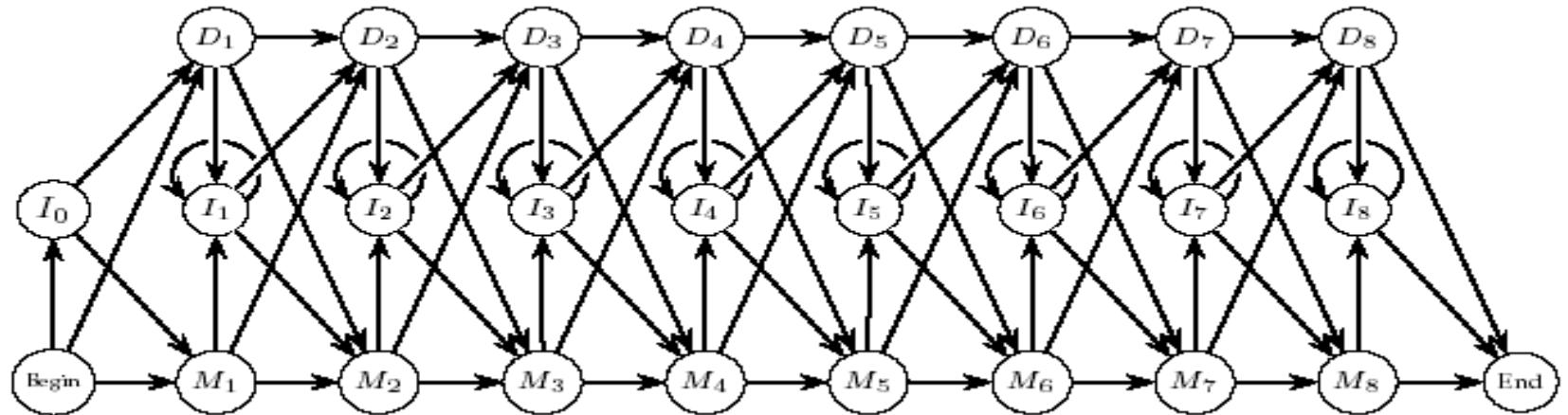
- Here $p(a)$ is the frequency of the occurrence of the symbol a in all the sequences.

Profile HMM Alignment

- Define $v_j^M(i)$ as the logarithmic likelihood score of the best path for matching $x_1..x_i$ to the profile HMM ending with x_i emitted by the state M_j .
- $v_j^I(i)$ and $v_j^D(i)$ are defined similarly.

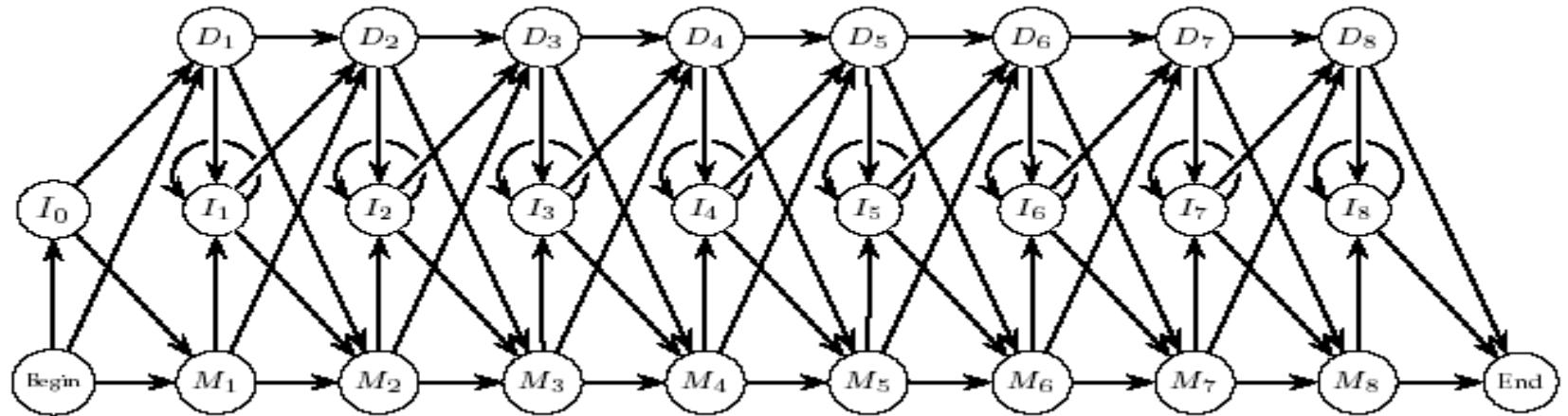
Profile HMM Alignment: Dynamic Programming

$$v_j^M(i) = \log \left[\frac{e_{M_j}(x_i)}{p(x_i)} \right] + \max \begin{cases} v_{j-1}^M(i-1) + \log(a_{M_{j-1}, M_j}) \\ v_{j-1}^I(i-1) + \log(a_{I_{j-1}, M_j}) \\ v_{j-1}^D(i-1) + \log(a_{D_{j-1}, M_j}) \end{cases}$$



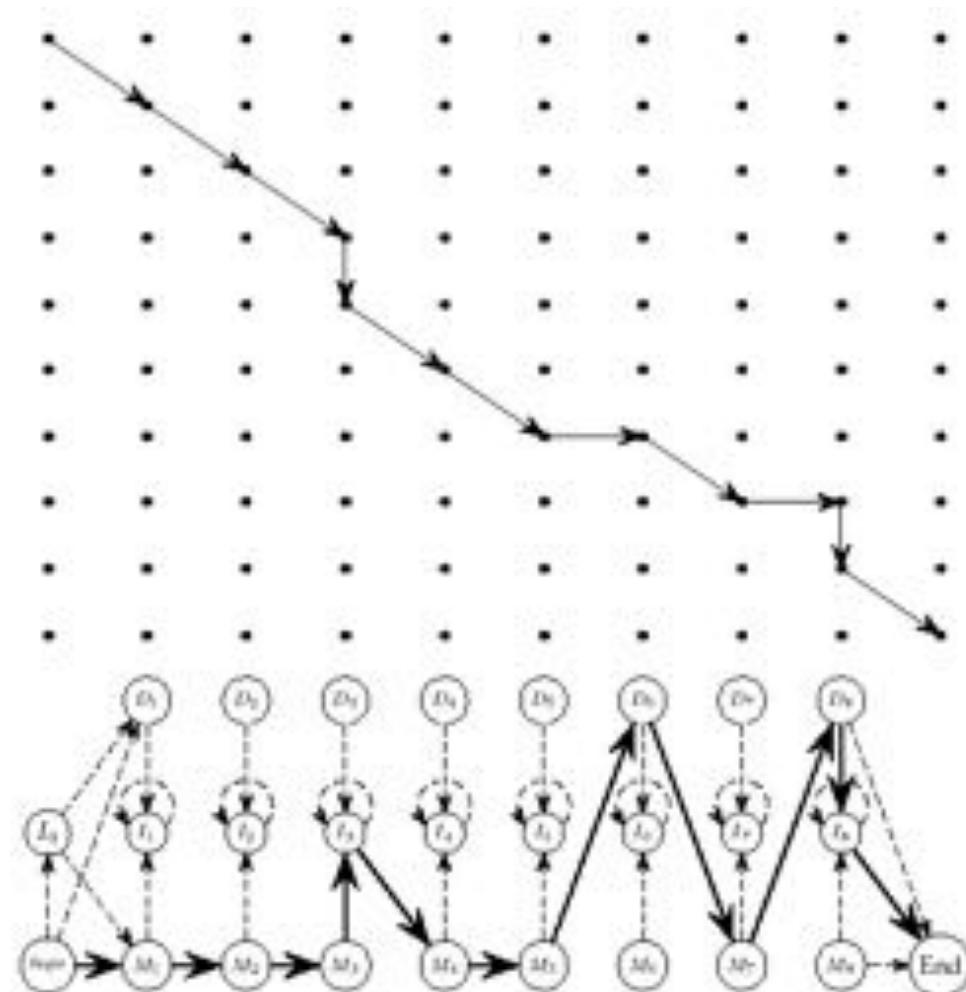
Profile HMM Alignment: Dynamic Programming

$$v_j^I(i) = \log \left[\frac{e_{I_j}(x_i)}{p(x_i)} \right] + \max \begin{cases} v_j^M(i-1) + \log(a_{M_j, I_j}) \\ v_j^I(i-1) + \log(a_{I_j, I_j}) \\ v_j^D(i-1) + \log(a_{D_j, I_j}) \end{cases}$$



Paths in Edit Graph and Profile HMM

- At right is a path through an edit graph and the corresponding path through a profile HMM.
- Observe:
 - Diagonal \rightarrow match
 - Vertical \rightarrow insertion
 - Horizontal \rightarrow deletion



Making a Collection of HMM for Protein Families

1. Use BLAST to separate a protein database into families of related proteins.
2. Construct a multiple alignment for each protein family.
3. Construct a profile HMM model and optimize the parameters of the model (transition and emission probabilities).
4. Align the target sequence against each HMM to find the best fit between a target sequence and an HMM.

Profile HMMs and Modeling Globin Proteins

- Globins represent a large collection of protein sequences.
- 400 globin sequences were randomly selected from all globins and used to construct a multiple alignment.
- Multiple alignment was used to assign an HMM.
- 625 remaining globin sequences were aligned to the HMM, resulting in a multiple alignment. This multiple alignment was in a good agreement with the structurally derived alignment.
- Other proteins, were randomly chosen from the database and compared against the globin HMM.
- This experiment resulted in an excellent separation between globin and non-globin families.

PFAM

- Pfam describes **protein domains**.
- Each protein domain family in Pfam has:
 - **Seed alignment**: Manually verified multiple alignment of a representative set of sequences.
 - **HMM**: Built from the seed alignment for further searches.
 - **Full alignment**: Generated automatically from the HMM.
- The distinction between seed and full alignments facilitates Pfam updates.
 - Seed alignments are stable resources.
 - HMM profiles and full alignments can be updated with newly found amino acid sequences.

PFAM Uses

- Pfam HMMs span entire domains that include both well-conserved motifs and less-conserved regions with insertions and deletions.
- It results in modeling complete domains that facilitates better sequence annotation and leads to more sensitive detection.

Section 7: HMM Parameter Estimation

HMM Parameter Estimation

- So far, we have assumed that the transition and emission probabilities are known.
- However, in most HMM applications, the probabilities are not known. It is very difficult to estimate the probabilities.

HMM Parameter Estimation Problem

- Given: HMM with states and alphabet (emission characters), as well as independent training sequences x^1, \dots, x^m .
- Goal: Find HMM parameters Θ (that is, $a_{k,b}$, $e_k(b)$) that maximize the joint probability of the training sequences, which is given by the following:

$$P(x^1, \dots, x^m \mid \Theta)$$

Maximize the Likelihood

- $P(x^1, \dots, x^m \mid \Theta)$ as a function of Θ is called the **likelihood** of the model.
- The training sequences are assumed *independent*; therefore,

$$P(x^1, \dots, x^m \mid \Theta) = \prod_{i=1}^m P(x^i \mid \Theta)$$

- The parameter estimation problem seeks Θ that realizes

$$\max_{\Theta} \prod_i P(x^i \mid \Theta)$$

- In practice the log likelihood is computed to avoid underflow errors.

Two Situations

1. Known paths for training sequences:

- CpG islands marked on training sequences
- Casino analogue: One evening the dealer allows us to see when he changes the dice.

2. Unknown paths for training sequences:

- CpG islands are not marked
- We do not see when the casino dealer changes dice

Known Paths

- $A_{kl} = \#$ of times each $k \rightarrow l$ is taken in the training sequences.
- $E_k(b) = \#$ of times b is emitted from state k in the training sequences.
- Compute a_{kl} and $e_k(b)$ as maximum likelihood estimators:

$$a_{k,l} = \frac{A_{k,l}}{\sum_{l'} A_{k,l'}} \quad e_k(b) = \frac{E_k(b)}{\sum_{b'} E_k(b')}$$

Pseudocounts

- Some state k may not appear in *any* of the training sequences. This means $A_{k,l} = 0$ for every state l and $a_{k,l}$ cannot be computed with the given equation.
- To avoid this overfitting, use predetermined **pseudocounts** r_{kl} and $r_k(b)$ which reflect prior biases about the probability values:
 - $A_{k,l} = \text{number of transitions } k \rightarrow l + r_{k,l}$
 - $E_k(b) = \text{number of emissions of } b \text{ from } k + r_k(b)$

Section 8:

Viterbi Training

Unknown Paths Method 1: Viterbi Training

- **Idea:** Use Viterbi decoding to compute the most probable path for training sequence x .
- **Method:**
 1. Start with some guess for initial parameters and compute π^* = the most probable path for x using initial parameters.
 2. Iterate until no change in π^* .
 3. Determine $A_{k, l}$ and $E_k(b)$ as before.
 4. Compute new parameters $a_{k, l}$ and $e_k(b)$ using the same formulas as before.
 5. Compute new π^* for x and the current parameters.

Viterbi Training Analysis

- The algorithm converges precisely.
- There are finitely many possible paths.
- New parameters are uniquely determined by the current π^* .
- There may be several paths for x with the same probability, hence we must compare the new π^* with all previous paths having highest probability.
- Does not maximize the likelihood $\prod_x P(x | \Theta)$ but rather the contribution to the likelihood of the most probable path, $\prod_x P(x | \Theta, \pi^*)$.
- In general, performs less well than Baum-Welch (below).

Section 9:

Baum-Welch Algorithm

Unknown Paths Method 2: Baum-Welch

- Idea: Guess initial values for parameters.
 - This is art and experience, not science.
- We then estimate new (better) values for parameters.
 - How?
- We repeat until stopping criterion is met.
 - What criterion?

Improved Parameters

- We would need the $A_{k,l}$ and $E_k(b)$ values, but the path is unknown, and we do not want to use a most probable path.
- Therefore for all states k, l , symbols b , and training sequences x :
 - Compute $A_{k,l}$ and $E_k(b)$ as expected values, given the current parameters.

Probabilistic Setting for $A_{k,l}$

- Given our training sequences x^1, \dots, x^m consider a discrete probability space with elementary events $\varepsilon_{k,l} = "k \rightarrow l \text{ is taken in } x^1, \dots, x^m."$
- For each x in $\{x^1, \dots, x^m\}$ and each position i in x let $Y_{x,i}$ be a random variable defined by

$$Y_{x,i}(\varepsilon_{k,l}) = \begin{cases} 1 & \text{if } \pi_i = k \text{ and } \pi_{i+1} = l \\ 0 & \text{otherwise} \end{cases}$$

- Define $Y = \sum_x \sum_i Y_{x,i}$ as the random variable which counts the number of times the event $\varepsilon_{k,l}$ happens in x^1, \dots, x^m .

The meaning of $A_{k,l}$

- Let A_{kl} be the expectation of Y :

$$\begin{aligned} A_{k,l} &= E(Y) \\ &= \sum_x \sum_i E(Y_{x,i}) \\ &= \sum_x \sum_i P(Y_{x,i} = 1) \\ &= \sum_x \sum_i P(\{\mathcal{E}_{x,l} \mid \pi_i = k \text{ and } \pi_{i+1} = l\}) \\ &= \sum_x \sum_i P(\pi_i = k, \pi_{i+1} = l \mid x) \end{aligned}$$

- We therefore need to compute $P(\pi_i = k, \pi_{i+1} = l \mid x)$.

Probabilistic setting for $E_k(b)$

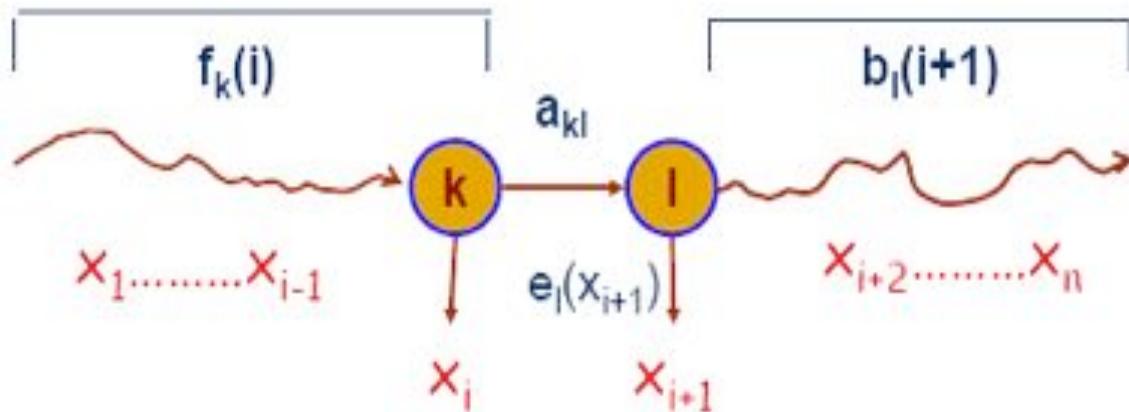
- Given x^1, \dots, x^m , consider a discrete probability space with elementary events $\varepsilon_{k,b} = "b \text{ is emitted in state } k \text{ in } x^1, \dots, x^m."$
- For each x in $\{x^1, \dots, x^m\}$ and each position i in x , let $Y_{x,i}$ be a random variable defined by

$$Y_{x,i}(\varepsilon_{k,b}) = \begin{cases} 1 & \text{if } x_i = b \text{ and } \pi_i = k \\ 0 & \text{otherwise} \end{cases}$$

- Define $Y = \sum_x \sum_i Y_{x,i}$ as the random variable which counts the number of times the event $\varepsilon_{k,b}$ happens in x^1, \dots, x^m .

Computing New Parameters

- Consider a training sequence $x = x^1, \dots, x^m$.
- Concentrate on positions i and $i + 1$:



- Use the forward-backward values:

$$f_{k,i} = P(x_1 \cdots x_i \mid \pi_i = k)$$

$$b_{k,i} = P(x_{i+1} \cdots x_n \mid \pi_i = k)$$

Compute $A_{k,l}(1)$

- The probability $k \rightarrow l$ is taken at position i of x :

$$P(\pi_i = k, \pi_{i+1} = l \mid x_1 \cdots x_n) = \frac{P(x, \pi_i = k, \pi_{i+1} = l)}{P(x)}$$

- Compute $P(x)$ using either forward or backward values.

$$P(x, \pi_i = k, \pi_{i+1} = l) = b_{l,i+1} \cdot e_l(x_{i+1}) \cdot a_{k,l} \cdot f_{k,i}$$

- Expected number of times $k \rightarrow l$ is used in training sequences:

$$A_{k,l} = \frac{\sum_{i=1}^x (b_{l,i+1} \cdot e_l(x_{i+1}) \cdot a_{k,l} \cdot f_{k,i})}{P(x)}$$

Compute $A_{kl}(2)$

$$\begin{aligned} P(x, \pi_i = k, \pi_{i+1} = l) &= P(x_1 \cdots x_i, \pi_i = k, \pi_{i+1} = l, x_{i+1} \cdots x_n) \\ &= P(\pi_{i+1} = l, x_{i+1} \cdots x_n \mid x_1 \cdots x_i, \pi_i = k) \cdot P(x_1 \cdots x_i, \pi_i = k) \\ &= P(\pi_{i+1} = l, x_{i+1} \cdots x_n \mid \pi_i = k) \cdot f_{k,i} \\ &= P(x_{i+1} \cdots x_n \mid \pi_i = k, \pi_{i+1} = l) \cdot P(\pi_{i+1} = l \mid \pi_i = k) \cdot f_{k,i} \\ &= P(x_{i+1} \cdots x_n \mid \pi_{i+1} = l) \cdot a_{k,l} \cdot f_{k,i} \\ &= P(x_{i+2} \cdots x_n \mid x_{i+1}, \pi_{i+1} = l) \cdot P(x_{i+1} \mid \pi_{i+1} = l) \cdot a_{k,l} \cdot f_{k,i} \\ &= P(x_{i+2} \cdots x_n \mid \pi_{i+1} = l) \cdot e_l(x_{i+1}) \cdot a_{k,l} \cdot f_{k,i} \\ &= b_{l,i+1} \cdot e_l(x_{i+1}) \cdot a_{k,l} \cdot f_{k,i} \end{aligned}$$

Compute $E_k(b)$

- Probability that x_i of x is emitted in state k :

$$P(\pi_i = k \mid x_1 \cdots x_n) = \frac{P(\pi_i = k, x_1 \cdots x_n)}{P(x)}$$

$$\begin{aligned} P(\pi_i = k, x_1 \cdots x_n) &= P(x_1 \cdots x_i, \pi_i = k, x_{i+1} \cdots x_n) \\ &= P(x_{i+1} \cdots x_n \mid x_1 \cdots x_i, \pi_i = k) \cdot P(x_1 \cdots x_i, \pi_i = k) \\ &= P(x_{i+1} \cdots x_n \mid \pi_i = k) \cdot f_{k,i} \\ &= b_{k,i} \cdot f_{k,i} \end{aligned}$$

- Expected number of times b is emitted in state k :

$$E_k(b) = \sum_x \sum_{i: x_i = b} \frac{f_{k,i} \cdot b_{k,i}}{P(x)}$$

Finally, new parameters

- These methods allow us to calculate our new parameters $a_{k,l}$ and $e_k(b)$:

$$a_{k,l} = \frac{A_{k,l}}{\sum_{l'} A_{k,l'}}$$

$$e_k(b) = \frac{E_k(b)}{\sum_{b'} E_k(b')}$$

- We can then add pseudocounts as before.

Stopping criteria

- We cannot actually reach maximum (property of optimization of continuous functions).
- Therefore we need stopping criteria.
- Compute the **log likelihood** of the model for current Θ :

$$\sum_x \log[P(x | \Theta)]$$

- Compare with previous log likelihood.
- Stop if small difference.
- Stop after a certain number of iterations to avoid infinite loop.

The Baum-Welch Algorithm Summarized

- Initialization: Pick the best-guess for model parameters (or arbitrary).
- Iteration:
 1. Forward for each x
 2. Backward for each x
 3. Calculate $A_{k, l}$, $E_k(b)$
 4. Calculate new $a_{k, l}$, $e_k(b)$
 5. Calculate new log-likelihood
- Repeat until log-likelihood does not change much.

Baum-Welch Analysis

- Log-likelihood is increased by iterations.
- Baum-Welch is a particular case of the *expectation maximization* (EM) algorithm.
- Convergence is to local maximum. The choice of initial parameters determines local maximum to which the algorithm converges.

Additional Application: Speech Recognition

- Create an HMM of the words in a language.
 - Each word is a hidden state in Q .
 - Each of the basic sounds in the language is a symbol in Σ .
- Input: Fragment of speech.
- Goal: Find the most probable sequence of states.

Speech Recognition: Building the Model

- Analyze some large source of English sentences, such as a database of newspaper articles, to form probability matrices.
 - A_{0i} : The chance that word i begins a sentence.
 - A_{ij} : The chance that word j follows word i .
- Analyze English speakers to determine what sounds are emitted with what words.
- $E_k(b)$: the chance that sound b is spoken in word k . Allows for alternate pronunciation of words.

Speech Recognition: Using the Model

- Use the same dynamic programming algorithm as before.
 - Weave the spoken sounds through the model the same way we wove the rolls of the die through the casino model.
 - π will therefore represent the most likely set of words.

Using the Model

- How well does the model work?
- Common words, such as ‘the’, ‘a’, ‘of’ make prediction less accurate, since there are so many words that follow normally.

Improving Speech Recognition

- Initially, we were using a *bigram*, or a graph connecting every two words.
 - Expand that to a *trigram*.
 - Each state represents two words spoken in succession.
 - Each edge joins those two words ($A B$) to another state representing ($B C$).
 - Requires n^3 vertices and edges, where n is the number of words in the language.
 - Much better, but still limited context.

References

- CS 262 course at Stanford given by Serafim Batzoglou