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CG-Islands 

•  Given 4 nucleotides: probability of any one’s occurrence is ~ 
1/4. 

•  Thus, probability of occurrence of a given dinucleotide (pair 
of successive nucleotides is ~ 1/16. 

•  However, the frequencies of dinucleotides in DNA sequences 
vary widely. 

•  In particular, CG is typically underepresented (frequency of CG 
is typically < 1/16) 
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CG-Islands 

•  CG is the least frequent dinucleotide because the C in CG is 
easily methylated and has the tendency to mutate into T 
afterwards. 

•  However, methylation is suppressed around genes in a 
genome.  So, CG appears at relatively high frequency within 
these CG-islands. 

•  So, finding the CG-islands in a genome is an important 
biological problem. 
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The “Fair Bet Casino” 

•  The CG-islands problem can be modeled after a problem 
named The Fair Bet Casino. 
•  The game is to flip two coins, which results in only two 

possible outcomes: Head (H) or Tail(T). 
•  The Fair coin (F) will give H and T each with probability 
½, which is written P(H | F) = P(T | F) = ½. 

•  The Biased coin (B) will give H with probability ¾, which 
we write as P(H | B) = ¾, P(T | B) = ¼. 

•  The crooked dealer changes between F and B coins with 
probability 10%. 

•  How can we tell when the dealer is using F and when he is 
using B? 
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The Fair Bet Casino Problem 

•  Input: A sequence x = x1x2x3…xn of coin tosses made by two 
possible coins (F or B). 

•  Output: A sequence π = π1 π2 π3… πn, with each πi being either 
F or B and indicating that xi is the result of tossing the Fair or 
Biased coin respectively. 
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Problem… 

•  Any observed outcome of coin tosses could have been 
generated by any sequence of states! 
•  Example: HHHHHHHHHH could be generated by 

BBBBBBBBBB, FFFFFFFFFF, FBFBFBFBFB, etc. 

•  We need to incorporate a way to grade different sequences 
differently. 

•  This provides us with the decoding problem. 
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Simple Case: The Dealer Never Switches Coins 

•  We assume first that the dealer never changes coins: 
•  P(x | F): probability of the dealer using F and generating the 

outcome x. 
•  P(x | B):  probability of the dealer using the B coin and 

generating outcome x. 
•  Example: Say that in x we observe k heads and n – k tails: 
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When Does P(x | F) = P(x | B)? 

� 
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Log-odds Ratio 

•  We define the log-odds ratio (L) as follows: 

•  From the previous slide, if L > 0 we have reason to believe that 
the coin is fair, and if L < 0 we think the coin is biased. 
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•  Consider a sliding window of the outcome sequence and find 
the log-odds ratio for this short window.  

x1x2x3x4x5x6x7x8…xn 

Computing Log-odds Ratio in Sliding Windows 

Log-odds value 
0

Fair coin most likely 
used 

Biased coin most likely 
used 

•  Key Disadvantages: 
•  The length of the CG-island is not known in advance. 
•  Different windows may classify the same position differently. 



An Introduction to Bioinformatics Algorithms www.bioalgorithms.info 

•  Consider a sliding window of the outcome sequence and find 
the log-odds ratio for this short window.  

x1x2x3x4x5x6x7x8…xn 

Computing Log-odds Ratio in Sliding Windows 

Log-odds value 
0

Fair coin most likely 
used 

Biased coin most likely 
used 

•  Key Disadvantages: 
•  The length of the CG-island is not known in advance. 
•  Different windows may classify the same position differently. 



An Introduction to Bioinformatics Algorithms www.bioalgorithms.info 

•  Consider a sliding window of the outcome sequence and find 
the log-odds ratio for this short window.  

x1x2x3x4x5x6x7x8…xn 

Computing Log-odds Ratio in Sliding Windows 

Log-odds value 
0

Fair coin most likely 
used 

Biased coin most likely 
used 

•  Key Disadvantages: 
•  The length of the CG-island is not known in advance. 
•  Different windows may classify the same position differently. 



An Introduction to Bioinformatics Algorithms www.bioalgorithms.info 

•  Consider a sliding window of the outcome sequence and find 
the log-odds ratio for this short window.  

x1x2x3x4x5x6x7x8…xn 

Computing Log-odds Ratio in Sliding Windows 

Log-odds value 
0

Fair coin most likely 
used 

Biased coin most likely 
used 

•  Key Disadvantages: 
•  The length of the CG-island is not known in advance. 
•  Different windows may classify the same position differently. 



An Introduction to Bioinformatics Algorithms www.bioalgorithms.info 

•  Consider a sliding window of the outcome sequence and find 
the log-odds ratio for this short window.  

x1x2x3x4x5x6x7x8…xn 

Computing Log-odds Ratio in Sliding Windows 

Log-odds value 
0

Fair coin most likely 
used 

Biased coin most likely 
used 

•  Key Disadvantages: 
•  The length of the CG-island is not known in advance. 
•  Different windows may classify the same position differently. 



www.bioalgorithms.info An Introduction to Bioinformatics Algorithms 

Section 3: 
Hidden Markov Models 
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Hidden Markov Model (HMM) 

•  Can be viewed as an abstract machine with k hidden states that 
emits symbols from an alphabet Σ. 

•  Each state has its own probability distribution, and the 
machine switches between states and chooses characters 
according to this probability distribution. 

•  While in a certain state, the machine makes two decisions: 
1.  What state should I move to next? 
2.  What symbol - from the alphabet Σ - should I emit? 
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Why “Hidden”? 

•  Observers can see the emitted symbols of an HMM but have 
no ability to know which state the HMM is currently in. 

•  The goal is to infer the most likely hidden states of an HMM 
based on the given sequence of emitted symbols. 
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HMM Parameters 

•  Σ: set of emission characters. 

•  Q: set of hidden states, each emitting symbols from Σ. 

•  A = (akl): a |Q| x |Q| matrix containing the probabilities of 
changing from state k to state l. 

•  E = (ek(b)): a |Q| x |Σ| matrix of probability of emitting symbol 
b while being in state k. 
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HMM Parameters 

•  A = (akl): a |Q| x |Q| matrix containing the probabilities of 
changing from state k to state l. 
•  aFF = 0.9     aFB = 0.1 
•  aBF = 0.1     aBB = 0.9 

•  E = (ek(b)): a |Q| x |Σ| matrix of probability of emitting symbol 
b while being in state k. 
•  eF(0) = ½     eF(1) = ½  
•  eB(0) = ¼     eB(1) = ¾  
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HMM for the Fair Bet Casino 

Fair Biased 

Fair 

Biased 

Tails(0) Heads(1) 

Fair 

Biased 

•  The Fair Bet Casino in HMM terms: 
•  Σ = {0, 1} (0 for T and 1 for H) 
•  Q = {F, B} 

Transition Probabilities (A) Emission Probabilities (E) 
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HMM for the Fair Bet Casino 

•  HMM model for the Fair Bet Casino Problem: 
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Hidden Paths 

•  A path π = π1… πn in the HMM is defined as a sequence of 
states. 

•  Consider path π = FFFBBBBBFFF and sequence x = 
01011101001 
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P(x | π) Calculation 

•  P(x | π): Probability that sequence x was generated if we know 
that we have the path π.                                                               

� 

P x π( ) = P π0 →π1( ) ⋅ P xi π( )
i=1

n

∏ ⋅ P π i →π i+1( )

= aπ 0 , π1 eπ i
x( ) ⋅ aπ i , π i+1

i=1

n

∏
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Decoding Algorithm 
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Decoding Problem 

•  Goal:  Find an optimal hidden path of states given observations. 

•  Input:  Sequence of observations x = x1…xn generated by an 
HMM M(Σ, Q, A, E). 

•  Output: A path that maximizes P(x | π) over all possible paths π. 
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Building Manhattan for Decoding Problem 

•  Andrew Viterbi used the Manhattan edit graph model to solve 
the Decoding Problem. 

•  Vertices are composed of n “levels” with |Q| vertices in each 
level; each vertex represents a different state. 

•  We connect each vertex in level i to each vertex in level i + 1 
via a directed edge, giving |Q|2(n – 1) edges.   

•  Therefore every choice of π = π1… πn corresponds to a path in 
the graph. 
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Edit Graph for Decoding Problem: Example  
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Decoding Problem vs. Alignment Problem 

Valid Directions in Alignment Valid Directions in Decoding 
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Decoding Problem 

•  Every path in the graph has the probability P(x | π). 

•  The Viterbi algorithm finds the path that maximizes P(x | π) 
among all possible paths. 

•  The Viterbi algorithm runs in O(n |Q|2) time. 
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Decoding Problem: Weights of Edges 

•   The weight w is given by: ? 

w 

(k, i) (l, i+1) 
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•   The weight w is given by: ? 

Decoding Problem: Weights of Edges 

w 

(k, i) (l, i+1) 
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P x π( ) = eπ i+1
xi+1( ) ⋅ aπ i , π i+1

i=0
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P x π( ) = eπ i+1
xi+1( ) ⋅ aπ i , π i+1
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i th  term = eπ i+1

xi+1( ) ⋅ aπ i , π i+1
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•   The weight w is given by: el (xi+1) . ak, l 

Decoding Problem: Weights of Edges 

w 

(k, i) (l, i+1) 

� 

P x π( ) = eπ i+1
xi+1( ) ⋅ aπ i , π i+1

i= 0

n−1

∏
i th  term = eπ i+1

xi+1( ) ⋅ aπ i , π i+1



An Introduction to Bioinformatics Algorithms www.bioalgorithms.info 

Decoding Problem and Dynamic Programming 

•  sl, i+1 = max probability of all paths of length i + 1 ending in 
state l (for the first i + 1 observations). 

•  Recursion: 

� 

sl, i+1 = max
k∈Q

sk, i ⋅weight of edge between k, i( ) and l, i +1( ){ }
= max

k∈Q
sk, i ⋅ ak, l ⋅ el xi+1( ){ }

= el xi+1( ) ⋅ max
k∈Q

sk, i ⋅ ak, l{ }
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•  The value of the product can become extremely small, which 
leads to overflow. 
•  A computer has only finite storage to store any given 

number, and if the number is too small it runs out of room. 

•  To avoid overflow, take the logarithm of the right side instead. 

Decoding Problem and Dynamic Programming 

� 

sl, i+1 = log el xi+1( )[ ] +max
k∈Q

log sk, i( ) + log ak, l( ){ }
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Decoding Problem and Dynamic Programming 

•  Initialization: 

•  Let π* be the optimal path. Then, 

� 

P x π∗( ) =max
k∈Q

sk,n = ak,end{ }� 

sk, 0 =
1     if k = begin
0    otherwise

⎧ 
⎨ 
⎩ 
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Section 5: 
Forward-Backward 

Algorithm 
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Forward-Backward Problem 

•  Given: a sequence of coin tosses generated by an HMM. 

•  Goal: Find the probability that the dealer was using a biased 
coin at a particular time. 
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Forward Probability 

•  Define fk,i (forward probability) as the probability of 
emitting the prefix x1…xi and reaching the state π = k. 

•  The recurrence for the forward algorithm: 

� 

fk, i = ek xi( ) ⋅ f l , i−1⋅ al,k
l∈Q
∑
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Backward Probability 

•  However, forward probability is not the only factor affecting 
P(πi = k | x). 

•  The sequence of transitions and emissions that the HMM 
undergoes between πi+1 and πn also affect P(πi = k | x). 

•  Define the backward probability bk,i as the probability of 
being in state πi = k and emitting the suffix xi+1…xn. Recurrence: 

Forward Backward xi 

� 

bk, i = el xi+1( ) ⋅
l∈Q
∑ bl , i+1 ⋅ ak, l
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Backward-Forward Probability 

•  The probability that HMM is in a certain state k at any 
moment i, given that we observe the output x, is therefore 
influenced by both the forward and backward probabilities. 

•  We use the mathematical definition of conditional 
probability to calculate P(πi = k | x): 

� 

P π i = k x( ) =
P x, π i = k( )

P x( ) =
fk, i ⋅ bk, i
P x( )
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Section 6: 
Profile HMMs 
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Finding Distant Members of a Protein Family 

•  A distant cousin of functionally related sequences in a protein 
family may have weak pairwise similarities with each member 
of the family and thus fail a significance test. 

•  However, they may have these weak similarities with many 
members of the family, indicating a correlation. 

•  The goal is to align a sequence to all members of the family at 
once. 

•  A family of related proteins can be represented by their 
multiple alignment and the corresponding profile. 
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Profile Representation of Protein Families 

•  Aligned DNA sequences can be represented by  a 4 x n profile 
matrix reflecting the frequencies of nucleotides in every aligned 
position. 
•  Example: 

•  Similarly, a protein family can be represented by a 20 x n  
profile representing frequencies of amino acids. 
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•  Multiple alignment of a protein family shows variations in 
conservation along the length of a protein. 

•  Example: After aligning many globin proteins, biologists 
recognized that the helices region in globins are more 
conserved than others. 

Protein Family Classification 
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•  A profile HMM is a probabilistic representation of a multiple 
alignment. 

•  A given multiple alignment (of a protein family) is used to 
build a profile HMM. 

•  This model then may be used to find and score less obvious 
potential matches of new protein sequences. 

What Is a Profile HMM? 
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Profile HMM 

•  A profile HMM has three sets of states: 
•  Match states:      M1 ,…, Mn (plus begin/end states)  
•  Insertion states:  I0 , I1 ,…, In 
•  Deletion states:   D1 ,…, Dn 
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1.  Multiple alignment is used to construct the HMM model. 

2.  Assign each column to a Match state in HMM. Add Insertion 
and Deletion state. 

3.  Estimate the emission probabilities according to amino acid 
counts in column. Different positions in the protein will have 
different emission probabilities. 

4.  Estimate the transition probabilities between Match, Deletion 
and Insertion states. 

Building a Profile HMM 
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Transition Probabilities in a Profile HMM 

•  Gap Initiation Penalty: The cost of beginning a gap, which 
means that we must have transitions from match state to insertion 
state and vice versa. 
•  Penalty: 

•  Gap Extension Penalty: The cost of extending a gap, which 
corresponds to maintaining the insertion state for one period. 
•  Penalty: 

� 

log aMI( ) + log aIM( )

� 

log aII( )
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Emission Probabilities in a Profile HMM 

•   Probabilty of emitting a symbol a at an insertion state Ij: 

•  Here p(a) is the frequency of the occurrence of the symbol a 
in all the sequences. 

� 

eI j a( ) = p a( )
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Profile HMM Alignment 

•  Define vM
j (i) as the logarithmic likelihood score of the best 

path for matching x1..xi to the profile HMM ending with xi 
emitted by the state Mj. 

•  vI
j (i) and vD

j (i) are defined similarly. 
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Profile HMM Alignment: Dynamic Programming 

� 

v j
M i( ) = log

eM j
xi( )

p xi( )
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
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+max

v j−1
M i −1( ) + log aM j−1 , M j( )
v j−1
I i −1( ) + log aI j−1 , M j( )
v j−1
D i −1( ) + log aD j−1 , M j( )

⎧ 

⎨ 

⎪ 
⎪ 

⎩ 

⎪ 
⎪ 
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Profile HMM Alignment: Dynamic Programming 

� 
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Paths in Edit Graph and Profile HMM 

•  At right is a  path 
through an edit graph 
and the corresponding 
path through a profile 
HMM. 

•  Observe: 
•  Diagonalmatch 
•  Verticalinsertion 
•  Horizontaldeletion 
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1.  Use BLAST to separate a protein database into families of related 
proteins. 

2.  Construct a multiple alignment for each protein family. 

3.  Construct a profile HMM model and optimize the parameters of the 
model (transition and emission probabilities). 

4.  Align the target sequence against each HMM to find the best fit 
between a target sequence and an HMM. 

Making a Collection of HMM for Protein Families 
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Profile HMMs and Modeling Globin Proteins 

•  Globins represent a large collection of protein sequences.  
•  400 globin sequences were randomly selected from all globins 

and used to construct a multiple alignment. 
•  Multiple alignment was used to assign an HMM. 
•  625 remaining globin sequences were aligned to the HMM, 

resulting in a multiple alignment. This multiple alignment was 
in a good agreement with the structurally derived alignment. 

•  Other proteins, were randomly chosen from the database and 
compared against the globin HMM. 

•  This experiment resulted in an excellent separation between 
globin and non-globin families. 
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•  Pfam decribes protein domains.  
•  Each protein domain family in Pfam has: 

•  Seed alignment: Manually verified multiple alignment of a 
representative set of sequences. 

•  HMM: Built from the seed alignment for further searches. 
•  Full alignment: Generated automatically from the HMM. 

•  The distinction between seed and full alignments facilitates 
Pfam updates. 
•  Seed alignments are stable resources. 
•  HMM profiles and full alignments can be updated with 

newly found amino acid sequences.  

PFAM 
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•  Pfam HMMs span entire domains that include both well-
conserved motifs and less-conserved regions with insertions 
and deletions. 

•  It results in modeling complete domains that facilitates better 
sequence annotation and leads to more sensitive detection. 

PFAM Uses 
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Section 7: 
HMM Parameter 

Estimation 
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HMM Parameter Estimation 

•  So far, we have assumed that the transition and emission 
probabilities are known. 

•  However, in most HMM applications, the probabilities are not 
known.  It is very difficult to estimate the probabilities. 
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HMM Parameter Estimation Problem 

•  Given: HMM with states and alphabet (emission characters), 
as well as independent training sequences x1, … xm.  

•  Goal: Find HMM parameters Θ (that is, ak,,b , ek(b) that 
maximize the joint probability of the training sequences, 
which is given by the following:  

  

� 

P x1,… , xm Θ( )
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•  P(x1, …, xm | Θ) as a function of Θ is called the likelihood of 
the model. 

•  The training sequences are assumed independent; therefore, 

•  The parameter estimation problem seeks Θ that realizes 

•  In practice the log likelihood is computed to avoid underflow 
errors. 

Maximize the Likelihood 

  

� 

P x1,… , xm Θ( ) = P xi Θ( )
i=1

m

∏
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1.  Known paths for training sequences: 
•  CpG islands marked on training sequences 
•  Casino analogue: One evening the dealer allows us to see when 

he changes the dice. 

2.  Unknown paths for training sequences:  
•  CpG islands are not marked 
•  We do not see when the casino dealer changes dice 

Two Situations 
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•  Akl = # of times each k → l is taken in the training sequences. 

•  Ek(b) = # of times b is emitted from state k in the training 
sequences. 

•  Compute akl and ek(b) as maximum likelihood estimators: 

Known Paths 

� 

ak, l =
Ak, l

Ak, l '
l '
∑

� 

ek b( ) =
Ek b( )
Ek b'( )

b '
∑
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•  Some state k may not appear in any of the training sequences. This 
means Ak, l = 0 for every state l and ak, l cannot be computed with 
the given equation. 

•  To avoid this overfitting, use predetermined pseudocounts rkl and 
rk(b) which reflect prior biases about the probability values: 
•  Ak, l = number of transitions k→l + rk, l 

•  Ek(b) = number of emissions of b from k + rk(b) 

Pseudocounts 



www.bioalgorithms.info An Introduction to Bioinformatics Algorithms 

Section 8: 
Viterbi Training 
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Unknown Paths Method 1: Viterbi Training 

•  Idea: Use Viterbi decoding to compute the most probable path 
for training sequence x. 

•  Method: 
1.  Start with some guess for initial parameters and compute 
π* = the most probable path for x using initial parameters. 

2.  Iterate until no change in π*. 
3.  Determine Ak, l and Ek(b) as before. 
4.  Compute new parameters ak, l  and ek(b) using the same 

formulas as before. 
5.  Compute new π* for x and the current parameters. 
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•  The algorithm converges precisely. 
•  There are finitely many possible paths. 
•  New parameters are uniquely determined by the current π*. 
•  There may be several paths for x with the same probability, hence 

we must compare the new π* with all previous paths having highest 
probability. 

•  Does not maximize the likelihood Πx P(x | Θ) but rather the 
contribution to the likelihood of  the most probable path, 
Πx P(x | Θ, π*). 

•  In general, performs less well than Baum-Welch (below). 

Viterbi Training Analysis 
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Section 9: 
Baum-Welch Algorithm 
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•  Idea: Guess initial values for parameters. 
•  This is art and experience, not science. 

•  We then estimate new (better) values for parameters. 
•  How? 

•  We repeat until stopping criterion is met. 
•  What criterion? 

Unknown Paths Method 2: Baum-Welch 
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•  We would need the Ak,l and Ek(b) values, but the path is unknown, 
and we do not want to use a most probable path. 

•  Therefore for all states k, l, symbols b, and training sequences x: 
•  Compute Ak,l and Ek(b) as expected values, given the current 

parameters. 

Improved Parameters 



An Introduction to Bioinformatics Algorithms www.bioalgorithms.info 

Probabilistic Setting for Ak,l 

•  Given our training sequences x1, … ,xm consider a discrete 
probability space with elementary events εk,l, = “k → l is taken in 
x1, …, xm.” 

•  For each x in {x1,…,xm} and each position i in x let Yx,i be a 
random variable defined by  

•  Define Y = Σx Σi Yx,i as the random variable which counts the 
number of times the event εk,l happens in x1,…,xm. 

� 

Yx, i(εk, l ) =
1    if π i = k and π i+1 = l
0   otherwise

⎧ 
⎨ 
⎩ 
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The meaning of Ak,l 

•  Let Akl be the expectation of Y: 

•  We therefore need to compute P(πi = k, πi+1 = l | x).  

� 

Ak, l = E Y( )
= E Yx, i( )

i
∑

x
∑

= P Yx, i = 1( )
i
∑

x
∑

= P εx, l π i = k and π i+1 = l{ }( )
i
∑

x
∑

= P π i = k, π i+1 = l x( )
i
∑

x
∑
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Probabilistic setting for Ek(b) 

•  Given x1, … ,xm , consider a discrete probability space with 
elementary events εk,b = “b is emitted in state k in x1, … ,xm.” 

•  For each x in {x1,…,xm} and each position i in x, let Yx,i be a 
random variable defined by 

•  Define Y = Σx Σi Yx,i as the random variable which counts the 
number of times the event εk,b happens in x1,…,xm. 

� 

Yx, i εk,b( ) =
1    if xi = b and π i = k
0   otherwise

⎧ 
⎨ 
⎩ 
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Computing New Parameters 

•  Consider a training sequence x = x1, … , xm. 
•  Concentrate on positions i and i + 1:  

•  Use the forward-backward values:  

  

� 

fk, i = P x1 xi π i = k( )
bk, i = P xi+1 xn π i = k( )
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Compute Ak,l (1) 

•  The probability k → l is taken at position i of x: 

•  Compute P(x) using either forward or backward values. 

•  Expected number of times k → l is used in training sequences: 

  

� 

P π i = k, π i+1 = l x1xn( ) =
P x, π i = k, π i+1 = l( )

P x( )

� 

P x, π i = k, π i+1 = l( ) = bl, i+1 ⋅ el xi+1( )⋅ ak, l ⋅ fk, i

� 

Ak, l =
bl , i+1 ⋅ el xi+1( )⋅ ak, l ⋅ fk, i( )

i
∑

x
∑

P x( )
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Compute Akl(2) 

  

� 

P x, π i = k, π i+1 = l( ) = P x1xi, π i = k, π i+1 = l, xi+1xn( )
= P π i+1 = l, xi+1xn x1xi, π i = k( )⋅ P x1xi, π i = k( )
= P π i+1 = l, xi+1xn π i = k( )⋅ fk, i
= P xi+1xn π i = k, π i+1 = l( )⋅ P π i+1 = l π i = k( )⋅ fk, i
= P xi+1xn π i+1 = l( )⋅ ak, l ⋅ fk, i
= P xi+2xn xi+1, π i+1 = l( )⋅ P xi+1 π i+1 = l( )⋅ ak, l ⋅ fk, i
= P xi+2xn π i+1 = l( )⋅ el xi+1( )⋅ ak, l ⋅ fk, i
= bl, i+1 ⋅ el xi+1( )⋅ ak, l ⋅ fk, i
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Compute Ek(b) 

•  Probability that xi of x is emitted in state k: 

•  Expected number of times b is emitted in state k: 

� 

Ek (b) =
fk, i ⋅ bk, i
P x( )i : xi =b

∑
x
∑

  

� 

P π i = k x1xn( ) =
P π i = k, x1xn( )

P x( )
P π i = k, x1xn( ) = P x1xi, π i = k, xi+1xn( )

= P xi+1xn x1xi, π i = k( )⋅ P x1xi, π i = k( )
= P xi+1xn π i = k( )⋅ fk, i
= bk, i ⋅ fk, i
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Finally, new parameters 

•  We can then add pseudocounts as before. 

� 

ak, l =
Ak, l

Ak, l '
l '
∑

� 

ek (b) =
Ek b( )
Ek b'( )

b '
∑

•  These methods allow us to calculate our new parameters ak, l 
and ek(b): 
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Stopping criteria 

•  We cannot actually reach maximum (property of optimization of 
continuous functions). 

•  Therefore we need stopping criteria. 

•  Compute the log likelihood of  the model for current Θ : 

•  Compare with previous log likelihood. 
•  Stop if small difference. 
•  Stop after a certain number of iterations to avoid infinite loop. � 

log P x Θ( )[ ]
x
∑
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•  Initialization: Pick the best-guess for model parameters (or 
arbitrary). 

•  Iteration: 
1.  Forward for each x 
2.  Backward for each x 
3.  Calculate Ak, l , Ek(b) 
4.  Calculate new ak, l , ek(b) 
5.  Calculate new log-likelihood 

•  Repeat until log-likelihood does not change much. 

The Baum-Welch Algorithm Summarized 
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•  Log-likelihood is increased by iterations. 

•  Baum-Welch is a particular case of the expectation 
maximization (EM) algorithm. 

•  Convergence is to local maximum. The choice of initial 
parameters determines local maximum to which the algorithm 
converges. 

Baum-Welch Analysis 
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Additional Application: Speech Recognition 

•  Create an HMM of the words in a language.  
•  Each word is a hidden state in Q. 
•  Each of the basic sounds in the language is a symbol in Σ. 

•  Input: Fragment of speech. 

•  Goal: Find the most probable sequence of states. 
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Speech Recognition: Building the Model 

•  Analyze some large source of English sentences, such as a 
database of newspaper articles, to form probability matrices. 
•  A0i: The chance that word i begins a sentence. 
•  Aij: The chance that word j follows word i. 

•  Analyze English speakers to determine what sounds are 
emitted with what words. 

•  Ek(b): the chance that sound b is spoken in word k.  Allows for 
alternate pronunciation of words. 
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Speech Recognition: Using the Model 

•  Use the same dynamic programming algorithm as before. 
•  Weave the spoken sounds through the model the same way 

we wove the rolls of the die through the casino model. 
•  π will therefore represent the most likely set of words. 
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Using the Model 

•  How well does the model work? 

•  Common words, such as ‘the’, ‘a’, ‘of’ make prediction less 
accurate, since there are so many words that follow normally. 
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Improving Speech Recognition 

•  Initially, we were using a bigram, or a graph connecting every 
two words. 
•  Expand that to a trigram. 
•  Each state represents two words spoken in succession. 
•  Each edge joins those two words (A B) to another state 

representing (B C). 
•  Requires n3 vertices and edges, where n is the number of 

words in the language. 
•  Much better, but still limited context. 
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