

Multiple Alignment

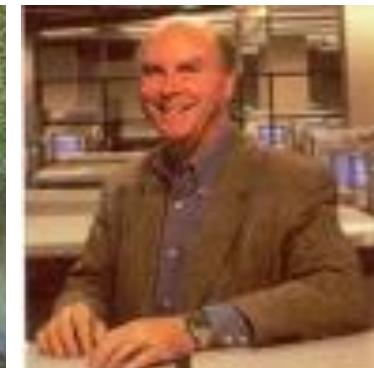
Outline

1. Introduction to Multiple Alignment
2. Progressive Alignment
3. Scoring Multiple Alignments
4. Partial Order Alignment
5. A-Brujin Approach to Multiple Alignment

Section 1: Introduction to Multiple Alignment

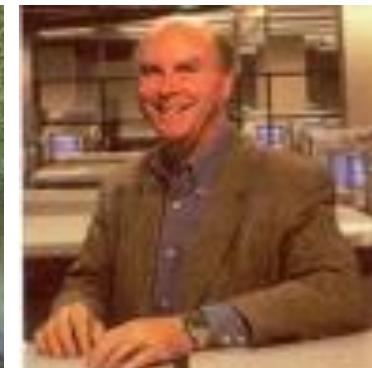
Multiple Sequence Alignment (MSA)

- Up until now we have only tried to align two sequences.



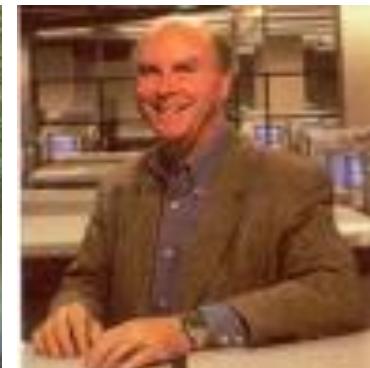
Multiple Sequence Alignment (MSA)

- Up until now we have only tried to align two sequences.
- What about aligning more than two sequences?



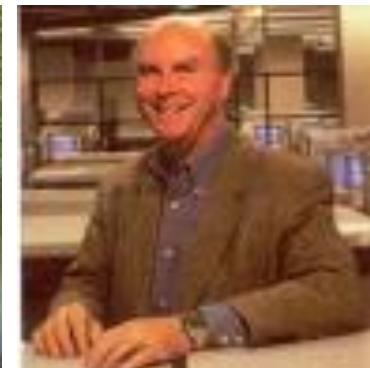
Multiple Sequence Alignment (MSA)

- Up until now we have only tried to align two sequences.
- What about aligning more than two sequences?
- A faint similarity between two sequences becomes significant if it is present in many other sequences.



Multiple Sequence Alignment (MSA)

- Up until now we have only tried to align two sequences.
- What about aligning more than two sequences?
- A faint similarity between two sequences becomes significant if it is present in many other sequences.
- Therefore multiple alignments can reveal subtle similarities that pairwise alignments do not reveal.



Generalizing Pairwise to Multiple Alignment

- Alignment of 2 sequences is represented as a 2-row matrix.
- In a similar way, we represent alignment of 3 sequences as a 3-row matrix
 - Example:

A T - G C G -

A - C G T - A

A T C A C - A

- Our scoring function should score alignments with conserved columns higher.

Alignments = Paths in 3-Space

- Say we have 3 sequences to align: ATGC, AATC, ATGC

	A	--	T	G	C
--	---	----	---	---	---

	A	A	T	--	C
--	---	---	---	----	---

	--	A	T	G	C
--	----	---	---	---	---

Alignments = Paths in 3-Space

- Say we have 3 sequences to align: ATGC, AATC, ATGC

0	1	1	2	3	4
	A	--	T	G	C
	A	A	T	--	C
	--	A	T	G	C

x coordinate

Alignments = Paths in 3-Space

- Say we have 3 sequences to align: ATGC, AATC, ATGC

0	1	1	2	3	4
	A	--	T	G	C
0	1	2	3	3	4
	A	A	T	--	C

x coordinate

y coordinate

	--	A	T	G	C
--	----	---	---	---	---

Alignments = Paths in 3-Space

- Say we have 3 sequences to align: ATGC, AATC, ATGC
- Plotting the coordinates gives a path in 3-space:

0	1	1	2	3	4
	A	--	T	G	C
0	1	2	3	3	4
	A	A	T	--	C
0	0	1	2	3	4
	--	A	T	G	C

x coordinate

y coordinate

z coordinate

Alignments = Paths in 3-Space

- Say we have 3 sequences to align: ATGC, AATC, ATGC
- Plotting the coordinates gives a path in 3-space:
 - $(0,0,0) \rightarrow (1,1,0) \rightarrow (1,2,1) \rightarrow (2,3,2) \rightarrow (3,3,3) \rightarrow (4,4,4)$

0	1	1	2	3	4
	A	--	T	G	C
0	1	2	3	3	4
	A	A	T	--	C
0	0	1	2	3	4
	--	A	T	G	C

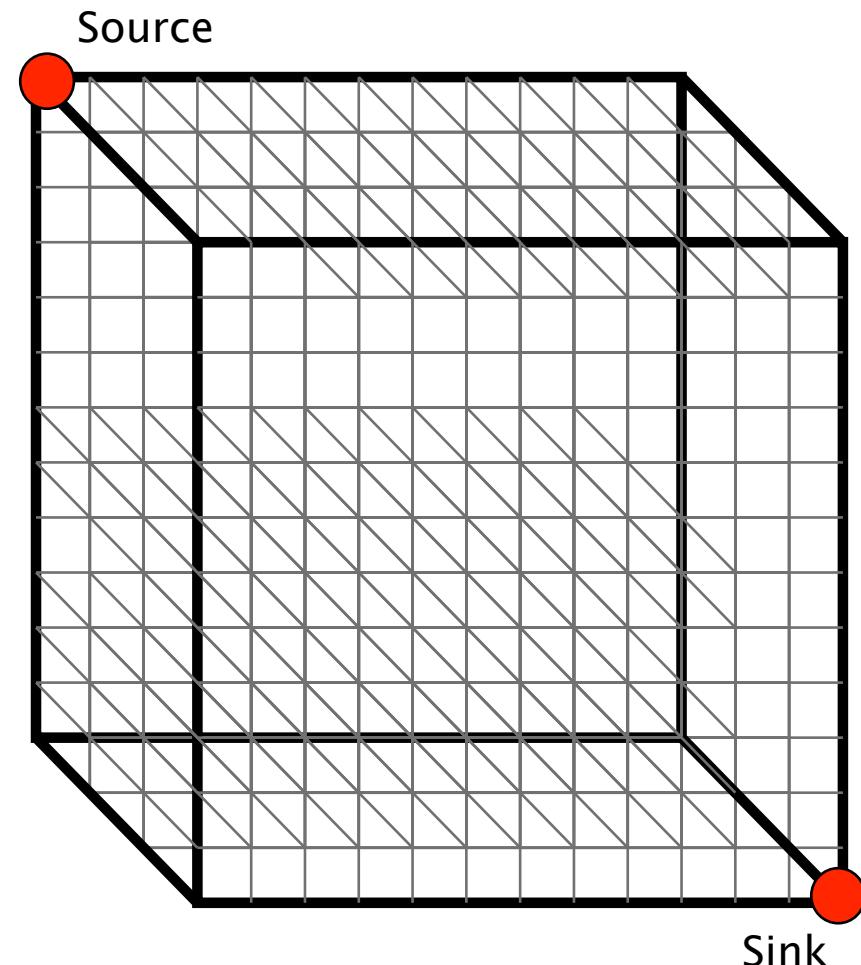
x coordinate

y coordinate

z coordinate

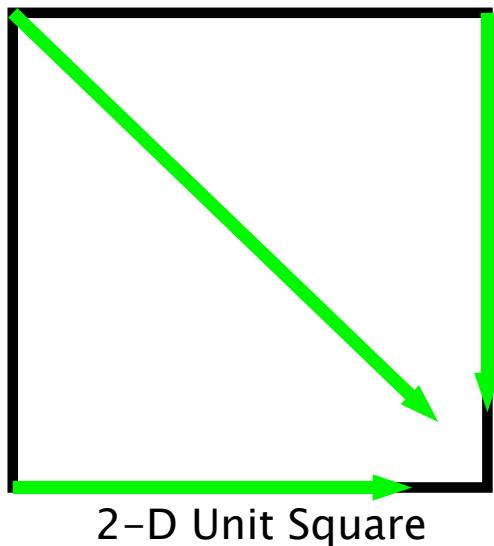
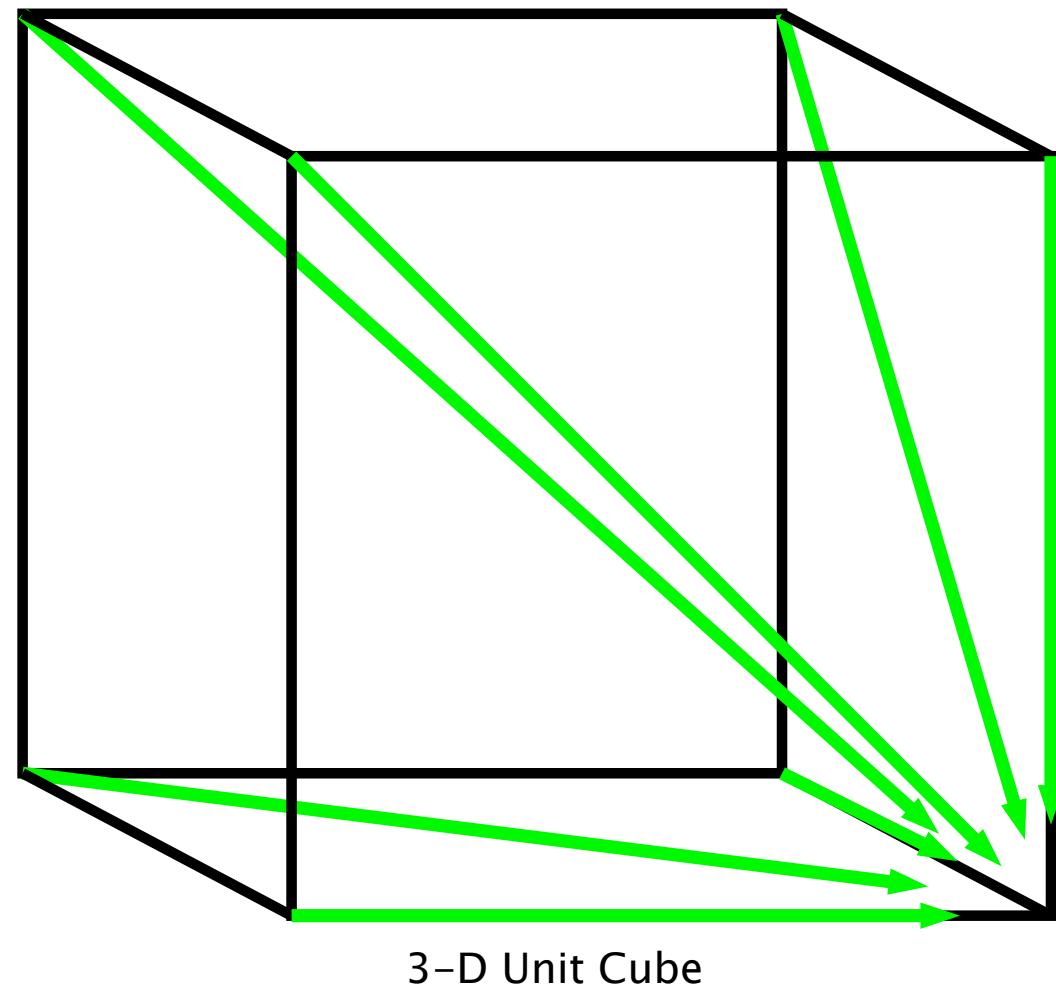
Alignments = Paths in 3-Space

- Same strategy as aligning two sequences.
- Use a 3-D “Manhattan Cube”, with each axis representing a sequence to align.
- For global alignments, go from source to sink.

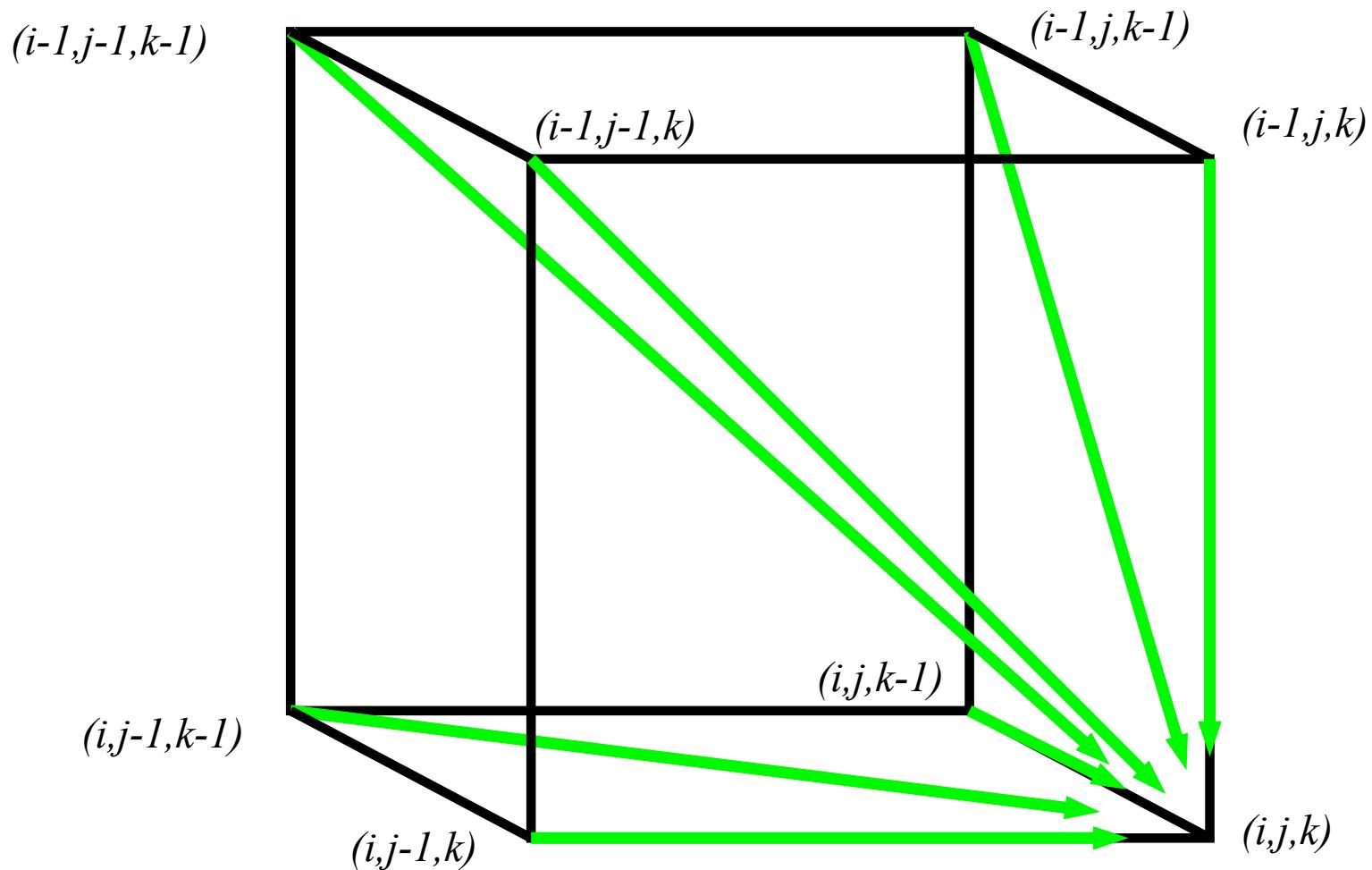


2-D Alignment Cell versus 3-D Alignment Cell

- In 2-D, 3 edges in each unit square
- In 3-D, 7 edges in each unit cube



Architecture of 3-D Alignment Cell



Multiple Alignment: Dynamic Programming

$$s_{i,j,k} = \max \left\{ \begin{array}{l} s_{i-1,j-1,k-1} + \delta(v_i, w_j, u_k) \\ s_{i-1,j-1,k} + \delta(v_i, w_j, -) \\ s_{i-1,j,k-1} + \delta(v_i, -, u_k) \\ s_{i,j-1,k-1} + \delta(-, w_j, u_k) \\ s_{i-1,j,k} + \delta(v_i, -, -) \\ s_{i,j-1,k} + \delta(-, w_j, -) \\ s_{i,j,k-1} + \delta(-, -, u_k) \end{array} \right\}$$

Cube diagonal: no indels

Face diagonal: one indel

Edge diagonal: two indels

- $\delta(x, y, z)$ is an entry in the 3-D scoring matrix.

Multiple Alignment: Running Time

- For 3 sequences of length n , the run time is $7n^3 = O(n^3)$
- For generalization to k sequences, build a k -dimensional Manhattan graph:
 - There are n^k vertices in this graph.
 - Each vertex has $2^k - 1$ edges coming into it.
 - Therefore, run time = $(2^k - 1)(n^k) = O(2^k n^k)$
- **Conclusion:** The dynamic programming approach for alignment between two sequences is easily extended to k sequences but it is impractical due to a run time that is exponential in the number of sequences.

Multiple Alignment Induces Pairwise Alignments

- Every multiple alignment induces pairwise alignments
 - **Example:** The alignment

x: A C – G C G G – C

y: A C – G C – G A G

z: G C C G C – G A G

induces the following three pairwise alignments:

x: ACGCGG-C

x: AC-GCGG-C

y: AC-GCGAG

y: ACGC-GAC

z: GCCGC-GAG

z: GCCGCGAG

Idea: Construct Multiple from Pairwise Alignments

- Given k arbitrary pairwise alignments, can we construct a multiple alignment that induces them?
- Example:** 3 sequence alignment
 - $x = \text{ACGCTGGC}$, $y = \text{ACGCGAC}$, $z = \text{GCCGCAGAG}$
 - Say we have optimal pairwise alignments as follows:

$x: \text{ACGCTGG-C}$	$x: \text{AC-GCTGG-C}$	$y: \text{AC-GC-GAG}$
$y: \text{ACGC--GAC}$	$z: \text{GCCGCA-GAG}$	$z: \text{GCCGCAGAG}$
 - Can we construct a multiple alignment that induces them?

Idea: Construct Multiple from Pairwise Alignments

- Given k arbitrary pairwise alignments, can we construct a multiple alignment that induces them?
- Example:** 3 sequence alignment
 - $x = \text{ACGCTGGC}$, $y = \text{ACGCGAC}$, $z = \text{GCCGCAGAG}$
 - Say we have optimal pairwise alignments as follows:

$x: \text{ACGCTGG-C}$	$x: \text{AC-GCTGG-C}$	$y: \text{AC-GC-GAG}$
$y: \text{ACGC--GAC}$	$z: \text{GCCGCA-GAG}$	$z: \text{GCCGCAGAG}$

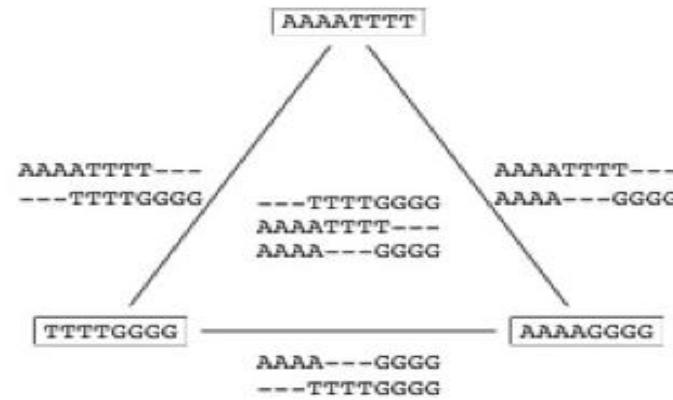
- Can we construct a multiple alignment that induces them?
- Answer:** Not always!

Idea: Construct Multiple from Pairwise Alignments

- From an optimal multiple alignment, we can infer pairwise alignments between all pairs of sequences, but they are not necessarily optimal.
- Likewise, it is difficult to infer a “good” multiple alignment from optimal pairwise alignments between all sequences.

Idea: Construct Multiple from Pairwise Alignments

- **Example 1:** Can combine pairwise alignments into optimal multiple alignment.



(a) Compatible pairwise alignments

- **Example 2:** Can *not* combine pairwise alignments into optimal multiple alignment.

(b) Incompatible pairwise alignments

Profile Representation of Multiple Alignment

-	A	G	G	C	T	A	T	C	A	C	C	T	G
T	A	G	-	C	T	A	C	C	A	-	-	-	G
C	A	G	-	C	T	A	C	C	A	-	-	-	G
C	A	G	-	C	T	A	T	C	A	C	-	G	G
C	A	G	-	C	T	A	T	C	G	C	-	G	G

A	1			1		.8							
C	.6			1		.4	1	.6	.2				
G		1	.2				.2			.4	1		
T	.2			1		.6				.2			
-	.2		.8					.4	.8	.4			

Profile Representation of Multiple Alignment

- In the past we were aligning a **sequence against a sequence**.

-	A	G	G	C	T	A	T	C	A	C	C	T	G
T	A	G	-	C	T	A	C	C	A	-	-	-	G
C	A	G	-	C	T	A	C	C	A	-	-	-	G
C	A	G	-	C	T	A	T	C	A	C	-	G	G
C	A	G	-	C	T	A	T	C	G	C	-	G	G

A	1		1	.8									
C	.6		1	.4	1	.6	.2						
G		1	.2			.2			.4	1			
T	.2			1	.6				.2				
-	.2		.8				.4	.8	.4				

Profile Representation of Multiple Alignment

- In the past we were aligning a **sequence against a sequence**.
 - Can we align a **sequence against a profile**?

-	A	G	G	C	T	A	T	C	A	C	C	T	G
T	A	G	-	C	T	A	C	C	A	-	-	-	G
C	A	G	-	C	T	A	C	C	A	-	-	-	G
C	A	G	-	C	T	A	T	C	A	C	-	G	G
C	A	G	-	C	T	A	T	C	G	C	-	G	G

A	1		1	.8									
C	.6		1	.4	1	.6	.2						
G		1	.2			.2		.4	1				
T	.2			1	.6				.2				
-	.2		.8				.4	.8	.4				

Profile Representation of Multiple Alignment

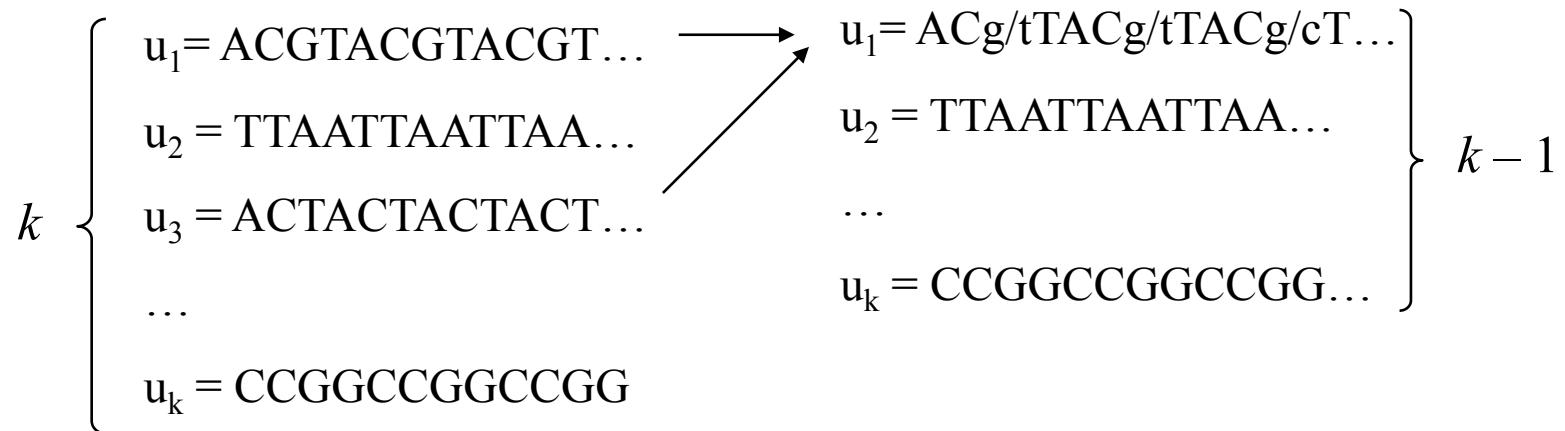
- In the past we were aligning a **sequence against a sequence**.
 - Can we align a **sequence against a profile**?
 - Can we align a **profile against a profile**?

-	A	G	G	C	T	A	T	C	A	C	C	T	G
T	A	G	-	C	T	A	C	C	A	-	-	-	G
C	A	G	-	C	T	A	C	C	A	-	-	-	G
C	A	G	-	C	T	A	T	C	A	C	-	G	G
C	A	G	-	C	T	A	T	C	G	C	-	G	G

A	1		1	.8									
C	.6		1	.4	1	.6	.2						
G		1	.2			.2		.4	1				
T	.2			1	.6				.2				
-	.2		.8				.4	.8	.4				

Multiple Alignment: Greedy Approach

- Choose the most similar pair of strings and combine them into a profile, thereby reducing alignment of k sequences to an alignment of $k - 1$ sequences/profiles.
- Then repeat.
- This is a **heuristic** (greedy) method.



Greedy Approach: Example

- Consider the 4 sequences: GATTCA, GTCTGA, GATATT, GTCAGC

Greedy Approach: Example

- Consider the 4 sequences: GATTCA, GTCTGA, GATATT, GTCAGC.

- There are $\binom{4}{2} = 6$ possible pairwise alignments:

$s2$ GTCTGA
 $s4$ GTCAGC (score = 2)

$s1$ GATTCA--
 $s4$ G-T-CAGC (score = 0)

$s1$ GAT-TCA
 $s2$ G-TCTGA (score = 1)

$s2$ G-TCTGA
 $s3$ GATAT-T (score = -1)

$s1$ GAT-TCA
 $s3$ GATAT-T (score = 1)

$s3$ GAT-ATT
 $s4$ G-TCAGC (score = -1)

Greedy Approach: Example

- s_2 and s_4 are closest, so we consolidate these sequences into one by using the profile matrix:

$$\left. \begin{array}{ll} s_2 & \text{GTCTGA} \\ s_4 & \text{GTCAGC} \end{array} \right\} s_{2,4} = \text{GTCT/aGa/cA}$$

- New set of 3 sequences to align:

$$\begin{array}{ll} s_1 & \text{GATTCA} \\ s_3 & \text{GATATT} \\ s_{2,4} & \text{GTCT/aGa/c} \end{array}$$

- We can choose either of the nucleotides in question for $s_{2,4}$.

Section 2: Progressive Alignment

Progressive Alignment

- **Progressive alignment:** A variation of the greedy algorithm for multiple alignment with a somewhat more intelligent strategy for choosing the order of alignments.
- Progressive alignment works well for close sequences, but deteriorates for distant sequences.
 - Gaps in consensus string are permanent.
 - Use profiles to compare sequences.

ClustalW

- Popular multiple alignment tool today.
- ‘W’ stands for ‘weighted’ (different parts of alignment are weighted differently).
- Three-step process:
 1. Construct pairwise alignments.
 2. Build guide tree.
 3. Progressive alignment guided by the tree.

Step 1: Pairwise Alignment

- Aligns each sequence against each other, giving a similarity matrix.
- Similarity = exact matches / sequence length (percent identity).

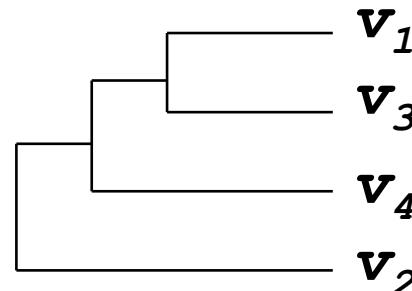
	\mathbf{v}_1	\mathbf{v}_2	\mathbf{v}_3	\mathbf{v}_4
\mathbf{v}_1	—			
\mathbf{v}_2	.17	—		
\mathbf{v}_3	.87	.28	—	
\mathbf{v}_4	.59	.33	.62	—

(.17 means 17 % identical)

Step 2: Guide Tree

- Create guide tree using the similarity matrix.
- ClustalW uses the neighbor-joining method,
- Guide tree roughly reflects evolutionary relations.

	v_1	v_2	v_3	v_4
v_1	—			
v_2	.17	—		
v_3	.87	.28	—	
v_4	.59	.33	.62	—

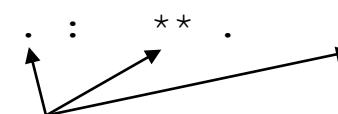


Step 3: Progressive Alignment

- Start by aligning the two most similar sequences.
- Following the guide tree, add in the next sequences, aligning to the existing alignment.
- Insert gaps as necessary.

FOS_RAT	PEEMSVTS-LDLTGGLPEATTPESEEEAFTLPLLNDPEPK-PSLEPVKNISNMELKAEF
FOS_MOUSE	PEEMSVAS-LDLTGGLPEASTPESEEEAFTLPLLNDPEPK-PSLEPVKSISNVELKAEF
FOS_CHICK	SEELAAATAALDLG----APSPAAAEEAFALPLMTEAPPAVPPKEPSG--SGLELKAEF
FOSB_MOUSE	PGPGPLAEVRDLPG-----STSAKEDGFGWLLPPPPPP-----LPFQ
FOSB_HUMAN	PGPGPLAEVRDLPG-----SAPAKEDGFSWLLPPPPPP-----LPFQ

. . : ** . . : . . * * . . * : ** :



Dots and stars show how well-conserved a column is

Section 3: Scoring Multiple Alignments

Multiple Alignments: Scoring

- We will discuss three possible scoring systems:
 1. Number of matches (multiple longest common subsequence score)
 2. Entropy score
 3. Sum of pairs (SP-Score)

Score # 1: Multiple LCS Score

- A column is a “match” if *all* the letters in the column are the same.
- **Example:** Only the first column in the following matching represents a “match:”

A	A	A
A	A	A
A	A	T
A	T	C

- The Multiple LCS score is the total number of matches.
 - This score is good for very similar sequences.

Score # 2: Entropy Score

- Define frequencies p_x for the occurrence of each letter x in each column of the multiple alignment.
- Then, compute “entropy” of each column.

$$\text{Entropy of Column} = - \sum_{X=A,T,G,C} p_X \log p_X$$

- The entropy score is then given by the sum of the entropies of all the columns.

Entropy: Example

- For our sequences $\{\text{AAA}, \text{AAA}, \text{AAT}, \text{ATC}\}$:

Entropy: Example

- For our sequences $\{\text{AAA}, \text{AAA}, \text{AAT}, \text{ATC}\}$:
 - 1st Column: $p_A = 1, p_T = p_G = p_C = 0$

$$\text{Entropy} = -[1 \cdot \log(1) + 0 + 0 + 0] = 0$$

Entropy: Example

- For our sequences $\{\text{AAA}, \text{AAA}, \text{AAT}, \text{ATC}\}$:

- 1st Column: $p_A = 1, p_T = p_G = p_C = 0$

$$\text{Entropy} = -[1 \cdot \log(1) + 0 + 0 + 0] = 0$$

- 2nd Column: $p_A = 0.75, p_T = 0.25, p_G = p_C = 0$

$$\text{Entropy} = -[0.75 \cdot \log(0.75) + 0.25 \cdot \log(0.25) + 0 + 0] = 0.56$$

Entropy: Example

- For our sequences $\{\text{AAA}, \text{AAA}, \text{AAT}, \text{ATC}\}$:

- 1st Column: $p_A = 1, p_T = p_G = p_C = 0$

$$\text{Entropy} = -[1 \cdot \log(1) + 0 + 0 + 0] = 0$$

- 2nd Column: $p_A = 0.75, p_T = 0.25, p_G = p_C = 0$

$$\text{Entropy} = -[0.75 \cdot \log(0.75) + 0.25 \cdot \log(0.25) + 0 + 0] = 0.56$$

- 3rd Column: $p_A = 0.50, p_T = 0.25, p_C = 0.25, p_G = 0$

$$\text{Entropy} = -[0.5 \cdot \log(0.5) + 2 \cdot 0.25 \cdot \log(0.25) + 0] = 1.04$$

Entropy: Example

- For our sequences $\{\text{AAA}, \text{AAA}, \text{AAT}, \text{ATC}\}$:

- 1st Column: $p_A = 1, p_T = p_G = p_C = 0$

$$\text{Entropy} = -[1 \cdot \log(1) + 0 + 0 + 0] = 0$$

- 2nd Column: $p_A = 0.75, p_T = 0.25, p_G = p_C = 0$

$$\text{Entropy} = -[0.75 \cdot \log(0.75) + 0.25 \cdot \log(0.25) + 0 + 0] = 0.56$$

- 3rd Column: $p_A = 0.50, p_T = 0.25, p_C = 0.25, p_G = 0$

$$\text{Entropy} = -[0.5 \cdot \log(0.5) + 2 \cdot 0.25 \cdot \log(0.25) + 0] = 1.04$$

- Entropy Score = $0 + 0.56 + 1.04 = 1.60$

Entropy: Interpretation

- The more similar the members of a column, the lower the entropy score.
 - **Example:** Best and worst cases:

$$\text{entropy} \begin{pmatrix} A \\ A \\ A \\ A \end{pmatrix} = 0 \quad \text{entropy} \begin{pmatrix} A \\ T \\ G \\ C \end{pmatrix} = -\sum \frac{1}{4} \log \left(\frac{1}{4} \right) = -4 \left(\frac{1}{4} * -2 \right) = 2$$

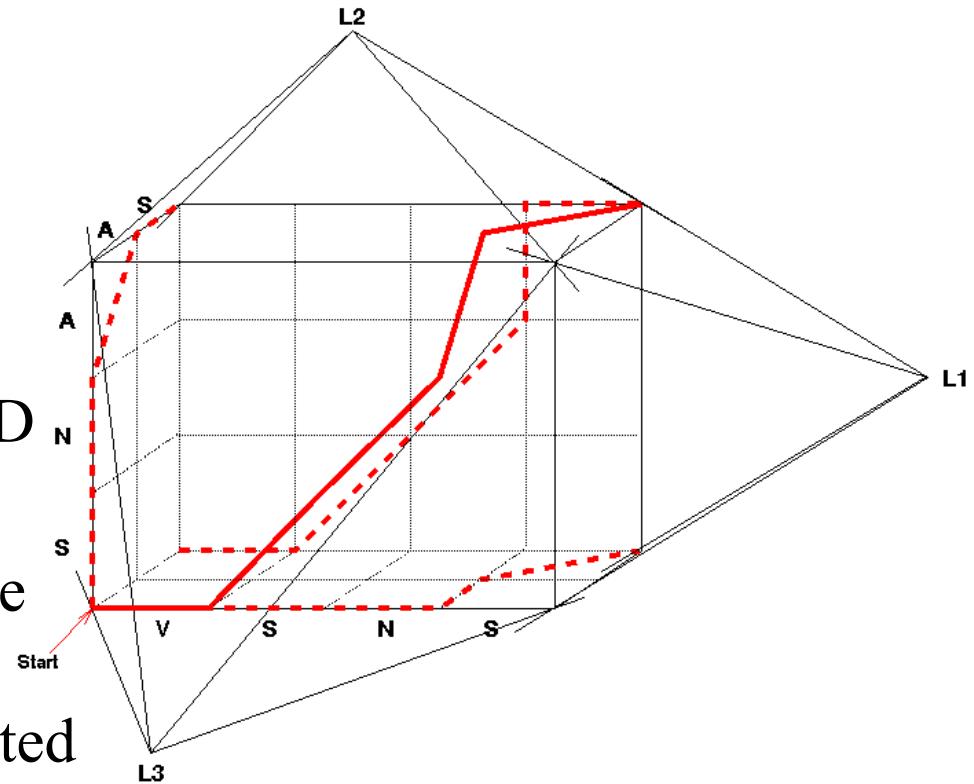
- Therefore, if we are searching for the best multiple alignment, we will want to *minimize* the entropy score.

Inferring Pairwise from Multiple Alignments

- **Recall:** Every multiple alignment induces pairwise alignments.
- From a multiple alignment, we can infer pairwise alignments between all sequences, but they are not necessarily optimal.
- We can view reducing multiple alignments to pairwise alignments as projecting a 3-D multiple alignment path onto a 2-D face of the cube
- Our third scoring function for MSA will be based off the projections.

Multiple Alignment Projections: Illustration

- A 3-D alignment can be projected onto the 2-D plane to represent an alignment between a pair of sequences.
- **Example:** Figure at right.
 - Solid line: represents a 3-D alignment path.
 - Dashed lines: represent the three induced pairwise alignments that are projected onto the cube's faces.



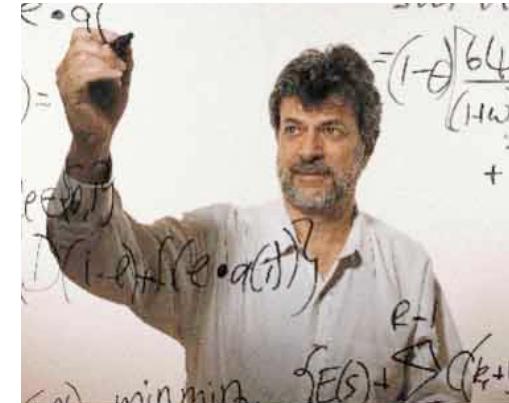
Score 3: Sum of Pairs Score (SP-Score)

- Consider the pairwise alignment of sequences a_i and a_j implied from a multiple alignment of k sequences.
- Denote the score of this (not necessarily optimal) pairwise alignment as $s^*(a_i, a_j)$.
- **Sum of Pairs (SP) Score:** Obtained by summing the pairwise scores:

$$s(a_1, \dots, a_k) = \sum_{i,j} s^*(a_i, a_j)$$

Multiple Alignment: History

- **1975:** Sankoff formulates multiple alignment problem and gives the dynamic programming solution.



David Sankoff

- **1988:** Carrillo and Lipman provide branch and bound approach for Multiple Alignment.

David Lipman

Multiple Alignment: History

- **1990:** Feng and Doolittle develop progressive alignment.

Russell Doolittle

- **1994:** Thompson, Higgins, and Gibson create ClustalW, which is the most popular multiple alignment program in the world.

Julie Thompson

Des Higgins

Toby Gibson

Multiple Alignment: History

- **1998:** Morgenstern et al. create DIALIGN, an algorithm for segment-based multiple alignment.

Burkhard Morgenstern

- **2000:** Notredame, Des Higgins, and Heringa develop T-Coffee, which aligns multiple sequences based off a library of pairwise alignments.

Cedric Notredame

Jaap Heringa

Multiple Alignment: History

- **2004:** Robert Edgar formulates MUSCLE, a faster and more efficient algorithm than ClustalW.

- **201X:** What is next?

Problems with Multiple Alignment

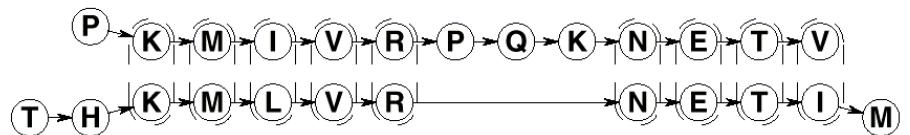
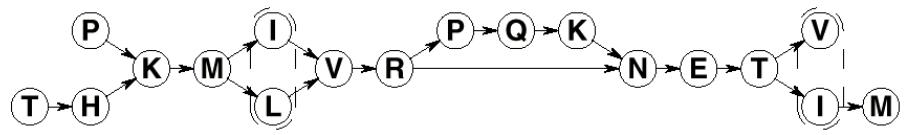
- Multidomain proteins evolve not only through point mutations but also through domain duplications and domain recombinations.
- Although Multiple Alignment is a 30 year old problem, there were no approaches for aligning *rearranged* sequences (i.e., multi-domain proteins with shuffled domains) prior to 2002.
- It is often impossible to align all protein sequences throughout their entire length.

Section 4: Partial Order Alignment

Alignment as a Graph

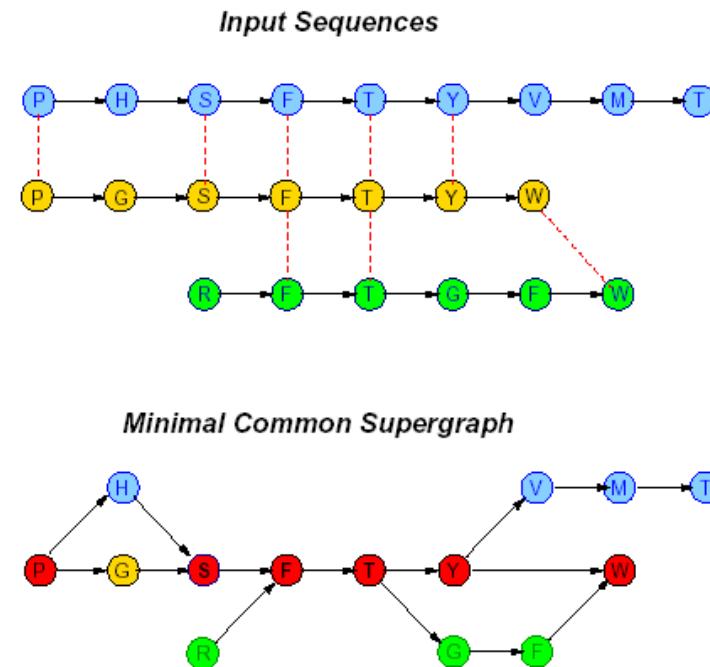
- Conventional Alignment
- Protein sequence as a path
- Two protein sequence paths
- Combination of two protein graphs into one graph

. . P K M I V R P Q K N E T V .
T H . K M L V R . . . N E T I M



Representing Sequences as Paths in a Graph

- Each protein sequence is represented by a path.
- Dashed edges connect “equivalent” positions.
- Vertices with identical labels are fused.



Partial Order Multiple Alignment

- Two objectives:
 1. Find a graph that represents domain structure
 2. Find mapping of each sequence to this graph
- **Partial Order Alignment (POA):** A graph such that every sequence in the given set is a path in G .

POA Algorithm

- Aligns sequences onto a directed acyclic graph (DAG)
- Outline:
 1. Guide Tree Construction
 2. Progressive Alignment Following Guide Tree
 3. Dynamic Programming Algorithm to align two POAs (POA-POA Alignment).
 - We learned how to align one sequence (*path*) against another sequence (*path*).
 - We need to develop an algorithm for aligning a directed *graph* against a directed *graph*.

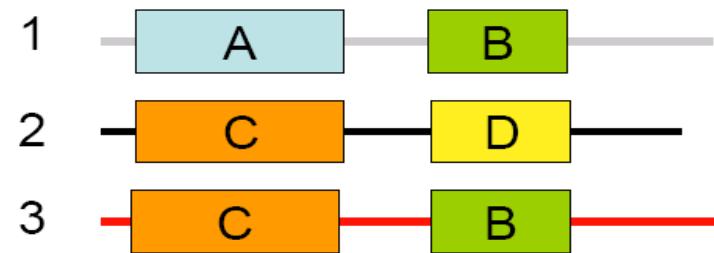
Dynamic Programming for Aligning Two Graphs

- $S(n, o)$ = optimal score for n = node in G , o = node in G'
 - Match/mismatch: Aligning two nodes with score $s(n, o)$
 - Deletion/insertion:
 - Omitting node n from the alignment with score $\Delta(n)$
 - Omitting node o from the alignment with score $\Delta(o)$
 - Dynamic formula for $S(n, o)$:

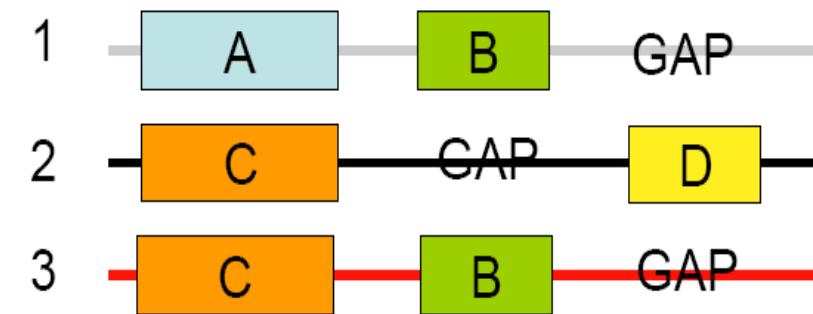
$$S(n, o) = \max_{p \rightarrow n, q \rightarrow o} \begin{cases} S(p, q) + s(n, o) \\ S(p, o) + \Delta(n) \\ S(n, q) + \Delta(o) \end{cases}$$

Row-Column Alignment

Input Sequences



Row-Column Alignment



POA Advantages

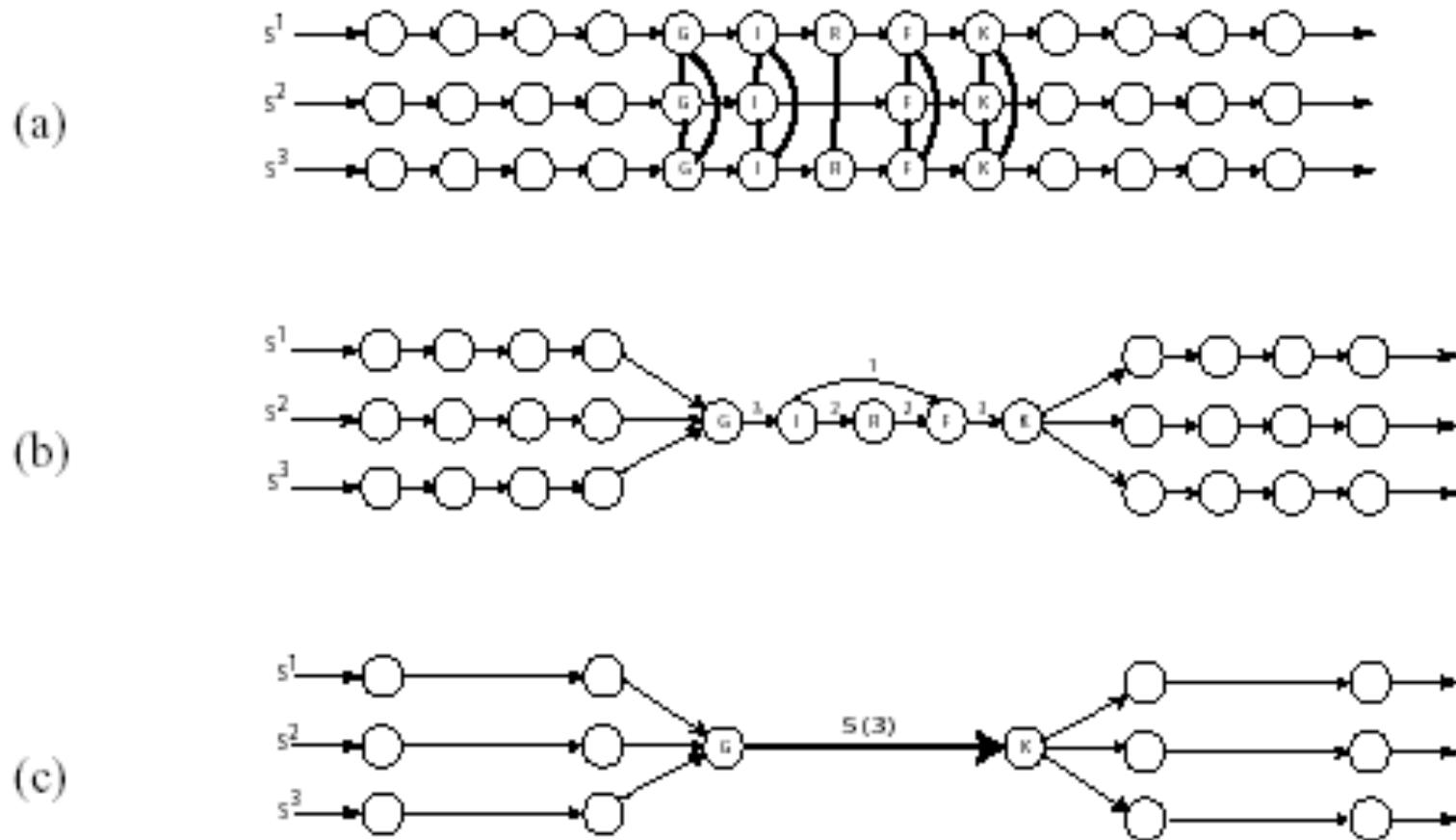
- POA is more flexible: standard methods force sequences to align linearly.
- POA representation handles gaps more naturally and retains (and uses) all information in the MSA (unlike linear profiles).

Section 5: A-Bruijn Approach to Multiple Alignment

A-Bruijn Alignment

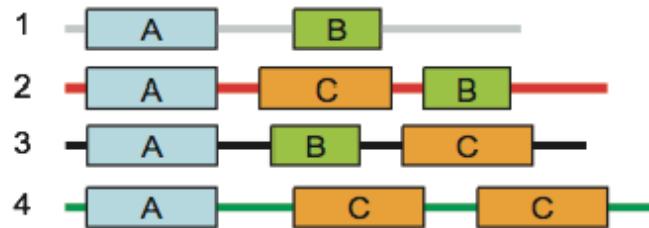
- **A-Bruijn Alignment (ABA):** Represents alignment as directed graph that may contains cycles.
- This is in contrast to POA, which represents alignment as an acyclic directed graph.

ABA: How Is the Graph Created?

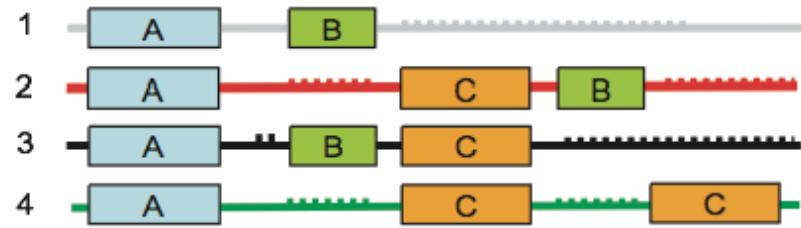


MSA vs. POA vs. ABA

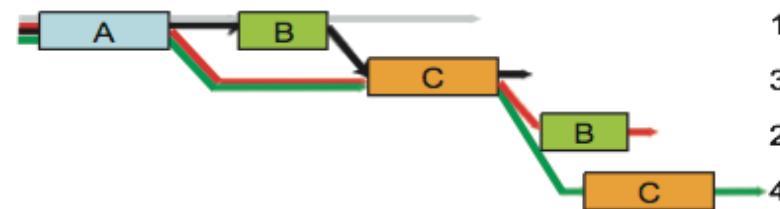
(a) Original Sequences



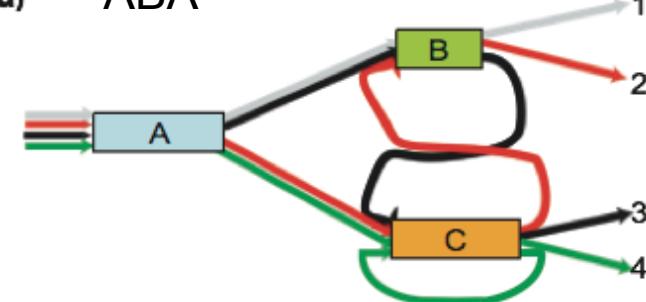
(b) MSA



(c) POA



(d) ABA



Advantages of ABA

1. More flexible than POA: allows larger class of evolutionary relationships between aligned sequences
2. Can align proteins with shuffled and/or repeated domain structure
3. Can align proteins with domains present in multiple copies in some proteins
4. Handles:
 - Domains not present in all proteins.
 - Domains present in different orders in different proteins.

Credits

- *Chris Lee, POA, UCLA* [http://www.bioinformatics.ucla.edu/poa/
Poa_Tutorial.html](http://www.bioinformatics.ucla.edu/poa/Poa_Tutorial.html)