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Multiple Sequence Alignment (MSA) 

•  Up until now we have only 
tried to align two sequences. 
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Multiple Sequence Alignment (MSA) 

•  Up until now we have only 
tried to align two sequences.  

•  What about aligning more 
than two sequences? 

•  A faint similarity between 
two sequences becomes 
significant if it is present in 
many other sequences. 

•  Therefore multiple 
alignments can reveal subtle 
similarities that pairwise 
alignments do not reveal. 
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Generalizing Pairwise to Multiple Alignment 

•  Alignment of 2 sequences is represented as a 2-row matrix. 
•  In a similar way, we represent alignment of 3 sequences as a 3-

row matrix 
•  Example:  

  A T - G C G - 

  A - C G T - A 

  A T C A C - A 

•  Our scoring function should score alignments with conserved 
columns higher. 
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A A T -- C 

A -- T G C 

-- A T G C 

Alignments = Paths in 3-Space 

•  Say we have 3 sequences to align:  ATGC, AATC, ATGC 
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0 1 1 2 3 4 

0 1 2 3 3 4 

A A T -- C 

A -- T G C 

0 0 1 2 3 4 
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x coordinate 

y coordinate 

z coordinate 

Alignments = Paths in 3-Space 

•  Say we have 3 sequences to align:  ATGC, AATC, ATGC 

•  Plotting the coordinates gives a path in 3-space: 
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0 1 1 2 3 4 

0 1 2 3 3 4 

A A T -- C 

A -- T G C 

0 0 1 2 3 4 

-- A T G C 

x coordinate 

y coordinate 

z coordinate 

Alignments = Paths in 3-Space 

•  Say we have 3 sequences to align:  ATGC, AATC, ATGC 

•  Plotting the coordinates gives a path in 3-space: 
•  (0,0,0)→(1,1,0)→(1,2,1) →(2,3,2) →(3,3,3) →(4,4,4) 
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Source 

Sink 

Alignments = Paths in 3-Space 

•  Same strategy as aligning two 
sequences. 

•  Use a 3-D “Manhattan Cube”, 
with each axis representing a 
sequence to align. 

•  For global alignments, go 
from source to sink. 
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2-D Alignment Cell versus 3-D Alignment Cell  

•  In 2-D, 3 edges in 
each unit square 

•  In 3-D, 7 edges in 
each unit cube  

3-D Unit Cube 2-D Unit Square 
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(i-1,j-1,k-1) 

(i,j-1,k-1) 

(i,j-1,k) 

(i-1,j-1,k) (i-1,j,k) 

(i,j,k) 

(i-1,j,k-1) 

(i,j,k-1) 

Architecture of 3-D Alignment Cell 
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•  δ(x, y, z) is an entry in the 3-D scoring matrix. 

Cube diagonal: no indels 

Face diagonal: one indel 

Edge diagonal: two indels 

Multiple Alignment: Dynamic Programming 

� 

si, j ,k =max

si−1, j−1,k−1 +δ vi,w j ,uk( )
si−1, j−1,k +δ vi,w j ,_( )
si−1, j,k−1 +δ vi,_,uk( )
si, j−1,k−1 +δ _,w j ,uk( )
si−1, j,k +δ vi,_,_( )
si, j−1,k +δ _,w j ,_( )
si, j,k−1 +δ _,_,uk( )

⎧ 

⎨ 

⎪ 
⎪ 
⎪ 
⎪ 
⎪ ⎪ 

⎩ 

⎪ 
⎪ 
⎪ 
⎪ 
⎪ 
⎪ 
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Multiple Alignment: Running Time 

•  For 3 sequences of length n, the run time is 7n3 = O(n3) 

•  For generalization to k sequences, build a k-dimensional 
Manhattan graph: 
•  There are nk vertices in this graph. 
•  Each vertex has 2k – 1 edges coming into it.   
•  Therefore, run time = (2k – 1)(nk) = O(2knk) 

•  Conclusion: The dynamic programming approach for 
alignment between two sequences is easily extended to k 
sequences but it is impractical due to a run time that is 
exponential in the number of sequences. 



An Introduction to Bioinformatics Algorithms www.bioalgorithms.info 

Multiple Alignment Induces Pairwise Alignments 

•  Every multiple alignment induces pairwise alignments  
•  Example: The alignment   

  x: A C - G C G G - C    

  y: A C - G C - G A G  

  z: G C C G C - G A G   

induces the following three pairwise alignments: 

  x: ACGCGG-C  x: AC-GCGG-C  y: AC-GCGAG 

  y: ACGC-GAC  z: GCCGC-GAG  z: GCCGCGAG 
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Idea: Construct Multiple from Pairwise Alignments 

•  Given k arbitrary pairwise alignments, can we construct a 
multiple alignment that induces them? 

•  Example:  3 sequence alignment 
•  x = ACGCTGGC, y = ACGCGAC, z = GCCGCAGAG 
•  Say we have optimal pairwise alignments as follows: 

•  Can we construct a multiple alignment that induces them?                  

x: ACGCTGG-C  x: AC-GCTGG-C  y: AC-GC-GAG 

y: ACGC--GAC  z: GCCGCA-GAG  z: GCCGCAGAG 
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Idea: Construct Multiple from Pairwise Alignments 

•  Given k arbitrary pairwise alignments, can we construct a 
multiple alignment that induces them? 

•  Example:  3 sequence alignment 
•  x = ACGCTGGC, y = ACGCGAC, z = GCCGCAGAG 
•  Say we have optimal pairwise alignments as follows: 

•  Can we construct a multiple alignment that induces them? 
•  Answer: Not always!                  

x: ACGCTGG-C  x: AC-GCTGG-C  y: AC-GC-GAG 

y: ACGC--GAC  z: GCCGCA-GAG  z: GCCGCAGAG 
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Idea: Construct Multiple from Pairwise Alignments 

•  From an optimal multiple alignment, we can infer pairwise 
alignments between all pairs of sequences, but they are not 
necessarily optimal. 

•  Likewise, it is difficult to infer a “good” multiple alignment 
from optimal pairwise alignments between all sequences. 
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Idea: Construct Multiple from Pairwise Alignments 

•  Example 1: Can combine 
pairwise alignments into 
optimal multiple alignment. 

•  Example 2: Can not combine 
pairwise alignments into 
optimal multiple alignment. 
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  -  A  G  G  C  T  A  T  C  A  C  C  T  G  
  T  A  G  –  C  T  A  C  C  A  -  -  -  G  
  C  A  G  –  C  T  A  C  C  A  -  -  -  G  
  C  A  G  –  C  T  A  T  C  A  C  –  G  G  
  C  A  G  –  C  T  A  T  C  G  C  –  G  G  

A     1              1       .8         
C .6           1       .4  1    .6 .2 
G        1 .2                .2       .4  1 
T .2              1    .6             .2 
- .2       .8                   .4 .8 .4 

Profile Representation of Multiple Alignment 
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Profile Representation of Multiple Alignment 

•  In the past we were aligning a sequence against a sequence. 
•  Can we align a sequence against a profile? 
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Profile Representation of Multiple Alignment 

•  In the past we were aligning a sequence against a sequence. 
•  Can we align a sequence against a profile?  
•  Can we align a profile against a profile?  
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C .6           1       .4  1    .6 .2 
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T .2              1    .6             .2 
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•  Choose the most similar pair of strings and combine them into 
a profile, thereby reducing alignment of k sequences to an 
alignment of of k – 1 sequences/profiles. 

•  Then repeat. 
•  This is a heuristic (greedy) method. 

u1= ACGTACGTACGT… 

u2 = TTAATTAATTAA… 

u3 = ACTACTACTACT… 

… 

uk = CCGGCCGGCCGG 

u1= ACg/tTACg/tTACg/cT… 

u2 = TTAATTAATTAA… 

… 

uk = CCGGCCGGCCGG… 
k 

k – 1 

Multiple Alignment: Greedy Approach 
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Greedy Approach: Example 

•  Consider the 4 sequences: GATTCA, GTCTGA, GATATT, 
GTCAGC 



An Introduction to Bioinformatics Algorithms www.bioalgorithms.info 

•  Consider the 4 sequences: GATTCA, GTCTGA, GATATT, 
GTCAGC. 

•  There are       = 6 possible pairwise alignments: 

s2  GTCTGA 
s4  GTCAGC  (score = 2) 

s1  GAT-TCA 
s2  G-TCTGA (score = 1) 

s1  GAT-TCA 
s3  GATAT-T (score  = 1) 

s1  GATTCA-- 
s4  G—T-CAGC (score = 0) 

s2  G-TCTGA 
s3  GATAT-T  (score = -1) 

s3  GAT-ATT 
s4  G-TCAGC  (score = -1) 

Greedy Approach: Example 
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•  s2 and s4 are closest, so we consolidate these sequences into 
one by using the profile matrix: 

•  New set of 3 sequences to align: 

•  We can choose either of the nucleotides in question for s2, 4. 

s2 GTCTGA 
s4 GTCAGC 

s2,4 = GTCt/aGa/cA 

s1   GATTCA 
s3   GATATT 
s2,4  GTCt/aGa/c 

Greedy Approach: Example 
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Section 2: 
Progressive Alignment 



An Introduction to Bioinformatics Algorithms www.bioalgorithms.info 

Progressive Alignment 

•  Progressive alignment: A variation of the greedy algorithm 
for multiple alignment with a somewhat more intelligent 
strategy for choosing the order of alignments. 

•  Progressive alignment works well for close sequences, but 
deteriorates for distant sequences. 
•  Gaps in consensus string are permanent. 
•  Use profiles to compare sequences. 
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ClustalW 

•  Popular multiple alignment tool today. 

•  ‘W’ stands for ‘weighted’ (different parts of alignment are 
weighted differently). 

•  Three-step process: 
1.  Construct pairwise alignments. 
2.  Build guide tree. 
3.  Progressive alignment guided by the tree. 



An Introduction to Bioinformatics Algorithms www.bioalgorithms.info 

    v1   v2  v3  v4 
v1  - 
v2  .17  - 
v3  .87 .28  - 
v4  .59 .33 .62 - 

(.17 means 17 % identical) 

Step 1: Pairwise Alignment 

•  Aligns each sequence against each other, giving a similarity 
matrix. 

•  Similarity = exact matches / sequence length (percent identity). 
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Step 2: Guide Tree 

•  Create guide tree using the similarity matrix. 

•  ClustalW uses the neighbor-joining method, 

•  Guide tree roughly reflects evolutionary relations. 

    v1   v2  v3  v4 
v1  - 
v2  .17  - 
v3  .87 .28  - 
v4  .59 .33 .62 - 

v1 
v3 
v4  
v2 
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FOS_RAT         PEEMSVTS-LDLTGGLPEATTPESEEAFTLPLLNDPEPK-PSLEPVKNISNMELKAEPFD 
FOS_MOUSE       PEEMSVAS-LDLTGGLPEASTPESEEAFTLPLLNDPEPK-PSLEPVKSISNVELKAEPFD 
FOS_CHICK       SEELAAATALDLG----APSPAAAEEAFALPLMTEAPPAVPPKEPSG--SGLELKAEPFD 
FOSB_MOUSE      PGPGPLAEVRDLPG-----STSAKEDGFGWLLPPPPPPP-----------------LPFQ 
FOSB_HUMAN      PGPGPLAEVRDLPG-----SAPAKEDGFSWLLPPPPPPP-----------------LPFQ 
                .   . :   ** .     :..  *:.*   *   . *                   **: 

Dots and stars show how well-conserved a column is 

Step 3: Progressive Alignment 

•  Start by aligning the two most similar sequences. 

•  Following the guide tree, add in the next sequences, aligning 
to the existing alignment. 

•  Insert gaps as necessary. 
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Section 3: 
Scoring Multiple 

Alignments 
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Multiple Alignments: Scoring  

•  We will discuss three possible scoring systems: 
1.  Number of matches (multiple longest common 

subsequence score) 
2.  Entropy score 
3.  Sum of pairs (SP-Score) 
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•  A column is a “match” if all the letters in the column are the 
same. 

•  Example: Only the first column in the following matching 
represents a “match:” 

•  The Multiple LCS score is the total number of matches. 
•  This score is good for very similar sequences. 

A A A  
A A A  
A A T  
A T C  

Score # 1: Multiple LCS Score 
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� 

− pX log pX
X =A ,T ,G,C
∑

Score # 2: Entropy Score 

•  Define frequencies px for the occurrence of each letter x in each 
column of the multiple alignment. 

•  Then, compute “entropy” of each column. 

•  The entropy score is then given by the sum of the entropies of all 
the columns. 

Entropy of Column =  
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Entropy: Example 

•  For our sequences {AAA, AAA, AAT, ATC}: 
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Entropy: Example 

•  For our sequences {AAA, AAA, AAT, ATC}: 
•  1st Column: pA = 1, pT = pG = pC = 0 

Entropy = 

� 

− 1⋅ log 1( ) + 0 + 0 + 0[ ] = 0
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Entropy: Example 

•  For our sequences {AAA, AAA, AAT, ATC}: 
•  1st Column: pA = 1, pT = pG = pC = 0 

•  2nd Column: pA = 0.75, pT = 0.25, pG = pC = 0 

Entropy = 

Entropy = 

� 

− 0.75⋅ log 0.75( ) + 0.25⋅ log 0.25( ) + 0 + 0[ ] = 0.56� 

− 1⋅ log 1( ) + 0 + 0 + 0[ ] = 0
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Entropy: Example 

•  For our sequences {AAA, AAA, AAT, ATC}: 
•  1st Column: pA = 1, pT = pG = pC = 0 

•  2nd Column: pA = 0.75, pT = 0.25, pG = pC = 0 

•  3rd Column: pA = 0.50, pT = 0.25, pC = 0.25, pG = 0 

Entropy = 

Entropy = 

Entropy = 

� 

− 0.5⋅ log 0.5( ) + 2⋅ 0.25⋅ log 0.25( ) + 0[ ] =1.04� 

− 0.75⋅ log 0.75( ) + 0.25⋅ log 0.25( ) + 0 + 0[ ] = 0.56� 

− 1⋅ log 1( ) + 0 + 0 + 0[ ] = 0
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Entropy: Example 

•  For our sequences {AAA, AAA, AAT, ATC}: 
•  1st Column: pA = 1, pT = pG = pC = 0 

•  2nd Column: pA = 0.75, pT = 0.25, pG = pC = 0 

•  3rd Column: pA = 0.50, pT = 0.25, pC = 0.25, pG = 0 

•  Entropy Score = 0 + 0.56 + 1.04 = 1.60   

Entropy = 

Entropy = 

Entropy = 

� 

− 1⋅ log 1( ) + 0 + 0 + 0[ ] = 0

� 

− 0.75⋅ log 0.75( ) + 0.25⋅ log 0.25( ) + 0 + 0[ ] = 0.56

� 

− 0.5⋅ log 0.5( ) + 2⋅ 0.25⋅ log 0.25( ) + 0[ ] =1.04
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� 

entropy

A
T
G
C

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

= −
1
4∑ log 1

4
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ = −4 1

4
∗−2

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ = 2

Entropy: Interpretation 

•  The more similar the members of a column, the lower the 
entropy score. 
•  Example: Best and worst cases: 

•  Therefore, if we are searching for the best multiple alignment, 
we will want to minimize the entropy score. 
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Inferring Pairwise from Multiple Alignments 

•  Recall: Every multiple alignment induces pairwise alignments. 

•  From a multiple alignment, we can infer pairwise alignments 
between all sequences, but they are not necessarily optimal. 

•  We can view reducing multiple alignments to pairwise 
alignments as projecting a 3-D multiple alignment path onto a 
2-D face of the cube 

•  Our third scoring function for MSA will be based off the 
projections. 
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Multiple Alignment Projections: Illustration 

•  A 3-D alignment can be 
projected onto the 2-D plane 
to represent an alignment 
between a pair of sequences. 

•  Example: Figure at right. 
•  Solid line: represents a 3-D 

alignment path. 
•  Dashed lines: represent the 

three induced pairwise 
alignments that are projected 
onto the cube’s faces. 
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•  Consider the pairwise alignment of sequences ai and aj implied 
from a multiple alignment of k sequences. 

•  Denote the score of this (not necessarily optimal) pairwise 
alignment as s*(ai, aj). 

•  Sum of Pairs (SP) Score: Obtained by summing the pairwise 
scores: 

Score 3: Sum of Pairs Score (SP-Score)  

� 

s a1,…,ak( ) = s* ai,a j( )
i, j
∑
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Multiple Alignment: History 

•  1975: Sankoff formulates multiple 
alignment problem and gives the 
dynamic programming solution. 

•  1988: Carrillo and Lipman provide 
branch and bound approach for Multiple 
Alignment. 

David Sankoff 

David Lipman 



An Introduction to Bioinformatics Algorithms www.bioalgorithms.info 

Multiple Alignment: History 

•  1990: Feng and Doolittle develop 
progressive alignment. 

•  1994: Thompson, 
Higgins, and Gibson 
create ClustalW, which 
is the most popular 
multiple alignment 
program in the world. Des Higgins Julie Thompson Toby Gibson 

Russell Doolittle 
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Multiple Alignment: History 

•  1998: Morgenstern et al. create 
DIALIGN, an algorithm for 
segment-based multiple 
alignment. 

•  2000: Notredame, Des Higgins, 
and Heringa develop T-Coffee, 
which aligns multiple sequences 
based off a library of pairwise 
alignments. 

Burkhard Morgenstern 

Cedric Notredame Jaap Heringa 
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Multiple Alignment: History 

•  2004: Robert Edgar formulates 
MUSCLE, a faster and more efficient 
algorithm than ClustalW. 

•  201X: What is next? 
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Problems with Multiple Alignment 

•  Multidomain proteins evolve not only through point mutations 
but also through domain duplications and domain 
recombinations. 

•  Although Multiple Alignment is a 30 year old problem, there 
were no approaches for aligning rearranged sequences (i.e., 
multi-domain proteins with shuffled domains) prior to 2002. 

•  It is often impossible to align all protein sequences throughout 
their entire length. 
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Section 4: 
Partial Order Alignment 
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Alignment as a Graph 

•  Conventional Alignment 

•  Protein sequence as a path 

•  Two protein sequence paths 

•  Combination of two protein 
graphs into one graph 
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Representing Sequences as Paths in a Graph 

•  Each protein sequence is 
represented by a path. 

•  Dashed edges connect 
“equivalent” positions. 

•  Vertices with identical labels 
are fused. 
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•  Two objectives: 
1.  Find a graph that represents domain structure  
2.  Find mapping of each sequence to this graph 

•  Partial Order Alignment (POA): A graph such that every 
sequence in the given set is a path in G.  

Partial Order Multiple Alignment 
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•  Aligns sequences onto a directed acyclic graph (DAG) 

•  Outline: 
1.  Guide Tree Construction 
2.  Progressive Alignment Following Guide Tree 
3.  Dynamic Programming Algorithm to align two POAs 

(POA-POA Alignment). 
•  We learned how to align one sequence (path) against 

another sequence (path). 
•  We need to develop an algorithm for aligning a directed 

graph against a directed graph.  

POA Algorithm 
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Dynamic Programming for Aligning Two Graphs 

•  S(n, o) = optimal score for n = node in G, o = node in G’ 
•  Match/mismatch: Aligning two nodes with score s(n,o) 
•  Deletion/insertion: 

•  Omitting node n from the alignment with score ∆(n) 
•  Omitting node o from the alignment with score ∆(o) 

•  Dynamic formula for S(n, o): 

� 

S(n,o) = max
p→ n,q→ o

S(p,q) + s(n,o)
S(p,o) + Δ(n)
S(n,q) + Δ(o)

⎧ 

⎨ 
⎪ 

⎩ ⎪ 
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   Row-Column Alignment Input Sequences 

Row-Column Alignment 
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•  POA is more flexible: standard methods force sequences to 
align linearly. 

•  POA representation handles gaps more naturally and retains 
(and uses) all information in the MSA (unlike linear profiles). 

POA Advantages 
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Section 5: 
A-Bruijn Approach to 
Multiple Alignment 
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A-Bruijn Alignment 

•  A-Bruijn Alignment (ABA): Represents alignment as 
directed graph that may contains cycles. 

•  This is in contrast to POA, which represents alignment as an 
acyclic directed graph. 
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ABA: How Is the Graph Created? 



An Introduction to Bioinformatics Algorithms www.bioalgorithms.info 

MSA vs. POA vs. ABA 

MSA Original Sequences 

ABA POA 
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Advantages of ABA  

1.  More flexible than POA: allows larger class of evolutionary 
relationships between aligned sequences 

2.  Can align proteins with shuffled and/or repeated domain 
structure 

3.  Can align proteins with domains present in multiple copies in 
some proteins 

4.  Handles: 
•  Domains not present in all proteins. 
•  Domains present in different orders in different proteins. 
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•  Chris Lee, POA, UCLA http://
www.bioinformatics.ucla.edu/poa/
Poa_Tutorial.html!

Credits 


