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Section 5:
Sequence Alignment




Back to Biology: Sequence Alignment

* Recall that our original problem was to fit a similarity score
on two DNA sequences:

* To do this we will use what is called an alignment matrix.
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Alignment Matrix: Example

* Given 2 DNA sequences v and w of length m and n:

v: ATCTGAT m
n

7/
w: TGCATA 6

 Example of Alignment: 2 * kmatrix (k>m, n )

letters of v

letters of w




Common Subsequence

Given two sequences

V=V, V,..V oand W= W, W,..w,
a common subsequence of v and w is a sequence of positions in
v: 1 <I;, <I, <... <l < mand asequence of positions in

w: | <J; <J, <... <J, < nsuch that the i,-th letter of v
is equal to the j-th letter of w.

Example' v = ATGCCAT, w=TCGGGCTATC. Then take:
« ;=2,1,=3,i3=6,1,=7

‘ 17—112 3,/3=8,J4=
* This gives us that the common subsequence is TGAT.



Longest Common Subsequence

Given two sequences V =V, V,...V, and W = W, W,...W,

the Longest Common Subsequence (LCS) of vand wis a
sequence of positionsinv: | </; </, < ... < iy < mand
a sequence of positions inw: | <J;, < J, < ... <Jr<n
such that the I, -th letter of v is equal to j-th letter of w

and T is maximal.

Example: v=ATGCCAT, w=TCGGGCTATC.
* Before we found that TGAT 1s a subsequence.
* The longest subsequence 1s TGCAT.
* But...how do we find the LCS of two sequences?



Edit Graph for LCS Problem

* Assign one A T C
sequence to the

rows, and one to

the columns. T i i i

o » —H r» O
%
%
%



Edit Graph for LCS Problem

* Assign one A T C T A T C
sequence to the

rows, and one to
the columns. T o |

* Every diagonal S S S
edge represents a
match of elements.
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Edit Graph for LCS Problem

* Assign one A T C T A T
sequence to the

rows, and one to \
the columns. T —r———~ 7 f

* Every diagonal S S S S S

edge represents a

» i ¥ i x
match of elements.
* Therefore, in a path A T 1 T ]
from source to sink, 1 ) i X i )

the diagonal edges

h L 3
represent a A \ (R l
Common C g A o A - 2

subsequence. Common Subsequence: TGAT



Edit Graph for LCS Problem

LCS Problem:
Find a path with the
maximum number
of diagonal edges.

-

o » —H r» O

A T C T A T C

Common Subsequence: TGAT



Computing the LCS: Dynamic Programming

 Letv, = prefixofvoflengthr: v,...v,

* and w; = prefix of woflength . w, ... w,

* The length of LCS(v;,w)) is computed by:

(

— 3

\Si_l,]._1+1 if v, =W,
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Hamming Distance

The Hamming Distance d, (v, w) between two DNA
sequences V and w of the same length 1s equal to the number of
places in which the two sequences differ.

Example: Given as follows, d (v, w) = 8:

v: ATATATAT
w:.: TATATATA

However, note that these sequences are still very similar.

* Hamming Distance 1s therefore not an i1deal similarity score,
because 1t ignores insertions and deletions.



Edit Distance

* Levenshtein (1966) introduced the edit distance between
two strings as the minimum number of elementary
operations (insertions, deletions, and substitutions) needed to
transform one string into the other

d(v,w) = MIN number of elementary operations
to transform v 2> w



Edit Distance: Example 1

* So 1n our previous example, we can shift w one nucleotide to
the right, and see that w is obtained from v by one insertion
and one deletion:

v: ATATATAT-
w:. -TATATATA

» Hence the edit distance, d(v, w) = 2.

* Note: In order to provide this distance, we had to “fiddle”
with the sequences. Hamming distance was easier to find.



Edit Distance: Example 2

* We can transform TGCATAT - ATCCGAT in 5 steps:

TGCATAT



Edit Distance: Example 2

* We can transform TGCATAT - ATCCGAT in 5 steps:

TGCATAT (delete last T)



Edit Distance: Example 2

* We can transform TGCATAT - ATCCGAT in 5 steps:

TGCATAT (delete last T)
TGCATA (delete last A)



Edit Distance: Example 2

* We can transform TGCATAT - ATCCGAT in 5 steps:

TGCATAT (delete last T)
TGCATA (delete last A)
ATGCAT (insert A at front)



Edit Distance: Example 2

* We can transform TGCATAT - ATCCGAT in 5 steps:

TGCATAT (delete last T)
TGCATA (delete last A)
ATGCAT (insert A at front)

ATCCAT (substitute C for G)



Edit Distance: Example 2

* We can transform TGCATAT - ATCCGAT in 5 steps:

TGCATAT
TGCATA
ATGCAT
ATCCAT
ATCCCAT

(delete last T)

(delete last A)

(insert A at front)
(substitute C for G)
(insert G before last A)



Edit Distance: Example 2

* We can transform TGCATAT - ATCCGAT in 5 steps:

TGCATAT (delete last T)
TGCATA (delete last A)
ATGCAT (insert A at front)
ATCCAT (substitute C for G)
ATCCGAT (insert G before last A)

* Note: This only allows us to conclude that the edit distance 1s at
most 3.



Edit Distance: Example 2

* Now we transform TGCATAT = ATCCGAT in 4 steps:

ATGCATAT



Edit Distance: Example 2

* Now we transform TGCATAT = ATCCGAT in 4 steps:

ATGCATAT (insert A at front)



Edit Distance: Example 2

* Now we transform TGCATAT = ATCCGAT in 4 steps:

ATGCATAT (insert A at front)
ATGCATAT (delete second T)



Edit Distance: Example 2

* Now we transform TGCATAT = ATCCGAT in 4 steps:

ATGCATAT (insert A at front)
ATGCATAT (delete second T)
ATGCGAT (substitute G for A)



Edit Distance: Example 2

* Now we transform TGCATAT = ATCCGAT in 4 steps:

ATGCATAT
ATGCATAT
ATGCGAT
ATCCGAT

(insert A at front)
(delete second T)

(sul

vstitute G for A)

(sul

bstitute C for G)



Edit Distance: Example 2

* Now we transform TGCATAT = ATCCGAT in 4 steps:

ATGCATAT (insert A at front)
ATGCATAT (delete second T)
ATGCGAT (substitute G for A)
ATCCGAT (substitute C for G)

e Can we do even better? 3 steps? 2 steps? How can we know?



Key Result

 Theorem: Given two sequences v and w of length m and », the
edit distance d(v,w) 1s given by d(v,w) = m + n — s(v,w), where
s(v,w) 1s the length of the longest common subsequence of v
and w.

e This is great news, because 1t means that 1f solving the LCS
problem for v and w 1s equivalent to finding the edit distance
between them.

e Therefore, we will solve the LCS problem instead in the
following slides.
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Return to the Edit Graph BV ENEEREE

* Every alignment corresponds
to a path from source to sink.




Return to the Edit Graph

* Every alignment corresponds
to a path from source to sink.
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« Horizontal and vertical edges
correspond to indels
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Return to the Edit Graph

* Every alignment corresponds
to a path from source to sink.

« Horizontal and vertical edges
correspond to indels
(deletions and insertions).

e Diagonal edges correspond to
matches and mismatches.




Alignment as a Path in the Edit Graph: Example
« Suppose that our sequences v ﬁﬂT @ @ T ﬂ@ @7

are ATCGTAC, ATGTTAT. 2 3 4 ¢

* Edit graph path:

(S5

| 4

A
 One possible alignment is: T \\
0M123130176

AT C G T _ A _ % \|
012345566 72]5 "
™
l

7

(0,0)>(1,1)>(2,2)~>

(2,3)=>(3,4)>etc.



Alignment with Dynamic Programming

C 6T

e Initialize 0" row and 0" v ﬂ T
column to be all zeroes. § 1

2 5ﬂ@@7

S}

N @ Ry =

(S

(S5

== == @ =f= <

Al




Alignment with Dynamic Programming

e [Initialize 0" row and 0 v ﬂ T @ @ T ﬂ @
o 9 & § 4 5§ 6 7

column to be all zeroes.

S

* Use the following T 9| 9 \ﬂ 7

e =

recursive formula to

calculate s, for each 1, j:

[S5)

—>—>—>z
= = =

== == & =f= <

: Sig 1 t1 \ T
S,;=max=< S T J 9
o AN

=
—
==




Dynamic Programming Example

* Note that the placement of the arrows shows where a given
score originated from:

. if from the top
. 1f from the left

. if v, =w;



Dynamic Programming Example

* Continuing with the v ﬂ 1; T @3 @4 T ﬂ@ @ 7
0

2 §

dynamic programming
algorithm fills the table.

S}

T | 9| 9| 9 \ﬂ i

e
= (=S =S

N @ Ry =

en
—
=\

<

=5 == G == <

~J
—
=




Dynamic Programming Example

* Continuing with the v A T
dynamic programming -

2@3 @4} Tﬁﬂ@@7

S}

algorithm fills the table.

e =

 We first look for matches,

highlighted in red, and then

we fill in the rest of that

row and column.

(Sl
=
DG}

[SD)
=N

=i == @ == <

=]
=\
DG}




Dynamic Programming Example

* Continuing with the v A T
dynamic programming -

2@3 @4} Tﬁﬂ@@7

S}

algorithm fills the table.

e =

 We first look for matches,

highlighted in red, and then

we fill in the rest of that

row and column.

(Sl
=
DG}

[SD)
=N
(B
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Dynamic Programming Example

* Continuing with the v A T
dynamic programming -

2@3 @4} Tﬁﬂ@@7

S}

algorithm fills the table.

e =

 We first look for matches,

highlighted in red, and then

we fill in the rest of that

row and column.

&0
=\
D)

S}
=
ko

 As we can see, we do not
simply add 1 each time.

=i == @ == <

=]
=\
DG}




Dynamic Programming Example

* Continuing with the v A T
dynamic programming -

2@3 @4} Tﬁﬂ@@7

S}

algorithm fills the table.

e =

 We first look for matches,

highlighted in red, and then

we fill in the rest of that

L
==
(EN5)

row and column.

&n
=
e
)
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Dynamic Programming Example

* Continuing with the v A T
dynamic programming -

2@3 @4} Tﬁﬂ@@7

S}

algorithm fills the table.

e =

 We first look for matches,

highlighted in red, and then

we fill in the rest of that

L
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H
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Dynamic Programming Example

* Continuing with the v A T
dynamic programming -

2@3 @4} Tﬁﬂ@@7

S}
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L
==
(EN5)
| S5
H
B

row and column.

&n
=
e
)
(@9
i
SN
BN

(S5
N
ko
NG
SO
2PN

 As we can see, we do not
simply add 1 each time.

=i == @ == <

=]
=
D)
| (RS
SO
EES




Dynamic Programming Example

* Continuing with the v A T
dynamic programming -
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S}

algorithm fills the table.
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Dynamic Programming Example

* Continuing with the v A T
dynamic programming -

2@3 @4} Tﬁﬂ@@7

S}

algorithm fills the table.

e =

 We first look for matches,

highlighted in red, and then

we fill in the rest of that

L
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Dynamic Alignment: Pseudocode

1. LCS(v,w)

2. for i € 1 to n
3 Sio€ 0

4 for j € 1 tom
5. Sp,; € 0

6. for 7 € 1 to n
/

8

9

for j € 1 tom

/ 57'—1,_7
Si.; € max‘ Si j-1
10 Si1,5-1 + 1, it v; = w;
11 N t ‘ if s;,=5;1;
. b, ; € O b B
. B £ Si,;= Si-1,5-1 + 1

. return (s, ,, b)



Finding an Optimal Alignment

 LCS(v,w) created the

" AT 68T

NG

alignment grid.

S

 Follow the arrows
backwards from the sink

e =

(S5}

to the source to obtain

the path corresponding to

an optimal alignment:

&

(S}
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Finding an Optimal Alignment
 LCS(v,w) created the w@ﬂﬂT @ @4 T ﬂ @

2 3 6 7

&n

alignment grid.

S

al
|
!

 Follow the arrows
backwards from the sink

e =

(S5}

to the source to obtain

NS

et sl
= =S =

the path corresponding to

an optimal alignment:

AL

en
—
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/
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== ==/ @ == S
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~ |



Finding an Optimal Alignment

 LCS(v,w) created the

" AT 68T

NG

. . v 2 9 5 6 7
alignment grid. ﬂ@
— — — — ‘\ 4
* Follow the arrows Tﬂ \ﬂ.\ﬂ d -\ﬂ bt
backwards from the sink @2 ls 1] ] Y
to the source to obtain $ T4 TQ TQ N A A
the path corresponding to Td ! N bl L
an optimal alignment: T@ Tﬂ-\z Ti TJ\A (l Tﬂ
7 2] | 4 4l 14 g
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Finding an Optimal Alignment
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Finding an Optimal Alignment
 LCS(v,w) created the w@ﬂﬂT @ @4 T ﬂ @

2 3 6 7
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alignment grid.
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Finding an Optimal Alignment

w
* LCS(v,w) created the g ﬂﬂT@ @3 @4 T5ﬂ@@7
v
alignment grid. ﬂ@
R
* Follow the arrows T N N
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to the source to obtgin TSB T.ﬂ T , T 2\3 ]
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Finding an Optimal Alignment
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Finding an Optimal Alignment
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Finding an Optimal Alignment
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Finding an Optimal Alignment
 LCS(v,w) created the w@ﬂﬂT @ @4 T ﬂ @
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Finding an Optimal Alignment
 LCS(v,w) created the w@ﬂﬂT @ @4 T A] @

2 3 5 6 7

alignment grid.

S

* Follow the arrows
backwards from the sink
to the source to obtain
the path corresponding to
an optimal alignment:

e =
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Printing LCS: Backtracking

1. PrintLCS(b,v,i,))

2 if i=0orj=0

3. return

4. if b, ="x"

5 PrintLCS(b,v,i-1,j-1)
6. print v,

7. else

| if b, =]

. PrintLCS(b,v,i-1,))
0. else
]

8
9
1
] PrintLCS(b,v,i,j-1)



LCS: Runtime

[t takes O(nm) time to fill in the nxm dynamic programming
matrix: the pseudocode consists of a nested “for” loop inside
of another “for” loop.

« This is a very positive result for a problem that appeared much
more difficult mitially.



