Dynamic Programming: Edit Distance

Outline

- 1. DNA Sequence Comparison and CF
- 2. Change Problem
- 3. Manhattan Tourist Problem
- 4. Longest Paths in Graphs
- 5. Sequence Alignment
- 6. Edit Distance

Section 5: Sequence Alignment

Back to Biology: Sequence Alignment

- Recall that our original problem was to fit a similarity score on two DNA sequences:
- To do this we will use what is called an **alignment matrix**.

Alignment Matrix: Example

• Given 2 DNA sequences **v** and **w** of length *m* and *n*:

v:ATCTGAT
$$m=7$$
w:TGCATA $n=6$

• Example of Alignment : 2 * k matrix (k > m, n)

Common Subsequence

• Given two sequences

 $v = v_1 v_2 ... v_m$ and $w = w_1 w_2 ... w_n$

a common subsequence of \mathbf{v} and \mathbf{w} is a sequence of positions in \mathbf{v} : $1 \le i_1 < i_2 < \ldots < i_t \le m$ and a sequence of positions in \mathbf{w} : $1 \le j_1 < j_2 < \ldots < j_t \le n$ such that the i_t -th letter of \mathbf{v} is equal to the j_t -th letter of \mathbf{w} .

- Example: $\mathbf{v} = \text{ATGCCAT}$, $\mathbf{w} = \text{TCGGGCTATC}$. Then take:
 - $i_1 = 2, i_2 = 3, i_3 = 6, i_4 = 7$
 - $j_1 = 1, j_2 = 3, j_3 = 8, j_4 = 9$
 - This gives us that the common subsequence is **TGAT**.

Longest Common Subsequence

Given two sequences $\mathbf{v} = v_1 v_2 \dots v_m$ and $\mathbf{w} = w_1 w_2 \dots w_n$

the *Longest* Common Subsequence (LCS) of *v* and *w* is a sequence of positions in **v**: $1 \le i_1 < i_2 < \ldots < i_T \le m$ and a sequence of positions in **w**: $1 \le j_1 < j_2 < \dots < j_T \le n$ such that the *i_t*-th letter of **v** is equal to j_t -th letter of **w** and T is maximal.

- Example: $\mathbf{v} = \text{ATGCCAT}, \mathbf{w} = \text{TCGGGCTATC}.$
 - Before we found that TGAT is a subsequence.
 - The *longest* subsequence is **TGCAT**.
 - But...how do we *find* the LCS of two sequences?

• Assign one sequence to the rows, and one to the columns.

- Assign one sequence to the rows, and one to the columns.
- Every diagonal edge represents a match of elements.

- Assign one sequence to the rows, and one to the columns.
- Every diagonal edge represents a match of elements.
- Therefore, in a path ^{A 4} from source to sink, ^{T 5} the diagonal edges represent a common C⁷ subsequence.

Computing the LCS: Dynamic Programming

- Let \mathbf{v}_i = prefix of \mathbf{v} of length i: $v_1 \dots v_i$
- and w_i = prefix of w of length j: $w_1 \dots w_i$

The length of $LCS(v_i, w_i)$ is computed by:

$$s_{i,j} = \max \begin{cases} s_{i-1,j} \\ s_{i,j-1} \\ s_{i-1,j-1} + 1 & if \ v_i = w_j \end{cases}$$

www.bioalgorithms.info

Section 6: Edit Distance

Hamming Distance

- The **Hamming Distance** $d_H(\mathbf{v}, \mathbf{w})$ between two DNA sequences **v** and **w** of the same length is equal to the number of places in which the two sequences differ.
- Example: Given as follows, $d_H(\mathbf{v}, \mathbf{w}) = 8$:

V: ATATATATW: TATATATA

- However, note that these sequences are still very similar. ٠
 - Hamming Distance is therefore not an ideal similarity score, because it ignores insertions and deletions.

Edit Distance

Levenshtein (1966) introduced the edit distance between two strings as the minimum number of elementary operations (insertions, deletions, and substitutions) needed to transform one string into the other

 $d(\mathbf{v}, \mathbf{w}) = MIN$ number of elementary operations to transform $\mathbf{v} \rightarrow \mathbf{w}$

• So in our previous example, we can shift *w* one nucleotide to the right, and see that *w* is obtained from *v* by one insertion and one deletion:

V: ATATATATW: -TATATATA

- Hence the edit distance, d(v, w) = 2.
- Note: In order to provide this distance, we had to "fiddle" with the sequences. Hamming distance was easier to find.

• We can transform TGCATAT \rightarrow ATCCGAT in 5 steps:

TGCATAT

• We can transform TGCATAT \rightarrow ATCCGAT in 5 steps:

TGCATAT(delete last **T**)

• We can transform TGCATAT \rightarrow ATCCGAT in 5 steps:

TGCATAT	(delete last T)
TGCATA	(delete last A)

• We can transform TGCATAT \rightarrow ATCCGAT in 5 steps:

TGCATAT	(delete last T)
TGCATA	(delete last A)
ATGCAT	(insert A at front)

• We can transform TGCATAT \rightarrow ATCCGAT in 5 steps:

TGCATAT(delete last T)TGCATA(delete last A)ATGCAT(insert A at front)ATCCAT(substitute C for G)

• We can transform TGCATAT \rightarrow ATCCGAT in 5 steps:

TGCATAT(delete last T)TGCATA(delete last A)ATGCAT(insert A at front)ATCCAT(substitute C for G)ATCCGAT(insert G before last A)

• We can transform TGCATAT \rightarrow ATCCGAT in 5 steps:

TGCATAT	(delete last T)
TGCATA	(delete last A)
ATGCAT	(insert A at front)
ATCCAT	(substitute C for G)
ATCCGAT	(insert G before last A)

• Note: This *only* allows us to conclude that the edit distance is *at most* 5.

• Now we transform TGCATAT \rightarrow ATCCGAT in 4 steps:

ATGCATAT

• Now we transform TGCATAT \rightarrow ATCCGAT in 4 steps:

ATGCATAT (insert A at front)

• Now we transform TGCATAT \rightarrow ATCCGAT in 4 steps:

ATGCATAT	(insert A at front)
ATGCATAT	(delete second T)

• Now we transform TGCATAT \rightarrow ATCCGAT in 4 steps:

ATGCATAT	(insert A at front)
ATGCA <mark>T</mark> AT	(delete second T)
ATGC <mark>G</mark> AT	(substitute G for A)

• Now we transform TGCATAT \rightarrow ATCCGAT in 4 steps:

ATGCATAT(insert A at front)ATGCATAT(delete second T)ATGCGAT(substitute G for A)ATCCGAT(substitute C for G)

• Now we transform TGCATAT \rightarrow ATCCGAT in 4 steps:

ATGCATAT	(insert A at front)
ATGCATAT	(delete second T)
ATGCGAT	(substitute G for A)
ATCCGAT	(substitute C for G)

• Can we do even better? 3 steps? 2 steps? How can we know?

Key Result

- **Theorem**: Given two sequences *v* and *w* of length *m* and *n*, the edit distance d(v,w) is given by d(v,w) = m + n s(v,w), where s(v,w) is the length of the longest common subsequence of *v* and *w*.
- This is great news, because it means that if solving the LCS problem for *v* and *w* is equivalent to finding the edit distance between them.
- Therefore, we will solve the LCS problem instead in the following slides.

Return to the Edit Graph

• Every alignment corresponds to a path from source to sink.

Return to the Edit Graph

- Every alignment corresponds to a path from source to sink.
- Horizontal and vertical edges correspond to indels (deletions and insertions).

Return to the Edit Graph

- Every alignment corresponds to a path from source to sink.
- Horizontal and vertical edges correspond to indels (deletions and insertions).
- Diagonal edges correspond to matches and mismatches.

Alignment as a Path in the Edit Graph: Example

- Suppose that our sequences are ATCGTAC, ATGTTAT.
- One possible alignment is:
- 0 1 2 2 3 4 5 6 A T _ G T T A T _ A T C G T _ A _ C 0 1 2 3 4 5 5 6 6 7
- Edit graph path: $(0,0) \rightarrow (1,1) \rightarrow (2,2) \rightarrow$ $(2,3) \rightarrow (3,4) \rightarrow \text{etc.}$

Alignment with Dynamic Programming

Initialize O^{th} row and O^{th} column to be all zeroes.

Alignment with Dynamic Programming

- Initialize 0^{th} row and 0^{th} column to be all zeroes.
- Use the following recursive formula to calculate s_{i,j} for each i, j:

$$S_{i, j} = max \begin{cases} S_{i-1, j-1} + 1 \\ S_{i-1, j} \\ S_{i, j-1} \end{cases}$$

- Note that the placement of the arrows shows where a given score originated from:
 - if from the top
 - \leftarrow if from the left
 - \bigvee if $v_i = w_i$

• Continuing with the dynamic programming algorithm fills the table.

- Continuing with the dynamic programming algorithm fills the table.
- We first look for matches, highlighted in red, and then we fill in the rest of that row and column.

- Continuing with the dynamic programming algorithm fills the table.
- We first look for matches, highlighted in red, and then we fill in the rest of that row and column.

- Continuing with the dynamic programming algorithm fills the table.
- We first look for matches, highlighted in red, and then we fill in the rest of that row and column.
- As we can see, we do not simply add 1 each time.

- Continuing with the dynamic programming algorithm fills the table.
- We first look for matches, highlighted in red, and then we fill in the rest of that row and column.
- As we can see, we do not simply add 1 each time.

- Continuing with the dynamic programming algorithm fills the table.
- We first look for matches, highlighted in red, and then we fill in the rest of that row and column.
- As we can see, we do not simply add 1 each time.

- Continuing with the dynamic programming algorithm fills the table.
- We first look for matches, highlighted in red, and then we fill in the rest of that row and column.
- As we can see, we do not simply add 1 each time.

- Continuing with the dynamic programming algorithm fills the table.
- We first look for matches, highlighted in red, and then we fill in the rest of that row and column.
- As we can see, we do not simply add 1 each time.

- Continuing with the dynamic programming algorithm fills the table.
- We first look for matches, highlighted in red, and then we fill in the rest of that row and column.
- As we can see, we do not simply add 1 each time.

Dynamic Alignment: Pseudocode

1. LCS(v,w)
2. for
$$i \in 1$$
 to n
3. $s_{i,0} \in 0$
4. for $j \in 1$ to m
5. $s_{0,j} \in 0$
6. for $i \in 1$ to n
7. for $j \in 1$ to m
8. $s_{i,j} \in \max \begin{cases} s_{i-1,j} \\ s_{i,j-1} \\ s_{i-1,j-1} + 1, \text{ if } v_i = w_j \\ s_{i-1,j-1} + 1, \text{ if } s_{i,j} = s_{i-1,j} \\ s_{i,j} \in 1 \\ s_{i,j} = s_{i,j-1} \\ s_{i,j} = s_{i-1,j-1} + 1 \\ s_{i,j} = s_{i,j} = s_{i-1,j-1} + 1 \\ s_{i,j} = s_{i-1,j-1}$

- LCS(v,w) created the alignment grid.
- Follow the arrows backwards from the sink to the source to obtain the path corresponding to an optimal alignment:

- LCS(v,w) created the alignment grid.
- Follow the arrows backwards from the sink to the source to obtain the path corresponding to an optimal alignment:

- LCS(v,w) created the alignment grid.
- Follow the arrows backwards from the sink to the source to obtain the path corresponding to an optimal alignment:

- LCS(v,w) created the alignment grid.
- Follow the arrows backwards from the sink to the source to obtain the path corresponding to an optimal alignment:

- LCS(v,w) created the alignment grid.
- Follow the arrows backwards from the sink to the source to obtain the path corresponding to an optimal alignment:

- LCS(v,w) created the alignment grid.
- Follow the arrows backwards from the sink to the source to obtain the path corresponding to an optimal alignment:

- LCS(v,w) created the alignment grid.
- Follow the arrows backwards from the sink to the source to obtain the path corresponding to an optimal alignment:

- LCS(v,w) created the alignment grid.
- Follow the arrows backwards from the sink to the source to obtain the path corresponding to an optimal alignment:

- LCS(v,w) created the alignment grid.
- Follow the arrows backwards from the sink to the source to obtain the path corresponding to an optimal alignment:

- LCS(v,w) created the alignment grid.
- Follow the arrows backwards from the sink to the source to obtain the path corresponding to an optimal alignment:

- LCS(v,w) created the alignment grid.
- Follow the arrows backwards from the sink to the source to obtain the path corresponding to an optimal alignment:

Printing LCS: Backtracking

```
PrintLCS(b,v,i,j)
1.
2. if i = 0 or j = 0
3.
            return
4. if b_{i,j} = " \smallsetminus "
             PrintLCS(b,v,i-1,j-1)
5.
6.
             print V<sub>i</sub>
7.
      else
            if b_{i,i} = " \uparrow "
8.
              PrintLCS(b,v,i-1,j)
9.
10.
            else
              PrintLCS(b,v,i,j-1)
11.
```

LCS: Runtime

- It takes O(*nm*) time to fill in the *nxm* dynamic programming matrix: the pseudocode consists of a nested "for" loop inside of another "for" loop.
- This is a very positive result for a problem that appeared much more difficult initially.