
www.bioalgorithms.info An Introduction to Bioinformatics Algorithms

Dynamic Programming:
Edit Distance

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

1.  DNA Sequence Comparison and CF
2.  Change Problem
3.  Manhattan Tourist Problem
4.  Longest Paths in Graphs
5.  Sequence Alignment
6.  Edit Distance

Outline�

www.bioalgorithms.info An Introduction to Bioinformatics Algorithms

Section 5:
Sequence Alignment

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

���#�,'��"'$' 0����)-�&����$" &%�&,�

•  Recall that our original problem was to fit a similarity score
on two DNA sequences:

•  To do this we will use what is called an alignment matrix.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

�$" &%�&,���,*"/���/�%($��

•  Example of Alignment : 2 * k matrix (k > m, n)

A T -- G T A T --

A T C G -- A -- C

letters of v

letters of w

T

T

4 matches 2 insertions 2 deletions

•  Given 2 DNA sequences v and w of length m and n:

v: ATCTGAT m=7
w: TGCATA n=6

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Given two sequences
 v = v1 v2…vm and w = w1 w2…wn

 a common subsequence of v and w is a sequence of positions in
 v: 1 < i1 < i2 < … < it < m and a sequence of positions in
 w: 1 < j1 < j2 < … < jt < n such that the it -th letter of v

is equal to the jt-th letter of w.

•  Example: v = ATGCCAT, w = TCGGGCTATC. Then take:
•  i1 = 2, i2 = 3, i3 = 6, i4 = 7
•  j1 = 1, j2 = 3, j3 = 8, j4 = 9
•  This gives us that the common subsequence is TGAT.

	'%%'&��-�+�)-�&���

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Given two sequences v = v1 v2…vm and w = w1 w2…wn

 the Longest Common Subsequence (LCS) of v and w is a
sequence of positions in v: 1 < i1 < i2 < … < iT < m and
a sequence of positions in w: 1 < j1 < j2 < … < jT < n
such that the it -th letter of v is equal to jt-th letter of w
and T is maximal.

•  Example: v = ATGCCAT, w = TCGGGCTATC.
•  Before we found that TGAT is a subsequence.
•  The longest subsequence is TGCAT.
•  But…how do we find the LCS of two sequences?

�'& �+,�	'%%'&��-�+�)-�&���

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

T

G

C

A

T

A

C

1

2

3

4

5

6

7

0 i

A T C T G A T C
0 1 2 3 4 5 6 7 8

j •  Assign one
sequence to the
rows, and one to
the columns.

��",�
�(!��'��	���*'�$�%�

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

T

G

C

A

T

A

C

1

2

3

4

5

6

7

0 i

A T C T G A T C
0 1 2 3 4 5 6 7 8

j •  Assign one
sequence to the
rows, and one to
the columns.

•  Every diagonal
edge represents a
match of elements.

��",�
�(!��'��	���*'�$�%�

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

T

G

C

A

T

A

C

1

2

3

4

5

6

7

0 i

A T C T G A T C
0 1 2 3 4 5 6 7 8

j •  Assign one
sequence to the
rows, and one to
the columns.

•  Every diagonal
edge represents a
match of elements.

•  Therefore, in a path
from source to sink,
the diagonal edges
represent a
common
subsequence. Common Subsequence: TGAT

��",�
�(!��'��	���*'�$�%�

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

T

G

C

A

T

A

C

1

2

3

4

5

6

7

0 i

A T C T G A T C
0 1 2 3 4 5 6 7 8

j •  LCS Problem:
Find a path with the
maximum number
of diagonal edges.

Common Subsequence: TGAT

��",�
�(!��'��	���*'�$�%�

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Let vi = prefix of v of length i: v1 … vi

•  and wj = prefix of w of length j: w1 … wj

•  The length of LCS(vi,wj) is computed by:

	'%(-,"& �,!���	���
0&�%"���*' *�%%"& �

�

si, j =max
si−1, j
si, j−1
si−1, j−1 +1 if vi = w j

⎧

⎨
⎪

⎩
⎪

www.bioalgorithms.info An Introduction to Bioinformatics Algorithms

Section 6:
Edit Distance

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  The Hamming Distance dH(v, w) between two DNA
sequences v and w of the same length is equal to the number of
places in which the two sequences differ.

•  Example: Given as follows, dH(v, w) = 8:

•  However, note that these sequences are still very similar.
•  Hamming Distance is therefore not an ideal similarity score,

because it ignores insertions and deletions.

��%%"& �
"+,�&���

v: ATATATAT
w: TATATATA

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Levenshtein (1966) introduced the edit distance between
two strings as the minimum number of elementary
operations (insertions, deletions, and substitutions) needed to
transform one string into the other

d(v,w) = MIN number of elementary operations
to transform v  w

��",�
"+,�&���

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  So in our previous example, we can shift w one nucleotide to
the right, and see that w is obtained from v by one insertion
and one deletion:

•  Hence the edit distance, d(v, w) = 2.

•  Note: In order to provide this distance, we had to “fiddle”
with the sequences. Hamming distance was easier to find.

��",�
"+,�&�����/�%($����

v: ATATATAT-
w: -TATATATA

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  We can transform TGCATAT  ATCCGAT in 5 steps:

TGCATAT

��",�
"+,�&�����/�%($����

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  We can transform TGCATAT  ATCCGAT in 5 steps:

TGCATAT (delete last T)

��",�
"+,�&�����/�%($����

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  We can transform TGCATAT  ATCCGAT in 5 steps:

TGCATAT (delete last T)
TGCATA (delete last A)

��",�
"+,�&�����/�%($����

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  We can transform TGCATAT  ATCCGAT in 5 steps:

TGCATAT (delete last T)
TGCATA (delete last A)
ATGCAT (insert A at front)

��",�
"+,�&�����/�%($����

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  We can transform TGCATAT  ATCCGAT in 5 steps:

TGCATAT (delete last T)
TGCATA (delete last A)
ATGCAT (insert A at front)
ATCCAT (substitute C for G)

��",�
"+,�&�����/�%($����

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  We can transform TGCATAT  ATCCGAT in 5 steps:

TGCATAT (delete last T)
TGCATA (delete last A)
ATGCAT (insert A at front)
ATCCAT (substitute C for G)
ATCCGAT (insert G before last A)

��",�
"+,�&�����/�%($����

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  We can transform TGCATAT  ATCCGAT in 5 steps:

TGCATAT (delete last T)
TGCATA (delete last A)
ATGCAT (insert A at front)
ATCCAT (substitute C for G)
ATCCGAT (insert G before last A)

•  Note: This only allows us to conclude that the edit distance is at
most 5.

��",�
"+,�&�����/�%($����

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Now we transform TGCATAT  ATCCGAT in 4 steps:

ATGCATAT

��",�
"+,�&�����/�%($����

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Now we transform TGCATAT  ATCCGAT in 4 steps:

ATGCATAT (insert A at front)

��",�
"+,�&�����/�%($����

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Now we transform TGCATAT  ATCCGAT in 4 steps:

ATGCATAT (insert A at front)
ATGCATAT (delete second T)

��",�
"+,�&�����/�%($����

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Now we transform TGCATAT  ATCCGAT in 4 steps:

ATGCATAT (insert A at front)
ATGCATAT (delete second T)
ATGCGAT (substitute G for A)

��",�
"+,�&�����/�%($����

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Now we transform TGCATAT  ATCCGAT in 4 steps:

ATGCATAT (insert A at front)
ATGCATAT (delete second T)
ATGCGAT (substitute G for A)
ATCCGAT (substitute C for G)

��",�
"+,�&�����/�%($����

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Now we transform TGCATAT  ATCCGAT in 4 steps:

ATGCATAT (insert A at front)
ATGCATAT (delete second T)
ATGCGAT (substitute G for A)
ATCCGAT (substitute C for G)

•  Can we do even better? 3 steps? 2 steps? How can we know?

��",�
"+,�&�����/�%($����

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Theorem: Given two sequences v and w of length m and n, the
edit distance d(v,w) is given by d(v,w) = m + n – s(v,w), where
s(v,w) is the length of the longest common subsequence of v
and w.

•  This is great news, because it means that if solving the LCS
problem for v and w is equivalent to finding the edit distance
between them.

•  Therefore, we will solve the LCS problem instead in the
following slides.

��0���+-$,�

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Every alignment corresponds
to a path from source to sink.

��,-*&�,'�,!����",�
*�(!�

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Every alignment corresponds
to a path from source to sink.

•  Horizontal and vertical edges
correspond to indels
(deletions and insertions).

��,-*&�,'�,!����",�
*�(!�

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Every alignment corresponds
to a path from source to sink.

•  Horizontal and vertical edges
correspond to indels
(deletions and insertions).

•  Diagonal edges correspond to
matches and mismatches.

��,-*&�,'�,!����",�
*�(!�

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Suppose that our sequences
are ATCGTAC, ATGTTAT.

•  One possible alignment is:

•  Edit graph path:
(0,0)(1,1)(2,2)

(2,3)(3,4)etc.

Alignment as a Path in the Edit Graph: Example

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Initialize 0th row and 0th

column to be all zeroes.

Alignment with Dynamic Programming

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

 Si-1, j-1 + 1

Si, j = max Si-1, j

 Si, j-1

•  Initialize 0th row and 0th

column to be all zeroes.

•  Use the following
recursive formula to
calculate Si,j for each i, j:

Alignment with Dynamic Programming

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Note that the placement of the arrows shows where a given
score originated from:
•  if from the top
•  if from the left
•  if vi = wj

0&�%"���*' *�%%"& ��/�%($��

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Continuing with the
dynamic programming
algorithm fills the table.

Dynamic Programming Example

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Continuing with the
dynamic programming
algorithm fills the table.

•  We first look for matches,
highlighted in red, and then
we fill in the rest of that
row and column.

Dynamic Programming Example

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Continuing with the
dynamic programming
algorithm fills the table.

•  We first look for matches,
highlighted in red, and then
we fill in the rest of that
row and column.

Dynamic Programming Example

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Continuing with the
dynamic programming
algorithm fills the table.

•  We first look for matches,
highlighted in red, and then
we fill in the rest of that
row and column.

•  As we can see, we do not
simply add 1 each time.

Dynamic Programming Example

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Continuing with the
dynamic programming
algorithm fills the table.

•  We first look for matches,
highlighted in red, and then
we fill in the rest of that
row and column.

•  As we can see, we do not
simply add 1 each time.

Dynamic Programming Example

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Continuing with the
dynamic programming
algorithm fills the table.

•  We first look for matches,
highlighted in red, and then
we fill in the rest of that
row and column.

•  As we can see, we do not
simply add 1 each time.

Dynamic Programming Example

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Continuing with the
dynamic programming
algorithm fills the table.

•  We first look for matches,
highlighted in red, and then
we fill in the rest of that
row and column.

•  As we can see, we do not
simply add 1 each time.

Dynamic Programming Example

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Continuing with the
dynamic programming
algorithm fills the table.

•  We first look for matches,
highlighted in red, and then
we fill in the rest of that
row and column.

•  As we can see, we do not
simply add 1 each time.

Dynamic Programming Example

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Continuing with the
dynamic programming
algorithm fills the table.

•  We first look for matches,
highlighted in red, and then
we fill in the rest of that
row and column.

•  As we can see, we do not
simply add 1 each time.

Dynamic Programming Example

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

1. LCS(v,w)
2.  for i  1 to n

3.  si,0  0

4.  for j  1 to m

5.  s0,j  0

6.  for i  1 to n

7.  for j  1 to m

8.  si-1,j
9.  si,j  max si,j-1

10.  si-1,j-1 + 1, if vi = wj
11.  “ “ if si,j = si-1,j
•  bi,j  “ “ if si,j = si,j-1
•  “ “ if si,j = si-1,j-1 + 1

•  return (sn,m, b)

0&�%"���$" &%�&,���+�-�'�'���

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  LCS(v,w) created the
alignment grid.

•  Follow the arrows
backwards from the sink
to the source to obtain
the path corresponding to
an optimal alignment:

�"&�"& ��&��(,"%�$��$" &%�&,�

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  LCS(v,w) created the
alignment grid.

•  Follow the arrows
backwards from the sink
to the source to obtain
the path corresponding to
an optimal alignment:

�"&�"& ��&��(,"%�$��$" &%�&,�

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  LCS(v,w) created the
alignment grid.

•  Follow the arrows
backwards from the sink
to the source to obtain
the path corresponding to
an optimal alignment:

�"&�"& ��&��(,"%�$��$" &%�&,�

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  LCS(v,w) created the
alignment grid.

•  Follow the arrows
backwards from the sink
to the source to obtain
the path corresponding to
an optimal alignment:

�"&�"& ��&��(,"%�$��$" &%�&,�

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  LCS(v,w) created the
alignment grid.

•  Follow the arrows
backwards from the sink
to the source to obtain
the path corresponding to
an optimal alignment:

�"&�"& ��&��(,"%�$��$" &%�&,�

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  LCS(v,w) created the
alignment grid.

•  Follow the arrows
backwards from the sink
to the source to obtain
the path corresponding to
an optimal alignment:

�"&�"& ��&��(,"%�$��$" &%�&,�

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  LCS(v,w) created the
alignment grid.

•  Follow the arrows
backwards from the sink
to the source to obtain
the path corresponding to
an optimal alignment:

�"&�"& ��&��(,"%�$��$" &%�&,�

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  LCS(v,w) created the
alignment grid.

•  Follow the arrows
backwards from the sink
to the source to obtain
the path corresponding to
an optimal alignment:

�"&�"& ��&��(,"%�$��$" &%�&,�

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  LCS(v,w) created the
alignment grid.

•  Follow the arrows
backwards from the sink
to the source to obtain
the path corresponding to
an optimal alignment:

�"&�"& ��&��(,"%�$��$" &%�&,�

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  LCS(v,w) created the
alignment grid.

•  Follow the arrows
backwards from the sink
to the source to obtain
the path corresponding to
an optimal alignment:

�"&�"& ��&��(,"%�$��$" &%�&,�

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  LCS(v,w) created the
alignment grid.

•  Follow the arrows
backwards from the sink
to the source to obtain
the path corresponding to
an optimal alignment:

�"&�"& ��&��(,"%�$��$" &%�&,�

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

1.  PrintLCS(b,v,i,j)
2.  if i = 0 or j = 0
3.  return
4.  if bi,j = “ “
5.  PrintLCS(b,v,i-1,j-1)
6.  print vi
7.  else
8.  if bi,j = “ “
9.  PrintLCS(b,v,i-1,j)
10.  else
11.  PrintLCS(b,v,i,j-1)

�*"&,"& ��	������#,*��#"& �

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  It takes O(nm) time to fill in the nxm dynamic programming
matrix: the pseudocode consists of a nested “for” loop inside
of another “for” loop.

•  This is a very positive result for a problem that appeared much
more difficult initially.

�	����-&,"%��

