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1.  DNA Sequence Comparison and CF 
2.  Change Problem 
3.  Manhattan Tourist Problem 
4.  Longest Paths in Graphs  
5.  Sequence Alignment 
6.  Edit Distance 
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Section 5: 
Sequence Alignment 
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•  Recall that our original problem was to fit a similarity score 
on two DNA sequences: 

•  To do this we will use what is called an alignment matrix. 
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•  Example of Alignment :  2 * k matrix ( k > m, n ) 

A T -- G T A T -- 

A T C G -- A -- C 

letters of v 

letters of w 

T 

T 

4 matches 2 insertions 2 deletions 

•  Given 2 DNA sequences v and w of length m and n: 

v: ATCTGAT  m=7 
w: TGCATA   n=6 
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•  Given two sequences  
            v = v1 v2…vm and w = w1 w2…wn 

 a common subsequence of v and w is a sequence of positions in  
 v: 1 < i1 < i2 < … < it < m and a sequence of positions in  
 w: 1 < j1 < j2 < … < jt < n such that the it -th letter of v 

is equal to the jt-th letter of w. 

•  Example: v = ATGCCAT, w = TCGGGCTATC.  Then take: 
•  i1 = 2, i2 = 3, i3 = 6, i4 = 7 
•  j1 = 1, j2 = 3, j3 = 8, j4 = 9 
•  This gives us that the common subsequence is TGAT.  
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•  Given two sequences v = v1 v2…vm and w = w1 w2…wn 

 the Longest Common Subsequence (LCS) of v and w is a 
sequence of positions in v: 1 < i1 < i2 < … < iT < m and 
a sequence of positions in w: 1 < j1 < j2 < … < jT < n 
such that the it -th letter of v is equal to jt-th letter of w                    
and T is maximal. 

•  Example: v = ATGCCAT, w = TCGGGCTATC. 
•  Before we found that TGAT is a subsequence. 
•  The longest subsequence is TGCAT. 
•  But…how do we find the LCS of two sequences?   
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7 

0 i 

A T C T G A T C
0 1 2 3 4 5 6 7 8 

j •  Assign one 
sequence to the 
rows, and one to 
the columns. 
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A T C T G A T C
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j •  Assign one 
sequence to the 
rows, and one to 
the columns. 

•  Every diagonal 
edge represents a 
match of elements. 
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A T C T G A T C
0 1 2 3 4 5 6 7 8 

j •  Assign one 
sequence to the 
rows, and one to 
the columns. 

•  Every diagonal 
edge represents a 
match of elements. 

•  Therefore, in a path 
from source to sink, 
the diagonal edges 
represent a 
common 
subsequence. Common Subsequence: TGAT 
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j •  LCS Problem: 
Find a path with the 
maximum number 
of diagonal edges. 

Common Subsequence: TGAT 
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•  Let vi   =   prefix of v of length i:    v1 … vi 

•  and wj  =  prefix of w of length j:   w1 … wj 

•  The length of LCS(vi,wj) is computed by: 

	'%(-,"& �,!���	���
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� 

si, j =max
si−1, j
si, j−1
si−1, j−1 +1 if vi = w j

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 
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Section 6: 
Edit Distance 
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•  The Hamming Distance dH(v, w)  between two DNA 
sequences v and w of the same length is equal to the number of 
places in which the two sequences differ. 

•  Example: Given  as follows, dH(v, w)  =  8: 

•  However, note that these sequences are still very similar. 
•  Hamming Distance is therefore not an ideal similarity score, 

because it ignores insertions and deletions.  

��%%"& �
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v: ATATATAT 
w: TATATATA  



An Introduction to Bioinformatics Algorithms www.bioalgorithms.info 

•  Levenshtein (1966) introduced the edit distance between 
two strings as the minimum number of elementary 
operations (insertions, deletions, and substitutions) needed to 
transform one string into the other 

d(v,w) = MIN number of elementary operations  
to transform v  w  
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•  So in our previous example, we can shift w one nucleotide to 
the right, and see that w is obtained from v by one insertion 
and one deletion:  

•  Hence the edit distance, d(v, w)  =  2. 

•  Note: In order to provide this distance, we had to “fiddle” 
with the sequences.  Hamming distance was easier to find. 
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v: ATATATAT- 
w: -TATATATA  
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•  We can transform TGCATAT  ATCCGAT in 5 steps: 

TGCATAT 
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•  We can transform TGCATAT  ATCCGAT in 5 steps: 

TGCATAT            (delete last T) 
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•  We can transform TGCATAT  ATCCGAT in 5 steps: 

TGCATAT            (delete last T) 
TGCATA              (delete last A) 
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•  We can transform TGCATAT  ATCCGAT in 5 steps: 

TGCATAT            (delete last T) 
TGCATA              (delete last A) 
ATGCAT              (insert A at front) 
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•  We can transform TGCATAT  ATCCGAT in 5 steps: 

TGCATAT            (delete last T) 
TGCATA              (delete last A) 
ATGCAT              (insert A at front) 
ATCCAT              (substitute C for G) 
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•  We can transform TGCATAT  ATCCGAT in 5 steps: 

TGCATAT            (delete last T) 
TGCATA              (delete last A) 
ATGCAT              (insert A at front) 
ATCCAT              (substitute C for G) 
ATCCGAT            (insert G before last A)  
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•  We can transform TGCATAT  ATCCGAT in 5 steps: 

TGCATAT            (delete last T) 
TGCATA              (delete last A) 
ATGCAT              (insert A at front) 
ATCCAT              (substitute C for G) 
ATCCGAT            (insert G before last A) 

•  Note: This only allows us to conclude that the edit distance is at 
most 5. 

    

��",�
"+,�&�����/�%($����



An Introduction to Bioinformatics Algorithms www.bioalgorithms.info 

•  Now we transform TGCATAT  ATCCGAT in 4 steps: 

ATGCATAT 
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•  Now we transform TGCATAT  ATCCGAT in 4 steps: 

ATGCATAT          (insert A at front) 
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•  Now we transform TGCATAT  ATCCGAT in 4 steps: 

ATGCATAT          (insert A at front) 
ATGCATAT          (delete second T) 
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•  Now we transform TGCATAT  ATCCGAT in 4 steps: 

ATGCATAT          (insert A at front) 
ATGCATAT          (delete second T) 
ATGCGAT            (substitute G for A) 
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•  Now we transform TGCATAT  ATCCGAT in 4 steps: 

ATGCATAT          (insert A at front) 
ATGCATAT          (delete second T) 
ATGCGAT            (substitute G for A) 
ATCCGAT            (substitute C for G) 
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•  Now we transform TGCATAT  ATCCGAT in 4 steps: 

ATGCATAT          (insert A at front) 
ATGCATAT          (delete second T) 
ATGCGAT            (substitute G for A) 
ATCCGAT            (substitute C for G) 

•  Can we do even better?  3 steps?  2 steps?  How can we know? 
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•  Theorem: Given two sequences v and w of length m and n, the 
edit distance d(v,w) is given by d(v,w) = m + n – s(v,w), where 
s(v,w) is the length of the longest common subsequence of v 
and w. 

•  This is great news, because it means that if solving the LCS 
problem for v and w is equivalent to finding the edit distance 
between them. 

•  Therefore, we will solve the LCS problem instead in the 
following slides.    

��0���+-$,�



An Introduction to Bioinformatics Algorithms www.bioalgorithms.info 

•  Every alignment corresponds 
to a path from source to sink. 
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•  Every alignment corresponds 
to a path from source to sink. 

•  Horizontal and vertical edges 
correspond to indels 
(deletions and insertions). 
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•  Every alignment corresponds 
to a path from source to sink. 

•  Horizontal and vertical edges 
correspond to indels 
(deletions and insertions). 

•  Diagonal edges correspond to 
matches and mismatches.  
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•  Suppose that our sequences 
are ATCGTAC, ATGTTAT. 

•  One possible alignment is: 

•  Edit graph path: 
(0,0)(1,1)(2,2) 

(2,3)(3,4)etc. 

Alignment as a Path in the Edit Graph: Example 
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•  Initialize 0th row and 0th 

column to be all zeroes. 

Alignment with Dynamic Programming 
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                      Si-1, j-1  + 1 

Si, j =  max      Si-1, j 

                      Si, j-1 

•  Initialize 0th row and 0th 

column to be all zeroes. 

•  Use the following 
recursive formula to 
calculate Si,j  for each i, j: 

Alignment with Dynamic Programming 
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•  Note that the placement of the arrows shows where a given 
score originated from: 
•       if from the top 
•       if from the left 
•       if vi = wj      
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•  Continuing with the 
dynamic programming  
algorithm fills the table. 

Dynamic Programming Example 
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•  Continuing with the 
dynamic programming  
algorithm fills the table. 

•  We first look for matches, 
highlighted in red, and then 
we fill in the rest of that 
row and column. 

Dynamic Programming Example 
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•  Continuing with the 
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highlighted in red, and then 
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row and column. 
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•  Continuing with the 
dynamic programming  
algorithm fills the table. 

•  We first look for matches, 
highlighted in red, and then 
we fill in the rest of that 
row and column. 

•  As we can see, we do not 
simply add 1 each time. 

Dynamic Programming Example 
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1. LCS(v,w) 
2.   for i  1 to n 

3.     si,0  0 

4.   for j  1 to m 

5.     s0,j  0 

6.   for i  1 to n 

7.     for j  1 to m 

8.                    si-1,j 
9.     si,j  max   si,j-1  

10.                    si-1,j-1 + 1, if vi = wj 
11.                  “   “   if  si,j = si-1,j 
•           bi,j       “   “   if  si,j = si,j-1 
•                             “   “   if  si,j = si-1,j-1 + 1 

•     return (sn,m, b) 
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•  LCS(v,w) created the 
alignment grid. 

•  Follow the arrows 
backwards from the sink 
to the source to obtain 
the path corresponding to 
an optimal alignment: 
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1.  PrintLCS(b,v,i,j) 
2.      if  i = 0 or j = 0 
3.            return 
4.      if bi,j = “     “ 
5.             PrintLCS(b,v,i-1,j-1) 
6.             print vi 
7.        else 
8.            if bi,j = “     “ 
9.       PrintLCS(b,v,i-1,j) 
10.        else 
11.              PrintLCS(b,v,i,j-1) 
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•  It takes O(nm) time to fill in the nxm dynamic programming 
matrix: the pseudocode consists of a nested “for” loop inside 
of another “for” loop. 

•  This is a very positive result for a problem that appeared much 
more difficult initially.   
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