
www.bioalgorithms.info An Introduction to Bioinformatics Algorithms

Dynamic Programming:
Edit Distance

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

1.  DNA Sequence Comparison and CF
2.  Change Problem
3.  Manhattan Tourist Problem
4.  Longest Paths in Graphs
5.  Sequence Alignment
6.  Edit Distance

Outline�

www.bioalgorithms.info An Introduction to Bioinformatics Algorithms

Section 1:
DNA Sequence

Comparison and CF

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Finding sequence similarities with genes
of known function is a common approach
to infer a newly sequenced gene’s
function.

•  In 1984 Russell Doolittle and colleagues
found similarities between a cancer-
causing gene and the normal growth factor
(PDGF) gene.

Russell Doolittle

http://biology.ucsd.edu/faculty/doolittle.html

�����)-�&���	'%(�*"+'&���"*+,��-���++��,'*0��

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Cystic fibrosis (CF): A chronic and
frequently fatal disease which
produces an abnormally large
amount of mucus.
•  Mucus is a slimy material that

coats many epithelial surfaces
and is secreted into fluids such as
saliva.

•  CF primarily affects the respiratory
systems of children.

http://www.eradimaging.com/site/article.cfm?ID=327

	0+,"���"�*'+"+��

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  In the early 1980s biologists
hypothesized that CF is a genetic
disorder caused by mutations in an
unidentified gene.

•  Heterozygous carriers are
asymptomatic.

•  Therefore a person must be
homozygously recessive in the CF
gene in order to be diagnosed with
CF.

http://www.discern-genetics.org/diagram61.php

	0+,"���"�*'+"+���&!�*",�&���

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Adenosine Triphosphate (ATP): The energy source of all cell
processes.

•  ATP binding proteins are present on the cell membrane and act
as transport channels.

•  In 1989, biologists found a similarity between the cystic
fibrosis gene and ATP binding proteins.

•  This connection was plausible, given the fact that CF involves
sweet secretion with abnormally high sodium levels.

	0+,"���"�*'+"+��	'&&��,"'&�,'��,!�*��*',�"&+�

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  If a high percentage of CF patients have a given mutation in
the gene and the normal patients do not, then this could be an
indicator of a mutation related to CF.

•  A certain mutation was in fact found in 70% of CF patients,
convincing evidence that it is a predominant genetic
diagnostics marker for CF.

	0+,"���"�*'+"+���-,�,"'&��&�$0+"+��

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  CFTR Protein: A protein of 1480 amino acids that regulates a
chloride ion channel.

•  CFTR adjusts the “wateriness” of fluids secreted by the cell.

•  Those with cystic fibrosis are missing a single amino acid in
their CFTR protein (illustrated on following slide).

	0+,"���"�*'+"+��&��,!��	�����*',�"&�

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

	0+,"���"�*'+"+��&��,!��	�����*',�"&��

www.bioalgorithms.info An Introduction to Bioinformatics Algorithms

Section 2: The Change
Problem

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Similarities between a gene with known function and a gene
with unknown function allow biologists to infer the function of
the gene with unknown function.

•  We would like to compute a similarity score between two
genes to tell how likely it is that they have similar functions.

•  Dynamic programming is a computing technique for revealing
similarities between sequences.

•  The Change Problem is a good problem to introduce the idea
of dynamic programming.

�*"& �"&�,!���"'"&�'*%�,"�"�&+�

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Say we want to provide change totaling 97 cents.

•  We could do this in a large number of ways, but the quickest
way to do it would be:
•  Three quarters = 75 cents
•  Two dimes = 20 cents
•  Two pennies = 2 cents

•  Question 1: How do we know that this is quickest?

•  Question 2: Can we generalize to arbitrary denominations?

�',".�,"& ��/�%($����!��	!�& ���*'�$�%�

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Goal: Convert some amount of money M into given
denominations, using the fewest possible number of coins.

•  Input: An amount of money M, and an array of d
denominations c = (c1, c2, …, cd), in decreasing order of
value (c1 > c2 > … > cd).

•  Output: A list of d integers i1, i2, …, id such that

 c1i1 + c2i2 + … + cdid = M  
and i1 + i2 + … + id is minimal.

�!��	!�& ���*'�$�%���'*%�$��,�,�%�&,�

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Given the denominations 1, 3, and 5, what is the minimum
number of coins needed to make change for a given value?

•  Only one coin is needed to make change for the values 1, 3,
and 5.

1 2 3 4 5 6 7 8 9 10

1 1 1

Value

Min # of coins

�!��	!�& ���*'�$�%���&',!�*��/�%($��

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Given the denominations 1, 3, and 5, what is the minimum
number of coins needed to make change for a given value?

•  Only one coin is needed to make change for the values 1, 3,
and 5.

•  However, two coins are needed to make change for the values
2, 4, 6, 8, and 10.

1 2 3 4 5 6 7 8 9 10

1 2 1 2 1 2 2 2

Value

Min # of coins

�!��	!�& ���*'�$�%���&',!�*��/�%($��

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Given the denominations 1, 3, and 5, what is the minimum
number of coins needed to make change for a given value?

•  Only one coin is needed to make change for the values 1, 3,
and 5.

•  However, two coins are needed to make change for the values
2, 4, 6, 8, and 10.

•  Lastly, three coins are needed to make change for 7 and 9.

1 2 3 4 5 6 7 8 9 10

1 2 1 2 1 2 2 2

Value

Min # of coins 3 3

�!��	!�& ���*'�$�%���&',!�*��/�%($��

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  This example expresses the following recurrence relation:

�!��	!�& ���*'�$�%�����-**�&���

�

minNumCoins M() =min
minNumCoins M −1() + 1
minNumCoins M − 3() + 1
minNumCoins M − 5() + 1

⎧

⎨
⎪

⎩
⎪

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  In general, given the denominations c: c1, c2, …, cd, the
recurrence relation is:

�!��	!�& ���*'�$�%�����-**�&���

�

minNumCoins M() =min

minNumCoins M − c1() + 1

minNumCoins M − c2() + 1
…

minNumCoins M − cd() + 1

⎧

⎨

⎪
⎪

⎩

⎪
⎪

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

1.  RecursiveChange(M,c,d)
2.  if M = 0
3.  return 0
4.  bestNumCoins infinity
5.  for i 1 to d
6.  if M ≥ ci

7.  numCoins RecursiveChange(M – ci , c, d)
8.  if numCoins + 1 < bestNumCoins
9.  bestNumCoins numCoins + 1
10.  return bestNumCoins

�!��	!�& ���*'�$�%���+�-�'�'���

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  We now will provide the tree of recursive calls if M = 77 and
the denominations are 1, 3, and 7.

•  We will outline all the occurrences of 70 cents to demonstrate
how often it is called.

�!�����-*+".�	!�& ���*�����/�%($��

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

77

�!�����-*+".�	!�& ���*���

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

74

77

76 70

�!�����-*+".�	!�& ���*���

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

74

77

76 70

75 73 69 73 71 67 69 67 63

�!�����-*+".�	!�& ���*���

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

74

77

76 70

75 73 69 73 71 67 69 67 63

74 72 68

72 70 66

68 66 62

72 70 66

70 68 64

66 64 60

68 66 62

66 64 60

62 60 56

�!�����-*+".�	!�& ���*���

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

74

77

76 70

75 73 69 73 71 67 69 67 63

74 72 68

72 70 66

68 66 62

72 70 66

70 68 64

66 64 60

68 66 62

66 64 60

62 60 56

.
70 70 70 70 70

�!�����-*+".�	!�& ���*���

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  As we can see, RecursiveChange recalculates the optimal coin
combination for a given amount of money repeatedly.

•  For our example of M = 77, c = (1,3,7):
•  The optimal coin combination for 70 cents is computed 9

times!

���-*+".�	!�& ����&���"�"�&�"�+�

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  As we can see, RecursiveChange recalculates the optimal coin
combination for a given amount of money repeatedly.

•  For our example of M = 77, c = (1,3,7):
•  The optimal coin combination for 70 cents is computed 9

times!
•  The optimal coin combination for 50 cents is computed

billions of times!

���-*+".�	!�& ����&���"�"�&�"�+�

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  As we can see, RecursiveChange recalculates the optimal coin
combination for a given amount of money repeatedly.

•  For our example of M = 77, c = (1,3,7):
•  The optimal coin combination for 70 cents is computed 9

times!
•  The optimal coin combination for 50 cents is computed

billions of times!
•  Imagine how many times the optimal coin combination for

3 cents would be calculated…

���-*+".�	!�& ����&���"�"�&�"�+�

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  We’re re-computing values in our algorithm more than once.

•  Instead, let’s save results of each computation for all amounts
from 0 to M. This way, we can do a reference call to find an
already computed value, instead of re-computing each time.

•  The new algorithm will have running time M*d, where M is
the amount of money and d is the number of denominations.

•  This is an example of the method of dynamic programming.

���-*+".�	!�& ����- �+,����%(*'.�%�&,+�

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

1.  DPChange(M,c,d)
2.  bestNumCoins0 0
3.  for m 1 to M
4.  bestNumCoinsm infinity
5.  for i 1 to d
6.  if m ≥ ci

7.  if bestNumCoinsm – ci
+ 1 < bestNumCoinsm

8.  bestNumCoinsm bestNumCoinsm – ci
+ 1

9.  return bestNumCoinsM

�!��	!�& ���*'�$�%��
0&�%"���*' *�%%"& �

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

0 1

0 1 2

0 1 2 3

0 1 2 3 4

0 1 2 3 4 5

0 1 2 3 4 5 6

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8 9

0 1

0 1 2

0 1 2 1

0 1 2 1 2

0 1 2 1 2 3

0 1 2 1 2 3 2

0 1 2 1 2 3 2 1

0 1 2 1 2 3 2 1 2

0 1 2 1 2 3 2 1 2 3

•  For example, let us take
c = (1,3,7), M = 9:

0
0

�	!�& ����/�%($��

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  You may have noticed that the dynamic programming
algorithm provided somewhat resembles the recursive
algorithm we already had.

•  The difference is that with recursion, we had constant
repetition since we proceeded from more complicated sums
“down the tree” to less complicated ones.

•  With DPChange, we always “build up” from easier problem
instances to the desired one, and in so doing avoid repetition.

�-"�#��',��'&�
0&�%"���*' *�%%"& �

www.bioalgorithms.info An Introduction to Bioinformatics Algorithms

Section 3:
Manhattan Tourist

Problem

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Hotel

•  Imagine that you are a tourist in
Manhattan, whose streets are
represented by the grid on the right.

Station

���","'&�$��/�%($�����&!�,,�&��'-*"+,��*'�$�%�

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Station
*

*

*

*
*

**

* *

*

*

Hotel

*

•  Imagine that you are a tourist in
Manhattan, whose streets are
represented by the grid on the right.

•  You are leaving town, and you want
to see as many attractions
(represented by *) as possible.

���","'&�$��/�%($�����&!�,,�&��'-*"+,��*'�$�%�

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Station
*

*

*

*
*

**

* *

*

*

Hotel

*

•  Imagine that you are a tourist in
Manhattan, whose streets are
represented by the grid on the right.

•  You are leaving town, and you want
to see as many attractions
(represented by *) as possible.

•  Your time is limited: you only have
time to travel east and south.

���","'&�$��/�%($�����&!�,,�&��'-*"+,��*'�$�%�

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Station
*

*

*

*
*

**

* *

*

*

Hotel

*

•  Imagine that you are a tourist in
Manhattan, whose streets are
represented by the grid on the right.

•  You are leaving town, and you want
to see as many attractions
(represented by *) as possible.

•  Your time is limited: you only have
time to travel east and south.

•  What is the best path through town?

���","'&�$��/�%($�����&!�,,�&��'-*"+,��*'�$�%�

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Station
*

*

*

*
*

**

* *

*

*

Hotel

*

•  Imagine that you are a tourist in
Manhattan, whose streets are
represented by the grid on the right.

•  You are leaving town, and you want
to see as many attractions
(represented by *) as possible.

•  Your time is limited: you only have
time to travel east and south.

•  What is the best path through town?

���","'&�$��/�%($�����&!�,,�&��'-*"+,��*'�$�%�

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Goal: Find the longest path in a weighted grid.

•  Input: A weighted grid G with two distinct vertices, one
labeled “source” and the other labeled “sink.”

•  Output: A longest path in G from “source” to “sink.”

��&!�,,�&��'-*"+,��*'�$�%���������'*%-$�,"'&�

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Our first try at solving the MTP will use a greedy algorithm.

•  Main Idea: At each node (intersection), choose the edge
(street) departing that node which has the greatest weight.

����*���0��$ '*",!%�

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

3 2 4

0 7 3

3 3 0

1 3 2

4

4

5

6

4

6

5

5

8

2

2

5

0 1 2 3

0

1

2

3

j coordinate

i c
oo

rd
in

at
e

source

sink

4
3 2 4 0

1 0 2 4 3

3

1

1

2

2

2

4

4

����*���0��$ '*",!%���/�%($��

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

3 2 4

0 7 3

3 3 0

1 3 2

4

4

5

6

4

6

5

5

8

2

2

5

0 1 2 3

0

1

2

3

j coordinate

i c
oo

rd
in

at
e

source

sink

4
3 2 4 0

1 0 2 4 3

3

1

1

2

2

2

4

0

4

����*���0��$ '*",!%���/�%($��

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

3 2 4

0 7 3

3 3 0

1 3 2

4

4

5

6

4

6

5

5

8

2

2

5

0 1 2 3

0

1

2

3

j coordinate

i c
oo

rd
in

at
e

source

sink

4
3 2 4 0

1 0 2 4 3

3

1

1

2

2

2

4

0 3

4

����*���0��$ '*",!%���/�%($��

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

3 2 4

0 7 3

3 3 0

1 3 2

4

4

5

6

4

6

5

5

8

2

2

5

0 1 2 3

0

1

2

3

j coordinate

i c
oo

rd
in

at
e

source

sink

4
3 2 4 0

1 0 2 4 3

3

1

1

2

2

2

4

5 0 3

4

����*���0��$ '*",!%���/�%($��

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

3 2 4

0 7 3

3 3 0

1 3 2

4

4

5

6

4

6

5

5

8

2

2

5

0 1 2 3

0

1

2

3

j coordinate

i c
oo

rd
in

at
e

source

sink

4
3 2 4 0

1 0 2 4 3

3

1

1

2

2

2

4

9 5 0 3

4

����*���0��$ '*",!%���/�%($��

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

3 2 4

0 7 3

3 3 0

1 3 2

4

4

5

6

4

6

5

5

8

2

2

5

0 1 2 3

0

1

2

3

j coordinate

i c
oo

rd
in

at
e

13

source

sink

4
3 2 4 0

1 0 2 4 3

3

1

1

2

2

2

4

9 5 0 3

4

����*���0��$ '*",!%���/�%($��

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

3 2 4

0 7 3

3 3 0

1 3 2

4

4

5

6

4

6

5

5

8

2

2

5

0 1 2 3

0

1

2

3

j coordinate

i c
oo

rd
in

at
e

13

source

sink

4
3 2 4 0

1 0 2 4 3

3

1

1

2

2

2

4

9 5

15

0 3

4

����*���0��$ '*",!%���/�%($��

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

3 2 4

0 7 3

3 3 0

1 3 2

4

4

5

6

4

6

5

5

8

2

2

5

0 1 2 3

0

1

2

3

j coordinate

i c
oo

rd
in

at
e

13

source

sink

4
3 2 4 0

1 0 2 4 3

3

1

1

2

2

2

4 19

9 5

15

0 3

4

����*���0��$ '*",!%���/�%($��

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

3 2 4

0 7 3

3 3 0

1 3 2

4

4

5

6

4

6

5

5

8

2

2

5

0 1 2 3

0

1

2

3

j coordinate

i c
oo

rd
in

at
e

13

source

sink

4
3 2 4 0

1 0 2 4 3

3

1

1

2

2

2

4 19

9 5

15

0

20

3

4

����*���0��$ '*",!%���/�%($��

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

23

3 2 4

0 7 3

3 3 0

1 3 2

4

4

5

6

4

6

5

5

8

2

2

5

0 1 2 3

0

1

2

3

j coordinate

i c
oo

rd
in

at
e

13

source

sink

4
3 2 4 0

1 0 2 4 3

3

1

1

2

2

2

4 19

9 5

15

0

20

3

4

����*���0��$ '*",!%���/�%($��

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

1 2 5

 2 1 5

2 3 4

0 0 0

5

3

0

3

5

0

10

3

5

5

1

2

source

sink

����*���0��$ '*",!%��+��',��(,"%�$�

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

1 2 5

 2 1 5

2 3 4

0 0 0

5

3

0

3

5

0

10

3

5

5

1

2

source

sink

����*���0��$ '*",!%��+��',��(,"%�$�

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

1 2 5

 2 1 5

2 3 4

0 0 0

5

3

0

3

5

0

10

3

5

5

1

2

source

sink

����*���0��$ '*",!%��+��',��(,"%�$�

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

1 2 5

 2 1 5

2 3 4

0 0 0

5

3

0

3

5

0

10

3

5

5

1

2

source

sink

����*���0��$ '*",!%��+��',��(,"%�$�

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

1 2 5

 2 1 5

2 3 4

0 0 0

5

3

0

3

5

0

10

3

5

5

1

2

source

sink

����*���0��$ '*",!%��+��',��(,"%�$�

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

1 2 5

 2 1 5

2 3 4

0 0 0

5

3

0

3

5

0

10

3

5

5

1

2

source

sink

����*���0��$ '*",!%��+��',��(,"%�$�

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

1 2 5

 2 1 5

2 3 4

0 0 0

5

3

0

3

5

0

10

3

5

5

1

2

source

sink

����*���0��$ '*",!%��+��',��(,"%�$�

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

1 2 5

 2 1 5

2 3 4

0 0 0

5

3

0

3

5

0

10

3

5

5

1

2

source

sink
22

This weight
heavily
influences the
choice of
optimal path.

����*���0��$ '*",!%��+��',��(,"%�$�

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

1 2 5

 2 1 5

2 3 4

0 0 0

5

3

0

3

5

0

10

3

5

5

1

2

source

sink
22

This weight
heavily
influences the
choice of
optimal path.

����*���0��$ '*",!%��+��',��(,"%�$�

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

1 2 5

 2 1 5

2 3 4

0 0 0

5

3

0

3

5

0

10

3

5

5

1

2

source

sink
22

This weight
heavily
influences the
choice of
optimal path.

����*���0��$ '*",!%��+��',��(,"%�$�

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

1 2 5

 2 1 5

2 3 4

0 0 0

5

3

0

3

5

0

10

3

5

5

1

2

source

sink
22

This weight
heavily
influences the
choice of
optimal path.

����*���0��$ '*",!%��+��',��(,"%�$�

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

1 2 5

 2 1 5

2 3 4

0 0 0

5

3

0

3

5

0

10

3

5

5

1

2

source

sink
22

This weight
heavily
influences the
choice of
optimal path.

����*���0��$ '*",!%��+��',��(,"%�$�

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

1 2 5

 2 1 5

2 3 4

0 0 0

5

3

0

3

5

0

10

3

5

5

1

2

source

sink
22

This weight
heavily
influences the
choice of
optimal path.

����*���0��$ '*",!%��+��',��(,"%�$�

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

1 2 5

 2 1 5

2 3 4

0 0 0

5

3

0

3

5

0

10

3

5

5

1

2

source

sink
22

This weight
heavily
influences the
choice of
optimal path.

����*���0��$ '*",!%��+��',��(,"%�$�

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

1 2 5

 2 1 5

2 3 4

0 0 0

5

3

0

3

5

0

10

3

5

5

1

2

Optimal path

source

sink
18

22

This weight
heavily
influences the
choice of
optimal path.

����*���0��$ '*",!%��+��',��(,"%�$�

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

MT(n,m)
 if n=0 or m=0
 return MT(n,m)
 x MT(n-1,m)+
 length of the edge from (n- 1,m) to (n,m)
 y MT(n,m-1)+
 length of the edge from (n,m-1) to (n,m)
 return max{x,y}

������"%($�����-*+".���*' *�%�

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

1.  MT(n,m)
2.  if n=0 or m=0
3.  return MT(n,m)
4.  x MT(n-1,m)+ length of the edge from (n-1,m)  

 to (n,m)
5.  y MT(n,m-1)+ length of the edge from (n,m-1)  

 to (n,m)
6.  return max{x,y}

•  What’s wrong with this approach?

������"%($�����-*+".���*' *�%�

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

1

5

0 1

0

1

i

source

1

5
S1,0 = 5

S0,1 = 1

�����
0&�%"���*' *�%%"& �

•  We calculate the optimal path score for each vertex in the graph.

•  A given vertex’s score is the maximum sum of incoming edge
weight and prior vertex’s score (along that incoming edge).

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

�����
0&�%"���*' *�%%"& �

1 2

5

3

0 1 2

0

1

2

source

1 3

5

8

4

S2,0 = 8

i

S1,1 = 4

S0,2 = 3 3

-5

•  Gold edges
represent edges
selected by the
algorithm as
maximal.

j

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

�����
0&�%"���*' *�%%"& �

1 2 5

-5 1

-5

5

3

0

3

5

10

0 1 2 3

0

1

2

3

i

source

1 3 8

5

8

8

4

9

13

S3,0 = 8

S2,1 = 9

S1,2 = 13

S3,0 = 8

•  Gold edges
represent edges
selected by the
algorithm as
maximal.

j

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

�����
0&�%"���*' *�%%"& �

1 2 5

-5 1 -5

-5 3

0

5

3

0

3

5

0

10

-3

-5

0 1 2 3

0

1

2

3

i

source

1 3 8

5

8

8

4

9

13 8

9

12

S3,1 = 9

S2,2 = 12

S1,3 = 8

j •  Gold edges
represent edges
selected by the
algorithm as
maximal.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

�����
0&�%"���*' *�%%"& �

1 2 5

-5 1 -5

-5 3 3

0 0

5

3

0

3

5

0

10

-3

-5

-5

2

0 1 2 3

0

1

2

3

i

source

1 3 8

5

8

8

4

9

13 8

12

9

15

9

j

S3,2 = 9

S2,3 = 15

•  Gold edges
represent edges
selected by the
algorithm as
maximal.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

�����
0&�%"���*' *�%%"& �

1 2 5

-5 1 -5

-5 3 3

0 0

5

3

0

3

5

0

10

-3

-5

-5

2

0 1 2 3

0

1

2

3

i

source

1 3 8

5

8

8

4

9

13 8

12

9

15

9

j

0

1

16
S3,3 = 16

•  Gold edges
represent edges
selected by the
algorithm as
maximal.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

�����
0&�%"���*' *�%%"& �

1 2 5

-5 1 -5

-5 3 3

0 0

5

3

0

3

5

0

10

-3

-5

-5

2

0 1 2 3

0

1

2

3

i

source

1 3 8

5

8

8

4

9

13 8

12

9

15

9

j

0

1

16

•  Gold edges
represent edges
selected by the
algorithm as
maximal.

•  Once we reach
the sink, we
backtrack along
gold edges to
the source to
find the optimal
(green) path.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  The score si, j for a point (i,j) is given by the recurrence:

•  The running time is n x m for an n by m grid.
•  (n = # of rows, m = # of columns)

MTP: Running Time with Dynamic Programming

�

si, j = max
si−1, j + weight of edge between i −1, j() and i, j()
si, j−1 +weight of edge between (i, j −1) and (i, j)

⎧
⎨
⎪

⎩ ⎪

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  So that we don’t repeat
ourselves, we need a strategy for
actually traversing through the
Manhattan grid to calculate the
distances.

•  Three common strategies:
a)  Column by column
b)  Row by row
c)  Along diagonals

a) b)

c)

Traversing the Manhattan Grid

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

B

A3

A1

A2 •  What about diagonals?

•  The score at point B is given by the recurrence:

Manhattan Is Not a Rectangular Grid

�

sB =max

sA1 + weight of edge A1,B()
sA2 + weight of edge A2,B()
sA3 + weight of edge A3,B()

⎧

⎨
⎪ ⎪

⎩
⎪
⎪

www.bioalgorithms.info An Introduction to Bioinformatics Algorithms

Section 4:
Longest Path in a Graph

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  We would like to compute the score for point x in an
arbitrary graph.

•  Let Predecessors(x) be the set of vertices with edges leading
into x. Then the recurrence is given by:

•  The running time for a graph with E edges is O(E), since
each edge is evaluated once.

Recursion for an Arbitrary Graph

�

sx = max
y in Predecessors(x)

sy + weight of vertex y,x(){ }

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  The only hitch is that we must decide on the order in which we
visit the vertices.

•  By the time the vertex x is analyzed, the values sy for all its
predecessors y should already be computed.

•  If the graph has a cycle, we will get stuck in the pattern of
going over and over the same cycle.

•  In the Manhattan graph, we escaped this problem by requiring
that we could only move east or south. This is what we would
like to generalize…

Recursion for an Arbitrary Graph: Problem

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Directed Acyclic Graph (DAG): A graph in which each edge is
provided an orientation, and which has no cycles.
•  We represent the edges of a DAG with directed arrows.

•  In the following example, we can move along the edge from B to
C, but not from C to B.

•  Note that BCE does not form
a cycle, since we cannot travel
from B to C to E and back to B.

http://commons.wikimedia.org/wiki/File:Directed_acyclic_graph.svg

Some Graph Theory Terminology

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Topological Ordering: A labeling of the vertices of a DAG
(from 1 to n, say) such that every edge of the DAG connects a
vertex with a smaller label to a vertex with a larger label.

•  In other words, if vertices are positioned on a line in an
increasing order, then all edges go from left to right.

•  Theorem: Every DAG has a topological ordering.

•  What this means: Every DAG has a source node (1) and a sink
node (n).

Some Graph Theory Terminology

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  A superhero’s costume can be represented by a DAG: he can’t
put his boots on before his tights!

•  He also would like an understandable representation of the
graph, so that he can dress quickly.

Topological Ordering: Example

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Here are two different topological orderings of his DAG:

Topological Ordering: Example

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

•  Goal: Find a longest path between two vertices in a weighted
DAG.

•  Input: A weighted DAG G with source and sink vertices.

•  Output: A longest path in G from source to sink.

•  Note: Now we know that we can apply a topological ordering
to G, and then use dynamic programming to find the longest
path in G.

Longest Path in a DAG: Formulation

