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Comparing Genes



INTRODUCTION TO SEQUENCE 
ALIGNMENT
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Comparing Genes is a Fundamental 
Problem in Biology

Goal: Convert this important biological question 
into a well-defined computational problem.

Comparing Genes Problem:
• Input: Two genes.
• Output: How “similar” these genes are.
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Try 1: Hamming Distance

Hamming Distance Problem:
• Input: Two strings.
• Output: The number of “mismatched” symbols in 

the two strings.
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Try 1: Hamming Distance

Hamming Distance Problem:
• Input: Two strings.
• Output: The number of “mismatched” symbols in 

the two strings.

ATGCATGC
TGCATGCA Hamming distance = 8
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Try 1: Hamming Distance

Hamming Distance Problem:
• Input: Two strings.
• Output: The number of “mismatched” symbols in 

the two strings.

ATGCATGC
TGCATGCA Hamming distance = 8

STOP: What are the issues with this approach?
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Try 1: Hamming Distance

Hamming Distance Problem:
• Input: Two strings.
• Output: The number of “mismatched” symbols in 

the two strings.

ATGCATGC
TGCATGCA Hamming distance = 8
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Note: these strings have a long shared substring, it 
just doesn’t line up perfectly.



Try 2: Longest Substring

Longest Shared Substring Problem:
• Input: Two strings.
• Output: The longest substring shared by both 

strings.

STOP: What are the weaknesses of using the length 
of a longest shared substring to represent the 
similarity between two strings? 
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Try 2: Longest Substring

Consider the strings AAACAAACAAACAAACAAACAAA  
and AAAGAAAGAAAGAAAGAAAGAAAGAAA. These 
strings are very similar, but they don’t have a long 
shared substring in common.

Longest Shared Substring Problem:
• Input: Two strings.
• Output: The longest substring shared by both 

strings.
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Try 3: Counting Shared k-Mers

For simplicity, we restrict to substrings of the same 
length; recall that a k-mer is the term we use in 
comp bio for a string of length k.

Instead of finding a longest shared substring of two 
strings, we will count the number of shared 
substrings.
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Try 3: Counting Shared k-Mers

String Count

ACA 1

ACG 2

ATA 1

CAC 1

CGT 2

GTA 2

TAC 1

TAT 2

String Count

ATA 1

ATC 2

CCT 1

CGG 1

CTA 1

GGT 1

GTA 1

TAC 1

TAT 3

TCC 1

TCG 1

s1 = ACGTATACACGTAT s2 = TATCGGTATATCCTAC
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STOP: How should we count the # 
of shared 3-mers of two strings?



Try 3: Counting Shared k-Mers

s1 = ACGTATACACGTAT s2 = TATCGGTATATCCTAC

String Count

ACA 1

ACG 2

ATA 1

CAC 1

CGT 2

GTA 2

TAC 1

TAT 2

String Count

ATA 1

ATC 2

CCT 1

CGG 1

CTA 1

GGT 1

GTA 1

TAC 1

TAT 3

TCC 1

TCG 1

Take minimum counts for 
each shared k-mer:

1 + 1 + 1 + 2 = 5 
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Toward a Better Approach

ATGCTTA
TGCATTAA

STOP: What similarities do you see in these strings?
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Toward a Better Approach

ATGCTTA
TGCATTAA

STOP: What similarities do you see in these strings?
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ATGC-TTA-
-TGCATTAA

Key Point: we can find similarities if we “slide” the 
strings, letting symbols shift (but stay in same order).



Toward a More Accurate Problem

Symbol Matching Problem:
• Input: Two strings.
• Output: The greatest number of matched 

symbols in any “alignment” of the two strings.
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ATGC-TTA-
-TGCATTAA



Toward a More Accurate Problem

Exercise: How many matches can you find if the 
strings are ATGTTATA and ATCGTCC? What 
algorithm did you use?
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Symbol Matching Problem:
• Input: Two strings.
• Output: The greatest number of matched 

symbols in any “alignment” of the two strings.



Matching Symbols as a GameC H A P T E R 5

Growing alignment Remaining symbols Score

A T G T T A T A
A T C G T C C

A T G T T A T A +1A T C G T C C

A T G T T A T A +1A T C G T C C

A T - G T T A T A
A T C G T C C

A T - G T T A T A +1A T C G T C C

A T - G T T A T A +1A T C G T C C

A T - G T T A T A
A T C G T - C C

A T - G T T A T A
A T C G T - C C

A T - G T T A T A
A T C G T - C - C

A T - G T T A T A
A T C G T - C - C

FIGURE 5.1 One way of playing the alignment game for the strings ATGTTATA and
ATCGTCC, with score 4. At each step, we choose to remove either one or both symbols
from the left of the two sequences in the “remaining symbols” column. If we remove
both symbols, then we align them in the “growing alignment”. If we remove only
one symbol, then we align this symbol with a space symbol in the growing alignment.
Matched symbols are shown in red (and receive score 1). Mismatched symbols are
shown in purple; symbols aligned against space symbols are shown in blue or green
depending on which sequence they were removed from.
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From a Game to a Definition

A T - G T T A T A
A T C G T - C - C
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Given two strings v and w, an alignment of v and w 
is a two-row matrix such that:
• the first row contains symbols of v in order
• the second row contains symbols of w in order
• each row may also contain gap symbols (“-”)
• no column has two gap symbols



From a Game to a Definition

Matches
A T - G T T A T A
A T C G T - C - C
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Given two strings v and w, an alignment of v and w 
is a two-row matrix such that:
• the first row contains symbols of v in order
• the second row contains symbols of w in order
• each row may also contain gap symbols (“-”)
• no column has two gap symbols



From a Game to a Definition

A T - G T T A T A
A T C G T - C - C Mismatches
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Given two strings v and w, an alignment of v and w 
is a two-row matrix such that:
• the first row contains symbols of v in order
• the second row contains symbols of w in order
• each row may also contain gap symbols (“-”)
• no column has two gap symbols



From a Game to a Definition

A T - G T T A T A
A T C G T - C - C Insertions
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Given two strings v and w, an alignment of v and w 
is a two-row matrix such that:
• the first row contains symbols of v in order
• the second row contains symbols of w in order
• each row may also contain gap symbols (“-”)
• no column has two gap symbols



From a Game to a Definition

A T - G T T A T A
A T C G T - C - C Deletions
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Given two strings v and w, an alignment of v and w 
is a two-row matrix such that:
• the first row contains symbols of v in order
• the second row contains symbols of w in order
• each row may also contain gap symbols (“-”)
• no column has two gap symbols



Finding a Longest Common 
Subsequence
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A common subsequence of v and w is a sequence 
of symbols occurring (not necessarily contiguously) 
in both v and w. 



Finding a Longest Common 
Subsequence

A common subsequence of v and w is a sequence 
of symbols occurring (not necessarily contiguously) 
in both v and w. 

A T - G T T A T A
A T C G T - C - C

The matches in an alignment of v and w form a 
common subsequence of v and w.
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The Problems are the Same!

Symbol Matching Problem:
• Input: Two strings.
• Output: The greatest number of matched 

symbols in any “alignment” of the two strings.

Longest Common Subsequence Length Problem:.
• Input: Two strings.
• Output: The length of a longest common 

subsequence of these strings.

© 2024 Phillip Compeau



THE MANHATTAN TOURIST 
PROBLEM
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Manhattan Tourist Problem

C H A P T E R 5

FIGURE 5.2 (Left) A simplification of Midtown Manhattan. You start at the intersection
of 59th Street and 8th Avenue in the northwest corner and end at the intersection of
42nd Street and 3rd Avenue in the southeast corner, traveling only south (#) or east
(!) between intersections. The attractions shown are: Carnegie Hall (1), Tiffany &
Co. (2), the Sony Building (3), the Museum of Modern Art (4), the Four Seasons Hotel
(5), St. Patrick’s Cathedral (6), the General Electric Building (7), Radio City Music
Hall (8), Rockefeller Center (9), the Paramount Building (10), the New York Times
Building (11), Times Square (12), the General Society of Mechanics and Tradesmen
(13), Grand Central Terminal (14), and the Chrysler Building (15). (Right) The directed
graph ManhattanGraph in which every edge is weighted by the number of attractions
along that city block (edge weights equal to 0 are not shown).

230

STOP: How can we 
see the most sites if 
we move from 59th 
and 8th to 42nd and 
3rd, moving south or 
east at each step? 
(And what algorithm 
did you use?)
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Manhattan Tourist as a Network

C H A P T E R 5
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FIGURE 5.2 (Left) A simplification of Midtown Manhattan. You start at the intersection
of 59th Street and 8th Avenue in the northwest corner and end at the intersection of
42nd Street and 3rd Avenue in the southeast corner, traveling only south (#) or east
(!) between intersections. The attractions shown are: Carnegie Hall (1), Tiffany &
Co. (2), the Sony Building (3), the Museum of Modern Art (4), the Four Seasons Hotel
(5), St. Patrick’s Cathedral (6), the General Electric Building (7), Radio City Music
Hall (8), Rockefeller Center (9), the Paramount Building (10), the New York Times
Building (11), Times Square (12), the General Society of Mechanics and Tradesmen
(13), Grand Central Terminal (14), and the Chrysler Building (15). (Right) The directed
graph ManhattanGraph in which every edge is weighted by the number of attractions
along that city block (edge weights equal to 0 are not shown).

230

Weight of edge: 
number of attractions 
along the edge.
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Manhattan Tourist as a Network

C H A P T E R 5
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230

Weight of edge: 
number of attractions 
along the edge.

Goal: Find a longest 
path from source (top 
left) to sink (bottom 
right).
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Toward a Computational Problem

Manhattan Tourist Problem:
• Input: A weighted n x m rectangular grid (n + 1 

rows and m + 1 columns).
• Output: A longest path from source (0, 0) to sink 

(n, m) in the grid.
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Designing a Manhattan Algorithm

Exercise: What is the longest path in this city? What 
algorithm did you use?
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A “Greedy” Manhattan Algorithm Taking 
the Best Choice in Each Node

STOP: Does the greedy algorithm solve the 
problem?
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A “Greedy” Manhattan Algorithm Taking 
the Best Choice in Each Node

Answer: No! Much like with genome assembly, we 
need a more clever approach. 
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Manhattan Tourist as a Network Problem

Longest Path in a Directed Graph: 
• Input: An edge-weighted directed graph with 

source and sink nodes.
• Output: A longest path from source to sink in the 

graph.
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Manhattan Tourist as a Network Problem

STOP: What is the longest path in this graph?

© 2024 Phillip Compeau



Manhattan Tourist as a Network Problem

Answer: Cycles in graphs cause infinite paths ... 
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Generalizing Manhattan Tourist

Directed acyclic graph (DAG): A directed graph that 
contains no cycles.
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Generalizing Manhattan Tourist
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Directed acyclic graph (DAG): A directed graph that 
contains no cycles.

Longest Path in a DAG Problem:
• Input: An edge-weighted DAG with source and 

sink nodes.
• Output: A longest path from source to sink in the 

DAG.



Generalizing Manhattan Tourist

... but what does finding a longest path in a DAG 
have to do with sequence comparison?
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Longest Path in a DAG Problem:
• Input: An edge-weighted DAG with source and 

sink nodes.
• Output: A longest path from source to sink in the 

DAG.

Directed acyclic graph (DAG): A directed graph that 
contains no cycles.



SEQUENCE ALIGNMENT AS A 
PATH IN A NETWORK
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Returning to Sequence Alignment ...
C H A P T E R 5

0 1 2 2 3 4 5 6 7 8
A T - G T T A T A
A T C G T - C - C

0 1 2 3 4 5 5 6 6 7
& & ! & & # & # &

FIGURE 5.5 An alignment of ATGTTATA and ATCGTCC. The array in the first row
counts the number of symbols of ATGTTATA used up to a given position. The array in
the fourth row counts the number of symbols of ATCGTCC used up to a given position.
And the array in the last row records whether each column of the alignment represents
a match/mismatch (&/&), insertion (!), or deletion (#).

Note that in addition to horizontal and vertical edges, we have added diagonal edges
connecting (i, j) to (i + 1, j + 1) in Figure 5.6.

FIGURE 5.6 Every alignment corresponds to a path in the alignment graph from source
to sink, and vice-versa. (Left) The path (0, 0) & (1, 1) & (2, 2) ! (2, 3) & (3, 4)
& (4, 5) # (5, 5) & (6, 6) # (7, 6) & (8, 7) is highlighted above and corresponds to
the alignment of ATGTTATA and ATCGTCC in Figure 5.5. (Right) Another path in the
alignment graph.

We call the DAG in Figure 5.6 the alignment graph of strings v and w, denoted
ALIGNMENTGRAPH(v, w), and we call a path from source to sink in this DAG an align-
ment path. Every alignment of v and w can be viewed as a set of instructions to construct
a unique alignment path in ALIGNMENTGRAPH(v, w), where each match/mismatch,
insertion, and deletion corresponds to an edge &/&, !, and #, respectively. Fur-

234
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a match/mismatch (&/&), insertion (!), or deletion (#).

Note that in addition to horizontal and vertical edges, we have added diagonal edges
connecting (i, j) to (i + 1, j + 1) in Figure 5.6.

FIGURE 5.6 Every alignment corresponds to a path in the alignment graph from source
to sink, and vice-versa. (Left) The path (0, 0) & (1, 1) & (2, 2) ! (2, 3) & (3, 4)
& (4, 5) # (5, 5) & (6, 6) # (7, 6) & (8, 7) is highlighted above and corresponds to
the alignment of ATGTTATA and ATCGTCC in Figure 5.5. (Right) Another path in the
alignment graph.

We call the DAG in Figure 5.6 the alignment graph of strings v and w, denoted
ALIGNMENTGRAPH(v, w), and we call a path from source to sink in this DAG an align-
ment path. Every alignment of v and w can be viewed as a set of instructions to construct
a unique alignment path in ALIGNMENTGRAPH(v, w), where each match/mismatch,
insertion, and deletion corresponds to an edge &/&, !, and #, respectively. Fur-
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FIGURE 5.6 Every alignment corresponds to a path in the alignment graph from source
to sink, and vice-versa. (Left) The path (0, 0) & (1, 1) & (2, 2) ! (2, 3) & (3, 4)
& (4, 5) # (5, 5) & (6, 6) # (7, 6) & (8, 7) is highlighted above and corresponds to
the alignment of ATGTTATA and ATCGTCC in Figure 5.5. (Right) Another path in the
alignment graph.

We call the DAG in Figure 5.6 the alignment graph of strings v and w, denoted
ALIGNMENTGRAPH(v, w), and we call a path from source to sink in this DAG an align-
ment path. Every alignment of v and w can be viewed as a set of instructions to construct
a unique alignment path in ALIGNMENTGRAPH(v, w), where each match/mismatch,
insertion, and deletion corresponds to an edge &/&, !, and #, respectively. Fur-
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(0, 0) ↘ (1, 1) ↘ (2, 2) → (2, 3) ↘ (3, 4) 
↘ (4, 5)↓(5, 5) ↘ (6, 6)↓(7, 6) ↘ (8, 7)

© 2024 Phillip Compeau



Returning to Sequence Alignment ...
C H A P T E R 5

0 1 2 2 3 4 5 6 7 8
A T - G T T A T A
A T C G T - C - C

0 1 2 3 4 5 5 6 6 7
& & ! & & # & # &

FIGURE 5.5 An alignment of ATGTTATA and ATCGTCC. The array in the first row
counts the number of symbols of ATGTTATA used up to a given position. The array in
the fourth row counts the number of symbols of ATCGTCC used up to a given position.
And the array in the last row records whether each column of the alignment represents
a match/mismatch (&/&), insertion (!), or deletion (#).

Note that in addition to horizontal and vertical edges, we have added diagonal edges
connecting (i, j) to (i + 1, j + 1) in Figure 5.6.

FIGURE 5.6 Every alignment corresponds to a path in the alignment graph from source
to sink, and vice-versa. (Left) The path (0, 0) & (1, 1) & (2, 2) ! (2, 3) & (3, 4)
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We call the DAG in Figure 5.6 the alignment graph of strings v and w, denoted
ALIGNMENTGRAPH(v, w), and we call a path from source to sink in this DAG an align-
ment path. Every alignment of v and w can be viewed as a set of instructions to construct
a unique alignment path in ALIGNMENTGRAPH(v, w), where each match/mismatch,
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(0, 0) ↘ (1, 1) ↘ (2, 2) → (2, 3) ↘ (3, 4) 
↘ (4, 5)↓(5, 5) ↘ (6, 6)↓(7, 6) ↘ (8, 7)

This is a path in a 2-D network!
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Representing an Alignment as a Path in a 
Manhattan-like DAG
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FIGURE 5.5 An alignment of ATGTTATA and ATCGTCC. The array in the first row
counts the number of symbols of ATGTTATA used up to a given position. The array in
the fourth row counts the number of symbols of ATCGTCC used up to a given position.
And the array in the last row records whether each column of the alignment represents
a match/mismatch (&/&), insertion (!), or deletion (#).

Note that in addition to horizontal and vertical edges, we have added diagonal edges
connecting (i, j) to (i + 1, j + 1) in Figure 5.6.
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& (4, 5) # (5, 5) & (6, 6) # (7, 6) & (8, 7) is highlighted above and corresponds to
the alignment of ATGTTATA and ATCGTCC in Figure 5.5. (Right) Another path in the
alignment graph.

We call the DAG in Figure 5.6 the alignment graph of strings v and w, denoted
ALIGNMENTGRAPH(v, w), and we call a path from source to sink in this DAG an align-
ment path. Every alignment of v and w can be viewed as a set of instructions to construct
a unique alignment path in ALIGNMENTGRAPH(v, w), where each match/mismatch,
insertion, and deletion corresponds to an edge &/&, !, and #, respectively. Fur-
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A T - G T T A T A
A T C G T - C - C  

This network is 
called the alignment 
network of the 
strings ATGTTATA 
and ATCGTCC.
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the fourth row counts the number of symbols of ATCGTCC used up to a given position.
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FIGURE 5.6 Every alignment corresponds to a path in the alignment graph from source
to sink, and vice-versa. (Left) The path (0, 0) & (1, 1) & (2, 2) ! (2, 3) & (3, 4)
& (4, 5) # (5, 5) & (6, 6) # (7, 6) & (8, 7) is highlighted above and corresponds to
the alignment of ATGTTATA and ATCGTCC in Figure 5.5. (Right) Another path in the
alignment graph.

We call the DAG in Figure 5.6 the alignment graph of strings v and w, denoted
ALIGNMENTGRAPH(v, w), and we call a path from source to sink in this DAG an align-
ment path. Every alignment of v and w can be viewed as a set of instructions to construct
a unique alignment path in ALIGNMENTGRAPH(v, w), where each match/mismatch,
insertion, and deletion corresponds to an edge &/&, !, and #, respectively. Fur-
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We can also construct an alignment from 
a path

Exercise: What 
alignment does this 
path correspond to?
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We call the DAG in Figure 5.6 the alignment graph of strings v and w, denoted
ALIGNMENTGRAPH(v, w), and we call a path from source to sink in this DAG an align-
ment path. Every alignment of v and w can be viewed as a set of instructions to construct
a unique alignment path in ALIGNMENTGRAPH(v, w), where each match/mismatch,
insertion, and deletion corresponds to an edge &/&, !, and #, respectively. Fur-
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We can also construct an alignment from 
a path

Exercise: What 
alignment does this 
path correspond to?

Answer:

A T G T T A - T - - A
- - A T - C G T C C -  
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Solving the Symbol Matching Problem

Symbol Matching Problem:
• Input: Two strings.
• Output: The greatest number of matched 

symbols in any alignment of the two strings.

STOP: How can we use the alignment network to 
solve this problem?
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Counting Matches Only

H O W D O W E C O M PA R E D N A S E Q U E N C E S ?

thermore, this process is reversible, as we can convert each alignment path into a unique
alignment.

EXERCISE BREAK: Construct the alignment of ATGTTATA and ATCGTCC cor-
responding to the alignment path in Figure 5.6 (right).

STOP and Think: Can you use the alignment graph to find a longest common
subsequence of two strings?

Recall that finding a longest common subsequence of two strings is equivalent to finding
an alignment of these strings maximizing the number of matches. In Figure 5.7, we high-
light all diagonal edges of ALIGNMENTGRAPH(ATGTTATA,ATCGTCC) corresponding
to matches. If we assign a weight of 1 to all these edges and 0 to all other edges, then
the Longest Common Subsequence Problem is equivalent to finding a longest path in
this weighted DAG!

A T C G T C C
A

T

G

T

T

A

T

A

FIGURE 5.7 ALIGNMENTGRAPH(ATGTTATA,ATCGTCC) with all edges of weight 1
colored red (all other edges have weight 0). These edges correspond to potential
matched symbols in an alignment of the two strings.

Thus, we need to design an algorithm for the Longest Path in a DAG Problem, but
to do so, we need to know more about dynamic programming, a powerful algorithmic
paradigm that is used for solving thousands of problems from various scientific fields.

235

Answer: If we weight 
the red edges as 1 and 
the other edges as 0, 
then a maximum-weight 
path from source to sink 
solves the Symbol 
Matching Problem!
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Answer: If we weight 
the red edges as 1 and 
the other edges as 0, 
then a maximum-weight 
path from source to sink 
solves the Symbol 
Matching Problem!
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But we haven’t said how 
to find the maximum 
length of a path.



AN INTRO TO DYNAMIC 
PROGRAMMING
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Recursive Fibonacci Numbers

Exercise: Write pseudocode for a recursive function 
that takes an integer n as an argument and returns 
the n-th Fibonacci number. Assume 0-based 
indexing.

© 2023 Phillip Compeau
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Recurrence relation: An expression for a function 
f(x) in terms of values of f(y) where y < x.

If Fib(n) is the n-th Fibonacci number, then

Fib(n) = Fib(n – 1) + Fib(n – 2) 



Recursive Fibonacci Numbers

RecFib(n)
 if n = 0 or n = 1
  return 1
 else
  return RecFib(n-1) + RecFib(n-2)

Exercise: Write pseudocode for a recursive function 
that takes an integer n as an argument and returns 
the n-th Fibonacci number. Assume 0-based 
indexing.

© 2023 Phillip Compeau
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Recursive Fibonacci Numbers

RecFib(n)
 if n = 0 or n = 1
  return 1
 else
  return RecFib(n-1) + RecFib(n-2)

STOP: Is this a good algorithm? Why or why not?

© 2023 Phillip Compeau
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Calling Fib(7) Shows the Problem with 
Using Recursion

Courtesy: introprogramming.info

© 2023 Phillip Compeau
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Calling Fib(7) Shows the Problem with 
Using Recursion

Courtesy: introprogramming.info
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Calling Fib(7) Shows the Problem with 
Using Recursion

STOP: Approximately how many calls do you think 
are made for RecFib(20)? What about RecFib(45)?

Courtesy: introprogramming.info

© 2023 Phillip Compeau
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The Issue with Fibonacci Recursion

When we call RecFib(n), there are ~ 2n calls on the 
stack. For most values of n, this will exhaust the 
memory allocated to the stack and produce what is 
called stack overflow, crashing the program.

© 2023 Phillip Compeau
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The Issue with Fibonacci Recursion

When we call RecFib(n), there are ~ 2n calls on the 
stack. For most values of n, this will exhaust the 
memory allocated to the stack and produce what is 
called stack overflow, crashing the program.

Key Point: We should evaluate whether recursion is 
a good approach for solving a problem based on 
whether we have many repeated calls with a chance 
of stack overflow.
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Computing Values “Bottom-Up” Avoids 
Many Recursive Calls

Instead of computing Fibonacci numbers top-down 
recursively, we compute them bottom-up.

Fibonacci(n)
 a ß array of length n
 a[0] ß 1
 a[1] ß 1
 for i ß 2 to n
  a[i] ß a[i-1] + a[i-2]
 return a

a
1 1

© 2023 Phillip Compeau
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Computing Values “Bottom-Up” Avoids 
Many Recursive Calls

Instead of computing Fibonacci numbers top-down 
recursively, we compute them bottom-up.

a
1 1 2

Fibonacci(n)
 a ß array of length n
 a[0] ß 1
 a[1] ß 1
 for i ß 2 to n
  a[i] ß a[i-1] + a[i-2]
 return a

© 2023 Phillip Compeau
74



Computing Values “Bottom-Up” Avoids 
Many Recursive Calls

Instead of computing Fibonacci numbers top-down 
recursively, we compute them bottom-up.

a
1 1 2 3

Fibonacci(n)
 a ß array of length n
 a[0] ß 1
 a[1] ß 1
 for i ß 2 to n
  a[i] ß a[i-1] + a[i-2]
 return a
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Computing Values “Bottom-Up” Avoids 
Many Recursive Calls

Instead of computing Fibonacci numbers top-down 
recursively, we compute them bottom-up.

a
1 1 2 3 5

Fibonacci(n)
 a ß array of length n
 a[0] ß 1
 a[1] ß 1
 for i ß 2 to n
  a[i] ß a[i-1] + a[i-2]
 return a
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Computing Values “Bottom-Up” Avoids 
Many Recursive Calls

Instead of computing Fibonacci numbers top-down 
recursively, we compute them bottom-up.

a
1 1 2 3 5 8

Fibonacci(n)
 a ß array of length n
 a[0] ß 1
 a[1] ß 1
 for i ß 2 to n
  a[i] ß a[i-1] + a[i-2]
 return a
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Computing Values “Bottom-Up” Avoids 
Many Recursive Calls

Instead of computing Fibonacci numbers top-down 
recursively, we compute them bottom-up.

a
1 1 2 3 5 8 13

Fibonacci(n)
 a ß array of length n
 a[0] ß 1
 a[1] ß 1
 for i ß 2 to n
  a[i] ß a[i-1] + a[i-2]
 return a
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Computing Values “Bottom-Up” Avoids 
Many Recursive Calls

Instead of computing Fibonacci numbers top-down 
recursively, we compute them bottom-up.

a
1 1 2 3 5 8 13 21

Fibonacci(n)
 a ß array of length n
 a[0] ß 1
 a[1] ß 1
 for i ß 2 to n
  a[i] ß a[i-1] + a[i-2]
 return a
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Computing Values “Bottom-Up” Avoids 
Many Recursive Calls

Instead of computing Fibonacci numbers top-down 
recursively, we compute them bottom-up.

a
1 1 2 3 5 8 13 21 34

Fibonacci(n)
 a ß array of length n
 a[0] ß 1
 a[1] ß 1
 for i ß 2 to n
  a[i] ß a[i-1] + a[i-2]
 return a

© 2023 Phillip Compeau
80



Computing Values “Bottom-Up” Avoids 
Many Recursive Calls

Instead of computing Fibonacci numbers top-down 
recursively, we compute them bottom-up.

a
1 1 2 3 5 8 13 21 34 55

Fibonacci(n)
 a ß array of length n
 a[0] ß 1
 a[1] ß 1
 for i ß 2 to n
  a[i] ß a[i-1] + a[i-2]
 return a
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Computing Values “Bottom-Up” Avoids 
Many Recursive Calls

a
1 1 2 3 5 8 13 21 34 55

Computing a recurrence relation bottom-up using 
an array is called dynamic programming.

Fibonacci(n)
 a ß array of length n
 a[0] ß 1
 a[1] ß 1
 for i ß 2 to n
  a[i] ß a[i-1] + a[i-2]
 return a

© 2023 Phillip Compeau
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Computing Fibonacci Numbers

Computing a recurrence relation bottom-up using 
an array is called dynamic programming.

© 2023 Phillip Compeau

STOP: Wait … why would such a simple idea be 
called “dynamic programming”?
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Richard Bellman, 
a Wise Man
“We had a very interesting gentleman in Washington named 
Wilson. He was Secretary of Defense, and he actually had a 
pathological fear and hatred of the word "research". I’m not using 
the term lightly; I’m using it precisely. His face would suffuse, he 
would turn red, and he would get violent if people used the term 
research in his presence. You can imagine how he felt, then, 
about the term mathematical. The RAND Corporation was 
employed by the Air Force, and the Air Force had Wilson as its 
boss, essentially. Hence, I felt I had to do something to shield 
Wilson and the Air Force from the fact that I was really doing 
mathematics inside the RAND Corporation. What title, what 
name, could I choose? In the first place I was interested in 
planning, in decision making, in thinking. But planning, is not a 
good word for various reasons. I decided therefore to use the 
word "programming". I wanted to get across the idea that this was 
dynamic, this was multistage, this was time-varying. I thought, 
let's kill two birds with one stone. Let's take a word that has an 
absolutely precise meaning, namely dynamic, in the classical 
physical sense. It also has a very interesting property as an 
adjective, and that is it's impossible to use the word dynamic in a 
pejorative sense. Try thinking of some combination that will 
possibly give it a pejorative meaning. It's impossible. Thus, I 
thought dynamic programming was a good name. It was 
something not even a Congressman could object to. So I used it 
as an umbrella for my activities.”

Richard Bellman



FINDING THE LENGTH OF A 
LONGEST PATH IN A DAG
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Returning to Manhattan

Manhattan Tourist Problem: 
• Input: A weighted n x m 

rectangular grid (n + 1 rows 
and m + 1 columns).

• Output: A longest path from 
source (0, 0) to sink (n, m) in 
the grid.

Exercise: Find a recurrence relation for the length of 
a longest path from (0,0) to node (i, j), which we will 
call length(i,j).
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Returning to Manhattan

Answer: length(i,j) = max{
    length(i – 1,j) + weight(vertical edge into i,j),
    length(i, j – 1) + weight(horizontal edge into i,j)}.

Row i

Column jColumn j – 1

weight of 
vertical edge

weight of
horizontal edge

Row i – 1
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Returning to Manhattan

Manhattan Tourist Problem: 
• Input: A weighted n x m 

rectangular grid (n + 1 rows 
and m + 1 columns).

• Output: A longest path from 
source (0, 0) to sink (n, m) in 
the grid.

STOP: Will a recursive algorithm for Manhattan 
Tourist have the same problem that the recursive 
change-making function encountered?
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Returning to Manhattan

Manhattan Tourist Problem: 
• Input: A weighted n x m 

rectangular grid (n + 1 rows 
and m + 1 columns).

• Output: A longest path from 
source (0, 0) to sink (n, m) in 
the grid.

Answer: Yes! Because the same length(i, j) can get 
re-computed many times…

© 2024 Phillip Compeau
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Let’s Use Dynamic Programming Instead

© 2024 Phillip Compeau

length(i, j) = max{length(i-1, j) + down(i, j),
                                  length(i, j-1) + right(i, j)}

Recurrence relation 



Let’s Use Dynamic Programming Instead

STOP: Which element of 
the table should we fill in 
next and what should its 
value be?

© 2024 Phillip Compeau
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Recurrence relation length(i, j) = max{length(i-1, j) + down(i, j),
                                  length(i, j-1) + right(i, j)}



Let’s Use Dynamic Programming Instead

Answer: We only know the 
values of MaxWeight for 
the two nodes adjacent to 
the node (1, 1); it gets the 
value max(3+0, 1+3) = 4.

© 2024 Phillip Compeau

Recurrence relation 
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length(i, j) = max{length(i-1, j) + down(i, j),
                                  length(i, j-1) + right(i, j)}



Let’s Use Dynamic Programming Instead
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Recurrence relation 
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STOP: Which elements 
should we fill in next and 
what should their values 
be?

length(i, j) = max{length(i-1, j) + down(i, j),
                                  length(i, j-1) + right(i, j)}



Let’s Use Dynamic Programming Instead
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MaxWeight(i, j) = max{MaxWeight(i-1, j) + down(i, j),
                                  MaxWeight(i, j-1) + right(i, j)}

Recurrence relation 

01 342
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20

Answer: We can fill in all 
of row 1 or all of column 1 
(it doesn’t matter which).
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Recurrence relation 

01 342
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4 4 5 2 1
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3 2 4 2

0 7 3 4
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1 3 2 2
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20

Exercise: Fill in the 
remaining values of length 
for this network.

length(i, j) = max{length(i-1, j) + down(i, j),
                                  length(i, j-1) + right(i, j)}
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Recurrence relation 
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0

STOP: Now do you see a 
longest path in this grid?  
How might we find one in 
general?

length(i, j) = max{length(i-1, j) + down(i, j),
                                  length(i, j-1) + right(i, j)}



Finding an LCS

H O W D O W E C O M PA R E D N A S E Q U E N C E S ?

thermore, this process is reversible, as we can convert each alignment path into a unique
alignment.

EXERCISE BREAK: Construct the alignment of ATGTTATA and ATCGTCC cor-
responding to the alignment path in Figure 5.6 (right).

STOP and Think: Can you use the alignment graph to find a longest common
subsequence of two strings?

Recall that finding a longest common subsequence of two strings is equivalent to finding
an alignment of these strings maximizing the number of matches. In Figure 5.7, we high-
light all diagonal edges of ALIGNMENTGRAPH(ATGTTATA,ATCGTCC) corresponding
to matches. If we assign a weight of 1 to all these edges and 0 to all other edges, then
the Longest Common Subsequence Problem is equivalent to finding a longest path in
this weighted DAG!

A T C G T C C
A

T

G

T

T

A

T

A

FIGURE 5.7 ALIGNMENTGRAPH(ATGTTATA,ATCGTCC) with all edges of weight 1
colored red (all other edges have weight 0). These edges correspond to potential
matched symbols in an alignment of the two strings.

Thus, we need to design an algorithm for the Longest Path in a DAG Problem, but
to do so, we need to know more about dynamic programming, a powerful algorithmic
paradigm that is used for solving thousands of problems from various scientific fields.
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Exercise: What is the 
recurrence relation for 
finding a longest common 
subsequence?
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Our Recurrence Has Two Cases

Row i

Column jColumn j – 1

0

Row i – 1

0

0

Row i

Column jColumn j – 1

0

Row i – 1

0

1

length(i, j) = maximum of:
• length(i – 1, j) + 0
• length(i, j – 1) + 0
• length(i – 1, j – 1) + 0

length(i, j) = maximum of:
• length(i – 1, j) + 0
• length(i, j – 1) + 0
• length(i – 1, j – 1) + 1

Case 1 Case 2
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Our Recurrence Has Two Cases

Row i

Column jColumn j – 1

0

Row i – 1

0

0

Row i

Column jColumn j – 1

0

Row i – 1

0

1

STOP: when will the diagonal edge weight be equal 
to 1?

Case 1 Case 2
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Counting Matches Only

H O W D O W E C O M PA R E D N A S E Q U E N C E S ?

thermore, this process is reversible, as we can convert each alignment path into a unique
alignment.

EXERCISE BREAK: Construct the alignment of ATGTTATA and ATCGTCC cor-
responding to the alignment path in Figure 5.6 (right).

STOP and Think: Can you use the alignment graph to find a longest common
subsequence of two strings?

Recall that finding a longest common subsequence of two strings is equivalent to finding
an alignment of these strings maximizing the number of matches. In Figure 5.7, we high-
light all diagonal edges of ALIGNMENTGRAPH(ATGTTATA,ATCGTCC) corresponding
to matches. If we assign a weight of 1 to all these edges and 0 to all other edges, then
the Longest Common Subsequence Problem is equivalent to finding a longest path in
this weighted DAG!
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FIGURE 5.7 ALIGNMENTGRAPH(ATGTTATA,ATCGTCC) with all edges of weight 1
colored red (all other edges have weight 0). These edges correspond to potential
matched symbols in an alignment of the two strings.

Thus, we need to design an algorithm for the Longest Path in a DAG Problem, but
to do so, we need to know more about dynamic programming, a powerful algorithmic
paradigm that is used for solving thousands of problems from various scientific fields.
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Answer: a diagonal 
edge connecting (i – 1, j 
– 1) to (i, j) is 1 when 
the corresponding 
symbols v[i – 1] and w[j 
– 1] of the two strings 
match.
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A Recurrence for an Arbitrary DAG?
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Longest Path in a DAG 
Problem:
• Input: An edge-

weighted DAG with 
source and sink nodes.

• Output: A longest path 
from source to sink in 
the DAG.

H O W D O W E C O M PA R E D N A S E Q U E N C E S ?

A similar approach can be developed to find the longest path in any DAG, as suggested
by the next exercise.

Exercise Break: What is the length of a longest path between the blue and red
nodes in the DAG shown in Figure 5.12?

2 
4 1 

1 
3 

2 
1 

5 

3 

4 8 

3 2 

2 

3 

7 

FIGURE 5.12 A weighted DAG without the obvious order inherent in the graphs previ-
ously encountered in this chapter.

Topological orderings

Do not worry if you struggled to solve the last exercise. The hitch to using dynamic
programming in order to find the length of a longest path in a DAG is that we must
decide on the order in which to visit nodes when computing the values sb according to
the recurrence

sb = max
all predecessors a of node b

{sa + weight of edge from a to b}.

This ordering of nodes is important, since by the time we reach node b, the values sa
for all its predecessors must have already been computed. We have managed to hide
this issue for rectangular grids because the order in which we have computed the si, j
ensured that we would never consider a node before visiting all of its predecessors.

To illustrate the importance of visiting nodes in the correct order, consider the DAG
in Figure 5.13, which corresponds to a “Dressing Challenge Problem”. How would you
order the nodes of this graph so that you don’t put on your boots before your tights?
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Topological orderings

Do not worry if you struggled to solve the last exercise. The hitch to using dynamic
programming in order to find the length of a longest path in a DAG is that we must
decide on the order in which to visit nodes when computing the values sb according to
the recurrence

sb = max
all predecessors a of node b

{sa + weight of edge from a to b}.

This ordering of nodes is important, since by the time we reach node b, the values sa
for all its predecessors must have already been computed. We have managed to hide
this issue for rectangular grids because the order in which we have computed the si, j
ensured that we would never consider a node before visiting all of its predecessors.

To illustrate the importance of visiting nodes in the correct order, consider the DAG
in Figure 5.13, which corresponds to a “Dressing Challenge Problem”. How would you
order the nodes of this graph so that you don’t put on your boots before your tights?
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Exercise: Try finding a 
longest path from source 
to sink in this DAG. Can 
you find a recurrence 
relation for an arbitrary 
DAG?
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Let s(b) be the length of a 
longest path from source 
to b.
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Do not worry if you struggled to solve the last exercise. The hitch to using dynamic
programming in order to find the length of a longest path in a DAG is that we must
decide on the order in which to visit nodes when computing the values sb according to
the recurrence

sb = max
all predecessors a of node b

{sa + weight of edge from a to b}.

This ordering of nodes is important, since by the time we reach node b, the values sa
for all its predecessors must have already been computed. We have managed to hide
this issue for rectangular grids because the order in which we have computed the si, j
ensured that we would never consider a node before visiting all of its predecessors.

To illustrate the importance of visiting nodes in the correct order, consider the DAG
in Figure 5.13, which corresponds to a “Dressing Challenge Problem”. How would you
order the nodes of this graph so that you don’t put on your boots before your tights?
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If there is an edge 
connecting a to b, we 
call a a predecessor of b. 
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Dynamic programming in an arbitrary DAG

Given a node b in a DAG, let sb denote the length of a longest path from the source to b.
We call node a a predecessor of node b if there is an edge connecting a to b in the DAG;
note that the indegree of a node is equal to the number of its predecessors. The score sb
of node b with indegree k is computed as a maximum of k terms:

sb = max
all predecessors a of node b

{sa + weight of edge from a to b}.

For example, in the graph shown in Figure 5.11 (bottom right), node (1, 1) has three
predecessors. You can arrive at (1, 1) by traveling right from (1, 0), down from (0, 1), or
diagonally from (0, 0), Assuming that we have already computed s0, 0, s0, 1, and s1, 0, we
can therefore compute s1, 1 as the maximum of three values:

s1, 1 = max

8
><

>:

s0, 1 + weight of edge # connecting (0, 1) to (1, 1) = 3 + 0 = 3
s1, 0 + weight of edge ! connecting (1, 0) to (1, 1) = 1 + 3 = 4
s0, 0 + weight of edge & connecting (0, 0) to (1, 1) = 0 + 5 = 5

To compute scores for any node (i, j) of this graph, we use the following recurrence:

si, j = max

8
><

>:

si�1, j + weight of edge # between (i � 1, j) and (i, j)
si, j�1 + weight of edge ! between (i, j � 1) and (i, j)
si�1, j�1 + weight of edge & between (i � 1, j � 1) and (i, j)

An analogous argument can be applied to the alignment graph to compute the
length of an LCS between sequences v and w. Since in this case all edges have weight 0
except for diagonal edges of weight 1 that represent matches (vi = wj), we obtain the
following recurrence for computing the length of an LCS:

si, j = max

8
><

>:

si�1, j + 0
si, j�1 + 0
si�1, j�1 + 1, if vi = wj

STOP and Think: The above recurrence does not incorporate mismatch edges.
Why is this not a problem?
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A similar approach can be developed to find the longest path in any DAG, as suggested
by the next exercise.

Exercise Break: What is the length of a longest path between the blue and red
nodes in the DAG shown in Figure 5.12?
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Topological orderings

Do not worry if you struggled to solve the last exercise. The hitch to using dynamic
programming in order to find the length of a longest path in a DAG is that we must
decide on the order in which to visit nodes when computing the values sb according to
the recurrence

sb = max
all predecessors a of node b

{sa + weight of edge from a to b}.

This ordering of nodes is important, since by the time we reach node b, the values sa
for all its predecessors must have already been computed. We have managed to hide
this issue for rectangular grids because the order in which we have computed the si, j
ensured that we would never consider a node before visiting all of its predecessors.

To illustrate the importance of visiting nodes in the correct order, consider the DAG
in Figure 5.13, which corresponds to a “Dressing Challenge Problem”. How would you
order the nodes of this graph so that you don’t put on your boots before your tights?
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If there is an edge 
connecting a to b, we 
call a a predecessor of b. 

Let s(b) be the length of a 
longest path from source 
to sink.
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Dynamic programming in an arbitrary DAG

Given a node b in a DAG, let sb denote the length of a longest path from the source to b.
We call node a a predecessor of node b if there is an edge connecting a to b in the DAG;
note that the indegree of a node is equal to the number of its predecessors. The score sb
of node b with indegree k is computed as a maximum of k terms:

sb = max
all predecessors a of node b

{sa + weight of edge from a to b}.

For example, in the graph shown in Figure 5.11 (bottom right), node (1, 1) has three
predecessors. You can arrive at (1, 1) by traveling right from (1, 0), down from (0, 1), or
diagonally from (0, 0), Assuming that we have already computed s0, 0, s0, 1, and s1, 0, we
can therefore compute s1, 1 as the maximum of three values:

s1, 1 = max

8
><

>:

s0, 1 + weight of edge # connecting (0, 1) to (1, 1) = 3 + 0 = 3
s1, 0 + weight of edge ! connecting (1, 0) to (1, 1) = 1 + 3 = 4
s0, 0 + weight of edge & connecting (0, 0) to (1, 1) = 0 + 5 = 5

To compute scores for any node (i, j) of this graph, we use the following recurrence:

si, j = max

8
><

>:

si�1, j + weight of edge # between (i � 1, j) and (i, j)
si, j�1 + weight of edge ! between (i, j � 1) and (i, j)
si�1, j�1 + weight of edge & between (i � 1, j � 1) and (i, j)

An analogous argument can be applied to the alignment graph to compute the
length of an LCS between sequences v and w. Since in this case all edges have weight 0
except for diagonal edges of weight 1 that represent matches (vi = wj), we obtain the
following recurrence for computing the length of an LCS:

si, j = max

8
><

>:

si�1, j + 0
si, j�1 + 0
si�1, j�1 + 1, if vi = wj

STOP and Think: The above recurrence does not incorporate mismatch edges.
Why is this not a problem?

248

H O W D O W E C O M PA R E D N A S E Q U E N C E S ?

A similar approach can be developed to find the longest path in any DAG, as suggested
by the next exercise.

Exercise Break: What is the length of a longest path between the blue and red
nodes in the DAG shown in Figure 5.12?
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FIGURE 5.12 A weighted DAG without the obvious order inherent in the graphs previ-
ously encountered in this chapter.

Topological orderings

Do not worry if you struggled to solve the last exercise. The hitch to using dynamic
programming in order to find the length of a longest path in a DAG is that we must
decide on the order in which to visit nodes when computing the values sb according to
the recurrence

sb = max
all predecessors a of node b

{sa + weight of edge from a to b}.

This ordering of nodes is important, since by the time we reach node b, the values sa
for all its predecessors must have already been computed. We have managed to hide
this issue for rectangular grids because the order in which we have computed the si, j
ensured that we would never consider a node before visiting all of its predecessors.

To illustrate the importance of visiting nodes in the correct order, consider the DAG
in Figure 5.13, which corresponds to a “Dressing Challenge Problem”. How would you
order the nodes of this graph so that you don’t put on your boots before your tights?
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STOP: What makes 
computing this 
recurrence difficult?
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Dynamic programming in an arbitrary DAG

Given a node b in a DAG, let sb denote the length of a longest path from the source to b.
We call node a a predecessor of node b if there is an edge connecting a to b in the DAG;
note that the indegree of a node is equal to the number of its predecessors. The score sb
of node b with indegree k is computed as a maximum of k terms:

sb = max
all predecessors a of node b

{sa + weight of edge from a to b}.

For example, in the graph shown in Figure 5.11 (bottom right), node (1, 1) has three
predecessors. You can arrive at (1, 1) by traveling right from (1, 0), down from (0, 1), or
diagonally from (0, 0), Assuming that we have already computed s0, 0, s0, 1, and s1, 0, we
can therefore compute s1, 1 as the maximum of three values:

s1, 1 = max

8
><

>:

s0, 1 + weight of edge # connecting (0, 1) to (1, 1) = 3 + 0 = 3
s1, 0 + weight of edge ! connecting (1, 0) to (1, 1) = 1 + 3 = 4
s0, 0 + weight of edge & connecting (0, 0) to (1, 1) = 0 + 5 = 5

To compute scores for any node (i, j) of this graph, we use the following recurrence:

si, j = max

8
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>:

si�1, j + weight of edge # between (i � 1, j) and (i, j)
si, j�1 + weight of edge ! between (i, j � 1) and (i, j)
si�1, j�1 + weight of edge & between (i � 1, j � 1) and (i, j)

An analogous argument can be applied to the alignment graph to compute the
length of an LCS between sequences v and w. Since in this case all edges have weight 0
except for diagonal edges of weight 1 that represent matches (vi = wj), we obtain the
following recurrence for computing the length of an LCS:

si, j = max

8
><

>:

si�1, j + 0
si, j�1 + 0
si�1, j�1 + 1, if vi = wj

STOP and Think: The above recurrence does not incorporate mismatch edges.
Why is this not a problem?
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A similar approach can be developed to find the longest path in any DAG, as suggested
by the next exercise.

Exercise Break: What is the length of a longest path between the blue and red
nodes in the DAG shown in Figure 5.12?
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FIGURE 5.12 A weighted DAG without the obvious order inherent in the graphs previ-
ously encountered in this chapter.

Topological orderings

Do not worry if you struggled to solve the last exercise. The hitch to using dynamic
programming in order to find the length of a longest path in a DAG is that we must
decide on the order in which to visit nodes when computing the values sb according to
the recurrence

sb = max
all predecessors a of node b

{sa + weight of edge from a to b}.

This ordering of nodes is important, since by the time we reach node b, the values sa
for all its predecessors must have already been computed. We have managed to hide
this issue for rectangular grids because the order in which we have computed the si, j
ensured that we would never consider a node before visiting all of its predecessors.

To illustrate the importance of visiting nodes in the correct order, consider the DAG
in Figure 5.13, which corresponds to a “Dressing Challenge Problem”. How would you
order the nodes of this graph so that you don’t put on your boots before your tights?
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STOP: What makes 
computing this 
recurrence difficult?

Answer: We need to 
know the order to 
consider the nodes. 



“Dressing Challenge”: Ordering Nodes 
in a DAG

© 2024 Phillip Compeau



Topological Orderings

© 2024 Phillip Compeau

The critical part of computing s(b) is ensuring that 
s(a) has already been computed for all predecessors.

That is, we need to have an ordering of the nodes in 
a DAG so that no node is considered before its 
predecessor.
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The critical part of computing s(b) is ensuring that 
s(a) has already been computed for all predecessors.

That is, we need to have an ordering of the nodes in 
a DAG so that no node is considered before its 
predecessor.

An ordering of nodes (a1, ..., ak) of nodes in a DAG 
is a topological ordering if every edge ai à aj is 
such that i < j. 



Topological Orderings
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The critical part of computing s(b) is ensuring that 
s(a) has already been computed for all predecessors.

Theorem: Every DAG must have at least one 
topological ordering (and there is an algorithm for 
finding it).

An ordering of nodes (a1, ..., ak) of nodes in a DAG 
is a topological ordering if every edge ai à aj is 
such that i < j. 



Two Topological Orderings for Dressing 
DAG
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Graph
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0 1 2 2 3 4 5 6 7 8
A T - G T T A T A
A T C G T - C - C

0 1 2 3 4 5 5 6 6 7
& & ! & & # & # &

FIGURE 5.5 An alignment of ATGTTATA and ATCGTCC. The array in the first row
counts the number of symbols of ATGTTATA used up to a given position. The array in
the fourth row counts the number of symbols of ATCGTCC used up to a given position.
And the array in the last row records whether each column of the alignment represents
a match/mismatch (&/&), insertion (!), or deletion (#).

Note that in addition to horizontal and vertical edges, we have added diagonal edges
connecting (i, j) to (i + 1, j + 1) in Figure 5.6.

A T C G T C C
A

T

G

T

T

A

T

A

FIGURE 5.6 Every alignment corresponds to a path in the alignment graph from source
to sink, and vice-versa. (Left) The path (0, 0) & (1, 1) & (2, 2) ! (2, 3) & (3, 4)
& (4, 5) # (5, 5) & (6, 6) # (7, 6) & (8, 7) is highlighted above and corresponds to
the alignment of ATGTTATA and ATCGTCC in Figure 5.5. (Right) Another path in the
alignment graph.

We call the DAG in Figure 5.6 the alignment graph of strings v and w, denoted
ALIGNMENTGRAPH(v, w), and we call a path from source to sink in this DAG an align-
ment path. Every alignment of v and w can be viewed as a set of instructions to construct
a unique alignment path in ALIGNMENTGRAPH(v, w), where each match/mismatch,
insertion, and deletion corresponds to an edge &/&, !, and #, respectively. Fur-
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STOP: What topological 
order(s) do you see for 
the alignment graph?
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H O W D O W E C O M PA R E D N A S E Q U E N C E S ?

FIGURE 5.14 Two different topological orderings of the Dressing Challenge DAG from
Figure 5.13.
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FIGURE 5.15 The row-by-column (left) and column-by-column (right) topological or-
derings of a rectangular grid.

STOP and Think: Rewrite theRewrite the MMANHATTANTTOURIST pseudocode based on thepseudocode based on the
topological ordering shown in Figure 5.16.topological ordering shown in Figure 5.16.
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v1 
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FIGURE 5.16 Another topological ordering of the rectangular grid from Figure 5.15.

It can be proven that any DAG has a topological ordering, and that this topological
ordering can be constructed in time proportional to the number of edges in the graph
(see DETOUR: Constructing a Topological Ordering). Once we have a topologicalPAGEPAGE 287287
ordering, we can compute the length of the longest path from source to sink by visit-
ing the nodes of the DAG in the order dictated by the topological ordering, which is
achieved by the following algorithm. For simplicity, we assume that the source node is
the only node with indegree 0 in Graph.

LONGESTPATH(Graph, source, sink)
for each node b in Graph

sb  �1

ssource  0
topologically order Graph
for each node b in Graph (following the topological order)

sb  maxall predecessors a of node b{sa + weight of edge from a to b}
return ssink

Since every edge participates in only a single recurrence, the runtime of LONGESTPATH

is proportional to the number of edges in the DAG Graph.
We can now efficiently compute the length of a longest path in an arbitrary DAG, but

we do not yet know how to convert LONGESTPATH into an algorithm that will construct
this longest path. In the next section, we will use the Longest Common Subsequence
Problem to explain how to construct a longest path in a DAG.
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Pseudocode for Finding Length of 
Longest Path
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LongestPath(Graph, source, sink)
    for each node b in Graph
        sb ← −∞
    ssource ← 0
    topologically order Graph
    for each node b in Graph (following the topological order)
        sb ← maxall predecessors a of node b {sa + weight of edge a à b}
    return ssink

STOP: What is the approximate (“big O” for the 
initiated) runtime of LongestPath?



Pseudocode for Finding Length of 
Longest Path

© 2024 Phillip Compeau

LongestPath(Graph, source, sink)
    for each node b in Graph
        sb ← −∞
    ssource ← 0
    topologically order Graph
    for each node b in Graph (following the topological order)
        sb ← maxall predecessors a of node b {sa + weight of edge a à b}
    return ssink

Answer: We consider each edge exactly once, so (if 
we know a topological order) the runtime is 
proportional to the number of edges.



Topological Orderings for the Alignment 
Graph
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C H A P T E R 5

0 1 2 2 3 4 5 6 7 8
A T - G T T A T A
A T C G T - C - C

0 1 2 3 4 5 5 6 6 7
& & ! & & # & # &

FIGURE 5.5 An alignment of ATGTTATA and ATCGTCC. The array in the first row
counts the number of symbols of ATGTTATA used up to a given position. The array in
the fourth row counts the number of symbols of ATCGTCC used up to a given position.
And the array in the last row records whether each column of the alignment represents
a match/mismatch (&/&), insertion (!), or deletion (#).

Note that in addition to horizontal and vertical edges, we have added diagonal edges
connecting (i, j) to (i + 1, j + 1) in Figure 5.6.

A T C G T C C
A

T

G

T

T

A

T

A

FIGURE 5.6 Every alignment corresponds to a path in the alignment graph from source
to sink, and vice-versa. (Left) The path (0, 0) & (1, 1) & (2, 2) ! (2, 3) & (3, 4)
& (4, 5) # (5, 5) & (6, 6) # (7, 6) & (8, 7) is highlighted above and corresponds to
the alignment of ATGTTATA and ATCGTCC in Figure 5.5. (Right) Another path in the
alignment graph.

We call the DAG in Figure 5.6 the alignment graph of strings v and w, denoted
ALIGNMENTGRAPH(v, w), and we call a path from source to sink in this DAG an align-
ment path. Every alignment of v and w can be viewed as a set of instructions to construct
a unique alignment path in ALIGNMENTGRAPH(v, w), where each match/mismatch,
insertion, and deletion corresponds to an edge &/&, !, and #, respectively. Fur-
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STOP: How many edges 
does the alignment graph 
of strings v and w have?



Topological Orderings for the Alignment 
Graph
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0 1 2 2 3 4 5 6 7 8
A T - G T T A T A
A T C G T - C - C

0 1 2 3 4 5 5 6 6 7
& & ! & & # & # &

FIGURE 5.5 An alignment of ATGTTATA and ATCGTCC. The array in the first row
counts the number of symbols of ATGTTATA used up to a given position. The array in
the fourth row counts the number of symbols of ATCGTCC used up to a given position.
And the array in the last row records whether each column of the alignment represents
a match/mismatch (&/&), insertion (!), or deletion (#).

Note that in addition to horizontal and vertical edges, we have added diagonal edges
connecting (i, j) to (i + 1, j + 1) in Figure 5.6.
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FIGURE 5.6 Every alignment corresponds to a path in the alignment graph from source
to sink, and vice-versa. (Left) The path (0, 0) & (1, 1) & (2, 2) ! (2, 3) & (3, 4)
& (4, 5) # (5, 5) & (6, 6) # (7, 6) & (8, 7) is highlighted above and corresponds to
the alignment of ATGTTATA and ATCGTCC in Figure 5.5. (Right) Another path in the
alignment graph.

We call the DAG in Figure 5.6 the alignment graph of strings v and w, denoted
ALIGNMENTGRAPH(v, w), and we call a path from source to sink in this DAG an align-
ment path. Every alignment of v and w can be viewed as a set of instructions to construct
a unique alignment path in ALIGNMENTGRAPH(v, w), where each match/mismatch,
insertion, and deletion corresponds to an edge &/&, !, and #, respectively. Fur-
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STOP: How many edges 
does the alignment graph 
of strings v and w have?

Answer: Each node has 
0, 1, or 3 predecessors. 
So, the number of edges 
is proportional to |v| · |w|.



From Finding the Maximum Length to 
Finding a Path
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LongestPath(Graph, source, sink)
    for each node b in Graph
        sb ← −∞
    ssource ← 0
    topologically order Graph
    for each node b in Graph (following the topological order)
        sb ← maxall predecessors a of node b {sa + weight of edge a à b}
    return ssink

Note: We can find the length of a longest path, but 
we still don’t know how to construct a longest path.



Finding a Longest Path
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STOP: Take a moment 
to look at our solution 
from before when we 
found the maximum 
weight of a path. 
How might we have 
reconstructed the 
longest path?



BACKTRACKING IN THE 
ALIGNMENT GRAPH
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From a Recurrence to a Longest Path
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Note: we highlighted the 
edge used at each node 
when computing length of 
longest path.
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From a Recurrence to a Longest Path

© 2024 Phillip Compeau

We remember one 
predecessor at each node, 
so following predecessors 
backward from sink yields 
longest path!

Note: we highlighted the 
edge used at each node 
when computing length of 
longest path.



Recall that these Problems are the Same

Symbol Matching Problem:
• Input: Two strings.
• Output: The greatest number of matched 

symbols in any “alignment” of the two strings.

Longest Common Subsequence Length Problem:.
• Input: Two strings.
• Output: The length of a longest common 

subsequence of these strings.

© 2024 Phillip Compeau



Putting it All Together

Longest Common Subsequence Length Problem:.
• Input: Two strings.
• Output: A length of a longest common 

subsequence of these strings.

© 2024 Phillip Compeau

STOP: How can we find an LCS of two strings?



Putting it All Together

Longest Common Subsequence Length Problem:.
• Input: Two strings.
• Output: A length of a longest common 

subsequence of these strings.

© 2024 Phillip Compeau

Answer:
1. Build the alignment graph, with ”match” edges 

weighted 1.
2. Find the length of an LCS using recurrence 

relation.
3. Backtrack to find longest path.



Backtracking in an Arbitrary DAG
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C H A P T E R 5

Dynamic programming in an arbitrary DAG

Given a node b in a DAG, let sb denote the length of a longest path from the source to b.
We call node a a predecessor of node b if there is an edge connecting a to b in the DAG;
note that the indegree of a node is equal to the number of its predecessors. The score sb
of node b with indegree k is computed as a maximum of k terms:

sb = max
all predecessors a of node b

{sa + weight of edge from a to b}.

For example, in the graph shown in Figure 5.11 (bottom right), node (1, 1) has three
predecessors. You can arrive at (1, 1) by traveling right from (1, 0), down from (0, 1), or
diagonally from (0, 0), Assuming that we have already computed s0, 0, s0, 1, and s1, 0, we
can therefore compute s1, 1 as the maximum of three values:

s1, 1 = max

8
><

>:

s0, 1 + weight of edge # connecting (0, 1) to (1, 1) = 3 + 0 = 3
s1, 0 + weight of edge ! connecting (1, 0) to (1, 1) = 1 + 3 = 4
s0, 0 + weight of edge & connecting (0, 0) to (1, 1) = 0 + 5 = 5

To compute scores for any node (i, j) of this graph, we use the following recurrence:

si, j = max

8
><

>:

si�1, j + weight of edge # between (i � 1, j) and (i, j)
si, j�1 + weight of edge ! between (i, j � 1) and (i, j)
si�1, j�1 + weight of edge & between (i � 1, j � 1) and (i, j)

An analogous argument can be applied to the alignment graph to compute the
length of an LCS between sequences v and w. Since in this case all edges have weight 0
except for diagonal edges of weight 1 that represent matches (vi = wj), we obtain the
following recurrence for computing the length of an LCS:

si, j = max

8
><

>:

si�1, j + 0
si, j�1 + 0
si�1, j�1 + 1, if vi = wj

STOP and Think: The above recurrence does not incorporate mismatch edges.
Why is this not a problem?
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H O W D O W E C O M PA R E D N A S E Q U E N C E S ?

A similar approach can be developed to find the longest path in any DAG, as suggested
by the next exercise.

Exercise Break: What is the length of a longest path between the blue and red
nodes in the DAG shown in Figure 5.12?

2 
4 1 

1 
3 

2 
1 

5 

3 

4 8 

3 2 

2 

3 

7 

FIGURE 5.12 A weighted DAG without the obvious order inherent in the graphs previ-
ously encountered in this chapter.

Topological orderings

Do not worry if you struggled to solve the last exercise. The hitch to using dynamic
programming in order to find the length of a longest path in a DAG is that we must
decide on the order in which to visit nodes when computing the values sb according to
the recurrence

sb = max
all predecessors a of node b

{sa + weight of edge from a to b}.

This ordering of nodes is important, since by the time we reach node b, the values sa
for all its predecessors must have already been computed. We have managed to hide
this issue for rectangular grids because the order in which we have computed the si, j
ensured that we would never consider a node before visiting all of its predecessors.

To illustrate the importance of visiting nodes in the correct order, consider the DAG
in Figure 5.13, which corresponds to a “Dressing Challenge Problem”. How would you
order the nodes of this graph so that you don’t put on your boots before your tights?
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When computing the 
recurrence, we store a 
“pointer” to the 
predecessor node a that 
achieved the maximum. 



GLOBAL ALIGNMENT
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Strengthening Alignment ScoringC H A P T E R 5

0 1 2 2 3 4 5 6 7 8
A T - G T T A T A
A T C G T - C - C

0 1 2 3 4 5 5 6 6 7
& & ! & & # & # &

FIGURE 5.5 An alignment of ATGTTATA and ATCGTCC. The array in the first row
counts the number of symbols of ATGTTATA used up to a given position. The array in
the fourth row counts the number of symbols of ATCGTCC used up to a given position.
And the array in the last row records whether each column of the alignment represents
a match/mismatch (&/&), insertion (!), or deletion (#).

Note that in addition to horizontal and vertical edges, we have added diagonal edges
connecting (i, j) to (i + 1, j + 1) in Figure 5.6.

FIGURE 5.6 Every alignment corresponds to a path in the alignment graph from source
to sink, and vice-versa. (Left) The path (0, 0) & (1, 1) & (2, 2) ! (2, 3) & (3, 4)
& (4, 5) # (5, 5) & (6, 6) # (7, 6) & (8, 7) is highlighted above and corresponds to
the alignment of ATGTTATA and ATCGTCC in Figure 5.5. (Right) Another path in the
alignment graph.

We call the DAG in Figure 5.6 the alignment graph of strings v and w, denoted
ALIGNMENTGRAPH(v, w), and we call a path from source to sink in this DAG an align-
ment path. Every alignment of v and w can be viewed as a set of instructions to construct
a unique alignment path in ALIGNMENTGRAPH(v, w), where each match/mismatch,
insertion, and deletion corresponds to an edge &/&, !, and #, respectively. Fur-
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Alignment score: Divided into three components:
• match reward (+1)
• mismatch penalty (-μ)
• insertion/deletion penalty (-σ)

© 2024 Phillip Compeau

STOP: What were μ and σ when finding a longest 
common subsequence?



Strengthening Alignment ScoringC H A P T E R 5

0 1 2 2 3 4 5 6 7 8
A T - G T T A T A
A T C G T - C - C

0 1 2 3 4 5 5 6 6 7
& & ! & & # & # &

FIGURE 5.5 An alignment of ATGTTATA and ATCGTCC. The array in the first row
counts the number of symbols of ATGTTATA used up to a given position. The array in
the fourth row counts the number of symbols of ATCGTCC used up to a given position.
And the array in the last row records whether each column of the alignment represents
a match/mismatch (&/&), insertion (!), or deletion (#).

Note that in addition to horizontal and vertical edges, we have added diagonal edges
connecting (i, j) to (i + 1, j + 1) in Figure 5.6.

FIGURE 5.6 Every alignment corresponds to a path in the alignment graph from source
to sink, and vice-versa. (Left) The path (0, 0) & (1, 1) & (2, 2) ! (2, 3) & (3, 4)
& (4, 5) # (5, 5) & (6, 6) # (7, 6) & (8, 7) is highlighted above and corresponds to
the alignment of ATGTTATA and ATCGTCC in Figure 5.5. (Right) Another path in the
alignment graph.

We call the DAG in Figure 5.6 the alignment graph of strings v and w, denoted
ALIGNMENTGRAPH(v, w), and we call a path from source to sink in this DAG an align-
ment path. Every alignment of v and w can be viewed as a set of instructions to construct
a unique alignment path in ALIGNMENTGRAPH(v, w), where each match/mismatch,
insertion, and deletion corresponds to an edge &/&, !, and #, respectively. Fur-
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Alignment score: Divided into three components:
• match reward (+1)
• mismatch penalty (-μ)
• insertion/deletion penalty (-σ)

© 2024 Phillip Compeau

Answer: They were both equal to zero…



Strengthening Alignment Scoring

Global Alignment Problem: Find a highest-scoring 
alignment of two strings.
• Input: Two strings and numbers μ and σ .
• Output: An alignment of the strings with 

maximum alignment score using these 
parameters.

© 2024 Phillip Compeau



Strengthening Alignment Scoring

STOP: How can we modify the alignment network 
to solve this problem?

© 2024 Phillip Compeau

Global Alignment Problem: Find a highest-scoring 
alignment of two strings.
• Input: Two strings and numbers μ and σ .
• Output: An alignment of the strings with 

maximum alignment score using these 
parameters.



Strengthening Alignment Scoring

C H A P T E R 5

(Figure 5.18). Recalling that deletions correspond to vertical edges (#), insertions cor-
respond to horizontal edges (!), and matches/mismatches correspond to diagonal
edges (&/&), we obtain the following recurrence for si, j, the length of a longest path
from (0, 0) to (i, j):

si, j = max

8
><

>:

si�1, j + Score(vi,-)
si, j�1 + Score(-, wj)

si�1, j�1 + Score(vi, wj).

When the match reward is +1, the mismatch penalty is µ, and the indel penalty is s, the
alignment recurrence can be written as follows:

si, j = max

8
>>><

>>>:

si�1, j � s

si, j�1 � s

si�1, j�1 + 1 , if vi = wj
si�1, j�1 � µ , if vi 6= wj.
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FIGURE 5.18 ALIGNMENTGRAPH(TGTTA,TCGT), with each edge colored according
to whether it represents a match, mismatch, insertion, or deletion.
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Answer: Slight 
modification to 
alignment network 
... a longest path 
will yield an 
alignment of 
maximum score!

© 2024 Phillip Compeau



Strengthening Alignment Scoring

C H A P T E R 5

(Figure 5.18). Recalling that deletions correspond to vertical edges (#), insertions cor-
respond to horizontal edges (!), and matches/mismatches correspond to diagonal
edges (&/&), we obtain the following recurrence for si, j, the length of a longest path
from (0, 0) to (i, j):

si, j = max

8
><

>:

si�1, j + Score(vi,-)
si, j�1 + Score(-, wj)

si�1, j�1 + Score(vi, wj).

When the match reward is +1, the mismatch penalty is µ, and the indel penalty is s, the
alignment recurrence can be written as follows:

si, j = max

8
>>><

>>>:

si�1, j � s

si, j�1 � s

si�1, j�1 + 1 , if vi = wj
si�1, j�1 � µ , if vi 6= wj.
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FIGURE 5.18 ALIGNMENTGRAPH(TGTTA,TCGT), with each edge colored according
to whether it represents a match, mismatch, insertion, or deletion.
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Answer: Slight 
modification to 
alignment network 
... a longest path 
will yield an 
alignment of 
maximum score!

© 2024 Phillip Compeau

Exercise: What is 
the recurrence 
relation?



Two Cases: Mismatch vs. Match

Row i

Column jColumn j – 1

-𝜎

Row i – 1

-μ

Row i

Column jColumn j – 1

Row i – 1

+1

length(i, j) = maximum of:
• length(i – 1, j) – 𝜎
• length(i, j – 1) – 𝜎
• length(i – 1, j – 1) – μ

length(i, j) = maximum of:
• length(i – 1, j) – 𝜎
• length(i, j – 1) – 𝜎
• length(i – 1, j – 1) + 1

-𝜎

-𝜎-𝜎

Case 1 Case 2

© 2022 by Phillip Compeau



Further Strengthening Scoring with a 
Scoring Matrix

© 2024 Phillip Compeau

C H A P T E R 5

empirical probabilities that one amino acid mutates to another during n PAM units. The
(i, j)-th entry of the PAMn scoring matrix is thus given by

log
✓

Mn(i, j)
f (j)

◆
.

The PAM250 scoring matrix is shown in Figure 5.35.
This approach assumes that the frequencies of the amino acids f (j) remain constant

over time, and that the mutational processes in an interval of 1 PAM unit operate
consistently over long periods. For large n, the resulting PAM matrices often allow us
to find related proteins, even when the alignment has few matches.

A C D E F G H I K L M N P Q R S T V W Y -

A 2 -2 0 0 -3 1 -1 -1 -1 -2 -1 0 1 0 -2 1 1 0 -6 -3 -8

C -2 12 -5 -5 -4 -3 -3 -2 -5 -6 -5 -4 -3 -5 -4 0 -2 -2 -8 0 -8

D 0 -5 4 3 -6 1 1 -2 0 -4 -3 2 -1 2 -1 0 0 -2 -7 -4 -8

E 0 -5 3 4 -5 0 1 -2 0 -3 -2 1 -1 2 -1 0 0 -2 -7 -4 -8

F -3 -4 -6 -5 9 -5 -2 1 -5 2 0 -3 -5 -5 -4 -3 -3 -1 0 7 -8

G 1 -3 1 0 -5 5 -2 -3 -2 -4 -3 0 0 -1 -3 1 0 -1 -7 -5 -8

H -1 -3 1 1 -2 -2 6 -2 0 -2 -2 2 0 3 2 -1 -1 -2 -3 0 -8

I -1 -2 -2 -2 1 -3 -2 5 -2 2 2 -2 -2 -2 -2 -1 0 4 -5 -1 -8

K -1 -5 0 0 -5 -2 0 -2 5 -3 0 1 -1 1 3 0 0 -2 -3 -4 -8

L -2 -6 -4 -3 2 -4 -2 2 -3 6 4 -3 -3 -2 -3 -3 -2 2 -2 -1 -8

M -1 -5 -3 -2 0 -3 -2 2 0 4 6 -2 -2 -1 0 -2 -1 2 -4 -2 -8

N 0 -4 2 1 -3 0 2 -2 1 -3 -2 2 0 1 0 1 0 -2 -4 -2 -8

P 1 -3 -1 -1 -5 0 0 -2 -1 -3 -2 0 6 0 0 1 0 -1 -6 -5 -8

Q 0 -5 2 2 -5 -1 3 -2 1 -2 -1 1 0 4 1 -1 -1 -2 -5 -4 -8

R -2 -4 -1 -1 -4 -3 2 -2 3 -3 0 0 0 1 6 0 -1 -2 2 -4 -8

S 1 0 0 0 -3 1 -1 -1 0 -3 -2 1 1 -1 0 2 1 -1 -2 -3 -8

T 1 -2 0 0 -3 0 -1 0 0 -2 -1 0 0 -1 -1 1 3 0 -5 -3 -8

V 0 -2 -2 -2 -1 -1 -2 4 -2 2 2 -2 -1 -2 -2 -1 0 4 -6 -2 -8

W -6 -8 -7 -7 0 -7 -3 -5 -3 -2 -4 -4 -6 -5 2 -2 -5 -6 17 0 -8

Y -3 0 -4 -4 7 -5 0 -1 -4 -1 -2 -2 -5 -4 -4 -3 -3 -2 0 10 -8

- -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8

FIGURE 5.35 The PAM250 scoring matrix for protein alignment with indel penalty 8.
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Scoring matrix: 
Penalizes indels and 
matches/mismatches 
differently 
depending on 
individual symbols.

STOP: How do you 
think this matrix was 
computed?

PAM250 matrix



Amino acids’ side chain variety 
produces different chemical properties

© 2024 Phillip Compeau

Courtesy: Technology Networks



A Quick Aside About the BLOSUM 
Scoring Matrices
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Strengthening Global Alignment
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Global Alignment Problem: Find a highest-scoring 
alignment of two strings.
• Input: Two strings and a scoring matrix.
• Output: An alignment of the strings with 

maximum alignment score according to the 
scoring matrix.

STOP: How does this change the alignment graph?



Strengthening Global Alignment

© 2024 Phillip Compeau

Global Alignment Problem: Find a highest-scoring 
alignment of two strings.
• Input: Two strings and a scoring matrix.
• Output: An alignment of the strings with 

maximum alignment score according to the 
scoring matrix.

Answer: Every edge simply gets weighted with the 
cost of the corresponding scoring matrix value.



Summarizing our Global Alignment 
Algorithm

© 2024 Phillip Compeau

1. Form a 2-D array using the recurrence relation 
for dynamic programming.

2. Create array containing “backtracking pointers”.
3. After reaching the sink, backtrack to source to 

produce a maximum-weight path.
4. Infer the alignment corresponding to this path.



Summarizing our Global Alignment 
Algorithm

© 2024 Phillip Compeau

STOP (biologists): Would you rather align two genes 
as DNA strings (nucleotides) or as proteins (amino 
acids)?



Summarizing our Global Alignment 
Algorithm

© 2024 Phillip Compeau

Answer: If we know that the genes wind up as 
protein, then a protein-level function will be more 
informative since there is a larger alphabet and the 
amino acids determine function of the protein.



Applying to Real Data

STOP: Let’s apply this to the same protein (say, 
hemoglobin subunit alpha) in a few different 
species.  What do you think we will see?
• Homo sapiens vs. Gorilla gorilla gorilla
• Homo sapiens vs. Bos Taurus (cow)
• Homo sapiens vs. Danio rerio (zebrafish)

© 2024 Phillip Compeau

Homo sapiens:  https://www.uniprot.org/uniprot/P69905
Gorilla gorilla gorilla: https://www.uniprot.org/uniprot/P01923
Bos taurus:  https://www.uniprot.org/uniprot/P01966
Danio rerio:  https://www.uniprot.org/uniprot/Q90487

EMBOSS “Needle” server: https://www.ebi.ac.uk/Tools/psa/emboss_needle/

https://www.uniprot.org/uniprot/P69905
https://www.uniprot.org/uniprot/P01923
https://www.uniprot.org/uniprot/P01966
https://www.uniprot.org/uniprot/Q90487
https://www.ebi.ac.uk/Tools/psa/emboss_needle/


Results of Hemoglobin Alignments
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STOP: What is 
our hypothesis?

Note: “|” means 
exact similarity, 
“:” means 
strong similarity, 
and “.” means 
weak similarity.



Homologous proteins may have different 
sequences but similar structures
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Cold Takes Exposed: Biology c. 1963

Émile Zuckerkandl

From the point of view of 
hemoglobin structure, it appears 
that gorilla is just an abnormal 
human.
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Cold Takes Exposed: Biology c. 1963

Émile Zuckerkandl Gaylord Simpson

From the point of view of 
hemoglobin structure, it appears 
that gorilla is just an abnormal 
human.

...that is of course 
nonsense. What the 
comparison really 
indicates is that 
hemoglobin is a bad 
choice and has nothing to 
tell us about attributes.

© 2024 Phillip Compeau



FROM GLOBAL TO LOCAL 
ALIGNMENT
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Finding “Local” Similarities

Real genes have variable and conserved regions; the 
figure below shows the sequence similarity of the 
spike protein between SARS-CoV and SARS-CoV-2.

© 2024 Phillip Compeau



We also will need “local” alignment to 
compare genes against a database
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This (poorly defined) problem is probably the most 
frequent application in computational biology.

Database Comparison Problem:
• Input: A string query and a (much longer) string 

database.
• Output: One or more “high-scoring” similarities 

between query (or a substring of query) and some 
substring of database.



Finding “Local” Similarities

H O W D O W E C O M PA R E D N A S E Q U E N C E S ?

Limitations of global alignment

Analysis of homeobox genes offers an example of a problem for which global alignment
may fail to reveal biologically relevant similarities. These genes regulate embryonic
development and are present in a large variety of species, from flies to humans. Home-
obox genes are long, and they differ greatly between species, but an approximately 60
amino acid-long region in each gene, called the homeodomain, is highly conserved.
For instance, consider the mouse and human homeodomains below.

Mouse
...ARRSRTHFTKFQTDILIEAFEKNRFPGIVTREKLAQQTGIPESRIHIWFQNRRARHPDPG...
...ARQKQTFITWTQKNRLVQAFERNPFPDTATRKKLAEQTGLQESRIQMWFQKQRSLYLKKS...

Human

The immediate question is how to find this conserved segment within the much
longer genes and ignore the flanking areas, which exhibit little similarity. Global align-
ment seeks similarities between two strings across their entire length; however, when
searching for homeodomains, we are looking for smaller, local regions of similarity
and do not need to align the entire strings. For example, the global alignment below
has 22 matches, 18 indels, and 2 mismatches, resulting in the score 22 � 18 � 2 = 2 (if
s = µ = 1):

GCC-C-AGTC-TATGT-CAGGGGGCACG--A-GCATGCACA-
GCCGCC-GTCGT-T-TTCAG----CA-GTTATGT-T-CAGAT

However, these sequences can be aligned differently (with 17 matches and 32 indels)
based on a highly conserved interval represented by the substrings CAGTCTATGTCAG
and CAGTTATGTTCAG:

---G----C-----C--CAGTCTATG-TCAGGGGGCACGAGCATGCACA
GCCGCCGTCGTTTTCAGCAGT-TATGTTCAG-----A------T-----

This alignment has fewer matches and a lower score of 17 � 32 = �15, even though the
conserved region of the alignment contributes a score of 12 � 2 = 10, which is hardly
an accident.

Figure 5.19 shows the two alignment paths corresponding to these two different
alignments. The upper path, corresponding to the second alignment above, loses
out because it contains many heavily penalized indels on either side of the diagonal
corresponding to the conserved interval. As a result, global alignment outputs the
biologically irrelevant lower path.

257
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Exercise: Score these alignments (σ = μ = 1). Which 
alignment is “better”? Which gets the higher score?
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Visualizing Local Alignments
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G
C
C
C
A
G
T
C
T
A
T
G
T
C
A
G
G
G
G
G
C
A
C
G
A
G
C
A
T
G
C
A
C
A

GCC−C−AGTC-TATGT-CAGGGGGCACG−−A−GCATGCACA-
GCCGCC−GTCGT-T-TTCAG----CA−GTTATGT-T−CAGAT

CAGTCTATG-TCAG
CAGT-TATGTTCAG

Local alignment

Global alignment

G C C G C C G T C G T T T T C A G C A G T T A T G T T C A G A T

Local alignments 
may be well away 
from “main 
diagonal” because 
they have a lot of 
indels on ends of the 
alignment.



Revisiting Global Alignment
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Global Alignment Problem:
• Input: Two strings and a scoring matrix.
• Output: An alignment of the strings with 

maximum alignment score according to the 
scoring matrix.



Revisiting Global Alignment

STOP: How can we reformulate the problem 
statement to find areas of “local” similarity?

© 2024 Phillip Compeau

Global Alignment Problem:
• Input: Two strings and a scoring matrix.
• Output: An alignment of the strings with 

maximum alignment score according to the 
scoring matrix.



Revisiting Global Alignment
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Local Alignment Problem:
• Input: Two strings v and w and a scoring matrix.
• Output: Substrings of v and w whose best global 

alignment score is maximized over all substrings.



Revisiting Global Alignment

STOP: One idea for solving this is to solve the 
Global Alignment Problem for every pair of 
substrings of v and w. Why is this an issue?

© 2024 Phillip Compeau

Local Alignment Problem:
• Input: Two strings v and w and a scoring matrix.
• Output: Substrings of v and w whose best global 

alignment score is maximized over all substrings.



Revisiting Global Alignment

Answer: There are C(|v|, 2) substrings of v and 
C(|w|, 2) substrings of w. As a result we have about 
|v|2|w|2 alignments to construct!

© 2024 Phillip Compeau

Local Alignment Problem:
• Input: Two strings v and w and a scoring matrix.
• Output: Substrings of v and w whose best global 

alignment score is maximized over all substrings.

This was understood in 1970, and yet the problem 
remained open …



Ten Years Go By …
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“Free Rides” for Local Alignment

0

0
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Add a zero-weight 
edge from the source 
to every node and the 
sink to every node.

G
C
C
C
A
G
T
C
T
A
T
G
T
C
A
G
G
G
G
G
C
A
C
G
A
G
C
A
T
G
C
A
C
A

G C C G C C G T C G T T T T C A G C A G T T A T G T T C A G A T

This will allow a local 
alignment to start and 
end anywhere with no 
penalty.



“Free Rides” for Local Alignment

0

0

Exercise: What is the 
recurrence relation for 
the local alignment 
problem?

G
C
C
C
A
G
T
C
T
A
T
G
T
C
A
G
G
G
G
G
C
A
C
G
A
G
C
A
T
G
C
A
C
A

G C C G C C G T C G T T T T C A G C A G T T A T G T T C A G A T
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“Free Rides” for Local Alignment

0

0

Answer: It is given by

where the scores here 
are –σ, –σ, and either 
+1 or –μ (depending 
on a match vs. a 
mismatch).

G
C
C
C
A
G
T
C
T
A
T
G
T
C
A
G
G
G
G
G
C
A
C
G
A
G
C
A
T
G
C
A
C
A

G C C G C C G T C G T T T T C A G C A G T T A T G T T C A G A T

H O W D O W E C O M PA R E D N A S E Q U E N C E S ?

si, j = max

8
>>><

>>>:

0
si�1, j + Score(vi,-)
si, j�1 + Score(-, wj)

si�1, j�1 + Score(vi, wj)

5F

FIGURE 5.21 The local alignment algorithm introduces zero-weight edges (shown by
blue dashed lines) connecting the source (0, 0) to every other node in the alignment
graph, as well as zero-weight edges (shown by red dashed lines) connecting every node
to the sink node.

The recurrence above incorporates free rides from source = (0, 0), but it does not
incorporate free rides into sink = (n, m). Since sink has every other node as a predecessor,
sn, m is equal to the largest value of si, j over the entire alignment graph,

sn, m = max
0in, 0jn

si, j .

STOP and Think: After computing all values si, j, how can you find where the
path corresponding to the best local alignment starts and ends in the alignment
graph?

You might still be wondering why we are allowed to free taxi rides through the align-
ment graph. The point is that you are in charge of designing whatever Manhattan-like
DAG you like, as long as it adequately models the specific alignment problem at hand.
Transformations like free taxi rides will become a common theme in this chapter. Var-
ious alignment problems can be solved by constructing an appropriate DAG with as
few edges as possible (to minimize runtime), assigning edge weights to model the
requirements of the problem, and then finding a longest path in this DAG.

263
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“Free Rides” for Local Alignment

0

0

G
C
C
C
A
G
T
C
T
A
T
G
T
C
A
G
G
G
G
G
C
A
C
G
A
G
C
A
T
G
C
A
C
A

G C C G C C G T C G T T T T C A G C A G T T A T G T T C A G A T

Exercise: After we 
apply the recurrence, 
where should we start 
backtracking? (That is, 
where does the best 
local alignment end?)
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“Free Rides” for Local Alignment

0

0

G
C
C
C
A
G
T
C
T
A
T
G
T
C
A
G
G
G
G
G
C
A
C
G
A
G
C
A
T
G
C
A
C
A

G C C G C C G T C G T T T T C A G C A G T T A T G T T C A G A T

Answer: Wherever the 
maximum value of the 
scoring table is.
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Exercise: After we 
apply the recurrence, 
where should we start 
backtracking? (That is, 
where does the best 
local alignment end?)



“Free Rides” for Local Alignment

0

0
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STOP: Recall that the 
dynamic 
programming 
algorithm has runtime 
proportional to the 
number of edges in 
the network. How 
many zero-weight 
edges did we add?
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“Free Rides” for Local Alignment

0

0
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STOP: Recall that the 
dynamic 
programming 
algorithm has runtime 
proportional to the 
number of edges in 
the network. How 
many zero-weight 
edges did we add?

G
C
C
C
A
G
T
C
T
A
T
G
T
C
A
G
G
G
G
G
C
A
C
G
A
G
C
A
T
G
C
A
C
A

G C C G C C G T C G T T T T C A G C A G T T A T G T T C A G A T

Answer: Just ~2nm. J



The Solution to a Problem Unsolved for 
Ten Years Nearly Fits on One Slide
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h 

J. Mol. Bwl. (1981), 147, 195-197 

Identification of Common Molecular Subsequences 

The identification of maximally homologous subsequences among sets of long 
sequences is an important problem in molecular sequence analysis. The problem is 
straightforward only if one restricts consideration to contiguous subsequences 
(segments) containing no internal deletions or insertions. The more general problem 
has its solution in an extension of sequence metrics (Sellers 1974; Waterman et al., 
1976) developed to measure the minimum number of “events” required to  convert 
one sequence into another. 

These developments in the modern sequence analysis began with the heuristic 
homology algorithm of Needleman & Wunsch (1970) which first introduced an 
iterative matrix method of calculation. Numerous other heuristic algorithms have 
been suggested including those of Fitch (1966) and Dayhoff (1969). More mathemat- 
ically rigorous algorithms were suggested by Sankoff (1972), Reichert et al. (1973) 
and Beyer et al. (1979), but these were generally not biologically satisfying or 
interpretable. Success came with Sellers (1974) development of a true metric mewure 
of the distance between sequences. This metric was later generalized by Waterman 
et al. (1976) to include deletions/insertions of arbitrary length. This metric 
represents the minimum number of “mutational events” required to convert one 
sequence into another. It is of interest to  note that  Smith et al. (1980) have recently 
shown that  under some conditions the generalized Sellers metric is equivalent to  the 
original homology algorithm of Needleman & Wunsch (1970). 

In this letter we extend the above ideas to find a pair of segments, one from each of 
two long sequences, such that  there is no other pair of segments with greater 
similarity (homology). The similarity measure used here allows for arbitrary length 
deletions and insertions. 

Algorithm 
The two molecular sequences will be h=a1a2 . . . a,, and B=blb,  . . . b,. A 

similarity s(a,b) is given between sequence elements a and b. Deletions of length k 
are given weight W,. To find pairs of segments with high degrees of similarity, we set 
up a matrix H .  First set 

HkO = H,, = 0 for 0 I k 5 n and 0 I 1  I m. 

Preliminary values of H have the interpretation that  H, is the maximum similarity 
of two segments ending in ai  and b,, respectively. These values are obtained from the 
relationship 

Hij=max{Hi-,,j-,+s(ai,bj), max k.? I {Hi-k,j-wk), max{Hi.j-1- 12 I wi),o), (1) 

1 S i s n  and 1 S j s m .  
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segments at any ai  and b,. 
The formula for H i j  follows by considering the possibilities for ending , the 

(1) If ai and bj are associated, the similarity is 

- + s( ai, bj). Hi- 
(2) If ai is a t  the end of a deletion o i  length k, the similarity is 

H i - k , j -  w,. 
(3) If bj is a t  the end of a deletion of length I ,  the similarity is 

H i - k , j -  w,. 
(4) Finally, a zero is included to  prevent calculated negative similarity, indicating 

no similarity up to ai and b,.t 

The pair of segments with maximum similarity is found by first locating the 
maximum element of H. The other matrix elements leading to this maximum value 
are than sequentially determined with a traceback procedure ending with an 
element of H equal to zero. This procedure identifies the segments as well as 
produces the corresponding alignment. The pair of segments with the next best 
similarity is found by applying the traceback procedure to the second largest 
element of H not associated with the first traceback. 

A simple example is given in Figure 1. In this example the parameters s(albj) and 
wk required were chosen on an a priori statistical basis. A match, ai = b,, produced 
an 8(aib,) value of unity while a mismatch produced a minus one-third. These values 
have an average for long, random sequences over an equally probable four letter set 
of zero. The deletion weight must be chosen to be a t  least equal to the difference 
between a match and a mismatch. The value used here was W, = 1-O+ 1/3*k. 

A 
A 
A 
U 
G 
C 
c 
A 
U 
U 
G 
A 
C 
G 
G 

A C A G C C U C G C U U A G  

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 
0.0 0.0 1.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.7 
0.0 0.0 0.0 0.7 0.3 0.0 1.0 0.0 0.0 0.0 1.0 1.0 0.0 0.7 
0.0 0.0 0.0 2 0.3 0.0 0.0 0.7 1.0 0.0 0.0 0.7 0.7 1.0 
0.0 1.0 0.0 0.0 E 1.3 0.3 1.0 0.3 2.0 0.7 0.3 0.3 0.3 
0.0 1.0 0.7 0.0 1.0 3 1.7 1.3 1.0 1.3 1.7 0.3 0.0 0.0 
0.0 0.0 2.0 0.7 0.3 2.7 1.3 1.0 0.7 1.0 1.3 1.3 0.0 
0.0 0.0 0.7 1.7 0.3 1.3 2'1 2.3 1.0 0.7 1.7 2.0 1.0 1.0 
0.0 0.0 0.3 0.3 1.3 1.0 2.3 2.0 0.7 1.7 2.7 1.7 1.0 
0.0 0.0 0.0 1.3 0.0 1.0 1.0 2.0 3.3 2.0 1.7 1.3 2.3 2.7 
0.0 0.0 1.0 0.0 1.0 0.3 0.7 0.7 2.0 3.0 1.7 1.3 2.3 2.0 
0.0 1.0 0.0 0.7 1.0 2.0 0.7 1.7 1.7 3.0 2.7 1.3 1.0 2.0 
0.0 0.0 0.7 1.0 0.3 0.7 1.7 0.3 2.7 1.7 2.7 2.3 1.0 2.0 
0.0 0.0 0.0 1.7 0.7 0.3 0.3 1.3 1.3 2.3 1.3 2.3 2.0 2.0 

Fit:. I .  H , ,  matrix generated from theapplicationofeqn ( 1  ) to  thesequences A-A-U-G-C-C-A-U-U-G-A- 
C-G-G and C-A-G-C-C-U-C-G-C-U-U-A-G. The underlined elements indicate the trackback path from the 
maximal element 3.30. 

t Zero need not be included unless there are negative values of s(a,b). 
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Ten Years Nearly Fits on One Slide
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LETTERS TO T H E  E D I T O R  197 

Note, in this simple example, that  the alignment obtained: 
-G-C-C-A-U-U-G- 
-G-C-C- U-C-G- 

contains both a mismatch and an internal deletion. It is the identification of the 
latter which has not been previously possible in any rigorous manner. 

This algorithm not only puts the search for pairs of maximally similar segments 
on a mathematically rigorous basis but it can be efficiently and simply programmed 
on a computer. 

Northern Michigan University T. F. SMITH 

Los Alamos Scientific Laboratory 
P.O. Box 1663, Los Alamos 
N. Mex. 87545, U.S.A. 

M. S. WATERMAN 

Received 14 Ju ly  1980 
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segments at any ai  and b,. 
The formula for H i j  follows by considering the possibilities for ending , the 

(1) If ai and bj are associated, the similarity is 

- + s( ai, bj). Hi- 
(2) If ai is a t  the end of a deletion o i  length k, the similarity is 

H i - k , j -  w,. 
(3) If bj is a t  the end of a deletion of length I ,  the similarity is 

H i - k , j -  w,. 
(4) Finally, a zero is included to  prevent calculated negative similarity, indicating 

no similarity up to ai and b,.t 

The pair of segments with maximum similarity is found by first locating the 
maximum element of H. The other matrix elements leading to this maximum value 
are than sequentially determined with a traceback procedure ending with an 
element of H equal to zero. This procedure identifies the segments as well as 
produces the corresponding alignment. The pair of segments with the next best 
similarity is found by applying the traceback procedure to the second largest 
element of H not associated with the first traceback. 

A simple example is given in Figure 1. In this example the parameters s(albj) and 
wk required were chosen on an a priori statistical basis. A match, ai = b,, produced 
an 8(aib,) value of unity while a mismatch produced a minus one-third. These values 
have an average for long, random sequences over an equally probable four letter set 
of zero. The deletion weight must be chosen to be a t  least equal to the difference 
between a match and a mismatch. The value used here was W, = 1-O+ 1/3*k. 

A 
A 
A 
U 
G 
C 
c 
A 
U 
U 
G 
A 
C 
G 
G 

A C A G C C U C G C U U A G  

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 
0.0 0.0 1.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.7 
0.0 0.0 0.0 0.7 0.3 0.0 1.0 0.0 0.0 0.0 1.0 1.0 0.0 0.7 
0.0 0.0 0.0 2 0.3 0.0 0.0 0.7 1.0 0.0 0.0 0.7 0.7 1.0 
0.0 1.0 0.0 0.0 E 1.3 0.3 1.0 0.3 2.0 0.7 0.3 0.3 0.3 
0.0 1.0 0.7 0.0 1.0 3 1.7 1.3 1.0 1.3 1.7 0.3 0.0 0.0 
0.0 0.0 2.0 0.7 0.3 2.7 1.3 1.0 0.7 1.0 1.3 1.3 0.0 
0.0 0.0 0.7 1.7 0.3 1.3 2'1 2.3 1.0 0.7 1.7 2.0 1.0 1.0 
0.0 0.0 0.3 0.3 1.3 1.0 2.3 2.0 0.7 1.7 2.7 1.7 1.0 
0.0 0.0 0.0 1.3 0.0 1.0 1.0 2.0 3.3 2.0 1.7 1.3 2.3 2.7 
0.0 0.0 1.0 0.0 1.0 0.3 0.7 0.7 2.0 3.0 1.7 1.3 2.3 2.0 
0.0 1.0 0.0 0.7 1.0 2.0 0.7 1.7 1.7 3.0 2.7 1.3 1.0 2.0 
0.0 0.0 0.7 1.0 0.3 0.7 1.7 0.3 2.7 1.7 2.7 2.3 1.0 2.0 
0.0 0.0 0.0 1.7 0.7 0.3 0.3 1.3 1.3 2.3 1.3 2.3 2.0 2.0 

Fit:. I .  H , ,  matrix generated from theapplicationofeqn ( 1  ) to  thesequences A-A-U-G-C-C-A-U-U-G-A- 
C-G-G and C-A-G-C-C-U-C-G-C-U-U-A-G. The underlined elements indicate the trackback path from the 
maximal element 3.30. 

t Zero need not be included unless there are negative values of s(a,b). 



ONE MORE INNOVATION: 
AFFINE ALIGNMENT
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Comparing Same-Score Alignments

STOP: Which of these two alignments (which have 
the same score) is “better”?  Why?

H O W D O W E C O M PA R E D N A S E Q U E N C E S ?

an excessive penalty. For example, the alignment on the right is more adequate than the
alignment on the left, but they would currently receive the same score.

GATCCAG GATCCAG
GA-C-AG GA--CAG

A gap is a contiguous sequence of space symbols in a row of an alignment. One
way to score gaps more appropriately is to define an affine penalty for a gap of length
k as s + e · (k � 1), where s is the gap opening penalty, assessed to the first symbol
in the gap, and e is the gap extension penalty, assessed to each additional symbol
in the gap. We typically select e to be smaller than s so that the affine penalty for a
gap of length k is smaller than the penalty for k independent single-nucleotide indels
(s · k). For example, if s = 5 and e = 1, then the alignment on the left above is penal-
ized by 2s = 10, whereas the alignment on the right above is only penalized by s+ e = 6.

Alignment with Affine Gap Penalties Problem:
Construct a highest-scoring global alignment of two strings (with affine gap penalties).

Input: Two strings, a scoring matrix Score, and numbers s and e.
Output: A highest scoring global alignment between these strings, as defined
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If σ = 5 and ε = 1, then the alignment on the left is 
penalized by 2σ = 10, whereas the alignment on the 
right is only penalized by σ + ε = 6.



Adding Affine Gap Penalties

Alignment with Affine Gap Penalties Problem:
• Input: Two strings along with numbers σ and ε 

and a scoring matrix.
• Output: A highest scoring global alignment 

between these strings, as defined by the gap 
opening and extension penalties σ and ε.

STOP: How can we modify the alignment graph to 
solve this problem?
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Alignment with Affine Gap Penalties Problem:
Construct a highest-scoring global alignment of two strings (with affine gap penalties).

Input: Two strings, a scoring matrix Score, and numbers s and e.
Output: A highest scoring global alignment between these strings, as defined
by Score and by the gap opening and extension penalties s and e.
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by introducing a new “long” edge for each gap. Since we do not know in advance
where gaps should be located, we need to add edges accounting for every possible gap.
Thus, affine gap penalties can be accommodated by adding all possible vertical and
horizontal edges in the alignment graph to represent all possible gaps. Specifically, we
add edges connecting (i, j) to both (i + k, j) and (i, j + k) with weights s + e · (k � 1)
for all possible gap sizes k, as illustrated in Figure 5.24. For two sequences of length n,
the number of edges in the resulting alignment graph modeling affine gap penalties
increases from O

�
n2� to O

�
n3�.

FIGURE 5.23 Representing gaps in the alignment graph on the left as “long” insertion
and deletion edges in the alignment graph on the right. For a gap of length k, the weight
of the corresponding long edge is equal to s+e·(k � 1).
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The runtime of our algorithm is proportional to the 
number of edges, so maybe we can use fewer edges.
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FIGURE 5.25 Building a three-level graph for alignment with affine gap penalties. The
lower level corresponds to gap extensions in v, the middle level corresponds to matches
and mismatches, and the upper level corresponds to gap extensions in w.
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FIGURE 5.26 Every path from source to sink in the standard alignment graph shown
in Figure 5.23 corresponds to a path from source to sink in the three-level graph of
the same length (and vice-versa). Every node in the middle level has one outgoing
(blue) edge to the upper level and one outgoing (green) edge to the lower level, both
represented by dashed edges and having weight equal to the gap opening penalty.
Every node in the middle level also has one incoming blue edge from the upper level
and one incoming green edge from the lower level, both represented by dashed edges
and having zero weight (these edges close a gap).

Exercise Break: Prove that the number of edges in the graph described in
Figure 5.26 is at most 7 · n · m for sequences of length n and m.
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The DAG in Figure 5.26 may be complicated, but it uses only O(n · m) edges for
sequences of length n and m, and a longest path in this graph still constructs an optimal
alignment with affine gap penalties. The three-level alignment graph translates into the
system of three recurrence relations shown below. Here, loweri, j, middlei, j, and upperi, j
are the lengths of the longest paths from the source node to (i, j)lower, (i, j)middle, and
(i, j)upper, respectively.

loweri, j = max

(
loweri�1, j � e

middlei�1, j � s

middlei,j = max

8
><

>:

loweri, j
middlei�1, j�1 + Score(vi, wj)

upperi, j

upperi,j = max

(
upperi, j�1 � e

middlei, j�1 � s

5J

The variable loweri, j computes the score of an optimal alignment between the i-prefix
of v and the j-prefix of w ending with a deletion (i.e., a vertical edge), whereas the vari-
able upperi, j computes the score of an optimal alignment of these prefixes ending with
an insertion (i.e., a horizontal edge), and the variable middlei, j computes the score of an
optimal alignment ending with a match or mismatch. The first term in the recurrences
for loweri, j and upperi, j corresponds to extending the gap, whereas the second term
corresponds to initiating the gap.

STOP and Think: Compute an optimal alignment with affine gap penalties for
the A-domains considered in the beginning of this section. How does varying the
gap opening and extension penalties affect the quality of the alignment?

Exercise Break: Design an algorithm for computing optimal local (rather than
global) alignment with affine gap penalties.

Space-Efficient Sequence Alignment

Computing alignment score using linear memory

To introduce fitting alignments, we used the example of aligning a 20,000 amino acid-
long NRP synthetase from Bacillus brevis against a 600 amino acid-long A-domain from
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Exercise: What is the approximate number of edges 
in this graph?
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Answer: Approximately (in fact, at most) 7·|v|·|w|.
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Moving to Multiple Sequences

Multiple Alignment Problem: Find the highest-
scoring alignment between multiple strings.
• Input: A collection of t strings (and some way of 

scoring columns of a multiple alignment).
• Output: A multiple alignment of these strings 

having maximum score.
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STOP: What algorithm would you propose to solve 
this problem?
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A T - G T T a T A
A g C G a T C - A
A T C G T - C T c

0 1 2 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 7 8
0 1 2 3 4 5 5 6 7 8

The multiple alignment matrix is a generalization of the pairwise alignment matrix
to more than two sequences. The three arrays shown below this alignment record the
respective number of symbols in ATGTTATA, AGCGATCA, and ATCGTCTC encountered
up to a given position. Together, these three arrays correspond to a path in a three-
dimensional grid:

(0, 0, 0) ! (1, 1, 1) ! (2, 2, 2) ! (2, 3, 3) ! (3, 4, 4) ! (4, 5, 5) ! (5, 6, 5) !
(6, 7, 6) ! (7, 7, 7) ! (8, 8, 8)

As the alignment graph for two sequences is a grid of squares, the alignment graph for
three sequences is a grid of cubes. Every node in the 3-way alignment graph has up to
seven incoming edges, as shown in Figure 5.31.

(i – 1, j – 1, k – 1) 

(i, j – 1, k – 1) 

(i – 1, j, k – 1) 

(i – 1, j – 1, k) (i – 1, j, k) 

(i, j, k) (i, j – 1, k) 

(i, j, k – 1) 

FIGURE 5.31 One cube making up the alignment graph for three sequences. Each
node in the alignment graph for three sequences has up to seven incoming edges.

The score of a multiple alignment is defined as the sum of scores of the alignment
columns (or, equivalently, weights of edges in the alignment path), with an optimal
alignment being one that maximizes this score. In the case of an amino acid alphabet,
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alignment being one that maximizes this score. In the case of an amino acid alphabet,
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Answer: The number of edges in a single block 
grows like 2t – 1...
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node in the alignment graph for three sequences has up to seven incoming edges.

The score of a multiple alignment is defined as the sum of scores of the alignment
columns (or, equivalently, weights of edges in the alignment path), with an optimal
alignment being one that maximizes this score. In the case of an amino acid alphabet,
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Moving to Multiple Dimensions

STOP: What heuristic might you propose to align 
multiple sequences?

© 2024 Phillip Compeau

C H A P T E R 5

A T - G T T a T A
A g C G a T C - A
A T C G T - C T c

0 1 2 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 7 8
0 1 2 3 4 5 5 6 7 8

The multiple alignment matrix is a generalization of the pairwise alignment matrix
to more than two sequences. The three arrays shown below this alignment record the
respective number of symbols in ATGTTATA, AGCGATCA, and ATCGTCTC encountered
up to a given position. Together, these three arrays correspond to a path in a three-
dimensional grid:

(0, 0, 0) ! (1, 1, 1) ! (2, 2, 2) ! (2, 3, 3) ! (3, 4, 4) ! (4, 5, 5) ! (5, 6, 5) !
(6, 7, 6) ! (7, 7, 7) ! (8, 8, 8)

As the alignment graph for two sequences is a grid of squares, the alignment graph for
three sequences is a grid of cubes. Every node in the 3-way alignment graph has up to
seven incoming edges, as shown in Figure 5.31.
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FIGURE 5.31 One cube making up the alignment graph for three sequences. Each
node in the alignment graph for three sequences has up to seven incoming edges.

The score of a multiple alignment is defined as the sum of scores of the alignment
columns (or, equivalently, weights of edges in the alignment path), with an optimal
alignment being one that maximizes this score. In the case of an amino acid alphabet,
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Greedy Heuristic for Multiple Alignment

1. Find an optimal pairwise alignment of each pair 
of strings.

2. Combine the set of optimal pairwise alignments 
into a multiple alignment.

© 2024 Phillip Compeau



Greedy Heuristic for Multiple Alignment

STOP: Try this approach on the strings CCCCTTTT, 
TTTTGGGG, and GGGGCCCC.

© 2024 Phillip Compeau

1. Find an optimal pairwise alignment of each pair 
of strings.

2. Combine the set of optimal pairwise alignments 
into a multiple alignment.



There is no way to combine these optimal pairwise 
alignment into a meaningful multiple alignment!

Greedy Heuristic for Multiple Alignment

C H A P T E R 5

A greedy multiple alignment algorithm

Note that the multiple alignment

AT-GTTaTA
AgCGaTC-A
ATCGT-CTc

induces three pairwise alignments:

AT-GTTaTA AT-GTTaTA C-AAgCGaT
AgCGaTC-A ATCGT-CTc ATCGT-CTc

But can we work in the opposite direction, combining optimal pairwise alignments into
a multiple alignment?

STOP and Think:

1. Does an optimal multiple alignment induce optimal pairwise alignments?

2. Try combining the pairwise alignments below into a multiple alignment of
the strings CCCCTTTT, TTTTGGGG, and GGGGCCCC.

CCCCTTTT---- ----CCCCTTTT TTTTGGGG----
----TTTTGGGG GGGGCCCC---- ----GGGGCCCC

Unfortunately, we cannot always combine optimal pairwise alignments into a multiple
alignment because some pairwise alignments may be incompatible. Indeed, the first
pairwise alignment in the above question implies that CCCC occurs before TTTT in
the multiple alignment constructed from these three pairwise alignments. The third
pairwise alignment implies that TTTT occurs before GGGG in the multiple alignment.
But the second pairwise alignment implies that GGGG occurs before CCCC in the multiple
alignment. Thus, CCCC must occur before TTTT, which must occur before GGGG, which
must occur before CCCC, a contradiction.

To avoid incompatibility, some multiple alignment algorithms attempt to greedily
construct a multiple alignment from pairwise alignments that are not necessarily opti-
mal. The greedy heuristic starts by selecting the two strings having the highest scoring
pairwise alignment (among all possible pairs of strings) and then uses this pairwise
alignment as a building block for iteratively adding one string at a time to the growing
multiple alignment. We align the two closest strings at the first step because they often
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1. Find an optimal pairwise alignment of each pair 
of strings.

2. Combine the set of optimal pairwise alignments 
into a multiple alignment.



Fortunately, strings that we are aligning will often be 
so similar that even simple heuristics will find 
correct alignments. But not always...

Pairwise Alignment Whispers, Multiple 
Alignment Shouts

© 2024 Phillip Compeau



INTERLUDE: WHY DON’T WE 
HAVE AN HIV VACCINE?

© 2024 Phillip Compeau



Waiting for an HIV Vaccine …
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Yet another terrible disease is 
about to yield to patience, 
persistence and outright genius.

Margaret Heckler
1984



Waiting for an HIV Vaccine …

© 2024 Phillip Compeau

Yet another terrible disease is 
about to yield to patience, 
persistence and outright genius.

It is no longer a question of 
whether we can develop an 
AIDS vaccine, it is simply a 
question of when. 

Margaret Heckler
1984

Bill Clinton
1997



Waiting for an HIV Vaccine …
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… and yet we got a SARS-CoV-2 vaccine 
in under a year #ThanksPfizer

© 2024 Phillip Compeau



Many Vaccines Target Viral Surface 
Proteins

© 2024 Phillip Compeau

Source: https://www.bbc.com/news/health-52394485



Many Vaccines Target Viral Surface 
Proteins

© 2024 Phillip Compeau

https://www.frontiersin.org/articles/10.3389/fimmu.2015.00336/full

Vaccines training the immune 
system to recognize HIV’s 
surface proteins fail because 
HIV strains are so variable.

human HIV/M
human HIV/M
chimpanzee SIV
chimpanzee SIV

chimpanzee SIV

human HIV/N
human HIV/N

chimpanzee SIV
chimpanzee SIV
chimpanzee SIV
chimpanzee SIV

chimpanzee SIV
chimpanzee SIV
human HIV/O
human HIV/O
chimpanzee SIV
chimpanzee SIV
red-capped manabey SIV
drill SIV
vervet monkey SIV
tantalus monkey SIV
sooty mangabey SIV
human HIV/A
human HIV/B
sooty mangabey SIV
Sykes’s monkey SIV
greater spot-nosed monkey SIV

De Brazzas monkey SIV



HIV Drug “Cocktails” Have to Deal with 
Variability 

© 2024 Phillip Compeau

VKKLGEQFR-NKTIIFNQPSGGDLEIVMHSFNCGGEFFYCNTTQLFN----------NSTES------DTITL
VKKLGEQFR-NKTIIFNQPSGGDLEIVMHSFNCGGEFFYCNTTQLFN----------NSTDNG-----DTITL
VKKLGEQFR-NKTIIFNQPSGGDLEIVMHSFNCGGEFFYCNTTQLFD----------NSTESNN----DTITL
VDKLREQFGKNKTIIFNQPSGGDLEIVMHTFNCGGEFFYCNTTQLFNSTWNS---TGNGTESYNGQENGTITL
VDKLREQFGKNKTIIFNQPSGGDLEIVMHTFNCGGEFFYCNTTQLFNSTWNG---TNTT--GLDG--NDTITL
VDKLREQFGKNKTIIFNQSSGGDLEIVTHTFNCGGEFFYCNTTQLFNSNWTG---NSTE--GLHG--DDTITL
VKKLGEQFG-NKTIIFNQSSGGGLEIVMHSFNCGGEFFYCNTTQLFNN--TR-----NSTESNNGQGNDTTTL
VKKLREQFGKNKTIIFKQSSGGDLEIVTHTFNCAGEFFYCNTTQLFNSNWTE-----NSITGLDG--NDTITL
VGKLREQFGK-KTIIFNQPSGGDLEIVMHSFNCQGEFFYCNTTRLFNSTWDNSTWNSTGKDKENGN-NDTITL

envelope glycoprotein gp120

The HIV population in a single infected individual 
rapidly evolves to evade the immune system.



HIV Drug “Cocktails” Have to Deal with 
Variability 

© 2024 Phillip Compeau

envelope glycoprotein gp120

The HIV population in a single infected individual 
rapidly evolves to evade the immune system.

HIV strains from different patients are diverged 
phenotypes requiring different drug cocktails.  

VKKLGEQFR-NKTIIFNQPSGGDLEIVMHSFNCGGEFFYCNTTQLFN----------NSTES------DTITL
VKKLGEQFR-NKTIIFNQPSGGDLEIVMHSFNCGGEFFYCNTTQLFN----------NSTDNG-----DTITL
VKKLGEQFR-NKTIIFNQPSGGDLEIVMHSFNCGGEFFYCNTTQLFD----------NSTESNN----DTITL
VDKLREQFGKNKTIIFNQPSGGDLEIVMHTFNCGGEFFYCNTTQLFNSTWNS---TGNGTESYNGQENGTITL
VDKLREQFGKNKTIIFNQPSGGDLEIVMHTFNCGGEFFYCNTTQLFNSTWNG---TNTT--GLDG--NDTITL
VDKLREQFGKNKTIIFNQSSGGDLEIVTHTFNCGGEFFYCNTTQLFNSNWTG---NSTE--GLHG--DDTITL
VKKLGEQFG-NKTIIFNQSSGGGLEIVMHSFNCGGEFFYCNTTQLFNN--TR-----NSTESNNGQGNDTTTL
VKKLREQFGKNKTIIFKQSSGGDLEIVTHTFNCAGEFFYCNTTQLFNSNWTE-----NSITGLDG--NDTITL
VGKLREQFGK-KTIIFNQPSGGDLEIVMHSFNCQGEFFYCNTTRLFNSTWDNSTWNSTGKDKENGN-NDTITL



Returning to Multiple Alignment

© 2024 Phillip Compeau

Multiple Alignment Problem: Find the highest-
scoring alignment between multiple strings.
• Input: A collection of t strings (and some way of 

scoring columns of a multiple alignment).
• Output: A multiple alignment of these strings 

having maximum score.

A single misalignment could lead to an error, so we 
have to be accurate. And so we need a problem 
formulation that scores different columns differently.



Another Problem

© 2024 Phillip Compeau

Once we have a collection of known protein 
alignments (”families”), we need to be able to 
identify which family a new protein belongs to. That 
is, add a new string into an existing alignment.

VKKLGEQFR-NKTIIFNQPSGGDLEIVMHSFNCGGEFFYCNTTQLFN----------NSTES------DTITL
VKKLGEQFR-NKTIIFNQPSGGDLEIVMHSFNCGGEFFYCNTTQLFN----------NSTDNG-----DTITL
VKKLGEQFR-NKTIIFNQPSGGDLEIVMHSFNCGGEFFYCNTTQLFD----------NSTESNN----DTITL
VDKLREQFGKNKTIIFNQPSGGDLEIVMHTFNCGGEFFYCNTTQLFNSTWNS---TGNGTESYNGQENGTITL
VDKLREQFGKNKTIIFNQPSGGDLEIVMHTFNCGGEFFYCNTTQLFNSTWNG---TNTT--GLDG--NDTITL
VDKLREQFGKNKTIIFNQSSGGDLEIVTHTFNCGGEFFYCNTTQLFNSNWTG---NSTE--GLHG--DDTITL
VKKLGEQFG-NKTIIFNQSSGGGLEIVMHSFNCGGEFFYCNTTQLFNN--TR-----NSTESNNGQGNDTTTL
VKKLREQFGKNKTIIFKQSSGGDLEIVTHTFNCAGEFFYCNTTQLFNSNWTE-----NSITGLDG--NDTITL
VGKLREQFGK-KTIIFNQPSGGDLEIVMHSFNCQGEFFYCNTTRLFNSTWDNSTWNSTGKDKENGN-NDTITL



Trying to give you a deep understanding 
of alignment using an idiotic analogy

© 2024 Phillip Compeau

STOP: If we replace ”chill” 
with “refrigerate”, does it 
change the meaning of the 
sentence?



Trying to give you a deep understanding 
of alignment using an idiotic analogy

© 2024 Phillip Compeau

STOP: What about now? 
More importantly, what do 
you think I am getting at 
here?



Trying to give you a deep understanding 
of alignment using an idiotic analogy

© 2024 Phillip Compeau

STOP: What about now? 
More importantly, what do 
you think I am getting at 
here?

Key point: Proteins have a 
“language”, so why would 
we treat every replacement 
of two symbols the same?



I am making a good point, I promise

© 2024 Phillip Compeau

VKKLGEQFR-NKTIIFNQPSGGDLEIVMHSFNCGGEFFYCNTTQLFN----------NSTES------DTITL
VKKLGEQFR-NKTIIFNQPSGGDLEIVMHSFNCGGEFFYCNTTQLFN----------NSTDNG-----DTITL
VKKLGEQFR-NKTIIFNQPSGGDLEIVMHSFNCGGEFFYCNTTQLFD----------NSTESNN----DTITL
VDKLREQFGKNKTIIFNQPSGGDLEIVMHTFNCGGEFFYCNTTQLFNSTWNS---TGNGTESYNGQENGTITL
VDKLREQFGKNKTIIFNQPSGGDLEIVMHTFNCGGEFFYCNTTQLFNSTWNG---TNTT--GLDG--NDTITL
VDKLREQFGKNKTIIFNQSSGGDLEIVTHTFNCGGEFFYCNTTQLFNSNWTG---NSTE--GLHG--DDTITL
VKKLGEQFG-NKTIIFNQSSGGGLEIVMHSFNCGGEFFYCNTTQLFNN--TR-----NSTESNNGQGNDTTTL
VKKLREQFGKNKTIIFKQSSGGDLEIVTHTFNCAGEFFYCNTTQLFNSNWTE-----NSITGLDG--NDTITL
VGKLREQFGK-KTIIFNQPSGGDLEIVMHSFNCQGEFFYCNTTRLFNSTWDNSTWNSTGKDKENGN-NDTITL

The cell is 
somehow OK 
with a G-R 
substitution in 
these two 
columns.

The cell is not 
OK with a G-R 
substitution in 
this column.

Can we introduce a 
model that has 
different scoring 
parameters in 
different columns?



GAMBLING WITH YAKUZA
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Chō-Han and ”Heads or Tails”

© 2024 Phillip Compeau

Chō-Han: A game played in 18th Century Japanese 
casinos in which players wager that the sum will be 
even (“chō”) or odd (“han”).

We will think about an equivalent game called 
“Heads or Tails” in which we bet on a coin toss. 



Chō-Han and ”Heads or Tails”
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We will think about an equivalent game called 
“Heads or Tails” in which we bet on a coin toss. 

Chō-Han: A game played in 18th Century Japanese 
casinos in which players wager that the sum will be 
even (“chō”) or odd (“han”).



Identifying a Biased Coin

© 2024 Phillip Compeau

A crooked dealer may use one of two coins:
• The fair coin (F) gives heads with probability ½:

      PrF(“Head”) = 1/2           PrF(“Tail”) = 1/2
• The biased coin (B) gives heads with probability 

¾:
  PrB(“Head”) = 3/4           PrB(“Tail”) = 1/4



Identifying a Biased Coin
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STOP: Say that you play Heads or Tails 100 times, 
and the coin produces heads 63 times. Is the dealer 
cheating? Was the coin fair or biased?

A crooked dealer may use one of two coins:
• The fair coin (F) gives heads with probability ½:

      PrF(“Head”) = 1/2           PrF(“Tail”) = 1/2
• The biased coin (B) gives heads with probability 

¾:
  PrB(“Head”) = 3/4           PrB(“Tail”) = 1/4



Identifying a Biased Coin

© 2024 Phillip Compeau

A crooked dealer may use one of two coins:
• The fair coin (F) gives heads with probability ½:

      PrF(“Head”) = 1/2           PrF(“Tail”) = 1/2
• The biased coin (B) gives heads with probability 

¾:
  PrB(“Head”) = 3/4           PrB(“Tail”) = 1/4

STOP: A better question would be, “Which coin is 
more likely to have been used if we see heads 63 
times?”



Identifying a Biased Coin
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A crooked dealer may use one of two coins:
• The fair coin (F) gives heads with probability ½:

      PrF(“Head”) = 1/2           PrF(“Tail”) = 1/2
• The biased coin (B) gives heads with probability 

¾:
  PrB(“Head”) = 3/4           PrB(“Tail”) = 1/4

Answer: 63 is closer to 75 than 50, but there must 
be a more quantitative answer …



Identifying a Biased Coin 

© 2024 Phillip Compeau

Given a sequence of n flips with k “Heads”:
x = x1 x2 . . . xn



Identifying a Biased Coin 

© 2024 Phillip Compeau

Given a sequence of n flips with k “Heads”:
x = x1 x2 . . . xn

The probability this sequence was generated by the 
fair coin:

          Pr(x|F) = PrF(x1) · … · PrF(xn) = (1/2)n



Identifying a Biased Coin 
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Given a sequence of n flips with k “Heads”:
x = x1 x2 . . . xn

The probability this sequence was generated by the 
fair coin:

          Pr(x|F) = PrF(x1) · … · PrF(xn) = (1/2)n

The probability that it was generated by the biased 
coin:

          Pr(x|B) = PrB(x1) · … · PrB(xn) = (3/4)k · (1/4)n-k



Identifying a Biased Coin 
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Pr(x|F) > Pr(x|B) →    fair   is more likely
Pr(x|F) < Pr(x|B) → biased is more likely

The probability this sequence was generated by the 
fair coin:

          Pr(x|F) = PrF(x1) · … · PrF(xn) = (1/2)n

The probability that it was generated by the biased 
coin:

          Pr(x|B) = PrB(x1) · … · PrB(xn) = (3/4)k · (1/4)n-k



Identifying a Biased Coin 
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Exercise: For a sequence of 100 flips with 63 heads, 
which coin is more likely?

The probability this sequence was generated by the 
fair coin:

          Pr(x|F) = PrF(x1) · … · PrF(xn) = (1/2)n

The probability that it was generated by the biased 
coin:

          Pr(x|B) = PrB(x1) · … · PrB(xn) = (3/4)k · (1/4)n-k



Identifying a Biased Coin 
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Both (1/2)100 and (3/4)63 · (1/4)37 are so close to zero 
that this question is harder than it seems!

The probability this sequence was generated by the 
fair coin:

          Pr(x|F) = PrF(x1) · … · PrF(xn) = (1/2)n

The probability that it was generated by the biased 
coin:

          Pr(x|B) = PrB(x1) · … · PrB(xn) = (3/4)k · (1/4)n-k



Identifying a Biased Coin 
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Both (1/2)100 and (3/4)63 · (1/4)37 are so close to zero 
that this question is harder than it seems!

Equilibrium occurs when
   Pr(x|F) = Pr(x|B)



Identifying a Biased Coin 
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Both (1/2)100 and (3/4)63 · (1/4)37 are so close to zero 
that this question is harder than it seems!

Equilibrium occurs when
   Pr(x|F) = Pr(x|B)
   (1/2)n = (3/4)k · (1/4)n-k



Identifying a Biased Coin 
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Both (1/2)100 and (3/4)63 · (1/4)37 are so close to zero 
that this question is harder than it seems!

Equilibrium occurs when
   Pr(x|F) = Pr(x|B)
   (1/2)n = (3/4)k · (1/4)n-k

   (1/2)n = 3k/4n



Identifying a Biased Coin 
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Both (1/2)100 and (3/4)63 · (1/4)37 are so close to zero 
that this question is harder than it seems!

Equilibrium occurs when
   Pr(x|F) = Pr(x|B)
   (1/2)n = (3/4)k · (1/4)n-k

   (1/2)n = 3k/4n

   2n = 3k



Identifying a Biased Coin 
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Both (1/2)100 and (3/4)63 · (1/4)37 are so close to zero 
that this question is harder than it seems!

Equilibrium occurs when
   Pr(x|F) = Pr(x|B)
   (1/2)n = (3/4)k · (1/4)n-k

   (1/2)n = 3k/4n

   2n = 3k

   n = k · log2(3)



Identifying a Biased Coin 
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Both (1/2)100 and (3/4)63 · (1/4)37 are so close to zero 
that this question is harder than it seems!

Equilibrium occurs when
   Pr(x|F) = Pr(x|B)
   (1/2)n = (3/4)k · (1/4)n-k

   (1/2)n = 3k/4n

   2n = 3k

   n = k · log2(3)
   k = n / log2(3) ≈ 0.632 n



Identifying a Biased Coin 
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STOP: So … which coin was more likely?

Equilibrium occurs when
   Pr(x|F) = Pr(x|B)
   (1/2)n = (3/4)k · (1/4)n-k

   (1/2)n = 3k/4n

   2n = 3k

   n = k · log2(3)
   k = n / log2(3) ≈ 0.632 n



Identifying a Biased Coin 
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Answer: The fair coin (!) because k < 0.632 n.

Equilibrium occurs when
   Pr(x|F) = Pr(x|B)
   (1/2)n = (3/4)k · (1/4)n-k

   (1/2)n = 3k/4n

   2n = 3k

   n = k · log2(3)
   k = n / log2(3) ≈ 0.632 n



Identifying a Biased Coin 
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Log-odds ratio: The logarithm of the ratio of Pr(x|F) 
and Pr(x|B):

log2(Pr(x|F) / Pr(x|B)) = log2(2n/3k) = n – k · log2(3)

The log-odds ratio is positive when Pr(x|F) > Pr(x|B) 
and negative when Pr(x|B) > Pr(x|F).



Bakuto Dealers Were Shirtless for a 
Reason…
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Now let’s assume that the dealer 
has both a fair and biased coin 
and can switch back and forth. 



Bakuto Dealers Were Shirtless for a 
Reason…

© 2024 Phillip Compeau

Now let’s assume that the dealer 
has both a fair and biased coin 
and can switch back and forth. 

Casino Problem: Given a sequence of 
coin flips, determine when the dealer 
used a fair coin and a biased coin.
• Input: A sequence x = x1 x2 . . . xn 

of flips made by coins F and B.
• Output: A sequence π  = π1 π2 · · · 

πn, with each πi being equal to 
either F or B.



Bakuto Dealers Were Shirtless for a 
Reason…

© 2024 Phillip Compeau

This is not a computational 
problem! Any of the 2n 
sequences π can generate any x.

Casino Problem: Given a sequence of 
coin flips, determine when the dealer 
used a fair coin and a biased coin.
• Input: A sequence x = x1 x2 . . . xn 

of flips made by coins F and B.
• Output: A sequence π  = π1 π2 · · · 

πn, with each πi being equal to 
either F or B.



Grading π Using Log-Odds Ratio
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HHHTHTHHHT
BBBBB
 

Pr(x|F) < Pr(x|B)  



Grading π Using Log-Odds Ratio
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HHHTHTHHHT
BBBBB
 FFFFF Pr(x|F) > Pr(x|B)  

Pr(x|F) < Pr(x|B)  



Grading π Using Log-Odds Ratio
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Pr(x|F)/Pr(x|B) > 1  

 

HHHTHTHHHT
BBBBB
 FFFFF

Pr(x|F)/Pr(x|B) < 1  



Grading π Using Log-Odds Ratio

© 2024 Phillip Compeau

 

HHHTHTHHHT
BBBBB
 FFFFF

Pr(x|F)/Pr(x|B) < 1  

Pr(x|F)/Pr(x|B) > 1  

If n = # tosses and k = # heads, use log-odds ratio:
log2(Pr(x|F) / Pr(x|B)) = log2(2n/3k) = n – k · log2(3) .



Grading π Using Log-Odds Ratio
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HHHTHTHHHT
BBBBB
 FFFFF

Log-odds < 0  

Log-odds > 0  

Log-odds ratio
0

Log-odds ratio > 0 

Fair coin more likely 

Log-odds ratio < 0 

Biased coin more likely 

If n = # tosses and k = # heads, use log-odds ratio:
log2(Pr(x|F) / Pr(x|B)) = log2(2n/3k) = n – k · log2(3) .



Grading π Using Log-Odds Ratio
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HHHTHTHHHT
BBBBB
 FFFFF
  FFFFF
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HHHTHTHHHT
BBBBB
 FFFFF
  FFFFF
   FFFFF
    



Grading π Using Log-Odds Ratio
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HHHTHTHHHT
BBBBB
 FFFFF
  FFFFF
   FFFFF
    BBBBB
     



Grading π Using Log-Odds Ratio
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HHHTHTHHHT
BBBBB
 FFFFF
  FFFFF
   FFFFF
    BBBBB
     FFFFF

STOP: What are the disadvantages of this approach?



Grading π Using Log-Odds Ratio
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HHHTHTHHHT
BBBBB
 FFFFF
  FFFFF
   FFFFF
    BBBBB
     FFFFF

Answer: Overlapping windows may make different 
prediction for the same flip.



Grading π Using Log-Odds Ratio
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HHHTHTHHHT
BBBBB
 FFFFF
  FFFFF
   FFFFF
    BBBBB
     FFFFF

(Also, there is no clear choice for window length.)



HIDDEN MARKOV MODELS
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Turning the Dealer into a Machine

© 2024 Phillip Compeau

Think of the dealer as a machine with k hidden 
states (F and B) that proceeds in a sequence of steps.
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Think of the dealer as a machine with k hidden 
states (F and B) that proceeds in a sequence of steps.

In each step, it emits a symbol (H or T) with certain 
probability based on its current state. 



Turning the Dealer into a Machine
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While in a certain state, the machine makes two 
decisions:
1. Which symbol will I emit?
2. Which hidden state will I move to next?

Think of the dealer as a machine with k hidden 
states (F and B) that proceeds in a sequence of steps.

In each step, it emits a symbol (H or T) with certain 
probability based on its current state. 



Why are the States “Hidden”?

© 2024 Phillip Compeau

An observer can see the emitted symbols of an 
HMM but does not know which state the HMM is 
currently in.



Why are the States “Hidden”?
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Why are the States “Hidden”?
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An observer can see the emitted symbols of an 
HMM but does not know which state the HMM is 
currently in.

Goal: infer the most likely sequence of hidden states 
of an HMM based on the sequence of emitted 
symbols.

If we also have a collection of probabilities for the 
likelihood of changing states, we have a hidden 
Markov model (HMM). 



An HMM Consists of Four Objects

© 2024 Phillip Compeau

Σ: an alphabet of emitted symbols H and T



An HMM Consists of Four Objects

© 2024 Phillip Compeau

Σ: an alphabet of emitted symbols

States : a set of hidden states

H and T

F and B



An HMM Consists of Four Objects

© 2024 Phillip Compeau

Σ: an alphabet of emitted symbols

States : a set of hidden states

Transition = (transitionl,k): a |States| ×|States| 
matrix of transition probabilities                
(of changing from state l to state k)

H and T

F and B

F        B
F 0.9     0.1
B    0.1     0.9 



An HMM Consists of Four Objects
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Σ: an alphabet of emitted symbols

States : a set of hidden states

Transition = (transitionl,k): a |States| ×|States| 
matrix of transition probabilities                
(of changing from state l to state k)

Emission= (emissionk(b)): a |States| × |∑| 
matrix of emission probabilities
(emitting symbol b when HMM is in state k)

H and T

F and B

F        B
F 0.9     0.1
B    0.1     0.9 

H        T
F    0.50   0.50
B    0.75   0.25 



The HMM Diagram Visualizes an HMM
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HMM Diagram:
• solid nodes are hidden states
• dashed nodes are emitted symbols
• solid directed edges: connect 

states and are labeled by transition 
probabilities

• dashed directed edges: connect 
state to symbol and labeled by 
emission probabilities.

C H A P T E R 10

The HMM diagram

As illustrated in Figure 10.5, an HMM can be visualized using an HMM diagram, a
graph in which every state is represented by a solid node. Solid directed edges connect
every pair of nodes, as well as every node to itself. Each such edge is labeled with the
transition probability of moving from one state to the other (or remaining in the same
state). In addition, the HMM diagram has dashed nodes representing each possible
symbol from the alphabet S and dashed edges connecting each state to each dashed
node. Each such edge is labeled by the probability that the HMM will emit this symbol
while in the given state.

F B 

T 

H 

Emission Transition

H T F B
F 1/2 1/2 F 9/10 1/10
B 3/4 1/4 B 1/10 9/10

FIGURE 10.5 The transition and emission probability matrices for the crooked dealer
HMM described by the HMM diagram shown in the center. This HMM has two states
(gray nodes), F and B. In each state, the HMM can emit one of two symbols (dashed
nodes), heads (“H”) or tails (“T”), with the probabilities shown along dashed edges.
Transition probabilities are shown on solid edges; the crooked dealer HMM transitions
between states F and B with probability 1/10 and remains in the same state with
probability 9/10.

A hidden path p = p1 . . . pn in an HMM is the sequence of states that the HMM
passes through; such a path corresponds to a path of solid edges in the HMM diagram.
Figure 10.6 presents an example in which the crooked dealer HMM produces a sequence
of flips x = “THTHHHTHTTH” with hidden path p = FFFBBBBBFFF, i.e., the fair
coin is used for the first three flips and last three flips, and the biased coin is used for
the five intermediate flips.

Reformulating the Casino Problem

We can now rephrase the improperly formulated Casino Problem as finding the most
likely hidden path p for a string x of symbols emitted by an HMM. To solve this problem,

540



Hidden Paths
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Hidden path: a sequence π = π1… πn of states that 
an HMM passes through.

Pr(x, π): the probability that an HMM follows the 
hidden path π and emits the string x = x1 x2 . . . xn.

x: T  H  T  H  H  H  T  H  T  T  H
π: F  F  F  B  B  B  B  B  F  F  F



Representing Pr(x, π) as a Product
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HMM follows π and emits x when two events occur.
1. The HMM follows the path π. The probability of 

this event is Pr(π).
2. Given that HMM follows path π, it emits x. This 

is the conditional probability Pr(x|π).



Representing Pr(x, π) as a Product
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HMM follows π and emits x when two events occur.
1. The HMM follows the path π. The probability of 

this event is Pr(π).
2. Given that HMM follows path π, it emits x. This 

is the conditional probability Pr(x|π).

This is a more general result in probability:
Pr(x, π) = Pr(π) · Pr(x|π).

Let’s compute each of the terms on the right.



First: Computing Pr(π)
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W H Y H AV E B I O L O G I S T S S T I L L N O T D E V E L O P E D A N H I V VA C C I N E ?

i 1 2 3 4 5 6 7 8 9 10 11
x T H T H H H T H T T H
p F F F B B B B B F F F

Pr(pi ! pi+1)
1
2

9
10

9
10

1
10

9
10

9
10

9
10

9
10

1
10

9
10

9
10

Pr(xi | pi ) 1
2

1
2

1
2

3
4

3
4

3
4

1
4

3
4

1
2

1
2

1
2

FIGURE 10.6 A sequence x of emitted symbols along with a hidden path p for the
crooked dealer HMM. Pr(pi ! pi+1) denotes the probability transitionpi , pi+1 of tran-
sitioning from state pi to pi+1. Pr(p0 ! p1) is set equal to 1/2 to comply with the
assumption that in the beginning, the dealer is equally likely to use the fair or biased
coin. Pr(xi |pi ) denotes the probability that the dealer produced symbol xi from state
pi and is equal to emissionpi (xi ).

we will first consider the simpler problem of computing the probability Pr(x, p) that an
HMM follows the hidden path p = p1 . . . pn and emits the string x = x1 . . . xn. Note
that

Â
all strings of emitted symbols x

Â
all hidden paths p

Pr(x, p) = 1.

STOP and Think: What is Pr(x, p) for the x and p in Figure 10.6?

Each emitted string x has probability Pr(x), which is independent of the hidden path
taken by the HMM:

Pr(x) = Â
all hidden paths p

Pr(x, p).

Each hidden path p has probability Pr(p), which is independent of the string that the
HMM emits:

Pr(p) = Â
all strings of emitted symbols x

Pr(x, p).

The event “the HMM follows the hidden path p and emits x” can be thought of as a
combination of two consecutive events:

• The HMM follows the path p. The probability of this event is Pr(p).

• The HMM emits x, given that the HMM follows the path p. We refer to the
probability of this event as the conditional probability of x given p, denoted
Pr(x|p).

541

Pr(π) is just the product of the probabilities Pr(πi →
πi+1), where each Pr(πi → πi+1) is the probability of 
transitioning from state πi to state πi+1.
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FIGURE 10.6 A sequence x of emitted symbols along with a hidden path p for the
crooked dealer HMM. Pr(pi ! pi+1) denotes the probability transitionpi , pi+1 of tran-
sitioning from state pi to pi+1. Pr(p0 ! p1) is set equal to 1/2 to comply with the
assumption that in the beginning, the dealer is equally likely to use the fair or biased
coin. Pr(xi |pi ) denotes the probability that the dealer produced symbol xi from state
pi and is equal to emissionpi (xi ).

we will first consider the simpler problem of computing the probability Pr(x, p) that an
HMM follows the hidden path p = p1 . . . pn and emits the string x = x1 . . . xn. Note
that

Â
all strings of emitted symbols x

Â
all hidden paths p

Pr(x, p) = 1.

STOP and Think: What is Pr(x, p) for the x and p in Figure 10.6?

Each emitted string x has probability Pr(x), which is independent of the hidden path
taken by the HMM:

Pr(x) = Â
all hidden paths p

Pr(x, p).

Each hidden path p has probability Pr(p), which is independent of the string that the
HMM emits:

Pr(p) = Â
all strings of emitted symbols x

Pr(x, p).

The event “the HMM follows the hidden path p and emits x” can be thought of as a
combination of two consecutive events:

• The HMM follows the path p. The probability of this event is Pr(p).

• The HMM emits x, given that the HMM follows the path p. We refer to the
probability of this event as the conditional probability of x given p, denoted
Pr(x|p).

541

Pr(π) is just the product of the probabilities Pr(πi →
πi+1), where each Pr(πi → πi+1) is the probability of 
transitioning from state πi to state πi+1.

Below: Pr(π0→ π1) is ½ since we assume there is a 
50-50 chance of starting in state π1.



Next: Computing Pr(x|π)

© 2024 Phillip Compeau

W H Y H AV E B I O L O G I S T S S T I L L N O T D E V E L O P E D A N H I V VA C C I N E ?

i 1 2 3 4 5 6 7 8 9 10 11
x T H T H H H T H T T H
p F F F B B B B B F F F

Pr(pi ! pi+1)
1
2

9
10

9
10

1
10

9
10

9
10

9
10

9
10

1
10

9
10

9
10

Pr(xi | pi ) 1
2

1
2

1
2

3
4

3
4

3
4

1
4

3
4

1
2

1
2

1
2

FIGURE 10.6 A sequence x of emitted symbols along with a hidden path p for the
crooked dealer HMM. Pr(pi ! pi+1) denotes the probability transitionpi , pi+1 of tran-
sitioning from state pi to pi+1. Pr(p0 ! p1) is set equal to 1/2 to comply with the
assumption that in the beginning, the dealer is equally likely to use the fair or biased
coin. Pr(xi |pi ) denotes the probability that the dealer produced symbol xi from state
pi and is equal to emissionpi (xi ).

we will first consider the simpler problem of computing the probability Pr(x, p) that an
HMM follows the hidden path p = p1 . . . pn and emits the string x = x1 . . . xn. Note
that

Â
all strings of emitted symbols x

Â
all hidden paths p

Pr(x, p) = 1.

STOP and Think: What is Pr(x, p) for the x and p in Figure 10.6?

Each emitted string x has probability Pr(x), which is independent of the hidden path
taken by the HMM:

Pr(x) = Â
all hidden paths p

Pr(x, p).

Each hidden path p has probability Pr(p), which is independent of the string that the
HMM emits:

Pr(p) = Â
all strings of emitted symbols x

Pr(x, p).

The event “the HMM follows the hidden path p and emits x” can be thought of as a
combination of two consecutive events:

• The HMM follows the path p. The probability of this event is Pr(p).

• The HMM emits x, given that the HMM follows the path p. We refer to the
probability of this event as the conditional probability of x given p, denoted
Pr(x|p).
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If we know the hidden path, then the probability of 
emitting a string x = x1 ... xn is just the product of the 
emission probabilities of each symbol xi .

C H A P T E R 10

Both of these events must occur for the HMM to follow path p and emit string x, which
implies that

Pr(x, p) = Pr(x|p) · Pr(p).

To learn more about this formula, see DETOUR: Conditional Probability.PAGE 583
To compute Pr(x, p), we will first compute Pr(p). As shown in Figure 10.6, we

write Pr(pi ! pi+1) to denote the transition probability of the HMM transitioning
from state pi to pi+1. For simplicity, we assume that in the beginning, the dealer is
equally likely to use the fair or biased coin, an assumption that is modeled by setting
Pr(p0 ! p1) = 1/2 in Figure 10.6, where p0 is a “silent” initial state that does not
emit any symbols. The probability of p is therefore equal to the product of its transition
probabilities (green elements in Figure 10.6),

Pr(p) =
n

’
i=1

Pr(pi�1 ! pi) =
n

’
i=1

transitionpi�1, pi .

Probability of a Hidden Path Problem:
Compute the probability of an HMM’s hidden path.

Input: A hidden path p in an HMM (S, States, Transition, Emission).
Output: The probability of this path, Pr(p).

10A

Note that we have already computed Pr(x|p) for the crooked dealer HMM when the
dealer’s hidden path consisted only of B or F, which we wrote as Pr(x|B) and Pr(x|F),
respectively. To compute Pr(x|p) for a general HMM, we will write Pr(xi|pi) to denote
the emission probability emissionpi (xi) that symbol xi was emitted given that the HMM
was in state pi (Figure 10.6). As a result, for a given path p, the HMM emits a string x
with probability equal to the product of emission probabilities along that path,

Pr(x|p) =
n

’
i=1

Pr(xi|pi)

=
n

’
i=1

emissionpi (xi) .
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Both of these events must occur for the HMM to follow path p and emit string x, which
implies that

Pr(x, p) = Pr(x|p) · Pr(p).

To learn more about this formula, see DETOUR: Conditional Probability.PAGE 583
To compute Pr(x, p), we will first compute Pr(p). As shown in Figure 10.6, we

write Pr(pi ! pi+1) to denote the transition probability of the HMM transitioning
from state pi to pi+1. For simplicity, we assume that in the beginning, the dealer is
equally likely to use the fair or biased coin, an assumption that is modeled by setting
Pr(p0 ! p1) = 1/2 in Figure 10.6, where p0 is a “silent” initial state that does not
emit any symbols. The probability of p is therefore equal to the product of its transition
probabilities (green elements in Figure 10.6),

Pr(p) =
n

’
i=1

Pr(pi�1 ! pi) =
n

’
i=1

transitionpi�1, pi .

Probability of a Hidden Path Problem:
Compute the probability of an HMM’s hidden path.

Input: A hidden path p in an HMM (S, States, Transition, Emission).
Output: The probability of this path, Pr(p).

10A

Note that we have already computed Pr(x|p) for the crooked dealer HMM when the
dealer’s hidden path consisted only of B or F, which we wrote as Pr(x|B) and Pr(x|F),
respectively. To compute Pr(x|p) for a general HMM, we will write Pr(xi|pi) to denote
the emission probability emissionpi (xi) that symbol xi was emitted given that the HMM
was in state pi (Figure 10.6). As a result, for a given path p, the HMM emits a string x
with probability equal to the product of emission probabilities along that path,

Pr(x|p) =
n

’
i=1

Pr(xi|pi)

=
n

’
i=1

emissionpi (xi) .
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FIGURE 10.6 A sequence x of emitted symbols along with a hidden path p for the
crooked dealer HMM. Pr(pi ! pi+1) denotes the probability transitionpi , pi+1 of tran-
sitioning from state pi to pi+1. Pr(p0 ! p1) is set equal to 1/2 to comply with the
assumption that in the beginning, the dealer is equally likely to use the fair or biased
coin. Pr(xi |pi ) denotes the probability that the dealer produced symbol xi from state
pi and is equal to emissionpi (xi ).

we will first consider the simpler problem of computing the probability Pr(x, p) that an
HMM follows the hidden path p = p1 . . . pn and emits the string x = x1 . . . xn. Note
that

Â
all strings of emitted symbols x

Â
all hidden paths p

Pr(x, p) = 1.

STOP and Think: What is Pr(x, p) for the x and p in Figure 10.6?

Each emitted string x has probability Pr(x), which is independent of the hidden path
taken by the HMM:

Pr(x) = Â
all hidden paths p

Pr(x, p).

Each hidden path p has probability Pr(p), which is independent of the string that the
HMM emits:

Pr(p) = Â
all strings of emitted symbols x

Pr(x, p).

The event “the HMM follows the hidden path p and emits x” can be thought of as a
combination of two consecutive events:

• The HMM follows the path p. The probability of this event is Pr(p).

• The HMM emits x, given that the HMM follows the path p. We refer to the
probability of this event as the conditional probability of x given p, denoted
Pr(x|p).

541

Exercise: Compute Pr(x, π) = Pr(π) · Pr(x|π) for the x
and π below. Can you find a better explanation for 
x = “THTHHHTHTTH” than π = FFFBBBBBFFF?
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Both of these events must occur for the HMM to follow path p and emit string x, which
implies that

Pr(x, p) = Pr(x|p) · Pr(p).

To learn more about this formula, see DETOUR: Conditional Probability.PAGE 583
To compute Pr(x, p), we will first compute Pr(p). As shown in Figure 10.6, we

write Pr(pi ! pi+1) to denote the transition probability of the HMM transitioning
from state pi to pi+1. For simplicity, we assume that in the beginning, the dealer is
equally likely to use the fair or biased coin, an assumption that is modeled by setting
Pr(p0 ! p1) = 1/2 in Figure 10.6, where p0 is a “silent” initial state that does not
emit any symbols. The probability of p is therefore equal to the product of its transition
probabilities (green elements in Figure 10.6),

Pr(p) =
n

’
i=1

Pr(pi�1 ! pi) =
n

’
i=1

transitionpi�1, pi .

Probability of a Hidden Path Problem:
Compute the probability of an HMM’s hidden path.

Input: A hidden path p in an HMM (S, States, Transition, Emission).
Output: The probability of this path, Pr(p).

10A

Note that we have already computed Pr(x|p) for the crooked dealer HMM when the
dealer’s hidden path consisted only of B or F, which we wrote as Pr(x|B) and Pr(x|F),
respectively. To compute Pr(x|p) for a general HMM, we will write Pr(xi|pi) to denote
the emission probability emissionpi (xi) that symbol xi was emitted given that the HMM
was in state pi (Figure 10.6). As a result, for a given path p, the HMM emits a string x
with probability equal to the product of emission probabilities along that path,

Pr(x|p) =
n

’
i=1

Pr(xi|pi)

=
n

’
i=1

emissionpi (xi) .
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Both of these events must occur for the HMM to follow path p and emit string x, which
implies that

Pr(x, p) = Pr(x|p) · Pr(p).

To learn more about this formula, see DETOUR: Conditional Probability.PAGE 583
To compute Pr(x, p), we will first compute Pr(p). As shown in Figure 10.6, we

write Pr(pi ! pi+1) to denote the transition probability of the HMM transitioning
from state pi to pi+1. For simplicity, we assume that in the beginning, the dealer is
equally likely to use the fair or biased coin, an assumption that is modeled by setting
Pr(p0 ! p1) = 1/2 in Figure 10.6, where p0 is a “silent” initial state that does not
emit any symbols. The probability of p is therefore equal to the product of its transition
probabilities (green elements in Figure 10.6),

Pr(p) =
n

’
i=1

Pr(pi�1 ! pi) =
n

’
i=1

transitionpi�1, pi .

Probability of a Hidden Path Problem:
Compute the probability of an HMM’s hidden path.

Input: A hidden path p in an HMM (S, States, Transition, Emission).
Output: The probability of this path, Pr(p).

10A

Note that we have already computed Pr(x|p) for the crooked dealer HMM when the
dealer’s hidden path consisted only of B or F, which we wrote as Pr(x|B) and Pr(x|F),
respectively. To compute Pr(x|p) for a general HMM, we will write Pr(xi|pi) to denote
the emission probability emissionpi (xi) that symbol xi was emitted given that the HMM
was in state pi (Figure 10.6). As a result, for a given path p, the HMM emits a string x
with probability equal to the product of emission probabilities along that path,

Pr(x|p) =
n

’
i=1

Pr(xi|pi)

=
n

’
i=1

emissionpi (xi) .
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Finding the Best Path for a String
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Decoding Problem: Find an optimal hidden path in 
an HMM given its emitted string.
• Input: A string x = x1 . . . xn emitted by an HMM   

(∑, States, Transition, Emission). 
• Output: A path π that maximizes the probability 

Pr(x,π) over all possible paths through this HMM.
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HMM diagramF B 
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Building a DAG for the Crooked Casino

© 2024 Phillip Compeau

HMM diagramF B 

1/10 

1/10 

9/10 9/10 

FFFFFF

B B B B B Bsource sink

The source and sink are “silent states” (don’t emit 
a symbol).
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Building a DAG for the Crooked Casino
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HMM diagramF B 
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B B B B B Bsource sink

F B B B F F

This is the Viterbi 
graph of this HMM.



A DAG for an Arbitrary HMM
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HMM diagram
A 

B C 

Exercise: What is the Viterbi graph of this HMM 
diagram? 
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HMM diagram
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A DAG for an Arbitrary HMM
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HMM diagram

C H A P T E R 10

A B 

D C 

FIGURE 10.8 (Left) An HMM diagram for an HMM that has four states with some
forbidden transitions, such as from A to D and from C to itself. Edges corresponding to
forbidden transitions between states are not included in the HMM diagram. (Right) The
Viterbi graph for this HMM emitting a string of length 6.

Finding the Most Likely Outcome of an HMM

Dynamic programming allows us to answer questions about HMMs extending beyond
the most likely hidden path. For example, we have already computed the probability
Pr(p) of a hidden path p. But what about computing Pr(x), the probability that the
HMM will emit a string x?

Exercise Break: Which outcome is more likely in the crooked casino: “HHTT”
or “HTHT”? How would you find the most likely sequence of four coin flips?

Outcome Likelihood Problem:
Find the probability that an HMM emits a given string.

Input: A string x = x1 . . . xn emitted by an HMM (S, States, Transition,
Emission).
Output: The probability Pr(x) that the HMM emits x.

STOP and Think: To solve the Outcome Likelihood Problem, you can make a
slight change to the Viterbi recurrence sk, i = maxall states l{sl, i�1 · WEIGHTi(l, k)}.
What is the change?

We have already observed that Pr(x) is equal to the sum of Pr(x, p) over all hidden
paths p. However, the number of paths through the Viterbi graph is exponential in the

548

Exercise: What about this HMM diagram? It has 
“forbidden transitions” between states. 



A DAG for an Arbitrary HMM
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HMM diagram
C H A P T E R 10

A A A A A A 

B B B B B B 
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FIGURE 10.8 (Left) An HMM diagram for an HMM that has four states with some
forbidden transitions, such as from A to D and from C to itself. Edges corresponding to
forbidden transitions between states are not included in the HMM diagram. (Right) The
Viterbi graph for this HMM emitting a string of length 6.

Finding the Most Likely Outcome of an HMM

Dynamic programming allows us to answer questions about HMMs extending beyond
the most likely hidden path. For example, we have already computed the probability
Pr(p) of a hidden path p. But what about computing Pr(x), the probability that the
HMM will emit a string x?

Exercise Break: Which outcome is more likely in the crooked casino: “HHTT”
or “HTHT”? How would you find the most likely sequence of four coin flips?

Outcome Likelihood Problem:
Find the probability that an HMM emits a given string.

Input: A string x = x1 . . . xn emitted by an HMM (S, States, Transition,
Emission).
Output: The probability Pr(x) that the HMM emits x.

STOP and Think: To solve the Outcome Likelihood Problem, you can make a
slight change to the Viterbi recurrence sk, i = maxall states l{sl, i�1 · WEIGHTi(l, k)}.
What is the change?

We have already observed that Pr(x) is equal to the sum of Pr(x, p) over all hidden
paths p. However, the number of paths through the Viterbi graph is exponential in the
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Alignment Manhattan vs. Decoding Manhattan

Alignment
three valid directions

Decoding
many valid directions
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Step  i - 1             i

l

k

The edge from (l, i-1) to (k, i) corresponds to:
• transitioning from state l to state k (with 

probability transitionl,k)
• emitting symbol xi  (with probability emissionk(xi)



Edge-Weighting the Viterbi Graph

!!C C C C C C 

B B B B B B 

A A A A A A 

Step  i - 1             i

l

k

We weight this edge with transitionl,k emissionk(xi) . 
The product weight of a path π through the Viterbi 
graph is the product of its edge weights:

C H A P T E R 10

Decoding Problem:
Find an optimal hidden path in an HMM given a string of its emitted symbols.

Input: A string x = x1 . . . xn emitted by an HMM (S, States, Transition,
Emission).
Output: A path p that maximizes the probability Pr(x, p) over all possible
paths through this HMM.

In 1967, Andrew Viterbi used an HMM-inspired analog of a Manhattan-like grid to
solve the Decoding Problem. For an HMM emitting a string of n symbols x = x1 . . . xn,
the nodes in the HMM’s Viterbi graph are divided into |States| rows and n columns
(Figure 10.7 (middle)). That is, node (k, i) represents state k and the i-th emitted symbol.
Each node is connected to all nodes in the column to its right; the edge connecting
(l, i � 1) to (k, i) corresponds to transitioning from state l to state k (with probability
transitionl,k) and then emitting symbol xi (with probability emissionk(xi)). As a result,
every path connecting a node in the first column of the Viterbi graph to a node in the
final column corresponds to a hidden path p = p1 . . . pn.

We assign a weight of

WEIGHTi(l, k) = transitionpi�1,pi · emissionpi (xi)

to the edge connecting (l, i � 1) to (k, i) in the Viterbi graph. Furthermore, we define
the product weight of a path in the Viterbi graph as the product of its edge weights.
For a path from the leftmost column to the rightmost column in the Viterbi graph
corresponding to the hidden path p, this product weight is equal to the product of n � 1
terms,

n

’
i=2

transitionpi�1, pi · emissionpi (xi) =
n

’
i=2

WEIGHTi(l, k).

STOP and Think: How does this expression differ from the formula for Pr(x, p)

that we derived in the previous section?

The only difference between the above expression and the expression that we obtained
for Pr(x, p),

n

’
i=1

transitionpi�1, pi · emissionpi (xi) ,
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STOP: How does the product weight differ from 
Pr(x, π)?
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Edge-Weighting the Viterbi Graph
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Answer: It is the same ... so to maximize Pr(x, π), we 
are looking for a path of maximum product-weight!
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Finding a “Longest” Path
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Maximum Product-Weight Path in a DAG Problem: 
Find a path in a DAG of maximum product weight.
• Input: A DAG with positive edge weights, along 

with source and sink nodes.
• Output: A path from source to sink of maximum 

product weight.



Finding a “Longest” Path
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STOP: How do we use what we have learned to 
solve this problem?

Maximum Product-Weight Path in a DAG Problem: 
Find a path in a DAG of maximum product weight.
• Input: A DAG with positive edge weights, along 

with source and sink nodes.
• Output: A path from source to sink of maximum 

product weight.



Answer 1: Dynamic Programming with a 
Recurrence Relation
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Define sk,i as the weight of an optimal path from 
source to the node (k, i). 



Answer 1: Dynamic Programming with a 
Recurrence Relation
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Define sk,i as the weight of an optimal path from 
source to the node (k, i). 

We have “optimal substructure” because an optimal 
path from source to (k, i) must be an optimal path 
from source to (l, i-1) for some node in column i-1.
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Define sk,i as the weight of an optimal path from 
source to the node (k, i). 

We have “optimal substructure” because an optimal 
path from source to (k, i) must be an optimal path 
from source to (l, i-1) for some node in column i-1.

C H A P T E R 10

terminal state that the HMM enters when it has finished emitting symbols. To model
the terminal state, we add a sink node sink to the Viterbi graph and connect every node
in the last column to sink with an edge of weight 1 (Figure 10.7 (bottom)).

Every hidden path p in the HMM now corresponds to a path from source to sink
in the Viterbi graph with product weight Pr(x, p). Therefore, the Decoding Problem
reduces to finding a path in the Viterbi graph of largest product weight over all paths
connecting source to sink.

Exercise Break: Find the maximum product weight path in the Viterbi graph forFind the maximum product weight path in the Viterbi graph for
the crooked dealer HMM whenthe crooked dealer HMM when xx= “HHTT”.= “HHTT”.

The Viterbi algorithm

We will apply a dynamic programming algorithm to solve the Decoding Problem. First,
define sk,i as the product weight of an optimal path (i.e., a path with maximum product
weight) from source to the node (k, i). The Viterbi algorithm relies on the fact that the
first i � 1 edges of an optimal path from source to (k, i) must form an optimal path from
source to (l, i � 1) for some (unknown) state l. This observation yields the following
recurrence:

sk, i = max
all states l

�
sl, i�1 · (weight of edge between nodes(l, i � 1) and (k, i))

 

= max
all states l

�
sl, i�1 · WEIGHTi(l, k)

 

= max
all states l

�
sl, i�1 · transitionpi�1, pi · emissionpi (xi)

 

Since source is connected to every node in the first column of the Viterbi graph,

sk, 1 = ssource · (weight of edge between source and (k, 1))

= ssource · WEIGHT0(source, k)

= ssource · transitionsource, k · emissionk(x1)

In order to initialize this recurrence, we set ssource equal to 1. We can now compute the
maximum product weight over all paths from source to sink as

ssink = max
all states l

sl, n .

STOP and Think: How can we adapt our algorithm for finding a longest path inHow can we adapt our algorithm for finding a longest path in
a DAG to find a path with maximum product weight?a DAG to find a path with maximum product weight?
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Answer 2: You Never Thought 
Logarithms Would be Useful ...
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Two logarithm 
properties:
1. log(x1 · x2) = log(x1) 

+ log(x2).
2. It’s increasing; that 

is, if x1 < x2, then 
log(x1) < log(x2).
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STOP: How are these properties useful for our 
purposes?

Two logarithm 
properties:
1. log(x1 · x2) = log(x1) 

+ log(x2).
2. It’s increasing; that 

is, if x1 < x2, then 
log(x1) < log(x2).



Answer 2: You Never Thought 
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If we take the logarithm 
of a product of edge 
weights w1 ... wn , thenby 
property 1, we obtain a 
sum of edge weights 
log(w1) + ... + log(wn).

Two logarithm 
properties:
1. log(x1 · x2) = log(x1) 

+ log(x2).
2. It’s increasing; that 

is, if x1 < x2, then 
log(x1) < log(x2).
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If we take the logarithm 
of a product of edge 
weights w1 ... wn , thenby 
property 1, we obtain a 
sum of edge weights 
log(w1) + ... + log(wn).

And if the weights correspond to a maximum weight 
path, this optimality will be preserved by property 2.

Two logarithm 
properties:
1. log(x1 · x2) = log(x1) 

+ log(x2).
2. It’s increasing; that 

is, if x1 < x2, then 
log(x1) < log(x2).



Our Problem is “Longest Path in a DAG” 
in Disguise!
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Maximum Product-Weight Path in a DAG Problem: 
Find a path in a DAG of maximum product weight.
• Input: A DAG with positive edge weights, along 

with source and sink nodes.
• Output: A path from source to sink of maximum 

product weight.



PROFILE HMMS FOR SEQUENCE 
ALIGNMENT

© 2024 Phillip Compeau



Remember Our Problem
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Once we have a collection of known protein 
alignments (”families”), we need to be able to 
identify which family a new protein belongs to. That 
is, add a new string into an existing alignment.

VKKLGEQFR-NKTIIFNQPSGGDLEIVMHSFNCGGEFFYCNTTQLFN----------NSTES------DTITL
VKKLGEQFR-NKTIIFNQPSGGDLEIVMHSFNCGGEFFYCNTTQLFN----------NSTDNG-----DTITL
VKKLGEQFR-NKTIIFNQPSGGDLEIVMHSFNCGGEFFYCNTTQLFD----------NSTESNN----DTITL
VDKLREQFGKNKTIIFNQPSGGDLEIVMHTFNCGGEFFYCNTTQLFNSTWNS---TGNGTESYNGQENGTITL
VDKLREQFGKNKTIIFNQPSGGDLEIVMHTFNCGGEFFYCNTTQLFNSTWNG---TNTT--GLDG--NDTITL
VDKLREQFGKNKTIIFNQSSGGDLEIVTHTFNCGGEFFYCNTTQLFNSNWTG---NSTE--GLHG--DDTITL
VKKLGEQFG-NKTIIFNQSSGGGLEIVMHSFNCGGEFFYCNTTQLFNN--TR-----NSTESNNGQGNDTTTL
VKKLREQFGKNKTIIFKQSSGGDLEIVTHTFNCAGEFFYCNTTQLFNSNWTE-----NSITGLDG--NDTITL
VGKLREQFGK-KTIIFNQPSGGDLEIVMHSFNCQGEFFYCNTTRLFNSTWDNSTWNSTGKDKENGN-NDTITL



Remember Our Problem
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Once we have a collection of known protein 
alignments (”families”), we need to be able to 
identify which family a new protein belongs to. That 
is, add a new string into an existing alignment.

This sets up as an HMM problem, since when 
adding a new string to an alignment, we have:
• a decision to make at each step (align? Gap 

symbol?)
• We’re looking for a ”path” (decisions) of sorts 

that ”makes the most sense”.



From an Alignment to a Profile
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Seed alignment: remove columns if the fraction of 
space symbols (“-”) exceeds a threshold θ.

W H Y H AV E B I O L O G I S T S S T I L L N O T D E V E L O P E D A N H I V VA C C I N E ?

1 2 3 4 5 6 7 8

A C D E F A C A D F
A F D A - - - C C F

Alignment A - - E F D - F D C
A C A E F - - A - C
A D D E F A A A D F

A C D E F A D F
A F D A - C C F

Alignment⇤ A - - E F F D C
A C A E F A - C
A D D E F A D F

A 1 0 1/4 1/5 0 3/5 0 0
C 0 2/4 0 0 0 1/5 1/4 2/5

PROFILE(Alignment⇤) D 0 1/4 3/4 0 0 0 3/4 0
E 0 0 0 4/5 0 0 0 0
F 0 1/4 0 0 1 1/5 0 3/5

FIGURE 10.9 A 5 ⇥ 10 multiple alignment Alignment (first panel), its 5 ⇥ 8 seed
alignment Alignment⇤ (second panel), the profile matrix PROFILE(Alignment⇤) of the
seed alignment (third panel), and the diagram of a simple HMM that models this profile
(fourth panel). The seed alignment is obtained from the original alignment by ignoring
poorly conserved columns (shaded gray); in this case, we ignore columns for which
the fraction of space symbols is greater than or equal to the column removal threshold
✓ = 0.35. To better illustrate the relationship between the alignment and its seed
alignment, we have separated the first five columns in the seed alignment from its
last three columns and numbered these columns above the original alignment. The
match states MATCH(i) are abbreviated as Mi. The HMM only has one possible path; it
is initially in state MATCH(1), the transition probability from state MATCH(i) to state
MATCH(i+1) is equal to 1 for all i, and all other transitions are forbidden. Emission
probabilities are equal to frequencies in the profile, e.g., emission probabilities for M2
are 0 for A, 2/4 for C, 1/4 for D, 0 for E, and 1/4 for F.

MATCH(1), . . . , MATCH(k). When the HMM enters state MATCH(i), it emits sym-
bol xi with probability equal to the frequency of this symbol in the i-th column of
PROFILE(Alignment⇤). The HMM then moves into state MATCH(i + 1) with transition
probability equal to 1.

551
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HMM diagram 
A   D   D   A   F   F   D   F
1      *   .25   *   .75    *   .20    *   1     *   .20    *   .75    *  .60  



Toward a Profile HMM
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M1 M2 M3 M4 M5 M6 M7 M8

A   D   D   A   F   F   D   F    F

STOP: How do we model insertions?



Toward a Profile HMM: Insertions
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M1 M2 M3 M4 M5 M6 M7 M8

I1

A   D   D   A   F   F   D   F    F



Toward a Profile HMM: Insertions
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M1 M2 M3 M4 M5 M6 M7 M8

I0 I1 I2 I3 I4 I5 I6 I7 I8

A   D   D   A   F   F   D   F    F



Toward a Profile HMM: Insertions
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M1 M2 M3 M4 M5 M6 M7 M8

I0 I1 I2 I3 I4 I5 I6 I7 I8

A   D   D   A   F   F   D   F    F



Toward a Profile HMM: Insertions
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M1 M2 M3 M4 M5 M6 M7 M8

I0 I1 I2 I3 I4 I5 I6 I7 I8

A   D   D   A   F   F   D   F    F



Toward a Profile HMM: Insertions
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M1 M2 M3 M4 M5 M6 M7 M8

I0 I1 I2 I3 I4 I5 I6 I7 I8

A   D   D   A   F   F   D   F    F

STOP: How do we model deletions?



Toward a Profile HMM: Deletions
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M1 M2 M3 M4 M5 M6 M7 M8

I0 I1 I2 I3 I4 I5 I6 I7 I8

A           A   F   F   D   F    



Toward a Profile HMM: Deletions
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M1 M2 M3 M4 M5 M6 M7 M8

I0 I1 I2 I3 I4 I5 I6 I7 I8

A    A   F   F   D   F    



Toward a Profile HMM: Deletions
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M1 M2 M3 M4 M5 M6 M7 M8

I0 I1 I2 I3 I4 I5 I6 I7 I8

A           A   F   F   D   F    

STOP: What issues do you see with this approach? 



Toward a Profile HMM: Deletions
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M1 M2 M3 M4 M5 M6 M7 M8

D2 D3

I0 I1 I2 I3 I4 I5 I6 I7 I8

A           A   F   F   D   F    

Answer: Just like with affine alignment, we can have 
fewer edges if we create separate “deletion states”.



Toward a Profile HMM: Deletions
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D1

M1 M2 M3 M4 M5 M6 M7 M8

D2 D3 D4 D5 D6 D7 D8

I0 I1 I2 I3 I4 I5 I6 I7 I8

A           A   F   F   D   F    



Toward a Profile HMM: Deletions
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D1

M1 M2 M3 M4 M5 M6 M7 M8

D2 D3 D4 D5 D6 D7 D8

I0 I1 I2 I3 I4 I5 I6 I7 I8

A           A   F   F   D   F    

STOP: Are any edges still missing in this HMM 
diagram?



Adding Edges Between 
Insertion/Deletion States 
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D1

M1 M2 M3 M4 M5 M6 M7 M8

D2 D3 D4 D5 D6 D7 D8

I0 I1 I2 I3 I4 I5 I6 I7 I8



The Profile HMM is Ready to Use!
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D1

M1 M2 M3 M4 M5 M6 M7 M8

D2 D3 D4 D5 D6 D7 D8

I0 I1 I2 I3 I4 I5 I6 I7 I8 ES

This is the HMM diagram of the profile HMM of a 
seed alignment.
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d



Summarizing a Profile HMM
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Σ: an alphabet of emitted symbols

States : a set of hidden states

Transition = (transitionl,k): a |States| ×|States| 
matrix of transition probabilities                
(of changing from state l to state k)

Emission= (emissionk(b)): a |States| × |∑| 
matrix of emission probabilities
(emitting symbol b when HMM is in state k)

Amino acids

Start, end, match, 
insertion, and 
deletion states

It is not yet 
clear what the 
transition and 
emission 
probabilities 
should be!



Hidden Paths Through Profile HMM
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D1 

M1 M2 M3 M4 M5 M6 M7 M8 

D2 D3 D4 D5 D6 D7 D8 

I0 I1 I2 I3 I4 I5 I6 I7 I8 

A C D E F AC A D F

S E 



Hidden Paths Through Profile HMM
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!!

D1 

M1 M2 M3 M4 M5 M6 M7 M8 

D2 D3 D4 D5 D6 D7 D8 

I0 I1 I2 I3 I4 I5 I6 I7 I8 

A C D E F AC A D F

S E 

A F D A C C F
!!

!!

D1 

M1 M2 M3 M4 M5 M6 M7 M8 

D2 D3 D4 D5 D6 D7 D8 

I0 I1 I2 I3 I4 I5 I6 I7 I8 S E 

(-) 



Hidden Paths Through Profile HMM

!!
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D1 

M1 M2 M3 M4 M5 M6 M7 M8 

D2 D3 D4 D5 D6 D7 D8 

I0 I1 I2 I3 I4 I5 I6 I7 I8 

A C D E F AC A D F

S E 

A F D A C C F
!!

!!

D1 

M1 M2 M3 M4 M5 M6 M7 M8 

D2 D3 D4 D5 D6 D7 D8 

I0 I1 I2 I3 I4 I5 I6 I7 I8 S E 

(-) 
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!!

D1 

M1 M2 M3 M4 M5 M6 M7 M8 

D2 D3 D4 D5 D6 D7 D8 

I0 I1 I2 I3 I4 I5 I6 I7 I8 

D6 

A E F F D C

I8 S E 

D(-) (-) 



Hidden Paths Through Profile HMM

!!

!!

D1 

M1 M2 M3 M4 M5 M6 M7 M8 

D2 D3 D4 D5 D6 D7 D8 

I0 I1 I2 I3 I4 I5 I6 I7 I8 

A C D E F AC A D F

S E 

A F D A C C F
!!

!!

D1 

M1 M2 M3 M4 M5 M6 M7 M8 

D2 D3 D4 D5 D6 D7 D8 

I0 I1 I2 I3 I4 I5 I6 I7 I8 S E 

(-) 

!!

!!

D1 

M1 M2 M3 M4 M5 M6 M7 M8 

D2 D3 D4 D5 D6 D7 D8 

I0 I1 I2 I3 I4 I5 I6 I7 I8 

D6 

A E F F D C

I8 S E 

D(-) (-) 

Note: this is a hidden path in an HMM 
diagram (not in a Viterbi graph).



Transition Probabilities of Profile HMM
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!!

D1 

M1 M2 M3 M4 M5 M6 M7 M8 

D2 D3 D4 D5 D6 D7 D8 

I0 I1 I2 I3 I4 I5 I6 I7 I8 

A C D E F AC A D F

S E 

A F D A C C F
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D1 

M1 M2 M3 M4 M5 M6 M7 M8 

D2 D3 D4 D5 D6 D7 D8 

I0 I1 I2 I3 I4 I5 I6 I7 I8 S E 

(-) 
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!!

D1 

M1 M2 M3 M4 M5 M6 M7 M8 

D2 D3 D4 D5 D6 D7 D8 

I0 I1 I2 I3 I4 I5 I6 I7 I8 

D6 

A E F F D C

I8 S E 

D(-) (-) 

A C A E F A C
!!

!!

D1 

M1 M2 M3 M4 M5 M6 M7 M8 

D2 D3 D4 D5 D6 D7 D8 

I0 I1 I2 I3 I4 I5 I6 I7 I8 S E 

(-) 

A D D E F AA A D F
!!

!!

D1 

M1 M2 M3 M4 M5 M6 M7 M8 

D2 D3 D4 D5 D6 D7 D8 

I0 I1 I2 I3 I4 I5 I6 I7 I8 S E 

4 transitions from  M5  :

      1 + 1 + 1 = 3 into I5 
1 into M6

0 into D6          



Transition Probabilities of Profile HMM
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D1 

M1 M2 M3 M4 M5 M6 M7 M8 

D2 D3 D4 D5 D6 D7 D8 

I0 I1 I2 I3 I4 I5 I6 I7 I8 

A C D E F AC A D F
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D2 D3 D4 D5 D6 D7 D8 
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(-) 
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D1 

M1 M2 M3 M4 M5 M6 M7 M8 

D2 D3 D4 D5 D6 D7 D8 

I0 I1 I2 I3 I4 I5 I6 I7 I8 

D6 

A E F F D C

I8 S E 

D(-) (-) 

A C A E F A C
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D1 

M1 M2 M3 M4 M5 M6 M7 M8 

D2 D3 D4 D5 D6 D7 D8 

I0 I1 I2 I3 I4 I5 I6 I7 I8 S E 

(-) 

A D D E F AA A D F
!!
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D1 

M1 M2 M3 M4 M5 M6 M7 M8 

D2 D3 D4 D5 D6 D7 D8 

I0 I1 I2 I3 I4 I5 I6 I7 I8 S E 

transitionMatch(5),Insertion(5)  = 3/4
transitionMatch(5),Match(6) = 1/4
transitionMatch(5),Deletion(6)  =  0

4 transitions from  M5  :

      1 + 1 + 1 = 3 into I5 
1 into M6

0 into D6          



Transition Probabilities of Profile HMM
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D1 

M1 M2 M3 M4 M5 M6 M7 M8 

D2 D3 D4 D5 D6 D7 D8 

I0 I1 I2 I3 I4 I5 I6 I7 I8 S E 

emissionMatch(2)(A) = 0 
emissionMatch(2)(C) = 2/4 
emissionMatch(2)(D) = 1/4  
emissionMatch(2)(E) = 0 
emissionMatch(2)(F) = 1/4 

symbols emitted from  M2:
C, F, C, D 



Forbidden Transitions

C H A P T E R 1

S I0 M1 D1 I1 M2 D2 I2 M3 D3 I3 M4 D4 I4 M5 D5 I5 M6 D6 I6 M7 D7 I7 M8 D8 I8 E

S 1

I0

M1 .8 .2

D1

I1

M2 1

D2

I2

M3 1

D3

I3 1

M4 .8 .2

D4

I4

M5 .25 .75

D5 .33 .67

I5 1

M6 .8 .2

D6

I6

M7 1

D7

I7 1

M8 1

D8

I8

E

4

!!

!!

D1 

M1 M2 M3 M4 M5 M6 M7 M8 

D2 D3 D4 D5 D6 D7 D8 

I0 I1 I2 I3 I4 I5 I6 I7 I8 E S 

Gray cells: 
edges in the 
HMM diagram.

Clear cells: 
forbidden 
transitions.

Empty gray 
cells: equal to 
zero.
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Forbidden Transitions

C H A P T E R 1

S I0 M1 D1 I1 M2 D2 I2 M3 D3 I3 M4 D4 I4 M5 D5 I5 M6 D6 I6 M7 D7 I7 M8 D8 I8 E

S 1

I0

M1 .8 .2

D1

I1

M2 1

D2

I2

M3 1

D3

I3 1

M4 .8 .2

D4

I4

M5 .25 .75

D5 .33 .67

I5 1

M6 .8 .2

D6

I6

M7 1

D7

I7 1

M8 1

D8

I8

E

4

!!

!!

D1 

M1 M2 M3 M4 M5 M6 M7 M8 

D2 D3 D4 D5 D6 D7 D8 

I0 I1 I2 I3 I4 I5 I6 I7 I8 E S 

Having zero 
weights will 
cause issues for 
two reasons:
1. log(0) is 

undefined.
2. One weight 

being zero 
shouldn’t 
disqualify a 
path.
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Forbidden Transitions

C H A P T E R 1
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!!

D1 

M1 M2 M3 M4 M5 M6 M7 M8 

D2 D3 D4 D5 D6 D7 D8 

I0 I1 I2 I3 I4 I5 I6 I7 I8 E S 

STOP: What 
should we do?
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Forbidden Transitions

C H A P T E R 1
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M6 .8 .2
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M1 M2 M3 M4 M5 M6 M7 M8 

D2 D3 D4 D5 D6 D7 D8 

I0 I1 I2 I3 I4 I5 I6 I7 I8 E S 

STOP: What 
should we do?
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Answer: Add 
pseudocounts (!) 
to the zero values 
and normalize.



CLASSIFYING PROTEINS WITH 
PROFILE HMMS
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Aligning a Protein Against a Profile 
HMM
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Alignment

Protein ACAFDEAF

W H Y H AV E B I O L O G I S T S S T I L L N O T D E V E L O P E D A N H I V VA C C I N E ?

Exercise Break: Construct a profile HMM for the HIV sequences shown in
Figure 10.1 with q = 0.35.

Classifying proteins with profile HMMs

Aligning a protein against a profile HMM

Given a protein family, represented by Alignment, we can now return to the problem of
deciding whether a newly sequenced protein, represented by Text, belongs to the family.
We first form HMM(Alignment, q) for some parameter q. As shown in Figure 10.17, a
hidden path through HMM(Alignment, q) corresponds to a sequence of match, inser-
tion, and deletion states for aligning Text against Alignment.

A C -- D E F AC A D F
A F -- D A - -- C C F

Alignment A - -- - E F D- F D C
A C -- A E F -- A - C
A D -- D E F AA A D F

Text A C AF D E - -- A - F

FIGURE 10.17 (Top) A path through HMM(Alignment, 0.35) for the multiple alignment
from Figure 10.9 and the emitted string Text = ACAFDEAF. (Bottom) The emitted
symbols correspond to aligning Text against Alignment. Specifically, the first two
symbols are emitted from two match states and belong in the first two positions of the
alignment. The next two symbols are emitted from an insertion state and belong in
columns of their own (shown in pink). The space symbols in the seventh and eleventh
columns above correspond to deletion states; these symbols are not emitted by the
HMM. The space symbols in the gray columns do not correspond to any states and are
passed over. The non-shaded columns form an augmented 6 ⇥ 8 seed alignment for
comparison against newly sequenced proteins.

559

!!

!!

D1 

M1 M2 M3 M4 M5 M6 M7 M8 

D2 D3 D4 D5 D6 D7 D8 

I0 I1 I2 I3 I4 I5 I6 I7 I8 E S 



Aligning a Protein Against a Profile 
HMM
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Alignment

Protein

Apply Viterbi algorithm to find optimal hidden path.

A C D E (-) A F
!!

!!

D1 

M1 M2 M3 M4 M5 M6 M7 M8 

D2 D3 D4 D5 D6 D7 D8 

I0 I1 I2 I3 I4 I5 I6 I7 I8 

AF

S E 

(-) 

ACAFDEAF

W H Y H AV E B I O L O G I S T S S T I L L N O T D E V E L O P E D A N H I V VA C C I N E ?

Exercise Break: Construct a profile HMM for the HIV sequences shown in
Figure 10.1 with q = 0.35.

Classifying proteins with profile HMMs

Aligning a protein against a profile HMM

Given a protein family, represented by Alignment, we can now return to the problem of
deciding whether a newly sequenced protein, represented by Text, belongs to the family.
We first form HMM(Alignment, q) for some parameter q. As shown in Figure 10.17, a
hidden path through HMM(Alignment, q) corresponds to a sequence of match, inser-
tion, and deletion states for aligning Text against Alignment.

A C -- D E F AC A D F
A F -- D A - -- C C F

Alignment A - -- - E F D- F D C
A C -- A E F -- A - C
A D -- D E F AA A D F

Text A C AF D E - -- A - F

FIGURE 10.17 (Top) A path through HMM(Alignment, 0.35) for the multiple alignment
from Figure 10.9 and the emitted string Text = ACAFDEAF. (Bottom) The emitted
symbols correspond to aligning Text against Alignment. Specifically, the first two
symbols are emitted from two match states and belong in the first two positions of the
alignment. The next two symbols are emitted from an insertion state and belong in
columns of their own (shown in pink). The space symbols in the seventh and eleventh
columns above correspond to deletion states; these symbols are not emitted by the
HMM. The space symbols in the gray columns do not correspond to any states and are
passed over. The non-shaded columns form an augmented 6 ⇥ 8 seed alignment for
comparison against newly sequenced proteins.
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Profile HMM 
diagram
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D1 

M1 M2 M3 M4 M5 M6 M7 M8 

D2 D3 D4 D5 D6 D7 D8 

I0 I1 I2 I3 I4 I5 I6 I7 I8 

D6 

A E F F D C

I8 S E 

D(-) (-) 

STOP: How many rows and columns does the 
Viterbi graph of this profile HMM have?

Profile HMM 
diagram

© 2024 Phillip Compeau
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Profile HMM 
diagram

Viterbi graph of 
profile HMM: 

#columns=
#visited states
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Profile HMM 
diagram

STOP: What is 
wrong with this 
Viterbi graph?

Viterbi graph of 
profile HMM: 

#columns=
#visited states
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deletion states 

Nearly correct 
Viterbi graph of 
profile HMM: 
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Adding 0-th 
column that 
contains only 
silent states

Correct Viterbi 
graph of profile 

HMM: 
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Alignment with a Profile HMM

Sequence Alignment with Profile HMM Problem: Align 
a new sequence to a family of aligned sequences using 
a profile HMM.
• Input: A multiple alignment Alignment, a string Text, 

a threshold θ (maximum fraction of insertions per 
column), and a pseudocount σ. 

• Output: An optimal hidden path emitting Text in the 
profile HMM  HMM(Alignment, θ, σ).
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Have I Wasted Your Time? 
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STOP: A path through the 
profile HMM diagram looks 
like a lot like a path through an 
alignment graph! So what is 
different?
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Key point: The choice of 
alignment path is now based on 
transition and emission 
probabilities that vary from one 
column to the next.
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Three levels of protein understanding
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Level 2: amino acid substitutions are 
treated differently depending on context.

Level 3: a complete understanding of the 
language, allowing us to form new 
proteins with custom meanings.

Scoring
Matrices

Level 1: substitution of one amino acid 
for another is always treated the same.

HMMs

???



Changing just one letter can produce a 
huge change in meaning …
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... yet sentences can have the same
meaning but completely different words!
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In proteins, a single mutation can cause 
enormous structural changes …

© 2024 Phillip Compeau Image courtesy: Sickle-Cell.com



… and yet we already know that similar 
structures have very different sequences!
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So how can we improve on HMMs?
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Idea 1 (later in this course): 
compare proteins not at the 
level of sequence, but as three-
dimensional structures.



So how can we improve on HMMs?
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Idea 1 (later in this course): 
compare proteins not at the 
level of sequence, but as three-
dimensional structures.

Idea 2 (unsolved problem in 
biology): train AI (e.g., LLMs) to 
understand the ”language” of 
proteins and how sequence à 
structure à protein function
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