
© 2024 Phillip Compeau

Comparing Genes

INTRODUCTION TO SEQUENCE
ALIGNMENT

© 2024 Phillip Compeau

Comparing Genes is a Fundamental
Problem in Biology

Goal: Convert this important biological question
into a well-defined computational problem.

Comparing Genes Problem:
• Input: Two genes.
• Output: How “similar” these genes are.

© 2024 Phillip Compeau

Try 1: Hamming Distance

Hamming Distance Problem:
• Input: Two strings.
• Output: The number of “mismatched” symbols in

the two strings.

© 2024 Phillip Compeau

Try 1: Hamming Distance

Hamming Distance Problem:
• Input: Two strings.
• Output: The number of “mismatched” symbols in

the two strings.

ATGCATGC
TGCATGCA Hamming distance = 8

© 2024 Phillip Compeau

Try 1: Hamming Distance

Hamming Distance Problem:
• Input: Two strings.
• Output: The number of “mismatched” symbols in

the two strings.

ATGCATGC
TGCATGCA Hamming distance = 8

STOP: What are the issues with this approach?

© 2024 Phillip Compeau

Try 1: Hamming Distance

Hamming Distance Problem:
• Input: Two strings.
• Output: The number of “mismatched” symbols in

the two strings.

ATGCATGC
TGCATGCA Hamming distance = 8

© 2024 Phillip Compeau

Note: these strings have a long shared substring, it
just doesn’t line up perfectly.

Try 2: Longest Substring

Longest Shared Substring Problem:
• Input: Two strings.
• Output: The longest substring shared by both

strings.

STOP: What are the weaknesses of using the length
of a longest shared substring to represent the
similarity between two strings?

© 2024 Phillip Compeau

Try 2: Longest Substring

Consider the strings AAACAAACAAACAAACAAACAAA
and AAAGAAAGAAAGAAAGAAAGAAAGAAA. These
strings are very similar, but they don’t have a long
shared substring in common.

Longest Shared Substring Problem:
• Input: Two strings.
• Output: The longest substring shared by both

strings.

© 2024 Phillip Compeau

Try 3: Counting Shared k-Mers

For simplicity, we restrict to substrings of the same
length; recall that a k-mer is the term we use in
comp bio for a string of length k.

Instead of finding a longest shared substring of two
strings, we will count the number of shared
substrings.

© 2024 Phillip Compeau

Try 3: Counting Shared k-Mers

String Count

ACA 1

ACG 2

ATA 1

CAC 1

CGT 2

GTA 2

TAC 1

TAT 2

String Count

ATA 1

ATC 2

CCT 1

CGG 1

CTA 1

GGT 1

GTA 1

TAC 1

TAT 3

TCC 1

TCG 1

s1 = ACGTATACACGTAT s2 = TATCGGTATATCCTAC

© 2024 Phillip Compeau

STOP: How should we count the #
of shared 3-mers of two strings?

Try 3: Counting Shared k-Mers

s1 = ACGTATACACGTAT s2 = TATCGGTATATCCTAC

String Count

ACA 1

ACG 2

ATA 1

CAC 1

CGT 2

GTA 2

TAC 1

TAT 2

String Count

ATA 1

ATC 2

CCT 1

CGG 1

CTA 1

GGT 1

GTA 1

TAC 1

TAT 3

TCC 1

TCG 1

Take minimum counts for
each shared k-mer:

1 + 1 + 1 + 2 = 5
© 2024 Phillip Compeau

Toward a Better Approach

ATGCTTA
TGCATTAA

STOP: What similarities do you see in these strings?

© 2024 Phillip Compeau

Toward a Better Approach

ATGCTTA
TGCATTAA

STOP: What similarities do you see in these strings?

© 2024 Phillip Compeau

ATGC-TTA-
-TGCATTAA

Key Point: we can find similarities if we “slide” the
strings, letting symbols shift (but stay in same order).

Toward a More Accurate Problem

Symbol Matching Problem:
• Input: Two strings.
• Output: The greatest number of matched

symbols in any “alignment” of the two strings.

© 2024 Phillip Compeau

ATGC-TTA-
-TGCATTAA

Toward a More Accurate Problem

Exercise: How many matches can you find if the
strings are ATGTTATA and ATCGTCC? What
algorithm did you use?

© 2024 Phillip Compeau

Symbol Matching Problem:
• Input: Two strings.
• Output: The greatest number of matched

symbols in any “alignment” of the two strings.

Matching Symbols as a GameC H A P T E R 5

Growing alignment Remaining symbols Score

A T G T T A T A
A T C G T C C

A T G T T A T A +1A T C G T C C

A T G T T A T A +1A T C G T C C

A T - G T T A T A
A T C G T C C

A T - G T T A T A +1A T C G T C C

A T - G T T A T A +1A T C G T C C

A T - G T T A T A
A T C G T - C C

A T - G T T A T A
A T C G T - C C

A T - G T T A T A
A T C G T - C - C

A T - G T T A T A
A T C G T - C - C

FIGURE 5.1 One way of playing the alignment game for the strings ATGTTATA and
ATCGTCC, with score 4. At each step, we choose to remove either one or both symbols
from the left of the two sequences in the “remaining symbols” column. If we remove
both symbols, then we align them in the “growing alignment”. If we remove only
one symbol, then we align this symbol with a space symbol in the growing alignment.
Matched symbols are shown in red (and receive score 1). Mismatched symbols are
shown in purple; symbols aligned against space symbols are shown in blue or green
depending on which sequence they were removed from.

228

© 2024 Phillip Compeau

Matching Symbols as a GameC H A P T E R 5

Growing alignment Remaining symbols Score

A T G T T A T A
A T C G T C C

A T G T T A T A +1A T C G T C C

A T G T T A T A +1A T C G T C C

A T - G T T A T A
A T C G T C C

A T - G T T A T A +1A T C G T C C

A T - G T T A T A +1A T C G T C C

A T - G T T A T A
A T C G T - C C

A T - G T T A T A
A T C G T - C C

A T - G T T A T A
A T C G T - C - C

A T - G T T A T A
A T C G T - C - C

FIGURE 5.1 One way of playing the alignment game for the strings ATGTTATA and
ATCGTCC, with score 4. At each step, we choose to remove either one or both symbols
from the left of the two sequences in the “remaining symbols” column. If we remove
both symbols, then we align them in the “growing alignment”. If we remove only
one symbol, then we align this symbol with a space symbol in the growing alignment.
Matched symbols are shown in red (and receive score 1). Mismatched symbols are
shown in purple; symbols aligned against space symbols are shown in blue or green
depending on which sequence they were removed from.

228

© 2024 Phillip Compeau

Matching Symbols as a GameC H A P T E R 5

Growing alignment Remaining symbols Score

A T G T T A T A
A T C G T C C

A T G T T A T A +1A T C G T C C

A T G T T A T A +1A T C G T C C

A T - G T T A T A
A T C G T C C

A T - G T T A T A +1A T C G T C C

A T - G T T A T A +1A T C G T C C

A T - G T T A T A
A T C G T - C C

A T - G T T A T A
A T C G T - C C

A T - G T T A T A
A T C G T - C - C

A T - G T T A T A
A T C G T - C - C

FIGURE 5.1 One way of playing the alignment game for the strings ATGTTATA and
ATCGTCC, with score 4. At each step, we choose to remove either one or both symbols
from the left of the two sequences in the “remaining symbols” column. If we remove
both symbols, then we align them in the “growing alignment”. If we remove only
one symbol, then we align this symbol with a space symbol in the growing alignment.
Matched symbols are shown in red (and receive score 1). Mismatched symbols are
shown in purple; symbols aligned against space symbols are shown in blue or green
depending on which sequence they were removed from.

228

© 2024 Phillip Compeau

Matching Symbols as a GameC H A P T E R 5

Growing alignment Remaining symbols Score

A T G T T A T A
A T C G T C C

A T G T T A T A +1A T C G T C C

A T G T T A T A +1A T C G T C C

A T - G T T A T A
A T C G T C C

A T - G T T A T A +1A T C G T C C

A T - G T T A T A +1A T C G T C C

A T - G T T A T A
A T C G T - C C

A T - G T T A T A
A T C G T - C C

A T - G T T A T A
A T C G T - C - C

A T - G T T A T A
A T C G T - C - C

FIGURE 5.1 One way of playing the alignment game for the strings ATGTTATA and
ATCGTCC, with score 4. At each step, we choose to remove either one or both symbols
from the left of the two sequences in the “remaining symbols” column. If we remove
both symbols, then we align them in the “growing alignment”. If we remove only
one symbol, then we align this symbol with a space symbol in the growing alignment.
Matched symbols are shown in red (and receive score 1). Mismatched symbols are
shown in purple; symbols aligned against space symbols are shown in blue or green
depending on which sequence they were removed from.

228

© 2024 Phillip Compeau

Matching Symbols as a GameC H A P T E R 5

Growing alignment Remaining symbols Score

A T G T T A T A
A T C G T C C

A T G T T A T A +1A T C G T C C

A T G T T A T A +1A T C G T C C

A T - G T T A T A
A T C G T C C

A T - G T T A T A +1A T C G T C C

A T - G T T A T A +1A T C G T C C

A T - G T T A T A
A T C G T - C C

A T - G T T A T A
A T C G T - C C

A T - G T T A T A
A T C G T - C - C

A T - G T T A T A
A T C G T - C - C

FIGURE 5.1 One way of playing the alignment game for the strings ATGTTATA and
ATCGTCC, with score 4. At each step, we choose to remove either one or both symbols
from the left of the two sequences in the “remaining symbols” column. If we remove
both symbols, then we align them in the “growing alignment”. If we remove only
one symbol, then we align this symbol with a space symbol in the growing alignment.
Matched symbols are shown in red (and receive score 1). Mismatched symbols are
shown in purple; symbols aligned against space symbols are shown in blue or green
depending on which sequence they were removed from.

228

© 2024 Phillip Compeau

Matching Symbols as a GameC H A P T E R 5

Growing alignment Remaining symbols Score

A T G T T A T A
A T C G T C C

A T G T T A T A +1A T C G T C C

A T G T T A T A +1A T C G T C C

A T - G T T A T A
A T C G T C C

A T - G T T A T A +1A T C G T C C

A T - G T T A T A +1A T C G T C C

A T - G T T A T A
A T C G T - C C

A T - G T T A T A
A T C G T - C C

A T - G T T A T A
A T C G T - C - C

A T - G T T A T A
A T C G T - C - C

FIGURE 5.1 One way of playing the alignment game for the strings ATGTTATA and
ATCGTCC, with score 4. At each step, we choose to remove either one or both symbols
from the left of the two sequences in the “remaining symbols” column. If we remove
both symbols, then we align them in the “growing alignment”. If we remove only
one symbol, then we align this symbol with a space symbol in the growing alignment.
Matched symbols are shown in red (and receive score 1). Mismatched symbols are
shown in purple; symbols aligned against space symbols are shown in blue or green
depending on which sequence they were removed from.

228

© 2024 Phillip Compeau

Matching Symbols as a GameC H A P T E R 5

Growing alignment Remaining symbols Score

A T G T T A T A
A T C G T C C

A T G T T A T A +1A T C G T C C

A T G T T A T A +1A T C G T C C

A T - G T T A T A
A T C G T C C

A T - G T T A T A +1A T C G T C C

A T - G T T A T A +1A T C G T C C

A T - G T T A T A
A T C G T - C C

A T - G T T A T A
A T C G T - C C

A T - G T T A T A
A T C G T - C - C

A T - G T T A T A
A T C G T - C - C

FIGURE 5.1 One way of playing the alignment game for the strings ATGTTATA and
ATCGTCC, with score 4. At each step, we choose to remove either one or both symbols
from the left of the two sequences in the “remaining symbols” column. If we remove
both symbols, then we align them in the “growing alignment”. If we remove only
one symbol, then we align this symbol with a space symbol in the growing alignment.
Matched symbols are shown in red (and receive score 1). Mismatched symbols are
shown in purple; symbols aligned against space symbols are shown in blue or green
depending on which sequence they were removed from.

228

© 2024 Phillip Compeau

Matching Symbols as a GameC H A P T E R 5

Growing alignment Remaining symbols Score

A T G T T A T A
A T C G T C C

A T G T T A T A +1A T C G T C C

A T G T T A T A +1A T C G T C C

A T - G T T A T A
A T C G T C C

A T - G T T A T A +1A T C G T C C

A T - G T T A T A +1A T C G T C C

A T - G T T A T A
A T C G T - C C

A T - G T T A T A
A T C G T - C C

A T - G T T A T A
A T C G T - C - C

A T - G T T A T A
A T C G T - C - C

FIGURE 5.1 One way of playing the alignment game for the strings ATGTTATA and
ATCGTCC, with score 4. At each step, we choose to remove either one or both symbols
from the left of the two sequences in the “remaining symbols” column. If we remove
both symbols, then we align them in the “growing alignment”. If we remove only
one symbol, then we align this symbol with a space symbol in the growing alignment.
Matched symbols are shown in red (and receive score 1). Mismatched symbols are
shown in purple; symbols aligned against space symbols are shown in blue or green
depending on which sequence they were removed from.

228

© 2024 Phillip Compeau

Matching Symbols as a GameC H A P T E R 5

Growing alignment Remaining symbols Score

A T G T T A T A
A T C G T C C

A T G T T A T A +1A T C G T C C

A T G T T A T A +1A T C G T C C

A T - G T T A T A
A T C G T C C

A T - G T T A T A +1A T C G T C C

A T - G T T A T A +1A T C G T C C

A T - G T T A T A
A T C G T - C C

A T - G T T A T A
A T C G T - C C

A T - G T T A T A
A T C G T - C - C

A T - G T T A T A
A T C G T - C - C

FIGURE 5.1 One way of playing the alignment game for the strings ATGTTATA and
ATCGTCC, with score 4. At each step, we choose to remove either one or both symbols
from the left of the two sequences in the “remaining symbols” column. If we remove
both symbols, then we align them in the “growing alignment”. If we remove only
one symbol, then we align this symbol with a space symbol in the growing alignment.
Matched symbols are shown in red (and receive score 1). Mismatched symbols are
shown in purple; symbols aligned against space symbols are shown in blue or green
depending on which sequence they were removed from.

228

© 2024 Phillip Compeau

Matching Symbols as a GameC H A P T E R 5

Growing alignment Remaining symbols Score

A T G T T A T A
A T C G T C C

A T G T T A T A +1A T C G T C C

A T G T T A T A +1A T C G T C C

A T - G T T A T A
A T C G T C C

A T - G T T A T A +1A T C G T C C

A T - G T T A T A +1A T C G T C C

A T - G T T A T A
A T C G T - C C

A T - G T T A T A
A T C G T - C C

A T - G T T A T A
A T C G T - C - C

A T - G T T A T A
A T C G T - C - C

FIGURE 5.1 One way of playing the alignment game for the strings ATGTTATA and
ATCGTCC, with score 4. At each step, we choose to remove either one or both symbols
from the left of the two sequences in the “remaining symbols” column. If we remove
both symbols, then we align them in the “growing alignment”. If we remove only
one symbol, then we align this symbol with a space symbol in the growing alignment.
Matched symbols are shown in red (and receive score 1). Mismatched symbols are
shown in purple; symbols aligned against space symbols are shown in blue or green
depending on which sequence they were removed from.

228

© 2024 Phillip Compeau

From a Game to a Definition

A T - G T T A T A
A T C G T - C - C

© 2024 Phillip Compeau

Given two strings v and w, an alignment of v and w
is a two-row matrix such that:
• the first row contains symbols of v in order
• the second row contains symbols of w in order
• each row may also contain gap symbols (“-”)
• no column has two gap symbols

From a Game to a Definition

Matches
A T - G T T A T A
A T C G T - C - C

© 2024 Phillip Compeau

Given two strings v and w, an alignment of v and w
is a two-row matrix such that:
• the first row contains symbols of v in order
• the second row contains symbols of w in order
• each row may also contain gap symbols (“-”)
• no column has two gap symbols

From a Game to a Definition

A T - G T T A T A
A T C G T - C - C Mismatches

© 2024 Phillip Compeau

Given two strings v and w, an alignment of v and w
is a two-row matrix such that:
• the first row contains symbols of v in order
• the second row contains symbols of w in order
• each row may also contain gap symbols (“-”)
• no column has two gap symbols

From a Game to a Definition

A T - G T T A T A
A T C G T - C - C Insertions

© 2024 Phillip Compeau

Given two strings v and w, an alignment of v and w
is a two-row matrix such that:
• the first row contains symbols of v in order
• the second row contains symbols of w in order
• each row may also contain gap symbols (“-”)
• no column has two gap symbols

From a Game to a Definition

A T - G T T A T A
A T C G T - C - C Deletions

© 2024 Phillip Compeau

Given two strings v and w, an alignment of v and w
is a two-row matrix such that:
• the first row contains symbols of v in order
• the second row contains symbols of w in order
• each row may also contain gap symbols (“-”)
• no column has two gap symbols

Finding a Longest Common
Subsequence

© 2024 Phillip Compeau

A common subsequence of v and w is a sequence
of symbols occurring (not necessarily contiguously)
in both v and w.

Finding a Longest Common
Subsequence

A common subsequence of v and w is a sequence
of symbols occurring (not necessarily contiguously)
in both v and w.

A T - G T T A T A
A T C G T - C - C

The matches in an alignment of v and w form a
common subsequence of v and w.

© 2024 Phillip Compeau

The Problems are the Same!

Symbol Matching Problem:
• Input: Two strings.
• Output: The greatest number of matched

symbols in any “alignment” of the two strings.

Longest Common Subsequence Length Problem:.
• Input: Two strings.
• Output: The length of a longest common

subsequence of these strings.

© 2024 Phillip Compeau

THE MANHATTAN TOURIST
PROBLEM

© 2024 Phillip Compeau

Manhattan Tourist Problem

C H A P T E R 5

FIGURE 5.2 (Left) A simplification of Midtown Manhattan. You start at the intersection
of 59th Street and 8th Avenue in the northwest corner and end at the intersection of
42nd Street and 3rd Avenue in the southeast corner, traveling only south (#) or east
(!) between intersections. The attractions shown are: Carnegie Hall (1), Tiffany &
Co. (2), the Sony Building (3), the Museum of Modern Art (4), the Four Seasons Hotel
(5), St. Patrick’s Cathedral (6), the General Electric Building (7), Radio City Music
Hall (8), Rockefeller Center (9), the Paramount Building (10), the New York Times
Building (11), Times Square (12), the General Society of Mechanics and Tradesmen
(13), Grand Central Terminal (14), and the Chrysler Building (15). (Right) The directed
graph ManhattanGraph in which every edge is weighted by the number of attractions
along that city block (edge weights equal to 0 are not shown).

230

STOP: How can we
see the most sites if
we move from 59th
and 8th to 42nd and
3rd, moving south or
east at each step?
(And what algorithm
did you use?)

© 2024 Phillip Compeau

Manhattan Tourist as a Network

C H A P T E R 5

1

1

1

1

11

1 1

1

1

2

1 11

FIGURE 5.2 (Left) A simplification of Midtown Manhattan. You start at the intersection
of 59th Street and 8th Avenue in the northwest corner and end at the intersection of
42nd Street and 3rd Avenue in the southeast corner, traveling only south (#) or east
(!) between intersections. The attractions shown are: Carnegie Hall (1), Tiffany &
Co. (2), the Sony Building (3), the Museum of Modern Art (4), the Four Seasons Hotel
(5), St. Patrick’s Cathedral (6), the General Electric Building (7), Radio City Music
Hall (8), Rockefeller Center (9), the Paramount Building (10), the New York Times
Building (11), Times Square (12), the General Society of Mechanics and Tradesmen
(13), Grand Central Terminal (14), and the Chrysler Building (15). (Right) The directed
graph ManhattanGraph in which every edge is weighted by the number of attractions
along that city block (edge weights equal to 0 are not shown).

230

Weight of edge:
number of attractions
along the edge.

© 2024 Phillip Compeau

Manhattan Tourist as a Network

C H A P T E R 5

1

1

1

1

11

1 1

1

1

2

1 11

FIGURE 5.2 (Left) A simplification of Midtown Manhattan. You start at the intersection
of 59th Street and 8th Avenue in the northwest corner and end at the intersection of
42nd Street and 3rd Avenue in the southeast corner, traveling only south (#) or east
(!) between intersections. The attractions shown are: Carnegie Hall (1), Tiffany &
Co. (2), the Sony Building (3), the Museum of Modern Art (4), the Four Seasons Hotel
(5), St. Patrick’s Cathedral (6), the General Electric Building (7), Radio City Music
Hall (8), Rockefeller Center (9), the Paramount Building (10), the New York Times
Building (11), Times Square (12), the General Society of Mechanics and Tradesmen
(13), Grand Central Terminal (14), and the Chrysler Building (15). (Right) The directed
graph ManhattanGraph in which every edge is weighted by the number of attractions
along that city block (edge weights equal to 0 are not shown).

230

Weight of edge:
number of attractions
along the edge.

Goal: Find a longest
path from source (top
left) to sink (bottom
right).

© 2024 Phillip Compeau

Toward a Computational Problem

Manhattan Tourist Problem:
• Input: A weighted n x m rectangular grid (n + 1

rows and m + 1 columns).
• Output: A longest path from source (0, 0) to sink

(n, m) in the grid.

© 2024 Phillip Compeau

Designing a Manhattan Algorithm

Exercise: What is the longest path in this city? What
algorithm did you use?

© 2024 Phillip Compeau

A “Greedy” Manhattan Algorithm Taking
the Best Choice in Each Node

STOP: Does the greedy algorithm solve the
problem?

© 2024 Phillip Compeau

A “Greedy” Manhattan Algorithm Taking
the Best Choice in Each Node

Answer: No! Much like with genome assembly, we
need a more clever approach.

© 2024 Phillip Compeau

Manhattan Tourist as a Network Problem

Longest Path in a Directed Graph:
• Input: An edge-weighted directed graph with

source and sink nodes.
• Output: A longest path from source to sink in the

graph.

© 2024 Phillip Compeau

Manhattan Tourist as a Network Problem

STOP: What is the longest path in this graph?

© 2024 Phillip Compeau

Manhattan Tourist as a Network Problem

Answer: Cycles in graphs cause infinite paths ...

© 2024 Phillip Compeau

Generalizing Manhattan Tourist

Directed acyclic graph (DAG): A directed graph that
contains no cycles.

© 2024 Phillip Compeau

Generalizing Manhattan Tourist

© 2024 Phillip Compeau

Directed acyclic graph (DAG): A directed graph that
contains no cycles.

Longest Path in a DAG Problem:
• Input: An edge-weighted DAG with source and

sink nodes.
• Output: A longest path from source to sink in the

DAG.

Generalizing Manhattan Tourist

... but what does finding a longest path in a DAG
have to do with sequence comparison?

© 2024 Phillip Compeau

Longest Path in a DAG Problem:
• Input: An edge-weighted DAG with source and

sink nodes.
• Output: A longest path from source to sink in the

DAG.

Directed acyclic graph (DAG): A directed graph that
contains no cycles.

SEQUENCE ALIGNMENT AS A
PATH IN A NETWORK

© 2024 Phillip Compeau

Returning to Sequence Alignment ...
C H A P T E R 5

0 1 2 2 3 4 5 6 7 8
A T - G T T A T A
A T C G T - C - C

0 1 2 3 4 5 5 6 6 7
& & ! & & # & # &

FIGURE 5.5 An alignment of ATGTTATA and ATCGTCC. The array in the first row
counts the number of symbols of ATGTTATA used up to a given position. The array in
the fourth row counts the number of symbols of ATCGTCC used up to a given position.
And the array in the last row records whether each column of the alignment represents
a match/mismatch (&/&), insertion (!), or deletion (#).

Note that in addition to horizontal and vertical edges, we have added diagonal edges
connecting (i, j) to (i + 1, j + 1) in Figure 5.6.

FIGURE 5.6 Every alignment corresponds to a path in the alignment graph from source
to sink, and vice-versa. (Left) The path (0, 0) & (1, 1) & (2, 2) ! (2, 3) & (3, 4)
& (4, 5) # (5, 5) & (6, 6) # (7, 6) & (8, 7) is highlighted above and corresponds to
the alignment of ATGTTATA and ATCGTCC in Figure 5.5. (Right) Another path in the
alignment graph.

We call the DAG in Figure 5.6 the alignment graph of strings v and w, denoted
ALIGNMENTGRAPH(v, w), and we call a path from source to sink in this DAG an align-
ment path. Every alignment of v and w can be viewed as a set of instructions to construct
a unique alignment path in ALIGNMENTGRAPH(v, w), where each match/mismatch,
insertion, and deletion corresponds to an edge &/&, !, and #, respectively. Fur-

234

© 2024 Phillip Compeau

Returning to Sequence Alignment ...
C H A P T E R 5

0 1 2 2 3 4 5 6 7 8
A T - G T T A T A
A T C G T - C - C

0 1 2 3 4 5 5 6 6 7
& & ! & & # & # &

FIGURE 5.5 An alignment of ATGTTATA and ATCGTCC. The array in the first row
counts the number of symbols of ATGTTATA used up to a given position. The array in
the fourth row counts the number of symbols of ATCGTCC used up to a given position.
And the array in the last row records whether each column of the alignment represents
a match/mismatch (&/&), insertion (!), or deletion (#).

Note that in addition to horizontal and vertical edges, we have added diagonal edges
connecting (i, j) to (i + 1, j + 1) in Figure 5.6.

FIGURE 5.6 Every alignment corresponds to a path in the alignment graph from source
to sink, and vice-versa. (Left) The path (0, 0) & (1, 1) & (2, 2) ! (2, 3) & (3, 4)
& (4, 5) # (5, 5) & (6, 6) # (7, 6) & (8, 7) is highlighted above and corresponds to
the alignment of ATGTTATA and ATCGTCC in Figure 5.5. (Right) Another path in the
alignment graph.

We call the DAG in Figure 5.6 the alignment graph of strings v and w, denoted
ALIGNMENTGRAPH(v, w), and we call a path from source to sink in this DAG an align-
ment path. Every alignment of v and w can be viewed as a set of instructions to construct
a unique alignment path in ALIGNMENTGRAPH(v, w), where each match/mismatch,
insertion, and deletion corresponds to an edge &/&, !, and #, respectively. Fur-

234

© 2024 Phillip Compeau

Returning to Sequence Alignment ...
C H A P T E R 5

0 1 2 2 3 4 5 6 7 8
A T - G T T A T A
A T C G T - C - C

0 1 2 3 4 5 5 6 6 7
& & ! & & # & # &

FIGURE 5.5 An alignment of ATGTTATA and ATCGTCC. The array in the first row
counts the number of symbols of ATGTTATA used up to a given position. The array in
the fourth row counts the number of symbols of ATCGTCC used up to a given position.
And the array in the last row records whether each column of the alignment represents
a match/mismatch (&/&), insertion (!), or deletion (#).

Note that in addition to horizontal and vertical edges, we have added diagonal edges
connecting (i, j) to (i + 1, j + 1) in Figure 5.6.

FIGURE 5.6 Every alignment corresponds to a path in the alignment graph from source
to sink, and vice-versa. (Left) The path (0, 0) & (1, 1) & (2, 2) ! (2, 3) & (3, 4)
& (4, 5) # (5, 5) & (6, 6) # (7, 6) & (8, 7) is highlighted above and corresponds to
the alignment of ATGTTATA and ATCGTCC in Figure 5.5. (Right) Another path in the
alignment graph.

We call the DAG in Figure 5.6 the alignment graph of strings v and w, denoted
ALIGNMENTGRAPH(v, w), and we call a path from source to sink in this DAG an align-
ment path. Every alignment of v and w can be viewed as a set of instructions to construct
a unique alignment path in ALIGNMENTGRAPH(v, w), where each match/mismatch,
insertion, and deletion corresponds to an edge &/&, !, and #, respectively. Fur-

234

(0, 0) ↘ (1, 1) ↘ (2, 2) → (2, 3) ↘ (3, 4)
↘ (4, 5)↓(5, 5) ↘ (6, 6)↓(7, 6) ↘ (8, 7)

© 2024 Phillip Compeau

Returning to Sequence Alignment ...
C H A P T E R 5

0 1 2 2 3 4 5 6 7 8
A T - G T T A T A
A T C G T - C - C

0 1 2 3 4 5 5 6 6 7
& & ! & & # & # &

FIGURE 5.5 An alignment of ATGTTATA and ATCGTCC. The array in the first row
counts the number of symbols of ATGTTATA used up to a given position. The array in
the fourth row counts the number of symbols of ATCGTCC used up to a given position.
And the array in the last row records whether each column of the alignment represents
a match/mismatch (&/&), insertion (!), or deletion (#).

Note that in addition to horizontal and vertical edges, we have added diagonal edges
connecting (i, j) to (i + 1, j + 1) in Figure 5.6.

FIGURE 5.6 Every alignment corresponds to a path in the alignment graph from source
to sink, and vice-versa. (Left) The path (0, 0) & (1, 1) & (2, 2) ! (2, 3) & (3, 4)
& (4, 5) # (5, 5) & (6, 6) # (7, 6) & (8, 7) is highlighted above and corresponds to
the alignment of ATGTTATA and ATCGTCC in Figure 5.5. (Right) Another path in the
alignment graph.

We call the DAG in Figure 5.6 the alignment graph of strings v and w, denoted
ALIGNMENTGRAPH(v, w), and we call a path from source to sink in this DAG an align-
ment path. Every alignment of v and w can be viewed as a set of instructions to construct
a unique alignment path in ALIGNMENTGRAPH(v, w), where each match/mismatch,
insertion, and deletion corresponds to an edge &/&, !, and #, respectively. Fur-

234

(0, 0) ↘ (1, 1) ↘ (2, 2) → (2, 3) ↘ (3, 4)
↘ (4, 5)↓(5, 5) ↘ (6, 6)↓(7, 6) ↘ (8, 7)

This is a path in a 2-D network!

© 2024 Phillip Compeau

Representing an Alignment as a Path in a
Manhattan-like DAG

C H A P T E R 5

0 1 2 2 3 4 5 6 7 8
A T - G T T A T A
A T C G T - C - C

0 1 2 3 4 5 5 6 6 7
& & ! & & # & # &

FIGURE 5.5 An alignment of ATGTTATA and ATCGTCC. The array in the first row
counts the number of symbols of ATGTTATA used up to a given position. The array in
the fourth row counts the number of symbols of ATCGTCC used up to a given position.
And the array in the last row records whether each column of the alignment represents
a match/mismatch (&/&), insertion (!), or deletion (#).

Note that in addition to horizontal and vertical edges, we have added diagonal edges
connecting (i, j) to (i + 1, j + 1) in Figure 5.6.

A T C G T C C
A

T

G

T

T

A

T

A

FIGURE 5.6 Every alignment corresponds to a path in the alignment graph from source
to sink, and vice-versa. (Left) The path (0, 0) & (1, 1) & (2, 2) ! (2, 3) & (3, 4)
& (4, 5) # (5, 5) & (6, 6) # (7, 6) & (8, 7) is highlighted above and corresponds to
the alignment of ATGTTATA and ATCGTCC in Figure 5.5. (Right) Another path in the
alignment graph.

We call the DAG in Figure 5.6 the alignment graph of strings v and w, denoted
ALIGNMENTGRAPH(v, w), and we call a path from source to sink in this DAG an align-
ment path. Every alignment of v and w can be viewed as a set of instructions to construct
a unique alignment path in ALIGNMENTGRAPH(v, w), where each match/mismatch,
insertion, and deletion corresponds to an edge &/&, !, and #, respectively. Fur-

234

A T - G T T A T A
A T C G T - C - C

This network is
called the alignment
network of the
strings ATGTTATA
and ATCGTCC.

© 2024 Phillip Compeau

C H A P T E R 5

0 1 2 2 3 4 5 6 7 8
A T - G T T A T A
A T C G T - C - C

0 1 2 3 4 5 5 6 6 7
& & ! & & # & # &

FIGURE 5.5 An alignment of ATGTTATA and ATCGTCC. The array in the first row
counts the number of symbols of ATGTTATA used up to a given position. The array in
the fourth row counts the number of symbols of ATCGTCC used up to a given position.
And the array in the last row records whether each column of the alignment represents
a match/mismatch (&/&), insertion (!), or deletion (#).

Note that in addition to horizontal and vertical edges, we have added diagonal edges
connecting (i, j) to (i + 1, j + 1) in Figure 5.6.

A T C G T C C
A

T

G

T

T

A

T

A

FIGURE 5.6 Every alignment corresponds to a path in the alignment graph from source
to sink, and vice-versa. (Left) The path (0, 0) & (1, 1) & (2, 2) ! (2, 3) & (3, 4)
& (4, 5) # (5, 5) & (6, 6) # (7, 6) & (8, 7) is highlighted above and corresponds to
the alignment of ATGTTATA and ATCGTCC in Figure 5.5. (Right) Another path in the
alignment graph.

We call the DAG in Figure 5.6 the alignment graph of strings v and w, denoted
ALIGNMENTGRAPH(v, w), and we call a path from source to sink in this DAG an align-
ment path. Every alignment of v and w can be viewed as a set of instructions to construct
a unique alignment path in ALIGNMENTGRAPH(v, w), where each match/mismatch,
insertion, and deletion corresponds to an edge &/&, !, and #, respectively. Fur-

234

We can also construct an alignment from
a path

Exercise: What
alignment does this
path correspond to?

© 2024 Phillip Compeau

C H A P T E R 5

0 1 2 2 3 4 5 6 7 8
A T - G T T A T A
A T C G T - C - C

0 1 2 3 4 5 5 6 6 7
& & ! & & # & # &

FIGURE 5.5 An alignment of ATGTTATA and ATCGTCC. The array in the first row
counts the number of symbols of ATGTTATA used up to a given position. The array in
the fourth row counts the number of symbols of ATCGTCC used up to a given position.
And the array in the last row records whether each column of the alignment represents
a match/mismatch (&/&), insertion (!), or deletion (#).

Note that in addition to horizontal and vertical edges, we have added diagonal edges
connecting (i, j) to (i + 1, j + 1) in Figure 5.6.

A T C G T C C
A

T

G

T

T

A

T

A

FIGURE 5.6 Every alignment corresponds to a path in the alignment graph from source
to sink, and vice-versa. (Left) The path (0, 0) & (1, 1) & (2, 2) ! (2, 3) & (3, 4)
& (4, 5) # (5, 5) & (6, 6) # (7, 6) & (8, 7) is highlighted above and corresponds to
the alignment of ATGTTATA and ATCGTCC in Figure 5.5. (Right) Another path in the
alignment graph.

We call the DAG in Figure 5.6 the alignment graph of strings v and w, denoted
ALIGNMENTGRAPH(v, w), and we call a path from source to sink in this DAG an align-
ment path. Every alignment of v and w can be viewed as a set of instructions to construct
a unique alignment path in ALIGNMENTGRAPH(v, w), where each match/mismatch,
insertion, and deletion corresponds to an edge &/&, !, and #, respectively. Fur-

234

We can also construct an alignment from
a path

Exercise: What
alignment does this
path correspond to?

Answer:

A T G T T A - T - - A
- - A T - C G T C C -

© 2024 Phillip Compeau

Solving the Symbol Matching Problem

Symbol Matching Problem:
• Input: Two strings.
• Output: The greatest number of matched

symbols in any alignment of the two strings.

STOP: How can we use the alignment network to
solve this problem?

© 2022 by Phillip Compeau

Counting Matches Only

H O W D O W E C O M PA R E D N A S E Q U E N C E S ?

thermore, this process is reversible, as we can convert each alignment path into a unique
alignment.

EXERCISE BREAK: Construct the alignment of ATGTTATA and ATCGTCC cor-
responding to the alignment path in Figure 5.6 (right).

STOP and Think: Can you use the alignment graph to find a longest common
subsequence of two strings?

Recall that finding a longest common subsequence of two strings is equivalent to finding
an alignment of these strings maximizing the number of matches. In Figure 5.7, we high-
light all diagonal edges of ALIGNMENTGRAPH(ATGTTATA,ATCGTCC) corresponding
to matches. If we assign a weight of 1 to all these edges and 0 to all other edges, then
the Longest Common Subsequence Problem is equivalent to finding a longest path in
this weighted DAG!

A T C G T C C
A

T

G

T

T

A

T

A

FIGURE 5.7 ALIGNMENTGRAPH(ATGTTATA,ATCGTCC) with all edges of weight 1
colored red (all other edges have weight 0). These edges correspond to potential
matched symbols in an alignment of the two strings.

Thus, we need to design an algorithm for the Longest Path in a DAG Problem, but
to do so, we need to know more about dynamic programming, a powerful algorithmic
paradigm that is used for solving thousands of problems from various scientific fields.

235

Answer: If we weight
the red edges as 1 and
the other edges as 0,
then a maximum-weight
path from source to sink
solves the Symbol
Matching Problem!

© 2022 by Phillip Compeau

Counting Matches Only

H O W D O W E C O M PA R E D N A S E Q U E N C E S ?

thermore, this process is reversible, as we can convert each alignment path into a unique
alignment.

EXERCISE BREAK: Construct the alignment of ATGTTATA and ATCGTCC cor-
responding to the alignment path in Figure 5.6 (right).

STOP and Think: Can you use the alignment graph to find a longest common
subsequence of two strings?

Recall that finding a longest common subsequence of two strings is equivalent to finding
an alignment of these strings maximizing the number of matches. In Figure 5.7, we high-
light all diagonal edges of ALIGNMENTGRAPH(ATGTTATA,ATCGTCC) corresponding
to matches. If we assign a weight of 1 to all these edges and 0 to all other edges, then
the Longest Common Subsequence Problem is equivalent to finding a longest path in
this weighted DAG!

A T C G T C C
A

T

G

T

T

A

T

A

FIGURE 5.7 ALIGNMENTGRAPH(ATGTTATA,ATCGTCC) with all edges of weight 1
colored red (all other edges have weight 0). These edges correspond to potential
matched symbols in an alignment of the two strings.

Thus, we need to design an algorithm for the Longest Path in a DAG Problem, but
to do so, we need to know more about dynamic programming, a powerful algorithmic
paradigm that is used for solving thousands of problems from various scientific fields.

235

Answer: If we weight
the red edges as 1 and
the other edges as 0,
then a maximum-weight
path from source to sink
solves the Symbol
Matching Problem!

© 2022 by Phillip Compeau

But we haven’t said how
to find the maximum
length of a path.

AN INTRO TO DYNAMIC
PROGRAMMING

© 2024 Phillip Compeau

Recursive Fibonacci Numbers

Exercise: Write pseudocode for a recursive function
that takes an integer n as an argument and returns
the n-th Fibonacci number. Assume 0-based
indexing.

© 2023 Phillip Compeau
61

Recurrence relation: An expression for a function
f(x) in terms of values of f(y) where y < x.

If Fib(n) is the n-th Fibonacci number, then

Fib(n) = Fib(n – 1) + Fib(n – 2)

Recursive Fibonacci Numbers

RecFib(n)
 if n = 0 or n = 1
 return 1
 else
 return RecFib(n-1) + RecFib(n-2)

Exercise: Write pseudocode for a recursive function
that takes an integer n as an argument and returns
the n-th Fibonacci number. Assume 0-based
indexing.

© 2023 Phillip Compeau
62

Recursive Fibonacci Numbers

RecFib(n)
 if n = 0 or n = 1
 return 1
 else
 return RecFib(n-1) + RecFib(n-2)

STOP: Is this a good algorithm? Why or why not?

© 2023 Phillip Compeau
63

Calling Fib(7) Shows the Problem with
Using Recursion

Courtesy: introprogramming.info

© 2023 Phillip Compeau
64

Calling Fib(7) Shows the Problem with
Using Recursion

Courtesy: introprogramming.info

© 2023 Phillip Compeau
65

Calling Fib(7) Shows the Problem with
Using Recursion

Courtesy: introprogramming.info

© 2023 Phillip Compeau
66

Calling Fib(7) Shows the Problem with
Using Recursion

Courtesy: introprogramming.info

© 2023 Phillip Compeau
67

Calling Fib(7) Shows the Problem with
Using Recursion

Courtesy: introprogramming.info

© 2023 Phillip Compeau
68

Calling Fib(7) Shows the Problem with
Using Recursion

Courtesy: introprogramming.info

© 2023 Phillip Compeau
69

Calling Fib(7) Shows the Problem with
Using Recursion

STOP: Approximately how many calls do you think
are made for RecFib(20)? What about RecFib(45)?

Courtesy: introprogramming.info

© 2023 Phillip Compeau
70

The Issue with Fibonacci Recursion

When we call RecFib(n), there are ~ 2n calls on the
stack. For most values of n, this will exhaust the
memory allocated to the stack and produce what is
called stack overflow, crashing the program.

© 2023 Phillip Compeau
71

The Issue with Fibonacci Recursion

When we call RecFib(n), there are ~ 2n calls on the
stack. For most values of n, this will exhaust the
memory allocated to the stack and produce what is
called stack overflow, crashing the program.

Key Point: We should evaluate whether recursion is
a good approach for solving a problem based on
whether we have many repeated calls with a chance
of stack overflow.

© 2023 Phillip Compeau
72

Computing Values “Bottom-Up” Avoids
Many Recursive Calls

Instead of computing Fibonacci numbers top-down
recursively, we compute them bottom-up.

Fibonacci(n)
 a ß array of length n
 a[0] ß 1
 a[1] ß 1
 for i ß 2 to n
 a[i] ß a[i-1] + a[i-2]
 return a

a
1 1

© 2023 Phillip Compeau
73

Computing Values “Bottom-Up” Avoids
Many Recursive Calls

Instead of computing Fibonacci numbers top-down
recursively, we compute them bottom-up.

a
1 1 2

Fibonacci(n)
 a ß array of length n
 a[0] ß 1
 a[1] ß 1
 for i ß 2 to n
 a[i] ß a[i-1] + a[i-2]
 return a

© 2023 Phillip Compeau
74

Computing Values “Bottom-Up” Avoids
Many Recursive Calls

Instead of computing Fibonacci numbers top-down
recursively, we compute them bottom-up.

a
1 1 2 3

Fibonacci(n)
 a ß array of length n
 a[0] ß 1
 a[1] ß 1
 for i ß 2 to n
 a[i] ß a[i-1] + a[i-2]
 return a

© 2023 Phillip Compeau
75

Computing Values “Bottom-Up” Avoids
Many Recursive Calls

Instead of computing Fibonacci numbers top-down
recursively, we compute them bottom-up.

a
1 1 2 3 5

Fibonacci(n)
 a ß array of length n
 a[0] ß 1
 a[1] ß 1
 for i ß 2 to n
 a[i] ß a[i-1] + a[i-2]
 return a

© 2023 Phillip Compeau
76

Computing Values “Bottom-Up” Avoids
Many Recursive Calls

Instead of computing Fibonacci numbers top-down
recursively, we compute them bottom-up.

a
1 1 2 3 5 8

Fibonacci(n)
 a ß array of length n
 a[0] ß 1
 a[1] ß 1
 for i ß 2 to n
 a[i] ß a[i-1] + a[i-2]
 return a

© 2023 Phillip Compeau
77

Computing Values “Bottom-Up” Avoids
Many Recursive Calls

Instead of computing Fibonacci numbers top-down
recursively, we compute them bottom-up.

a
1 1 2 3 5 8 13

Fibonacci(n)
 a ß array of length n
 a[0] ß 1
 a[1] ß 1
 for i ß 2 to n
 a[i] ß a[i-1] + a[i-2]
 return a

© 2023 Phillip Compeau
78

Computing Values “Bottom-Up” Avoids
Many Recursive Calls

Instead of computing Fibonacci numbers top-down
recursively, we compute them bottom-up.

a
1 1 2 3 5 8 13 21

Fibonacci(n)
 a ß array of length n
 a[0] ß 1
 a[1] ß 1
 for i ß 2 to n
 a[i] ß a[i-1] + a[i-2]
 return a

© 2023 Phillip Compeau
79

Computing Values “Bottom-Up” Avoids
Many Recursive Calls

Instead of computing Fibonacci numbers top-down
recursively, we compute them bottom-up.

a
1 1 2 3 5 8 13 21 34

Fibonacci(n)
 a ß array of length n
 a[0] ß 1
 a[1] ß 1
 for i ß 2 to n
 a[i] ß a[i-1] + a[i-2]
 return a

© 2023 Phillip Compeau
80

Computing Values “Bottom-Up” Avoids
Many Recursive Calls

Instead of computing Fibonacci numbers top-down
recursively, we compute them bottom-up.

a
1 1 2 3 5 8 13 21 34 55

Fibonacci(n)
 a ß array of length n
 a[0] ß 1
 a[1] ß 1
 for i ß 2 to n
 a[i] ß a[i-1] + a[i-2]
 return a

© 2023 Phillip Compeau
81

Computing Values “Bottom-Up” Avoids
Many Recursive Calls

a
1 1 2 3 5 8 13 21 34 55

Computing a recurrence relation bottom-up using
an array is called dynamic programming.

Fibonacci(n)
 a ß array of length n
 a[0] ß 1
 a[1] ß 1
 for i ß 2 to n
 a[i] ß a[i-1] + a[i-2]
 return a

© 2023 Phillip Compeau
82

Computing Fibonacci Numbers

Computing a recurrence relation bottom-up using
an array is called dynamic programming.

© 2023 Phillip Compeau

STOP: Wait … why would such a simple idea be
called “dynamic programming”?

83

© 2024 Phillip Compeau

Richard Bellman,
a Wise Man
“We had a very interesting gentleman in Washington named
Wilson. He was Secretary of Defense, and he actually had a
pathological fear and hatred of the word "research". I’m not using
the term lightly; I’m using it precisely. His face would suffuse, he
would turn red, and he would get violent if people used the term
research in his presence. You can imagine how he felt, then,
about the term mathematical. The RAND Corporation was
employed by the Air Force, and the Air Force had Wilson as its
boss, essentially. Hence, I felt I had to do something to shield
Wilson and the Air Force from the fact that I was really doing
mathematics inside the RAND Corporation. What title, what
name, could I choose? In the first place I was interested in
planning, in decision making, in thinking. But planning, is not a
good word for various reasons. I decided therefore to use the
word "programming". I wanted to get across the idea that this was
dynamic, this was multistage, this was time-varying. I thought,
let's kill two birds with one stone. Let's take a word that has an
absolutely precise meaning, namely dynamic, in the classical
physical sense. It also has a very interesting property as an
adjective, and that is it's impossible to use the word dynamic in a
pejorative sense. Try thinking of some combination that will
possibly give it a pejorative meaning. It's impossible. Thus, I
thought dynamic programming was a good name. It was
something not even a Congressman could object to. So I used it
as an umbrella for my activities.”

Richard Bellman

FINDING THE LENGTH OF A
LONGEST PATH IN A DAG

© 2024 Phillip Compeau

Returning to Manhattan

Manhattan Tourist Problem:
• Input: A weighted n x m

rectangular grid (n + 1 rows
and m + 1 columns).

• Output: A longest path from
source (0, 0) to sink (n, m) in
the grid.

Exercise: Find a recurrence relation for the length of
a longest path from (0,0) to node (i, j), which we will
call length(i,j).

© 2024 Phillip Compeau

Returning to Manhattan

Answer: length(i,j) = max{
 length(i – 1,j) + weight(vertical edge into i,j),
 length(i, j – 1) + weight(horizontal edge into i,j)}.

Row i

Column jColumn j – 1

weight of
vertical edge

weight of
horizontal edge

Row i – 1

© 2024 Phillip Compeau

Returning to Manhattan

Manhattan Tourist Problem:
• Input: A weighted n x m

rectangular grid (n + 1 rows
and m + 1 columns).

• Output: A longest path from
source (0, 0) to sink (n, m) in
the grid.

STOP: Will a recursive algorithm for Manhattan
Tourist have the same problem that the recursive
change-making function encountered?

© 2024 Phillip Compeau

Returning to Manhattan

Manhattan Tourist Problem:
• Input: A weighted n x m

rectangular grid (n + 1 rows
and m + 1 columns).

• Output: A longest path from
source (0, 0) to sink (n, m) in
the grid.

Answer: Yes! Because the same length(i, j) can get
re-computed many times…

© 2024 Phillip Compeau

01 342

4 6 5 2 1

4 4 5 2 1

5

3 2 4 0

3 2 4 2

0 7 3 4

3 3 0 2

1 3 2 2

6 8 5 3

0 3 5 9 9

1

5

9

14

Let’s Use Dynamic Programming Instead

© 2024 Phillip Compeau

length(i, j) = max{length(i-1, j) + down(i, j),
 length(i, j-1) + right(i, j)}

Recurrence relation

Let’s Use Dynamic Programming Instead

STOP: Which element of
the table should we fill in
next and what should its
value be?

© 2024 Phillip Compeau

01 342

4 6 5 2 1

4 4 5 2 1

5

3 2 4 0

3 2 4 2

0 7 3 4

3 3 0 2

1 3 2 2

6 8 5 3

0 3 5 9 9

1

5

9

14

Recurrence relation length(i, j) = max{length(i-1, j) + down(i, j),
 length(i, j-1) + right(i, j)}

Let’s Use Dynamic Programming Instead

Answer: We only know the
values of MaxWeight for
the two nodes adjacent to
the node (1, 1); it gets the
value max(3+0, 1+3) = 4.

© 2024 Phillip Compeau

Recurrence relation

01 342

4 6 5 2 1

4 4 5 2 1

5

3 2 4 0

3 2 4 2

0 7 3 4

3 3 0 2

1 3 2 2

6 8 5 3

0 3 5 9 9

41

5

9

14

length(i, j) = max{length(i-1, j) + down(i, j),
 length(i, j-1) + right(i, j)}

Let’s Use Dynamic Programming Instead

© 2024 Phillip Compeau

Recurrence relation

01 342

4 6 5 2 1

4 4 5 2 1

5

3 2 4 0

3 2 4 2

0 7 3 4

3 3 0 2

1 3 2 2

6 8 5 3

0 3 5 9 9

41

5

9

14

STOP: Which elements
should we fill in next and
what should their values
be?

length(i, j) = max{length(i-1, j) + down(i, j),
 length(i, j-1) + right(i, j)}

Let’s Use Dynamic Programming Instead

© 2024 Phillip Compeau

MaxWeight(i, j) = max{MaxWeight(i-1, j) + down(i, j),
 MaxWeight(i, j-1) + right(i, j)}

Recurrence relation

01 342

4 6 5 2 1

4 4 5 2 1

5

3 2 4 0

3 2 4 2

0 7 3 4

3 3 0 2

1 3 2 2

6 8 5 3

0 3 5 9 9

1

5

9

14

4

10

14

20

Answer: We can fill in all
of row 1 or all of column 1
(it doesn’t matter which).

Let’s Use Dynamic Programming Instead

© 2024 Phillip Compeau

Recurrence relation

01 342

4 6 5 2 1

4 4 5 2 1

5

3 2 4 0

3 2 4 2

0 7 3 4

3 3 0 2

1 3 2 2

6 8 5 3

0 3 5 9 9

1

5

9

14

4

10

14

20

Exercise: Fill in the
remaining values of length
for this network.

length(i, j) = max{length(i-1, j) + down(i, j),
 length(i, j-1) + right(i, j)}

Let’s Use Dynamic Programming Instead

© 2024 Phillip Compeau

Recurrence relation

0

3 2 4 0

3 2 4 2

0 7 3 4

3 3 2

1 3 2 2

1 342

4 6 5 2 1

4 4 5 2 1

5 6 8 5 3

0 3 5 9 9

1

5

9

14

4

10

14

20

7 13 15

17 20 24

252222

30 32 34

0

STOP: Now do you see a
longest path in this grid?
How might we find one in
general?

length(i, j) = max{length(i-1, j) + down(i, j),
 length(i, j-1) + right(i, j)}

Finding an LCS

H O W D O W E C O M PA R E D N A S E Q U E N C E S ?

thermore, this process is reversible, as we can convert each alignment path into a unique
alignment.

EXERCISE BREAK: Construct the alignment of ATGTTATA and ATCGTCC cor-
responding to the alignment path in Figure 5.6 (right).

STOP and Think: Can you use the alignment graph to find a longest common
subsequence of two strings?

Recall that finding a longest common subsequence of two strings is equivalent to finding
an alignment of these strings maximizing the number of matches. In Figure 5.7, we high-
light all diagonal edges of ALIGNMENTGRAPH(ATGTTATA,ATCGTCC) corresponding
to matches. If we assign a weight of 1 to all these edges and 0 to all other edges, then
the Longest Common Subsequence Problem is equivalent to finding a longest path in
this weighted DAG!

A T C G T C C
A

T

G

T

T

A

T

A

FIGURE 5.7 ALIGNMENTGRAPH(ATGTTATA,ATCGTCC) with all edges of weight 1
colored red (all other edges have weight 0). These edges correspond to potential
matched symbols in an alignment of the two strings.

Thus, we need to design an algorithm for the Longest Path in a DAG Problem, but
to do so, we need to know more about dynamic programming, a powerful algorithmic
paradigm that is used for solving thousands of problems from various scientific fields.

235

Exercise: What is the
recurrence relation for
finding a longest common
subsequence?

© 2024 Phillip Compeau

Our Recurrence Has Two Cases

Row i

Column jColumn j – 1

0

Row i – 1

0

0

Row i

Column jColumn j – 1

0

Row i – 1

0

1

length(i, j) = maximum of:
• length(i – 1, j) + 0
• length(i, j – 1) + 0
• length(i – 1, j – 1) + 0

length(i, j) = maximum of:
• length(i – 1, j) + 0
• length(i, j – 1) + 0
• length(i – 1, j – 1) + 1

Case 1 Case 2

© 2024 Phillip Compeau

Our Recurrence Has Two Cases

Row i

Column jColumn j – 1

0

Row i – 1

0

0

Row i

Column jColumn j – 1

0

Row i – 1

0

1

STOP: when will the diagonal edge weight be equal
to 1?

Case 1 Case 2

© 2024 Phillip Compeau

Counting Matches Only

H O W D O W E C O M PA R E D N A S E Q U E N C E S ?

thermore, this process is reversible, as we can convert each alignment path into a unique
alignment.

EXERCISE BREAK: Construct the alignment of ATGTTATA and ATCGTCC cor-
responding to the alignment path in Figure 5.6 (right).

STOP and Think: Can you use the alignment graph to find a longest common
subsequence of two strings?

Recall that finding a longest common subsequence of two strings is equivalent to finding
an alignment of these strings maximizing the number of matches. In Figure 5.7, we high-
light all diagonal edges of ALIGNMENTGRAPH(ATGTTATA,ATCGTCC) corresponding
to matches. If we assign a weight of 1 to all these edges and 0 to all other edges, then
the Longest Common Subsequence Problem is equivalent to finding a longest path in
this weighted DAG!

A T C G T C C
A

T

G

T

T

A

T

A

FIGURE 5.7 ALIGNMENTGRAPH(ATGTTATA,ATCGTCC) with all edges of weight 1
colored red (all other edges have weight 0). These edges correspond to potential
matched symbols in an alignment of the two strings.

Thus, we need to design an algorithm for the Longest Path in a DAG Problem, but
to do so, we need to know more about dynamic programming, a powerful algorithmic
paradigm that is used for solving thousands of problems from various scientific fields.

235

Answer: a diagonal
edge connecting (i – 1, j
– 1) to (i, j) is 1 when
the corresponding
symbols v[i – 1] and w[j
– 1] of the two strings
match.

© 2024 Phillip Compeau

v

w

A Recurrence for an Arbitrary DAG?

© 2024 Phillip Compeau

Longest Path in a DAG
Problem:
• Input: An edge-

weighted DAG with
source and sink nodes.

• Output: A longest path
from source to sink in
the DAG.

H O W D O W E C O M PA R E D N A S E Q U E N C E S ?

A similar approach can be developed to find the longest path in any DAG, as suggested
by the next exercise.

Exercise Break: What is the length of a longest path between the blue and red
nodes in the DAG shown in Figure 5.12?

2
4 1

1
3

2
1

5

3

4 8

3 2

2

3

7

FIGURE 5.12 A weighted DAG without the obvious order inherent in the graphs previ-
ously encountered in this chapter.

Topological orderings

Do not worry if you struggled to solve the last exercise. The hitch to using dynamic
programming in order to find the length of a longest path in a DAG is that we must
decide on the order in which to visit nodes when computing the values sb according to
the recurrence

sb = max
all predecessors a of node b

{sa + weight of edge from a to b}.

This ordering of nodes is important, since by the time we reach node b, the values sa
for all its predecessors must have already been computed. We have managed to hide
this issue for rectangular grids because the order in which we have computed the si, j
ensured that we would never consider a node before visiting all of its predecessors.

To illustrate the importance of visiting nodes in the correct order, consider the DAG
in Figure 5.13, which corresponds to a “Dressing Challenge Problem”. How would you
order the nodes of this graph so that you don’t put on your boots before your tights?

249

A Recurrence for an Arbitrary DAG?

© 2024 Phillip Compeau

H O W D O W E C O M PA R E D N A S E Q U E N C E S ?

A similar approach can be developed to find the longest path in any DAG, as suggested
by the next exercise.

Exercise Break: What is the length of a longest path between the blue and red
nodes in the DAG shown in Figure 5.12?

2
4 1

1
3

2
1

5

3

4 8

3 2

2

3

7

FIGURE 5.12 A weighted DAG without the obvious order inherent in the graphs previ-
ously encountered in this chapter.

Topological orderings

Do not worry if you struggled to solve the last exercise. The hitch to using dynamic
programming in order to find the length of a longest path in a DAG is that we must
decide on the order in which to visit nodes when computing the values sb according to
the recurrence

sb = max
all predecessors a of node b

{sa + weight of edge from a to b}.

This ordering of nodes is important, since by the time we reach node b, the values sa
for all its predecessors must have already been computed. We have managed to hide
this issue for rectangular grids because the order in which we have computed the si, j
ensured that we would never consider a node before visiting all of its predecessors.

To illustrate the importance of visiting nodes in the correct order, consider the DAG
in Figure 5.13, which corresponds to a “Dressing Challenge Problem”. How would you
order the nodes of this graph so that you don’t put on your boots before your tights?

249

Exercise: Try finding a
longest path from source
to sink in this DAG. Can
you find a recurrence
relation for an arbitrary
DAG?

A Recurrence for an Arbitrary DAG?

© 2024 Phillip Compeau

Let s(b) be the length of a
longest path from source
to b.

H O W D O W E C O M PA R E D N A S E Q U E N C E S ?

A similar approach can be developed to find the longest path in any DAG, as suggested
by the next exercise.

Exercise Break: What is the length of a longest path between the blue and red
nodes in the DAG shown in Figure 5.12?

2
4 1

1
3

2
1

5

3

4 8

3 2

2

3

7

FIGURE 5.12 A weighted DAG without the obvious order inherent in the graphs previ-
ously encountered in this chapter.

Topological orderings

Do not worry if you struggled to solve the last exercise. The hitch to using dynamic
programming in order to find the length of a longest path in a DAG is that we must
decide on the order in which to visit nodes when computing the values sb according to
the recurrence

sb = max
all predecessors a of node b

{sa + weight of edge from a to b}.

This ordering of nodes is important, since by the time we reach node b, the values sa
for all its predecessors must have already been computed. We have managed to hide
this issue for rectangular grids because the order in which we have computed the si, j
ensured that we would never consider a node before visiting all of its predecessors.

To illustrate the importance of visiting nodes in the correct order, consider the DAG
in Figure 5.13, which corresponds to a “Dressing Challenge Problem”. How would you
order the nodes of this graph so that you don’t put on your boots before your tights?

249

If there is an edge
connecting a to b, we
call a a predecessor of b.

A Recurrence for an Arbitrary DAG?

© 2024 Phillip Compeau

C H A P T E R 5

Dynamic programming in an arbitrary DAG

Given a node b in a DAG, let sb denote the length of a longest path from the source to b.
We call node a a predecessor of node b if there is an edge connecting a to b in the DAG;
note that the indegree of a node is equal to the number of its predecessors. The score sb
of node b with indegree k is computed as a maximum of k terms:

sb = max
all predecessors a of node b

{sa + weight of edge from a to b}.

For example, in the graph shown in Figure 5.11 (bottom right), node (1, 1) has three
predecessors. You can arrive at (1, 1) by traveling right from (1, 0), down from (0, 1), or
diagonally from (0, 0), Assuming that we have already computed s0, 0, s0, 1, and s1, 0, we
can therefore compute s1, 1 as the maximum of three values:

s1, 1 = max

8
><

>:

s0, 1 + weight of edge # connecting (0, 1) to (1, 1) = 3 + 0 = 3
s1, 0 + weight of edge ! connecting (1, 0) to (1, 1) = 1 + 3 = 4
s0, 0 + weight of edge & connecting (0, 0) to (1, 1) = 0 + 5 = 5

To compute scores for any node (i, j) of this graph, we use the following recurrence:

si, j = max

8
><

>:

si�1, j + weight of edge # between (i � 1, j) and (i, j)
si, j�1 + weight of edge ! between (i, j � 1) and (i, j)
si�1, j�1 + weight of edge & between (i � 1, j � 1) and (i, j)

An analogous argument can be applied to the alignment graph to compute the
length of an LCS between sequences v and w. Since in this case all edges have weight 0
except for diagonal edges of weight 1 that represent matches (vi = wj), we obtain the
following recurrence for computing the length of an LCS:

si, j = max

8
><

>:

si�1, j + 0
si, j�1 + 0
si�1, j�1 + 1, if vi = wj

STOP and Think: The above recurrence does not incorporate mismatch edges.
Why is this not a problem?

248

H O W D O W E C O M PA R E D N A S E Q U E N C E S ?

A similar approach can be developed to find the longest path in any DAG, as suggested
by the next exercise.

Exercise Break: What is the length of a longest path between the blue and red
nodes in the DAG shown in Figure 5.12?

2
4 1

1
3

2
1

5

3

4 8

3 2

2

3

7

FIGURE 5.12 A weighted DAG without the obvious order inherent in the graphs previ-
ously encountered in this chapter.

Topological orderings

Do not worry if you struggled to solve the last exercise. The hitch to using dynamic
programming in order to find the length of a longest path in a DAG is that we must
decide on the order in which to visit nodes when computing the values sb according to
the recurrence

sb = max
all predecessors a of node b

{sa + weight of edge from a to b}.

This ordering of nodes is important, since by the time we reach node b, the values sa
for all its predecessors must have already been computed. We have managed to hide
this issue for rectangular grids because the order in which we have computed the si, j
ensured that we would never consider a node before visiting all of its predecessors.

To illustrate the importance of visiting nodes in the correct order, consider the DAG
in Figure 5.13, which corresponds to a “Dressing Challenge Problem”. How would you
order the nodes of this graph so that you don’t put on your boots before your tights?

249

If there is an edge
connecting a to b, we
call a a predecessor of b.

Let s(b) be the length of a
longest path from source
to sink.

A Recurrence for an Arbitrary DAG?

© 2024 Phillip Compeau

C H A P T E R 5

Dynamic programming in an arbitrary DAG

Given a node b in a DAG, let sb denote the length of a longest path from the source to b.
We call node a a predecessor of node b if there is an edge connecting a to b in the DAG;
note that the indegree of a node is equal to the number of its predecessors. The score sb
of node b with indegree k is computed as a maximum of k terms:

sb = max
all predecessors a of node b

{sa + weight of edge from a to b}.

For example, in the graph shown in Figure 5.11 (bottom right), node (1, 1) has three
predecessors. You can arrive at (1, 1) by traveling right from (1, 0), down from (0, 1), or
diagonally from (0, 0), Assuming that we have already computed s0, 0, s0, 1, and s1, 0, we
can therefore compute s1, 1 as the maximum of three values:

s1, 1 = max

8
><

>:

s0, 1 + weight of edge # connecting (0, 1) to (1, 1) = 3 + 0 = 3
s1, 0 + weight of edge ! connecting (1, 0) to (1, 1) = 1 + 3 = 4
s0, 0 + weight of edge & connecting (0, 0) to (1, 1) = 0 + 5 = 5

To compute scores for any node (i, j) of this graph, we use the following recurrence:

si, j = max

8
><

>:

si�1, j + weight of edge # between (i � 1, j) and (i, j)
si, j�1 + weight of edge ! between (i, j � 1) and (i, j)
si�1, j�1 + weight of edge & between (i � 1, j � 1) and (i, j)

An analogous argument can be applied to the alignment graph to compute the
length of an LCS between sequences v and w. Since in this case all edges have weight 0
except for diagonal edges of weight 1 that represent matches (vi = wj), we obtain the
following recurrence for computing the length of an LCS:

si, j = max

8
><

>:

si�1, j + 0
si, j�1 + 0
si�1, j�1 + 1, if vi = wj

STOP and Think: The above recurrence does not incorporate mismatch edges.
Why is this not a problem?

248

H O W D O W E C O M PA R E D N A S E Q U E N C E S ?

A similar approach can be developed to find the longest path in any DAG, as suggested
by the next exercise.

Exercise Break: What is the length of a longest path between the blue and red
nodes in the DAG shown in Figure 5.12?

2
4 1

1
3

2
1

5

3

4 8

3 2

2

3

7

FIGURE 5.12 A weighted DAG without the obvious order inherent in the graphs previ-
ously encountered in this chapter.

Topological orderings

Do not worry if you struggled to solve the last exercise. The hitch to using dynamic
programming in order to find the length of a longest path in a DAG is that we must
decide on the order in which to visit nodes when computing the values sb according to
the recurrence

sb = max
all predecessors a of node b

{sa + weight of edge from a to b}.

This ordering of nodes is important, since by the time we reach node b, the values sa
for all its predecessors must have already been computed. We have managed to hide
this issue for rectangular grids because the order in which we have computed the si, j
ensured that we would never consider a node before visiting all of its predecessors.

To illustrate the importance of visiting nodes in the correct order, consider the DAG
in Figure 5.13, which corresponds to a “Dressing Challenge Problem”. How would you
order the nodes of this graph so that you don’t put on your boots before your tights?

249

STOP: What makes
computing this
recurrence difficult?

A Recurrence for an Arbitrary DAG?

© 2024 Phillip Compeau

C H A P T E R 5

Dynamic programming in an arbitrary DAG

Given a node b in a DAG, let sb denote the length of a longest path from the source to b.
We call node a a predecessor of node b if there is an edge connecting a to b in the DAG;
note that the indegree of a node is equal to the number of its predecessors. The score sb
of node b with indegree k is computed as a maximum of k terms:

sb = max
all predecessors a of node b

{sa + weight of edge from a to b}.

For example, in the graph shown in Figure 5.11 (bottom right), node (1, 1) has three
predecessors. You can arrive at (1, 1) by traveling right from (1, 0), down from (0, 1), or
diagonally from (0, 0), Assuming that we have already computed s0, 0, s0, 1, and s1, 0, we
can therefore compute s1, 1 as the maximum of three values:

s1, 1 = max

8
><

>:

s0, 1 + weight of edge # connecting (0, 1) to (1, 1) = 3 + 0 = 3
s1, 0 + weight of edge ! connecting (1, 0) to (1, 1) = 1 + 3 = 4
s0, 0 + weight of edge & connecting (0, 0) to (1, 1) = 0 + 5 = 5

To compute scores for any node (i, j) of this graph, we use the following recurrence:

si, j = max

8
><

>:

si�1, j + weight of edge # between (i � 1, j) and (i, j)
si, j�1 + weight of edge ! between (i, j � 1) and (i, j)
si�1, j�1 + weight of edge & between (i � 1, j � 1) and (i, j)

An analogous argument can be applied to the alignment graph to compute the
length of an LCS between sequences v and w. Since in this case all edges have weight 0
except for diagonal edges of weight 1 that represent matches (vi = wj), we obtain the
following recurrence for computing the length of an LCS:

si, j = max

8
><

>:

si�1, j + 0
si, j�1 + 0
si�1, j�1 + 1, if vi = wj

STOP and Think: The above recurrence does not incorporate mismatch edges.
Why is this not a problem?

248

H O W D O W E C O M PA R E D N A S E Q U E N C E S ?

A similar approach can be developed to find the longest path in any DAG, as suggested
by the next exercise.

Exercise Break: What is the length of a longest path between the blue and red
nodes in the DAG shown in Figure 5.12?

2
4 1

1
3

2
1

5

3

4 8

3 2

2

3

7

FIGURE 5.12 A weighted DAG without the obvious order inherent in the graphs previ-
ously encountered in this chapter.

Topological orderings

Do not worry if you struggled to solve the last exercise. The hitch to using dynamic
programming in order to find the length of a longest path in a DAG is that we must
decide on the order in which to visit nodes when computing the values sb according to
the recurrence

sb = max
all predecessors a of node b

{sa + weight of edge from a to b}.

This ordering of nodes is important, since by the time we reach node b, the values sa
for all its predecessors must have already been computed. We have managed to hide
this issue for rectangular grids because the order in which we have computed the si, j
ensured that we would never consider a node before visiting all of its predecessors.

To illustrate the importance of visiting nodes in the correct order, consider the DAG
in Figure 5.13, which corresponds to a “Dressing Challenge Problem”. How would you
order the nodes of this graph so that you don’t put on your boots before your tights?

249

STOP: What makes
computing this
recurrence difficult?

Answer: We need to
know the order to
consider the nodes.

“Dressing Challenge”: Ordering Nodes
in a DAG

© 2024 Phillip Compeau

Topological Orderings

© 2024 Phillip Compeau

The critical part of computing s(b) is ensuring that
s(a) has already been computed for all predecessors.

That is, we need to have an ordering of the nodes in
a DAG so that no node is considered before its
predecessor.

Topological Orderings

© 2024 Phillip Compeau

The critical part of computing s(b) is ensuring that
s(a) has already been computed for all predecessors.

That is, we need to have an ordering of the nodes in
a DAG so that no node is considered before its
predecessor.

An ordering of nodes (a1, ..., ak) of nodes in a DAG
is a topological ordering if every edge ai à aj is
such that i < j.

Topological Orderings

© 2024 Phillip Compeau

The critical part of computing s(b) is ensuring that
s(a) has already been computed for all predecessors.

Theorem: Every DAG must have at least one
topological ordering (and there is an algorithm for
finding it).

An ordering of nodes (a1, ..., ak) of nodes in a DAG
is a topological ordering if every edge ai à aj is
such that i < j.

Two Topological Orderings for Dressing
DAG

© 2024 Phillip Compeau

Topological Orderings for the Alignment
Graph

© 2024 Phillip Compeau

C H A P T E R 5

0 1 2 2 3 4 5 6 7 8
A T - G T T A T A
A T C G T - C - C

0 1 2 3 4 5 5 6 6 7
& & ! & & # & # &

FIGURE 5.5 An alignment of ATGTTATA and ATCGTCC. The array in the first row
counts the number of symbols of ATGTTATA used up to a given position. The array in
the fourth row counts the number of symbols of ATCGTCC used up to a given position.
And the array in the last row records whether each column of the alignment represents
a match/mismatch (&/&), insertion (!), or deletion (#).

Note that in addition to horizontal and vertical edges, we have added diagonal edges
connecting (i, j) to (i + 1, j + 1) in Figure 5.6.

A T C G T C C
A

T

G

T

T

A

T

A

FIGURE 5.6 Every alignment corresponds to a path in the alignment graph from source
to sink, and vice-versa. (Left) The path (0, 0) & (1, 1) & (2, 2) ! (2, 3) & (3, 4)
& (4, 5) # (5, 5) & (6, 6) # (7, 6) & (8, 7) is highlighted above and corresponds to
the alignment of ATGTTATA and ATCGTCC in Figure 5.5. (Right) Another path in the
alignment graph.

We call the DAG in Figure 5.6 the alignment graph of strings v and w, denoted
ALIGNMENTGRAPH(v, w), and we call a path from source to sink in this DAG an align-
ment path. Every alignment of v and w can be viewed as a set of instructions to construct
a unique alignment path in ALIGNMENTGRAPH(v, w), where each match/mismatch,
insertion, and deletion corresponds to an edge &/&, !, and #, respectively. Fur-

234

STOP: What topological
order(s) do you see for
the alignment graph?

Three Topological Orderings for the
Alignment Graph

© 2024 Phillip Compeau

H O W D O W E C O M PA R E D N A S E Q U E N C E S ?

FIGURE 5.14 Two different topological orderings of the Dressing Challenge DAG from
Figure 5.13.

v1 v2 v3 v4 v5

v6 v7 v8 v9 v10

v11 v12 v13 v14 v15

v16 v17 v18 v19 v20

v21 v22 v23 v24 v25

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

v13

v14

v15

v16

v17

v18

v19

v20

v21

v22

v23

v24

v25

FIGURE 5.15 The row-by-column (left) and column-by-column (right) topological or-
derings of a rectangular grid.

STOP and Think: Rewrite theRewrite the MMANHATTANTTOURIST pseudocode based on thepseudocode based on the
topological ordering shown in Figure 5.16.topological ordering shown in Figure 5.16.

251

H O W D O W E C O M PA R E D N A S E Q U E N C E S ?

FIGURE 5.14 Two different topological orderings of the Dressing Challenge DAG from
Figure 5.13.

v1 v2 v3 v4 v5

v6 v7 v8 v9 v10

v11 v12 v13 v14 v15

v16 v17 v18 v19 v20

v21 v22 v23 v24 v25

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

v13

v14

v15

v16

v17

v18

v19

v20

v21

v22

v23

v24

v25

FIGURE 5.15 The row-by-column (left) and column-by-column (right) topological or-
derings of a rectangular grid.

STOP and Think: Rewrite theRewrite the MMANHATTANTTOURIST pseudocode based on thepseudocode based on the
topological ordering shown in Figure 5.16.topological ordering shown in Figure 5.16.

251

C H A P T E R 5

v1

v2

v3 v4

v5

v6

v7

v8

v9

v10 v11

v12

v13

v14

v15 v16

v17

v19

v20

v21

v22 v23

v24

v25

v18

FIGURE 5.16 Another topological ordering of the rectangular grid from Figure 5.15.

It can be proven that any DAG has a topological ordering, and that this topological
ordering can be constructed in time proportional to the number of edges in the graph
(see DETOUR: Constructing a Topological Ordering). Once we have a topologicalPAGEPAGE 287287
ordering, we can compute the length of the longest path from source to sink by visit-
ing the nodes of the DAG in the order dictated by the topological ordering, which is
achieved by the following algorithm. For simplicity, we assume that the source node is
the only node with indegree 0 in Graph.

LONGESTPATH(Graph, source, sink)
for each node b in Graph

sb �1

ssource 0
topologically order Graph
for each node b in Graph (following the topological order)

sb maxall predecessors a of node b{sa + weight of edge from a to b}
return ssink

Since every edge participates in only a single recurrence, the runtime of LONGESTPATH

is proportional to the number of edges in the DAG Graph.
We can now efficiently compute the length of a longest path in an arbitrary DAG, but

we do not yet know how to convert LONGESTPATH into an algorithm that will construct
this longest path. In the next section, we will use the Longest Common Subsequence
Problem to explain how to construct a longest path in a DAG.

252

Pseudocode for Finding Length of
Longest Path

© 2024 Phillip Compeau

LongestPath(Graph, source, sink)
 for each node b in Graph
 sb ← −∞
 ssource ← 0
 topologically order Graph
 for each node b in Graph (following the topological order)
 sb ← maxall predecessors a of node b {sa + weight of edge a à b}
 return ssink

STOP: What is the approximate (“big O” for the
initiated) runtime of LongestPath?

Pseudocode for Finding Length of
Longest Path

© 2024 Phillip Compeau

LongestPath(Graph, source, sink)
 for each node b in Graph
 sb ← −∞
 ssource ← 0
 topologically order Graph
 for each node b in Graph (following the topological order)
 sb ← maxall predecessors a of node b {sa + weight of edge a à b}
 return ssink

Answer: We consider each edge exactly once, so (if
we know a topological order) the runtime is
proportional to the number of edges.

Topological Orderings for the Alignment
Graph

© 2024 Phillip Compeau

C H A P T E R 5

0 1 2 2 3 4 5 6 7 8
A T - G T T A T A
A T C G T - C - C

0 1 2 3 4 5 5 6 6 7
& & ! & & # & # &

FIGURE 5.5 An alignment of ATGTTATA and ATCGTCC. The array in the first row
counts the number of symbols of ATGTTATA used up to a given position. The array in
the fourth row counts the number of symbols of ATCGTCC used up to a given position.
And the array in the last row records whether each column of the alignment represents
a match/mismatch (&/&), insertion (!), or deletion (#).

Note that in addition to horizontal and vertical edges, we have added diagonal edges
connecting (i, j) to (i + 1, j + 1) in Figure 5.6.

A T C G T C C
A

T

G

T

T

A

T

A

FIGURE 5.6 Every alignment corresponds to a path in the alignment graph from source
to sink, and vice-versa. (Left) The path (0, 0) & (1, 1) & (2, 2) ! (2, 3) & (3, 4)
& (4, 5) # (5, 5) & (6, 6) # (7, 6) & (8, 7) is highlighted above and corresponds to
the alignment of ATGTTATA and ATCGTCC in Figure 5.5. (Right) Another path in the
alignment graph.

We call the DAG in Figure 5.6 the alignment graph of strings v and w, denoted
ALIGNMENTGRAPH(v, w), and we call a path from source to sink in this DAG an align-
ment path. Every alignment of v and w can be viewed as a set of instructions to construct
a unique alignment path in ALIGNMENTGRAPH(v, w), where each match/mismatch,
insertion, and deletion corresponds to an edge &/&, !, and #, respectively. Fur-

234

STOP: How many edges
does the alignment graph
of strings v and w have?

Topological Orderings for the Alignment
Graph

© 2024 Phillip Compeau

C H A P T E R 5

0 1 2 2 3 4 5 6 7 8
A T - G T T A T A
A T C G T - C - C

0 1 2 3 4 5 5 6 6 7
& & ! & & # & # &

FIGURE 5.5 An alignment of ATGTTATA and ATCGTCC. The array in the first row
counts the number of symbols of ATGTTATA used up to a given position. The array in
the fourth row counts the number of symbols of ATCGTCC used up to a given position.
And the array in the last row records whether each column of the alignment represents
a match/mismatch (&/&), insertion (!), or deletion (#).

Note that in addition to horizontal and vertical edges, we have added diagonal edges
connecting (i, j) to (i + 1, j + 1) in Figure 5.6.

A T C G T C C
A

T

G

T

T

A

T

A

FIGURE 5.6 Every alignment corresponds to a path in the alignment graph from source
to sink, and vice-versa. (Left) The path (0, 0) & (1, 1) & (2, 2) ! (2, 3) & (3, 4)
& (4, 5) # (5, 5) & (6, 6) # (7, 6) & (8, 7) is highlighted above and corresponds to
the alignment of ATGTTATA and ATCGTCC in Figure 5.5. (Right) Another path in the
alignment graph.

We call the DAG in Figure 5.6 the alignment graph of strings v and w, denoted
ALIGNMENTGRAPH(v, w), and we call a path from source to sink in this DAG an align-
ment path. Every alignment of v and w can be viewed as a set of instructions to construct
a unique alignment path in ALIGNMENTGRAPH(v, w), where each match/mismatch,
insertion, and deletion corresponds to an edge &/&, !, and #, respectively. Fur-

234

STOP: How many edges
does the alignment graph
of strings v and w have?

Answer: Each node has
0, 1, or 3 predecessors.
So, the number of edges
is proportional to |v| · |w|.

From Finding the Maximum Length to
Finding a Path

© 2024 Phillip Compeau

LongestPath(Graph, source, sink)
 for each node b in Graph
 sb ← −∞
 ssource ← 0
 topologically order Graph
 for each node b in Graph (following the topological order)
 sb ← maxall predecessors a of node b {sa + weight of edge a à b}
 return ssink

Note: We can find the length of a longest path, but
we still don’t know how to construct a longest path.

Finding a Longest Path

© 2024 Phillip Compeau

0

3 2 4 0

3 2 4 2

0 7 3 4

3 3 2

1 3 2 2

1 342

4 6 5 2 1

4 4 5 2 1

5 6 8 5 3

0 3 5 9 9

1

5

9

14

4

10

14

20

7 13 15

17 20 24

252222

30 32 34

0

STOP: Take a moment
to look at our solution
from before when we
found the maximum
weight of a path.
How might we have
reconstructed the
longest path?

BACKTRACKING IN THE
ALIGNMENT GRAPH

© 2024 Phillip Compeau

From a Recurrence to a Longest Path

© 2024 Phillip Compeau

Note: we highlighted the
edge used at each node
when computing length of
longest path.

0

3 2 4 0

3 2 4 2

0 7 3 4

3 3 2

1 3 2 2

1 342

4 6 5 2 1

4 4 5 2 1

5 6 8 5 3

0 3 5 9 9

1

5

9

14

4

10

14

20

7 13 15

17 20 24

252222

30 32 34

0

From a Recurrence to a Longest Path

© 2024 Phillip Compeau

We remember one
predecessor at each node,
so following predecessors
backward from sink yields
longest path!

Note: we highlighted the
edge used at each node
when computing length of
longest path.

Recall that these Problems are the Same

Symbol Matching Problem:
• Input: Two strings.
• Output: The greatest number of matched

symbols in any “alignment” of the two strings.

Longest Common Subsequence Length Problem:.
• Input: Two strings.
• Output: The length of a longest common

subsequence of these strings.

© 2024 Phillip Compeau

Putting it All Together

Longest Common Subsequence Length Problem:.
• Input: Two strings.
• Output: A length of a longest common

subsequence of these strings.

© 2024 Phillip Compeau

STOP: How can we find an LCS of two strings?

Putting it All Together

Longest Common Subsequence Length Problem:.
• Input: Two strings.
• Output: A length of a longest common

subsequence of these strings.

© 2024 Phillip Compeau

Answer:
1. Build the alignment graph, with ”match” edges

weighted 1.
2. Find the length of an LCS using recurrence

relation.
3. Backtrack to find longest path.

Backtracking in an Arbitrary DAG

© 2024 Phillip Compeau

C H A P T E R 5

Dynamic programming in an arbitrary DAG

Given a node b in a DAG, let sb denote the length of a longest path from the source to b.
We call node a a predecessor of node b if there is an edge connecting a to b in the DAG;
note that the indegree of a node is equal to the number of its predecessors. The score sb
of node b with indegree k is computed as a maximum of k terms:

sb = max
all predecessors a of node b

{sa + weight of edge from a to b}.

For example, in the graph shown in Figure 5.11 (bottom right), node (1, 1) has three
predecessors. You can arrive at (1, 1) by traveling right from (1, 0), down from (0, 1), or
diagonally from (0, 0), Assuming that we have already computed s0, 0, s0, 1, and s1, 0, we
can therefore compute s1, 1 as the maximum of three values:

s1, 1 = max

8
><

>:

s0, 1 + weight of edge # connecting (0, 1) to (1, 1) = 3 + 0 = 3
s1, 0 + weight of edge ! connecting (1, 0) to (1, 1) = 1 + 3 = 4
s0, 0 + weight of edge & connecting (0, 0) to (1, 1) = 0 + 5 = 5

To compute scores for any node (i, j) of this graph, we use the following recurrence:

si, j = max

8
><

>:

si�1, j + weight of edge # between (i � 1, j) and (i, j)
si, j�1 + weight of edge ! between (i, j � 1) and (i, j)
si�1, j�1 + weight of edge & between (i � 1, j � 1) and (i, j)

An analogous argument can be applied to the alignment graph to compute the
length of an LCS between sequences v and w. Since in this case all edges have weight 0
except for diagonal edges of weight 1 that represent matches (vi = wj), we obtain the
following recurrence for computing the length of an LCS:

si, j = max

8
><

>:

si�1, j + 0
si, j�1 + 0
si�1, j�1 + 1, if vi = wj

STOP and Think: The above recurrence does not incorporate mismatch edges.
Why is this not a problem?

248

H O W D O W E C O M PA R E D N A S E Q U E N C E S ?

A similar approach can be developed to find the longest path in any DAG, as suggested
by the next exercise.

Exercise Break: What is the length of a longest path between the blue and red
nodes in the DAG shown in Figure 5.12?

2
4 1

1
3

2
1

5

3

4 8

3 2

2

3

7

FIGURE 5.12 A weighted DAG without the obvious order inherent in the graphs previ-
ously encountered in this chapter.

Topological orderings

Do not worry if you struggled to solve the last exercise. The hitch to using dynamic
programming in order to find the length of a longest path in a DAG is that we must
decide on the order in which to visit nodes when computing the values sb according to
the recurrence

sb = max
all predecessors a of node b

{sa + weight of edge from a to b}.

This ordering of nodes is important, since by the time we reach node b, the values sa
for all its predecessors must have already been computed. We have managed to hide
this issue for rectangular grids because the order in which we have computed the si, j
ensured that we would never consider a node before visiting all of its predecessors.

To illustrate the importance of visiting nodes in the correct order, consider the DAG
in Figure 5.13, which corresponds to a “Dressing Challenge Problem”. How would you
order the nodes of this graph so that you don’t put on your boots before your tights?

249

When computing the
recurrence, we store a
“pointer” to the
predecessor node a that
achieved the maximum.

GLOBAL ALIGNMENT

© 2024 Phillip Compeau

Strengthening Alignment ScoringC H A P T E R 5

0 1 2 2 3 4 5 6 7 8
A T - G T T A T A
A T C G T - C - C

0 1 2 3 4 5 5 6 6 7
& & ! & & # & # &

FIGURE 5.5 An alignment of ATGTTATA and ATCGTCC. The array in the first row
counts the number of symbols of ATGTTATA used up to a given position. The array in
the fourth row counts the number of symbols of ATCGTCC used up to a given position.
And the array in the last row records whether each column of the alignment represents
a match/mismatch (&/&), insertion (!), or deletion (#).

Note that in addition to horizontal and vertical edges, we have added diagonal edges
connecting (i, j) to (i + 1, j + 1) in Figure 5.6.

FIGURE 5.6 Every alignment corresponds to a path in the alignment graph from source
to sink, and vice-versa. (Left) The path (0, 0) & (1, 1) & (2, 2) ! (2, 3) & (3, 4)
& (4, 5) # (5, 5) & (6, 6) # (7, 6) & (8, 7) is highlighted above and corresponds to
the alignment of ATGTTATA and ATCGTCC in Figure 5.5. (Right) Another path in the
alignment graph.

We call the DAG in Figure 5.6 the alignment graph of strings v and w, denoted
ALIGNMENTGRAPH(v, w), and we call a path from source to sink in this DAG an align-
ment path. Every alignment of v and w can be viewed as a set of instructions to construct
a unique alignment path in ALIGNMENTGRAPH(v, w), where each match/mismatch,
insertion, and deletion corresponds to an edge &/&, !, and #, respectively. Fur-

234

Alignment score: Divided into three components:
• match reward (+1)
• mismatch penalty (-μ)
• insertion/deletion penalty (-σ)

© 2024 Phillip Compeau

STOP: What were μ and σ when finding a longest
common subsequence?

Strengthening Alignment ScoringC H A P T E R 5

0 1 2 2 3 4 5 6 7 8
A T - G T T A T A
A T C G T - C - C

0 1 2 3 4 5 5 6 6 7
& & ! & & # & # &

FIGURE 5.5 An alignment of ATGTTATA and ATCGTCC. The array in the first row
counts the number of symbols of ATGTTATA used up to a given position. The array in
the fourth row counts the number of symbols of ATCGTCC used up to a given position.
And the array in the last row records whether each column of the alignment represents
a match/mismatch (&/&), insertion (!), or deletion (#).

Note that in addition to horizontal and vertical edges, we have added diagonal edges
connecting (i, j) to (i + 1, j + 1) in Figure 5.6.

FIGURE 5.6 Every alignment corresponds to a path in the alignment graph from source
to sink, and vice-versa. (Left) The path (0, 0) & (1, 1) & (2, 2) ! (2, 3) & (3, 4)
& (4, 5) # (5, 5) & (6, 6) # (7, 6) & (8, 7) is highlighted above and corresponds to
the alignment of ATGTTATA and ATCGTCC in Figure 5.5. (Right) Another path in the
alignment graph.

We call the DAG in Figure 5.6 the alignment graph of strings v and w, denoted
ALIGNMENTGRAPH(v, w), and we call a path from source to sink in this DAG an align-
ment path. Every alignment of v and w can be viewed as a set of instructions to construct
a unique alignment path in ALIGNMENTGRAPH(v, w), where each match/mismatch,
insertion, and deletion corresponds to an edge &/&, !, and #, respectively. Fur-

234

Alignment score: Divided into three components:
• match reward (+1)
• mismatch penalty (-μ)
• insertion/deletion penalty (-σ)

© 2024 Phillip Compeau

Answer: They were both equal to zero…

Strengthening Alignment Scoring

Global Alignment Problem: Find a highest-scoring
alignment of two strings.
• Input: Two strings and numbers μ and σ .
• Output: An alignment of the strings with

maximum alignment score using these
parameters.

© 2024 Phillip Compeau

Strengthening Alignment Scoring

STOP: How can we modify the alignment network
to solve this problem?

© 2024 Phillip Compeau

Global Alignment Problem: Find a highest-scoring
alignment of two strings.
• Input: Two strings and numbers μ and σ .
• Output: An alignment of the strings with

maximum alignment score using these
parameters.

Strengthening Alignment Scoring

C H A P T E R 5

(Figure 5.18). Recalling that deletions correspond to vertical edges (#), insertions cor-
respond to horizontal edges (!), and matches/mismatches correspond to diagonal
edges (&/&), we obtain the following recurrence for si, j, the length of a longest path
from (0, 0) to (i, j):

si, j = max

8
><

>:

si�1, j + Score(vi,-)
si, j�1 + Score(-, wj)

si�1, j�1 + Score(vi, wj).

When the match reward is +1, the mismatch penalty is µ, and the indel penalty is s, the
alignment recurrence can be written as follows:

si, j = max

8
>>><

>>>:

si�1, j � s

si, j�1 � s

si�1, j�1 + 1 , if vi = wj
si�1, j�1 � µ , if vi 6= wj.

T C G T

T

G

T

T

A

+1 +1

+1

+1 +1

+1+1

- -

- - -

- -

--

- - - - -

-

-

-

-

-

-

-

-

--

-

-

-

--

-

-

-

-

-

-

-

-

-

- - - -

- - - -

- - - -

- - - -

FIGURE 5.18 ALIGNMENTGRAPH(TGTTA,TCGT), with each edge colored according
to whether it represents a match, mismatch, insertion, or deletion.

256

Answer: Slight
modification to
alignment network
... a longest path
will yield an
alignment of
maximum score!

© 2024 Phillip Compeau

Strengthening Alignment Scoring

C H A P T E R 5

(Figure 5.18). Recalling that deletions correspond to vertical edges (#), insertions cor-
respond to horizontal edges (!), and matches/mismatches correspond to diagonal
edges (&/&), we obtain the following recurrence for si, j, the length of a longest path
from (0, 0) to (i, j):

si, j = max

8
><

>:

si�1, j + Score(vi,-)
si, j�1 + Score(-, wj)

si�1, j�1 + Score(vi, wj).

When the match reward is +1, the mismatch penalty is µ, and the indel penalty is s, the
alignment recurrence can be written as follows:

si, j = max

8
>>><

>>>:

si�1, j � s

si, j�1 � s

si�1, j�1 + 1 , if vi = wj
si�1, j�1 � µ , if vi 6= wj.

T C G T

T

G

T

T

A

+1 +1

+1

+1 +1

+1+1

- -

- - -

- -

--

- - - - -

-

-

-

-

-

-

-

-

--

-

-

-

--

-

-

-

-

-

-

-

-

-

- - - -

- - - -

- - - -

- - - -

FIGURE 5.18 ALIGNMENTGRAPH(TGTTA,TCGT), with each edge colored according
to whether it represents a match, mismatch, insertion, or deletion.

256

Answer: Slight
modification to
alignment network
... a longest path
will yield an
alignment of
maximum score!

© 2024 Phillip Compeau

Exercise: What is
the recurrence
relation?

Two Cases: Mismatch vs. Match

Row i

Column jColumn j – 1

-𝜎

Row i – 1

-μ

Row i

Column jColumn j – 1

Row i – 1

+1

length(i, j) = maximum of:
• length(i – 1, j) – 𝜎
• length(i, j – 1) – 𝜎
• length(i – 1, j – 1) – μ

length(i, j) = maximum of:
• length(i – 1, j) – 𝜎
• length(i, j – 1) – 𝜎
• length(i – 1, j – 1) + 1

-𝜎

-𝜎-𝜎

Case 1 Case 2

© 2022 by Phillip Compeau

Further Strengthening Scoring with a
Scoring Matrix

© 2024 Phillip Compeau

C H A P T E R 5

empirical probabilities that one amino acid mutates to another during n PAM units. The
(i, j)-th entry of the PAMn scoring matrix is thus given by

log
✓

Mn(i, j)
f (j)

◆
.

The PAM250 scoring matrix is shown in Figure 5.35.
This approach assumes that the frequencies of the amino acids f (j) remain constant

over time, and that the mutational processes in an interval of 1 PAM unit operate
consistently over long periods. For large n, the resulting PAM matrices often allow us
to find related proteins, even when the alignment has few matches.

A C D E F G H I K L M N P Q R S T V W Y -

A 2 -2 0 0 -3 1 -1 -1 -1 -2 -1 0 1 0 -2 1 1 0 -6 -3 -8

C -2 12 -5 -5 -4 -3 -3 -2 -5 -6 -5 -4 -3 -5 -4 0 -2 -2 -8 0 -8

D 0 -5 4 3 -6 1 1 -2 0 -4 -3 2 -1 2 -1 0 0 -2 -7 -4 -8

E 0 -5 3 4 -5 0 1 -2 0 -3 -2 1 -1 2 -1 0 0 -2 -7 -4 -8

F -3 -4 -6 -5 9 -5 -2 1 -5 2 0 -3 -5 -5 -4 -3 -3 -1 0 7 -8

G 1 -3 1 0 -5 5 -2 -3 -2 -4 -3 0 0 -1 -3 1 0 -1 -7 -5 -8

H -1 -3 1 1 -2 -2 6 -2 0 -2 -2 2 0 3 2 -1 -1 -2 -3 0 -8

I -1 -2 -2 -2 1 -3 -2 5 -2 2 2 -2 -2 -2 -2 -1 0 4 -5 -1 -8

K -1 -5 0 0 -5 -2 0 -2 5 -3 0 1 -1 1 3 0 0 -2 -3 -4 -8

L -2 -6 -4 -3 2 -4 -2 2 -3 6 4 -3 -3 -2 -3 -3 -2 2 -2 -1 -8

M -1 -5 -3 -2 0 -3 -2 2 0 4 6 -2 -2 -1 0 -2 -1 2 -4 -2 -8

N 0 -4 2 1 -3 0 2 -2 1 -3 -2 2 0 1 0 1 0 -2 -4 -2 -8

P 1 -3 -1 -1 -5 0 0 -2 -1 -3 -2 0 6 0 0 1 0 -1 -6 -5 -8

Q 0 -5 2 2 -5 -1 3 -2 1 -2 -1 1 0 4 1 -1 -1 -2 -5 -4 -8

R -2 -4 -1 -1 -4 -3 2 -2 3 -3 0 0 0 1 6 0 -1 -2 2 -4 -8

S 1 0 0 0 -3 1 -1 -1 0 -3 -2 1 1 -1 0 2 1 -1 -2 -3 -8

T 1 -2 0 0 -3 0 -1 0 0 -2 -1 0 0 -1 -1 1 3 0 -5 -3 -8

V 0 -2 -2 -2 -1 -1 -2 4 -2 2 2 -2 -1 -2 -2 -1 0 4 -6 -2 -8

W -6 -8 -7 -7 0 -7 -3 -5 -3 -2 -4 -4 -6 -5 2 -2 -5 -6 17 0 -8

Y -3 0 -4 -4 7 -5 0 -1 -4 -1 -2 -2 -5 -4 -4 -3 -3 -2 0 10 -8

- -8

FIGURE 5.35 The PAM250 scoring matrix for protein alignment with indel penalty 8.

290

Scoring matrix:
Penalizes indels and
matches/mismatches
differently
depending on
individual symbols.

STOP: How do you
think this matrix was
computed?

PAM250 matrix

Amino acids’ side chain variety
produces different chemical properties

© 2024 Phillip Compeau

Courtesy: Technology Networks

A Quick Aside About the BLOSUM
Scoring Matrices

© 2024 Phillip Compeau

Strengthening Global Alignment

© 2024 Phillip Compeau

Global Alignment Problem: Find a highest-scoring
alignment of two strings.
• Input: Two strings and a scoring matrix.
• Output: An alignment of the strings with

maximum alignment score according to the
scoring matrix.

STOP: How does this change the alignment graph?

Strengthening Global Alignment

© 2024 Phillip Compeau

Global Alignment Problem: Find a highest-scoring
alignment of two strings.
• Input: Two strings and a scoring matrix.
• Output: An alignment of the strings with

maximum alignment score according to the
scoring matrix.

Answer: Every edge simply gets weighted with the
cost of the corresponding scoring matrix value.

Summarizing our Global Alignment
Algorithm

© 2024 Phillip Compeau

1. Form a 2-D array using the recurrence relation
for dynamic programming.

2. Create array containing “backtracking pointers”.
3. After reaching the sink, backtrack to source to

produce a maximum-weight path.
4. Infer the alignment corresponding to this path.

Summarizing our Global Alignment
Algorithm

© 2024 Phillip Compeau

STOP (biologists): Would you rather align two genes
as DNA strings (nucleotides) or as proteins (amino
acids)?

Summarizing our Global Alignment
Algorithm

© 2024 Phillip Compeau

Answer: If we know that the genes wind up as
protein, then a protein-level function will be more
informative since there is a larger alphabet and the
amino acids determine function of the protein.

Applying to Real Data

STOP: Let’s apply this to the same protein (say,
hemoglobin subunit alpha) in a few different
species. What do you think we will see?
• Homo sapiens vs. Gorilla gorilla gorilla
• Homo sapiens vs. Bos Taurus (cow)
• Homo sapiens vs. Danio rerio (zebrafish)

© 2024 Phillip Compeau

Homo sapiens: https://www.uniprot.org/uniprot/P69905
Gorilla gorilla gorilla: https://www.uniprot.org/uniprot/P01923
Bos taurus: https://www.uniprot.org/uniprot/P01966
Danio rerio: https://www.uniprot.org/uniprot/Q90487

EMBOSS “Needle” server: https://www.ebi.ac.uk/Tools/psa/emboss_needle/

https://www.uniprot.org/uniprot/P69905
https://www.uniprot.org/uniprot/P01923
https://www.uniprot.org/uniprot/P01966
https://www.uniprot.org/uniprot/Q90487
https://www.ebi.ac.uk/Tools/psa/emboss_needle/

Results of Hemoglobin Alignments

© 2024 Phillip Compeau

STOP: What is
our hypothesis?

Note: “|” means
exact similarity,
“:” means
strong similarity,
and “.” means
weak similarity.

Homologous proteins may have different
sequences but similar structures

© 2024 Phillip Compeau

Cold Takes Exposed: Biology c. 1963

Émile Zuckerkandl

From the point of view of
hemoglobin structure, it appears
that gorilla is just an abnormal
human.

© 2024 Phillip Compeau

Cold Takes Exposed: Biology c. 1963

Émile Zuckerkandl Gaylord Simpson

From the point of view of
hemoglobin structure, it appears
that gorilla is just an abnormal
human.

...that is of course
nonsense. What the
comparison really
indicates is that
hemoglobin is a bad
choice and has nothing to
tell us about attributes.

© 2024 Phillip Compeau

FROM GLOBAL TO LOCAL
ALIGNMENT

© 2024 Phillip Compeau

Finding “Local” Similarities

Real genes have variable and conserved regions; the
figure below shows the sequence similarity of the
spike protein between SARS-CoV and SARS-CoV-2.

© 2024 Phillip Compeau

We also will need “local” alignment to
compare genes against a database

© 2024 Phillip Compeau
150

This (poorly defined) problem is probably the most
frequent application in computational biology.

Database Comparison Problem:
• Input: A string query and a (much longer) string

database.
• Output: One or more “high-scoring” similarities

between query (or a substring of query) and some
substring of database.

Finding “Local” Similarities

H O W D O W E C O M PA R E D N A S E Q U E N C E S ?

Limitations of global alignment

Analysis of homeobox genes offers an example of a problem for which global alignment
may fail to reveal biologically relevant similarities. These genes regulate embryonic
development and are present in a large variety of species, from flies to humans. Home-
obox genes are long, and they differ greatly between species, but an approximately 60
amino acid-long region in each gene, called the homeodomain, is highly conserved.
For instance, consider the mouse and human homeodomains below.

Mouse
...ARRSRTHFTKFQTDILIEAFEKNRFPGIVTREKLAQQTGIPESRIHIWFQNRRARHPDPG...
...ARQKQTFITWTQKNRLVQAFERNPFPDTATRKKLAEQTGLQESRIQMWFQKQRSLYLKKS...

Human

The immediate question is how to find this conserved segment within the much
longer genes and ignore the flanking areas, which exhibit little similarity. Global align-
ment seeks similarities between two strings across their entire length; however, when
searching for homeodomains, we are looking for smaller, local regions of similarity
and do not need to align the entire strings. For example, the global alignment below
has 22 matches, 18 indels, and 2 mismatches, resulting in the score 22 � 18 � 2 = 2 (if
s = µ = 1):

GCC-C-AGTC-TATGT-CAGGGGGCACG--A-GCATGCACA-
GCCGCC-GTCGT-T-TTCAG----CA-GTTATGT-T-CAGAT

However, these sequences can be aligned differently (with 17 matches and 32 indels)
based on a highly conserved interval represented by the substrings CAGTCTATGTCAG
and CAGTTATGTTCAG:

---G----C-----C--CAGTCTATG-TCAGGGGGCACGAGCATGCACA
GCCGCCGTCGTTTTCAGCAGT-TATGTTCAG-----A------T-----

This alignment has fewer matches and a lower score of 17 � 32 = �15, even though the
conserved region of the alignment contributes a score of 12 � 2 = 10, which is hardly
an accident.

Figure 5.19 shows the two alignment paths corresponding to these two different
alignments. The upper path, corresponding to the second alignment above, loses
out because it contains many heavily penalized indels on either side of the diagonal
corresponding to the conserved interval. As a result, global alignment outputs the
biologically irrelevant lower path.

257

H O W D O W E C O M PA R E D N A S E Q U E N C E S ?

Limitations of global alignment

Analysis of homeobox genes offers an example of a problem for which global alignment
may fail to reveal biologically relevant similarities. These genes regulate embryonic
development and are present in a large variety of species, from flies to humans. Home-
obox genes are long, and they differ greatly between species, but an approximately 60
amino acid-long region in each gene, called the homeodomain, is highly conserved.
For instance, consider the mouse and human homeodomains below.

Mouse
...ARRSRTHFTKFQTDILIEAFEKNRFPGIVTREKLAQQTGIPESRIHIWFQNRRARHPDPG...
...ARQKQTFITWTQKNRLVQAFERNPFPDTATRKKLAEQTGLQESRIQMWFQKQRSLYLKKS...

Human

The immediate question is how to find this conserved segment within the much
longer genes and ignore the flanking areas, which exhibit little similarity. Global align-
ment seeks similarities between two strings across their entire length; however, when
searching for homeodomains, we are looking for smaller, local regions of similarity
and do not need to align the entire strings. For example, the global alignment below
has 22 matches, 18 indels, and 2 mismatches, resulting in the score 22 � 18 � 2 = 2 (if
s = µ = 1):

GCC-C-AGTC-TATGT-CAGGGGGCACG--A-GCATGCACA-
GCCGCC-GTCGT-T-TTCAG----CA-GTTATGT-T-CAGAT

However, these sequences can be aligned differently (with 17 matches and 32 indels)
based on a highly conserved interval represented by the substrings CAGTCTATGTCAG
and CAGTTATGTTCAG:

---G----C-----C--CAGTCTATG-TCAGGGGGCACGAGCATGCACA
GCCGCCGTCGTTTTCAGCAGT-TATGTTCAG-----A------T-----

This alignment has fewer matches and a lower score of 17 � 32 = �15, even though the
conserved region of the alignment contributes a score of 12 � 2 = 10, which is hardly
an accident.

Figure 5.19 shows the two alignment paths corresponding to these two different
alignments. The upper path, corresponding to the second alignment above, loses
out because it contains many heavily penalized indels on either side of the diagonal
corresponding to the conserved interval. As a result, global alignment outputs the
biologically irrelevant lower path.

257

Exercise: Score these alignments (σ = μ = 1). Which
alignment is “better”? Which gets the higher score?

© 2024 Phillip Compeau
151

Visualizing Local Alignments

© 2024 Phillip Compeau

G
C
C
C
A
G
T
C
T
A
T
G
T
C
A
G
G
G
G
G
C
A
C
G
A
G
C
A
T
G
C
A
C
A

GCC−C−AGTC-TATGT-CAGGGGGCACG−−A−GCATGCACA-
GCCGCC−GTCGT-T-TTCAG----CA−GTTATGT-T−CAGAT

CAGTCTATG-TCAG
CAGT-TATGTTCAG

Local alignment

Global alignment

G C C G C C G T C G T T T T C A G C A G T T A T G T T C A G A T

Local alignments
may be well away
from “main
diagonal” because
they have a lot of
indels on ends of the
alignment.

Revisiting Global Alignment

© 2024 Phillip Compeau

Global Alignment Problem:
• Input: Two strings and a scoring matrix.
• Output: An alignment of the strings with

maximum alignment score according to the
scoring matrix.

Revisiting Global Alignment

STOP: How can we reformulate the problem
statement to find areas of “local” similarity?

© 2024 Phillip Compeau

Global Alignment Problem:
• Input: Two strings and a scoring matrix.
• Output: An alignment of the strings with

maximum alignment score according to the
scoring matrix.

Revisiting Global Alignment

© 2024 Phillip Compeau

Local Alignment Problem:
• Input: Two strings v and w and a scoring matrix.
• Output: Substrings of v and w whose best global

alignment score is maximized over all substrings.

Revisiting Global Alignment

STOP: One idea for solving this is to solve the
Global Alignment Problem for every pair of
substrings of v and w. Why is this an issue?

© 2024 Phillip Compeau

Local Alignment Problem:
• Input: Two strings v and w and a scoring matrix.
• Output: Substrings of v and w whose best global

alignment score is maximized over all substrings.

Revisiting Global Alignment

Answer: There are C(|v|, 2) substrings of v and
C(|w|, 2) substrings of w. As a result we have about
|v|2|w|2 alignments to construct!

© 2024 Phillip Compeau

Local Alignment Problem:
• Input: Two strings v and w and a scoring matrix.
• Output: Substrings of v and w whose best global

alignment score is maximized over all substrings.

This was understood in 1970, and yet the problem
remained open …

Ten Years Go By …

© 2024 Phillip Compeau

“Free Rides” for Local Alignment

0

0

© 2024 Phillip Compeau

Add a zero-weight
edge from the source
to every node and the
sink to every node.

G
C
C
C
A
G
T
C
T
A
T
G
T
C
A
G
G
G
G
G
C
A
C
G
A
G
C
A
T
G
C
A
C
A

G C C G C C G T C G T T T T C A G C A G T T A T G T T C A G A T

This will allow a local
alignment to start and
end anywhere with no
penalty.

“Free Rides” for Local Alignment

0

0

Exercise: What is the
recurrence relation for
the local alignment
problem?

G
C
C
C
A
G
T
C
T
A
T
G
T
C
A
G
G
G
G
G
C
A
C
G
A
G
C
A
T
G
C
A
C
A

G C C G C C G T C G T T T T C A G C A G T T A T G T T C A G A T

© 2024 Phillip Compeau

“Free Rides” for Local Alignment

0

0

Answer: It is given by

where the scores here
are –σ, –σ, and either
+1 or –μ (depending
on a match vs. a
mismatch).

G
C
C
C
A
G
T
C
T
A
T
G
T
C
A
G
G
G
G
G
C
A
C
G
A
G
C
A
T
G
C
A
C
A

G C C G C C G T C G T T T T C A G C A G T T A T G T T C A G A T

H O W D O W E C O M PA R E D N A S E Q U E N C E S ?

si, j = max

8
>>><

>>>:

0
si�1, j + Score(vi,-)
si, j�1 + Score(-, wj)

si�1, j�1 + Score(vi, wj)

5F

FIGURE 5.21 The local alignment algorithm introduces zero-weight edges (shown by
blue dashed lines) connecting the source (0, 0) to every other node in the alignment
graph, as well as zero-weight edges (shown by red dashed lines) connecting every node
to the sink node.

The recurrence above incorporates free rides from source = (0, 0), but it does not
incorporate free rides into sink = (n, m). Since sink has every other node as a predecessor,
sn, m is equal to the largest value of si, j over the entire alignment graph,

sn, m = max
0in, 0jn

si, j .

STOP and Think: After computing all values si, j, how can you find where the
path corresponding to the best local alignment starts and ends in the alignment
graph?

You might still be wondering why we are allowed to free taxi rides through the align-
ment graph. The point is that you are in charge of designing whatever Manhattan-like
DAG you like, as long as it adequately models the specific alignment problem at hand.
Transformations like free taxi rides will become a common theme in this chapter. Var-
ious alignment problems can be solved by constructing an appropriate DAG with as
few edges as possible (to minimize runtime), assigning edge weights to model the
requirements of the problem, and then finding a longest path in this DAG.

263

© 2024 Phillip Compeau

“Free Rides” for Local Alignment

0

0

G
C
C
C
A
G
T
C
T
A
T
G
T
C
A
G
G
G
G
G
C
A
C
G
A
G
C
A
T
G
C
A
C
A

G C C G C C G T C G T T T T C A G C A G T T A T G T T C A G A T

Exercise: After we
apply the recurrence,
where should we start
backtracking? (That is,
where does the best
local alignment end?)

© 2024 Phillip Compeau

“Free Rides” for Local Alignment

0

0

G
C
C
C
A
G
T
C
T
A
T
G
T
C
A
G
G
G
G
G
C
A
C
G
A
G
C
A
T
G
C
A
C
A

G C C G C C G T C G T T T T C A G C A G T T A T G T T C A G A T

Answer: Wherever the
maximum value of the
scoring table is.

© 2024 Phillip Compeau

Exercise: After we
apply the recurrence,
where should we start
backtracking? (That is,
where does the best
local alignment end?)

“Free Rides” for Local Alignment

0

0

© 2024 Phillip Compeau

STOP: Recall that the
dynamic
programming
algorithm has runtime
proportional to the
number of edges in
the network. How
many zero-weight
edges did we add?

G
C
C
C
A
G
T
C
T
A
T
G
T
C
A
G
G
G
G
G
C
A
C
G
A
G
C
A
T
G
C
A
C
A

G C C G C C G T C G T T T T C A G C A G T T A T G T T C A G A T

“Free Rides” for Local Alignment

0

0

© 2024 Phillip Compeau

STOP: Recall that the
dynamic
programming
algorithm has runtime
proportional to the
number of edges in
the network. How
many zero-weight
edges did we add?

G
C
C
C
A
G
T
C
T
A
T
G
T
C
A
G
G
G
G
G
C
A
C
G
A
G
C
A
T
G
C
A
C
A

G C C G C C G T C G T T T T C A G C A G T T A T G T T C A G A T

Answer: Just ~2nm. J

The Solution to a Problem Unsolved for
Ten Years Nearly Fits on One Slide

© 2024 Phillip Compeau

h

J. Mol. Bwl. (1981), 147, 195-197

Identification of Common Molecular Subsequences

The identification of maximally homologous subsequences among sets of long
sequences is an important problem in molecular sequence analysis. The problem is
straightforward only if one restricts consideration to contiguous subsequences
(segments) containing no internal deletions or insertions. The more general problem
has its solution in an extension of sequence metrics (Sellers 1974; Waterman et al.,
1976) developed to measure the minimum number of “events” required to convert
one sequence into another.

These developments in the modern sequence analysis began with the heuristic
homology algorithm of Needleman & Wunsch (1970) which first introduced an
iterative matrix method of calculation. Numerous other heuristic algorithms have
been suggested including those of Fitch (1966) and Dayhoff (1969). More mathemat-
ically rigorous algorithms were suggested by Sankoff (1972), Reichert et al. (1973)
and Beyer et al. (1979), but these were generally not biologically satisfying or
interpretable. Success came with Sellers (1974) development of a true metric mewure
of the distance between sequences. This metric was later generalized by Waterman
et al. (1976) to include deletions/insertions of arbitrary length. This metric
represents the minimum number of “mutational events” required to convert one
sequence into another. It is of interest to note that Smith et al. (1980) have recently
shown that under some conditions the generalized Sellers metric is equivalent to the
original homology algorithm of Needleman & Wunsch (1970).

In this letter we extend the above ideas to find a pair of segments, one from each of
two long sequences, such that there is no other pair of segments with greater
similarity (homology). The similarity measure used here allows for arbitrary length
deletions and insertions.

Algorithm
The two molecular sequences will be h=a1a2 . . . a,, and B=blb, . . . b,. A

similarity s(a,b) is given between sequence elements a and b. Deletions of length k
are given weight W,. To find pairs of segments with high degrees of similarity, we set
up a matrix H . First set

HkO = H,, = 0 for 0 I k 5 n and 0 I 1 I m.

Preliminary values of H have the interpretation that H, is the maximum similarity
of two segments ending in ai and b,, respectively. These values are obtained from the
relationship

Hij=max{Hi-,,j-,+s(ai,bj), max k.? I {Hi-k,j-wk), max{Hi.j-1- 12 I wi),o), (1)

1 S i s n and 1 S j s m .

195

~L2-2836 /80 /~195-03 WL .OO/O 0 1980 Academic Press Inc. (London) Ltd.

--

196 rr. F. S M I T H A N D M . s. W A T E R M A N

segments at any ai and b,.
The formula for H i j follows by considering the possibilities for ending , the

(1) If ai and bj are associated, the similarity is

- + s(ai, bj). Hi-
(2) If ai is a t the end of a deletion o i length k, the similarity is

H i - k , j - w,.
(3) If bj is a t the end of a deletion of length I , the similarity is

H i - k , j - w,.
(4) Finally, a zero is included to prevent calculated negative similarity, indicating

no similarity up to ai and b,.t

The pair of segments with maximum similarity is found by first locating the
maximum element of H. The other matrix elements leading to this maximum value
are than sequentially determined with a traceback procedure ending with an
element of H equal to zero. This procedure identifies the segments as well as
produces the corresponding alignment. The pair of segments with the next best
similarity is found by applying the traceback procedure to the second largest
element of H not associated with the first traceback.

A simple example is given in Figure 1. In this example the parameters s(albj) and
wk required were chosen on an a priori statistical basis. A match, ai = b,, produced
an 8(aib,) value of unity while a mismatch produced a minus one-third. These values
have an average for long, random sequences over an equally probable four letter set
of zero. The deletion weight must be chosen to be a t least equal to the difference
between a match and a mismatch. The value used here was W, = 1-O+ 1/3*k.

A
A
A
U
G
C
c
A
U
U
G
A
C
G
G

A C A G C C U C G C U U A G

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0
0.0 0.0 1.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.7
0.0 0.0 0.0 0.7 0.3 0.0 1.0 0.0 0.0 0.0 1.0 1.0 0.0 0.7
0.0 0.0 0.0 2 0.3 0.0 0.0 0.7 1.0 0.0 0.0 0.7 0.7 1.0
0.0 1.0 0.0 0.0 E 1.3 0.3 1.0 0.3 2.0 0.7 0.3 0.3 0.3
0.0 1.0 0.7 0.0 1.0 3 1.7 1.3 1.0 1.3 1.7 0.3 0.0 0.0
0.0 0.0 2.0 0.7 0.3 2.7 1.3 1.0 0.7 1.0 1.3 1.3 0.0
0.0 0.0 0.7 1.7 0.3 1.3 2'1 2.3 1.0 0.7 1.7 2.0 1.0 1.0
0.0 0.0 0.3 0.3 1.3 1.0 2.3 2.0 0.7 1.7 2.7 1.7 1.0
0.0 0.0 0.0 1.3 0.0 1.0 1.0 2.0 3.3 2.0 1.7 1.3 2.3 2.7
0.0 0.0 1.0 0.0 1.0 0.3 0.7 0.7 2.0 3.0 1.7 1.3 2.3 2.0
0.0 1.0 0.0 0.7 1.0 2.0 0.7 1.7 1.7 3.0 2.7 1.3 1.0 2.0
0.0 0.0 0.7 1.0 0.3 0.7 1.7 0.3 2.7 1.7 2.7 2.3 1.0 2.0
0.0 0.0 0.0 1.7 0.7 0.3 0.3 1.3 1.3 2.3 1.3 2.3 2.0 2.0

Fit:. I . H , , matrix generated from theapplicationofeqn (1) to thesequences A-A-U-G-C-C-A-U-U-G-A-
C-G-G and C-A-G-C-C-U-C-G-C-U-U-A-G. The underlined elements indicate the trackback path from the
maximal element 3.30.

t Zero need not be included unless there are negative values of s(a,b).

The Solution to a Problem Unsolved for
Ten Years Nearly Fits on One Slide

© 2024 Phillip Compeau

LETTERS TO T H E E D I T O R 197

Note, in this simple example, that the alignment obtained:
-G-C-C-A-U-U-G-
-G-C-C- U-C-G-

contains both a mismatch and an internal deletion. It is the identification of the
latter which has not been previously possible in any rigorous manner.

This algorithm not only puts the search for pairs of maximally similar segments
on a mathematically rigorous basis but it can be efficiently and simply programmed
on a computer.

Northern Michigan University T. F. SMITH

Los Alamos Scientific Laboratory
P.O. Box 1663, Los Alamos
N. Mex. 87545, U.S.A.

M. S. WATERMAN

Received 14 Ju ly 1980

REFERENCES
Beyer, W. A., Smith, T. F., Stein, M. L. & Ulam, S. M. (1979). Math. Bioeci. 19, 9-25.
Dayhoff, M. 0. (1969). Atlas of Protein Sequence and Structure, National Biomedical Research

Foundation, Silver Springs, Maryland.
Fitch, W. M. (1966). J. Mol. Bwl. 16, 9-13.
Needleman, S. B. & Wunsch, C. D. (1970). J. Mol. Bwl. 48, 443-453.
Reichert, T. A., Cohen. D. N. & Wong, A. K. C. (1973). J. Theorel. Bwl. 42, 245-201.
Sankoff, D. (1972). Proc. Nat. A d . &i., U .S .A . 61, 4-6.
Sellers, P. H. (1974). J . Appl. Math. (Siam), 26, 787-793.
Smith, T. F., Waterman, M. S. & Fitch, W. M. (1981). J. Mol. E d . I n the press.
Waterman, M. S., Smith, T. F. & Beyer, W. A. (1976). Advan. Math. 20, 367-387.

Note added in proof: A weighting similar to tha t given above wm independently developed
by Walter Goad of Loa Alamos Scientific Laboratory.

Smith and Waterman’s Scoring Table

© 2024 Phillip Compeau

--

196 rr. F. S M I T H A N D M . s. W A T E R M A N

segments at any ai and b,.
The formula for H i j follows by considering the possibilities for ending , the

(1) If ai and bj are associated, the similarity is

- + s(ai, bj). Hi-
(2) If ai is a t the end of a deletion o i length k, the similarity is

H i - k , j - w,.
(3) If bj is a t the end of a deletion of length I , the similarity is

H i - k , j - w,.
(4) Finally, a zero is included to prevent calculated negative similarity, indicating

no similarity up to ai and b,.t

The pair of segments with maximum similarity is found by first locating the
maximum element of H. The other matrix elements leading to this maximum value
are than sequentially determined with a traceback procedure ending with an
element of H equal to zero. This procedure identifies the segments as well as
produces the corresponding alignment. The pair of segments with the next best
similarity is found by applying the traceback procedure to the second largest
element of H not associated with the first traceback.

A simple example is given in Figure 1. In this example the parameters s(albj) and
wk required were chosen on an a priori statistical basis. A match, ai = b,, produced
an 8(aib,) value of unity while a mismatch produced a minus one-third. These values
have an average for long, random sequences over an equally probable four letter set
of zero. The deletion weight must be chosen to be a t least equal to the difference
between a match and a mismatch. The value used here was W, = 1-O+ 1/3*k.

A
A
A
U
G
C
c
A
U
U
G
A
C
G
G

A C A G C C U C G C U U A G

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0
0.0 0.0 1.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.7
0.0 0.0 0.0 0.7 0.3 0.0 1.0 0.0 0.0 0.0 1.0 1.0 0.0 0.7
0.0 0.0 0.0 2 0.3 0.0 0.0 0.7 1.0 0.0 0.0 0.7 0.7 1.0
0.0 1.0 0.0 0.0 E 1.3 0.3 1.0 0.3 2.0 0.7 0.3 0.3 0.3
0.0 1.0 0.7 0.0 1.0 3 1.7 1.3 1.0 1.3 1.7 0.3 0.0 0.0
0.0 0.0 2.0 0.7 0.3 2.7 1.3 1.0 0.7 1.0 1.3 1.3 0.0
0.0 0.0 0.7 1.7 0.3 1.3 2'1 2.3 1.0 0.7 1.7 2.0 1.0 1.0
0.0 0.0 0.3 0.3 1.3 1.0 2.3 2.0 0.7 1.7 2.7 1.7 1.0
0.0 0.0 0.0 1.3 0.0 1.0 1.0 2.0 3.3 2.0 1.7 1.3 2.3 2.7
0.0 0.0 1.0 0.0 1.0 0.3 0.7 0.7 2.0 3.0 1.7 1.3 2.3 2.0
0.0 1.0 0.0 0.7 1.0 2.0 0.7 1.7 1.7 3.0 2.7 1.3 1.0 2.0
0.0 0.0 0.7 1.0 0.3 0.7 1.7 0.3 2.7 1.7 2.7 2.3 1.0 2.0
0.0 0.0 0.0 1.7 0.7 0.3 0.3 1.3 1.3 2.3 1.3 2.3 2.0 2.0

Fit:. I . H , , matrix generated from theapplicationofeqn (1) to thesequences A-A-U-G-C-C-A-U-U-G-A-
C-G-G and C-A-G-C-C-U-C-G-C-U-U-A-G. The underlined elements indicate the trackback path from the
maximal element 3.30.

t Zero need not be included unless there are negative values of s(a,b).

ONE MORE INNOVATION:
AFFINE ALIGNMENT

© 2024 Phillip Compeau

Comparing Same-Score Alignments

STOP: Which of these two alignments (which have
the same score) is “better”? Why?

H O W D O W E C O M PA R E D N A S E Q U E N C E S ?

an excessive penalty. For example, the alignment on the right is more adequate than the
alignment on the left, but they would currently receive the same score.

GATCCAG GATCCAG
GA-C-AG GA--CAG

A gap is a contiguous sequence of space symbols in a row of an alignment. One
way to score gaps more appropriately is to define an affine penalty for a gap of length
k as s + e · (k � 1), where s is the gap opening penalty, assessed to the first symbol
in the gap, and e is the gap extension penalty, assessed to each additional symbol
in the gap. We typically select e to be smaller than s so that the affine penalty for a
gap of length k is smaller than the penalty for k independent single-nucleotide indels
(s · k). For example, if s = 5 and e = 1, then the alignment on the left above is penal-
ized by 2s = 10, whereas the alignment on the right above is only penalized by s+ e = 6.

Alignment with Affine Gap Penalties Problem:
Construct a highest-scoring global alignment of two strings (with affine gap penalties).

Input: Two strings, a scoring matrix Score, and numbers s and e.
Output: A highest scoring global alignment between these strings, as defined
by Score and by the gap opening and extension penalties s and e.

STOP and Think: How would you modify the alignment graph to solve this
problem?

Figure 5.22 illustrates how affine gap penalties can be modeled in the alignment graph
by introducing a new “long” edge for each gap. Since we do not know in advance
where gaps should be located, we need to add edges accounting for every possible gap.
Thus, affine gap penalties can be accommodated by adding all possible vertical and
horizontal edges in the alignment graph to represent all possible gaps. Specifically, we
add edges connecting (i, j) to both (i + k, j) and (i, j + k) with weights s + e · (k � 1)
for all possible gap sizes k, as illustrated in Figure 5.23. For two sequences of length n,
the number of edges in the resulting alignment graph modeling affine gap penalties
increases from O

�
n2� to O

�
n3�.

STOP and Think: Can you design a DAG with just O
�
n2� edges to solve the

Alignment with Affine Gap Penalties Problem?

265

H O W D O W E C O M PA R E D N A S E Q U E N C E S ?

an excessive penalty. For example, the alignment on the right is more adequate than the
alignment on the left, but they would currently receive the same score.

GATCCAG GATCCAG
GA-C-AG GA--CAG

A gap is a contiguous sequence of space symbols in a row of an alignment. One
way to score gaps more appropriately is to define an affine penalty for a gap of length
k as s + e · (k � 1), where s is the gap opening penalty, assessed to the first symbol
in the gap, and e is the gap extension penalty, assessed to each additional symbol
in the gap. We typically select e to be smaller than s so that the affine penalty for a
gap of length k is smaller than the penalty for k independent single-nucleotide indels
(s · k). For example, if s = 5 and e = 1, then the alignment on the left above is penal-
ized by 2s = 10, whereas the alignment on the right above is only penalized by s+ e = 6.

Alignment with Affine Gap Penalties Problem:
Construct a highest-scoring global alignment of two strings (with affine gap penalties).

Input: Two strings, a scoring matrix Score, and numbers s and e.
Output: A highest scoring global alignment between these strings, as defined
by Score and by the gap opening and extension penalties s and e.

STOP and Think: How would you modify the alignment graph to solve this
problem?

Figure 5.22 illustrates how affine gap penalties can be modeled in the alignment graph
by introducing a new “long” edge for each gap. Since we do not know in advance
where gaps should be located, we need to add edges accounting for every possible gap.
Thus, affine gap penalties can be accommodated by adding all possible vertical and
horizontal edges in the alignment graph to represent all possible gaps. Specifically, we
add edges connecting (i, j) to both (i + k, j) and (i, j + k) with weights s + e · (k � 1)
for all possible gap sizes k, as illustrated in Figure 5.23. For two sequences of length n,
the number of edges in the resulting alignment graph modeling affine gap penalties
increases from O

�
n2� to O

�
n3�.

STOP and Think: Can you design a DAG with just O
�
n2� edges to solve the

Alignment with Affine Gap Penalties Problem?

265

© 2024 Phillip Compeau

Comparing Same-Score Alignments

H O W D O W E C O M PA R E D N A S E Q U E N C E S ?

an excessive penalty. For example, the alignment on the right is more adequate than the
alignment on the left, but they would currently receive the same score.

GATCCAG GATCCAG
GA-C-AG GA--CAG

A gap is a contiguous sequence of space symbols in a row of an alignment. One
way to score gaps more appropriately is to define an affine penalty for a gap of length
k as s + e · (k � 1), where s is the gap opening penalty, assessed to the first symbol
in the gap, and e is the gap extension penalty, assessed to each additional symbol
in the gap. We typically select e to be smaller than s so that the affine penalty for a
gap of length k is smaller than the penalty for k independent single-nucleotide indels
(s · k). For example, if s = 5 and e = 1, then the alignment on the left above is penal-
ized by 2s = 10, whereas the alignment on the right above is only penalized by s+ e = 6.

Alignment with Affine Gap Penalties Problem:
Construct a highest-scoring global alignment of two strings (with affine gap penalties).

Input: Two strings, a scoring matrix Score, and numbers s and e.
Output: A highest scoring global alignment between these strings, as defined
by Score and by the gap opening and extension penalties s and e.

STOP and Think: How would you modify the alignment graph to solve this
problem?

Figure 5.22 illustrates how affine gap penalties can be modeled in the alignment graph
by introducing a new “long” edge for each gap. Since we do not know in advance
where gaps should be located, we need to add edges accounting for every possible gap.
Thus, affine gap penalties can be accommodated by adding all possible vertical and
horizontal edges in the alignment graph to represent all possible gaps. Specifically, we
add edges connecting (i, j) to both (i + k, j) and (i, j + k) with weights s + e · (k � 1)
for all possible gap sizes k, as illustrated in Figure 5.23. For two sequences of length n,
the number of edges in the resulting alignment graph modeling affine gap penalties
increases from O

�
n2� to O

�
n3�.

STOP and Think: Can you design a DAG with just O
�
n2� edges to solve the

Alignment with Affine Gap Penalties Problem?

265

H O W D O W E C O M PA R E D N A S E Q U E N C E S ?

an excessive penalty. For example, the alignment on the right is more adequate than the
alignment on the left, but they would currently receive the same score.

GATCCAG GATCCAG
GA-C-AG GA--CAG

A gap is a contiguous sequence of space symbols in a row of an alignment. One
way to score gaps more appropriately is to define an affine penalty for a gap of length
k as s + e · (k � 1), where s is the gap opening penalty, assessed to the first symbol
in the gap, and e is the gap extension penalty, assessed to each additional symbol
in the gap. We typically select e to be smaller than s so that the affine penalty for a
gap of length k is smaller than the penalty for k independent single-nucleotide indels
(s · k). For example, if s = 5 and e = 1, then the alignment on the left above is penal-
ized by 2s = 10, whereas the alignment on the right above is only penalized by s+ e = 6.

Alignment with Affine Gap Penalties Problem:
Construct a highest-scoring global alignment of two strings (with affine gap penalties).

Input: Two strings, a scoring matrix Score, and numbers s and e.
Output: A highest scoring global alignment between these strings, as defined
by Score and by the gap opening and extension penalties s and e.

STOP and Think: How would you modify the alignment graph to solve this
problem?

Figure 5.22 illustrates how affine gap penalties can be modeled in the alignment graph
by introducing a new “long” edge for each gap. Since we do not know in advance
where gaps should be located, we need to add edges accounting for every possible gap.
Thus, affine gap penalties can be accommodated by adding all possible vertical and
horizontal edges in the alignment graph to represent all possible gaps. Specifically, we
add edges connecting (i, j) to both (i + k, j) and (i, j + k) with weights s + e · (k � 1)
for all possible gap sizes k, as illustrated in Figure 5.23. For two sequences of length n,
the number of edges in the resulting alignment graph modeling affine gap penalties
increases from O

�
n2� to O

�
n3�.

STOP and Think: Can you design a DAG with just O
�
n2� edges to solve the

Alignment with Affine Gap Penalties Problem?

265

Affine penalty: a way of scoring contiguous gaps
higher than discontiguous gaps.
• gap opening penalty (σ): given to first symbol.
• gap extension penalty (ε): given to extra symbols.

© 2024 Phillip Compeau

Comparing Same-Score Alignments

H O W D O W E C O M PA R E D N A S E Q U E N C E S ?

an excessive penalty. For example, the alignment on the right is more adequate than the
alignment on the left, but they would currently receive the same score.

GATCCAG GATCCAG
GA-C-AG GA--CAG

A gap is a contiguous sequence of space symbols in a row of an alignment. One
way to score gaps more appropriately is to define an affine penalty for a gap of length
k as s + e · (k � 1), where s is the gap opening penalty, assessed to the first symbol
in the gap, and e is the gap extension penalty, assessed to each additional symbol
in the gap. We typically select e to be smaller than s so that the affine penalty for a
gap of length k is smaller than the penalty for k independent single-nucleotide indels
(s · k). For example, if s = 5 and e = 1, then the alignment on the left above is penal-
ized by 2s = 10, whereas the alignment on the right above is only penalized by s+ e = 6.

Alignment with Affine Gap Penalties Problem:
Construct a highest-scoring global alignment of two strings (with affine gap penalties).

Input: Two strings, a scoring matrix Score, and numbers s and e.
Output: A highest scoring global alignment between these strings, as defined
by Score and by the gap opening and extension penalties s and e.

STOP and Think: How would you modify the alignment graph to solve this
problem?

Figure 5.22 illustrates how affine gap penalties can be modeled in the alignment graph
by introducing a new “long” edge for each gap. Since we do not know in advance
where gaps should be located, we need to add edges accounting for every possible gap.
Thus, affine gap penalties can be accommodated by adding all possible vertical and
horizontal edges in the alignment graph to represent all possible gaps. Specifically, we
add edges connecting (i, j) to both (i + k, j) and (i, j + k) with weights s + e · (k � 1)
for all possible gap sizes k, as illustrated in Figure 5.23. For two sequences of length n,
the number of edges in the resulting alignment graph modeling affine gap penalties
increases from O

�
n2� to O

�
n3�.

STOP and Think: Can you design a DAG with just O
�
n2� edges to solve the

Alignment with Affine Gap Penalties Problem?

265

H O W D O W E C O M PA R E D N A S E Q U E N C E S ?

an excessive penalty. For example, the alignment on the right is more adequate than the
alignment on the left, but they would currently receive the same score.

GATCCAG GATCCAG
GA-C-AG GA--CAG

A gap is a contiguous sequence of space symbols in a row of an alignment. One
way to score gaps more appropriately is to define an affine penalty for a gap of length
k as s + e · (k � 1), where s is the gap opening penalty, assessed to the first symbol
in the gap, and e is the gap extension penalty, assessed to each additional symbol
in the gap. We typically select e to be smaller than s so that the affine penalty for a
gap of length k is smaller than the penalty for k independent single-nucleotide indels
(s · k). For example, if s = 5 and e = 1, then the alignment on the left above is penal-
ized by 2s = 10, whereas the alignment on the right above is only penalized by s+ e = 6.

Alignment with Affine Gap Penalties Problem:
Construct a highest-scoring global alignment of two strings (with affine gap penalties).

Input: Two strings, a scoring matrix Score, and numbers s and e.
Output: A highest scoring global alignment between these strings, as defined
by Score and by the gap opening and extension penalties s and e.

STOP and Think: How would you modify the alignment graph to solve this
problem?

Figure 5.22 illustrates how affine gap penalties can be modeled in the alignment graph
by introducing a new “long” edge for each gap. Since we do not know in advance
where gaps should be located, we need to add edges accounting for every possible gap.
Thus, affine gap penalties can be accommodated by adding all possible vertical and
horizontal edges in the alignment graph to represent all possible gaps. Specifically, we
add edges connecting (i, j) to both (i + k, j) and (i, j + k) with weights s + e · (k � 1)
for all possible gap sizes k, as illustrated in Figure 5.23. For two sequences of length n,
the number of edges in the resulting alignment graph modeling affine gap penalties
increases from O

�
n2� to O

�
n3�.

STOP and Think: Can you design a DAG with just O
�
n2� edges to solve the

Alignment with Affine Gap Penalties Problem?

265

Affine penalty: a way of scoring contiguous gaps
higher than discontiguous gaps.
• gap opening penalty (σ): given to first symbol.
• gap extension penalty (ε): given to extra symbols.

© 2024 Phillip Compeau

If σ = 5 and ε = 1, then the alignment on the left is
penalized by 2σ = 10, whereas the alignment on the
right is only penalized by σ + ε = 6.

Adding Affine Gap Penalties

Alignment with Affine Gap Penalties Problem:
• Input: Two strings along with numbers σ and ε

and a scoring matrix.
• Output: A highest scoring global alignment

between these strings, as defined by the gap
opening and extension penalties σ and ε.

STOP: How can we modify the alignment graph to
solve this problem?

© 2024 Phillip Compeau

Adding “Long” Edges to Graph

One solution: Add (huge number of) new edges to
alignment graph to facilitate longer gaps.

© 2024 Phillip Compeau

C H A P T E R 5

Alignment with Affine Gap Penalties Problem:
Construct a highest-scoring global alignment of two strings (with affine gap penalties).

Input: Two strings, a scoring matrix Score, and numbers s and e.
Output: A highest scoring global alignment between these strings, as defined
by Score and by the gap opening and extension penalties s and e.

STOP and Think: How would you modify the alignment graph to solve this
problem?

Figure 5.23 illustrates how affine gap penalties can be modeled in the alignment graph
by introducing a new “long” edge for each gap. Since we do not know in advance
where gaps should be located, we need to add edges accounting for every possible gap.
Thus, affine gap penalties can be accommodated by adding all possible vertical and
horizontal edges in the alignment graph to represent all possible gaps. Specifically, we
add edges connecting (i, j) to both (i + k, j) and (i, j + k) with weights s + e · (k � 1)
for all possible gap sizes k, as illustrated in Figure 5.24. For two sequences of length n,
the number of edges in the resulting alignment graph modeling affine gap penalties
increases from O

�
n2� to O

�
n3�.

FIGURE 5.23 Representing gaps in the alignment graph on the left as “long” insertion
and deletion edges in the alignment graph on the right. For a gap of length k, the weight
of the corresponding long edge is equal to s+e·(k � 1).

268

Adding “Long” Edges to Graph

© 2024 Phillip Compeau

C H A P T E R 5

Alignment with Affine Gap Penalties Problem:
Construct a highest-scoring global alignment of two strings (with affine gap penalties).

Input: Two strings, a scoring matrix Score, and numbers s and e.
Output: A highest scoring global alignment between these strings, as defined
by Score and by the gap opening and extension penalties s and e.

STOP and Think: How would you modify the alignment graph to solve this
problem?

Figure 5.23 illustrates how affine gap penalties can be modeled in the alignment graph
by introducing a new “long” edge for each gap. Since we do not know in advance
where gaps should be located, we need to add edges accounting for every possible gap.
Thus, affine gap penalties can be accommodated by adding all possible vertical and
horizontal edges in the alignment graph to represent all possible gaps. Specifically, we
add edges connecting (i, j) to both (i + k, j) and (i, j + k) with weights s + e · (k � 1)
for all possible gap sizes k, as illustrated in Figure 5.24. For two sequences of length n,
the number of edges in the resulting alignment graph modeling affine gap penalties
increases from O

�
n2� to O

�
n3�.

FIGURE 5.23 Representing gaps in the alignment graph on the left as “long” insertion
and deletion edges in the alignment graph on the right. For a gap of length k, the weight
of the corresponding long edge is equal to s+e·(k � 1).

268

One solution: Add (huge number of) new edges to
alignment graph to facilitate longer gaps.

Adding “Long” Edges to Graph

© 2024 Phillip Compeau

C H A P T E R 5

Alignment with Affine Gap Penalties Problem:
Construct a highest-scoring global alignment of two strings (with affine gap penalties).

Input: Two strings, a scoring matrix Score, and numbers s and e.
Output: A highest scoring global alignment between these strings, as defined
by Score and by the gap opening and extension penalties s and e.

STOP and Think: How would you modify the alignment graph to solve this
problem?

Figure 5.23 illustrates how affine gap penalties can be modeled in the alignment graph
by introducing a new “long” edge for each gap. Since we do not know in advance
where gaps should be located, we need to add edges accounting for every possible gap.
Thus, affine gap penalties can be accommodated by adding all possible vertical and
horizontal edges in the alignment graph to represent all possible gaps. Specifically, we
add edges connecting (i, j) to both (i + k, j) and (i, j + k) with weights s + e · (k � 1)
for all possible gap sizes k, as illustrated in Figure 5.24. For two sequences of length n,
the number of edges in the resulting alignment graph modeling affine gap penalties
increases from O

�
n2� to O

�
n3�.

FIGURE 5.23 Representing gaps in the alignment graph on the left as “long” insertion
and deletion edges in the alignment graph on the right. For a gap of length k, the weight
of the corresponding long edge is equal to s+e·(k � 1).

268

The runtime of our algorithm is proportional to the
number of edges, so maybe we can use fewer edges.

Three-Level Manhattan for Affine
Alignment

© 2024 Phillip Compeau

This is the same path in a “three-level” Manhattan.

C H A P T E R 5

FIGURE 5.25 Building a three-level graph for alignment with affine gap penalties. The
lower level corresponds to gap extensions in v, the middle level corresponds to matches
and mismatches, and the upper level corresponds to gap extensions in w.

-ʍ

-

-σ

-

FIGURE 5.26 Every path from source to sink in the standard alignment graph shown
in Figure 5.23 corresponds to a path from source to sink in the three-level graph of
the same length (and vice-versa). Every node in the middle level has one outgoing
(blue) edge to the upper level and one outgoing (green) edge to the lower level, both
represented by dashed edges and having weight equal to the gap opening penalty.
Every node in the middle level also has one incoming blue edge from the upper level
and one incoming green edge from the lower level, both represented by dashed edges
and having zero weight (these edges close a gap).

Exercise Break: Prove that the number of edges in the graph described in
Figure 5.26 is at most 7 · n · m for sequences of length n and m.

270

We Still are Finding a Longest Path and
Have a Recurrence Relation

© 2024 Phillip Compeau

C H A P T E R 5

FIGURE 5.25 Building a three-level graph for alignment with affine gap penalties. The
lower level corresponds to gap extensions in v, the middle level corresponds to matches
and mismatches, and the upper level corresponds to gap extensions in w.

-ʍ

-

-σ

-

FIGURE 5.26 Every path from source to sink in the standard alignment graph shown
in Figure 5.23 corresponds to a path from source to sink in the three-level graph of
the same length (and vice-versa). Every node in the middle level has one outgoing
(blue) edge to the upper level and one outgoing (green) edge to the lower level, both
represented by dashed edges and having weight equal to the gap opening penalty.
Every node in the middle level also has one incoming blue edge from the upper level
and one incoming green edge from the lower level, both represented by dashed edges
and having zero weight (these edges close a gap).

Exercise Break: Prove that the number of edges in the graph described in
Figure 5.26 is at most 7 · n · m for sequences of length n and m.

270

H O W D O W E C O M PA R E D N A S E Q U E N C E S ?

The DAG in Figure 5.26 may be complicated, but it uses only O(n · m) edges for
sequences of length n and m, and a longest path in this graph still constructs an optimal
alignment with affine gap penalties. The three-level alignment graph translates into the
system of three recurrence relations shown below. Here, loweri, j, middlei, j, and upperi, j
are the lengths of the longest paths from the source node to (i, j)lower, (i, j)middle, and
(i, j)upper, respectively.

loweri, j = max

(
loweri�1, j � e

middlei�1, j � s

middlei,j = max

8
><

>:

loweri, j
middlei�1, j�1 + Score(vi, wj)

upperi, j

upperi,j = max

(
upperi, j�1 � e

middlei, j�1 � s

5J

The variable loweri, j computes the score of an optimal alignment between the i-prefix
of v and the j-prefix of w ending with a deletion (i.e., a vertical edge), whereas the vari-
able upperi, j computes the score of an optimal alignment of these prefixes ending with
an insertion (i.e., a horizontal edge), and the variable middlei, j computes the score of an
optimal alignment ending with a match or mismatch. The first term in the recurrences
for loweri, j and upperi, j corresponds to extending the gap, whereas the second term
corresponds to initiating the gap.

STOP and Think: Compute an optimal alignment with affine gap penalties for
the A-domains considered in the beginning of this section. How does varying the
gap opening and extension penalties affect the quality of the alignment?

Exercise Break: Design an algorithm for computing optimal local (rather than
global) alignment with affine gap penalties.

Space-Efficient Sequence Alignment

Computing alignment score using linear memory

To introduce fitting alignments, we used the example of aligning a 20,000 amino acid-
long NRP synthetase from Bacillus brevis against a 600 amino acid-long A-domain from

271

The Number of Edges is Still
Manageable

© 2024 Phillip Compeau

C H A P T E R 5

FIGURE 5.25 Building a three-level graph for alignment with affine gap penalties. The
lower level corresponds to gap extensions in v, the middle level corresponds to matches
and mismatches, and the upper level corresponds to gap extensions in w.

-ʍ

-

-σ

-

FIGURE 5.26 Every path from source to sink in the standard alignment graph shown
in Figure 5.23 corresponds to a path from source to sink in the three-level graph of
the same length (and vice-versa). Every node in the middle level has one outgoing
(blue) edge to the upper level and one outgoing (green) edge to the lower level, both
represented by dashed edges and having weight equal to the gap opening penalty.
Every node in the middle level also has one incoming blue edge from the upper level
and one incoming green edge from the lower level, both represented by dashed edges
and having zero weight (these edges close a gap).

Exercise Break: Prove that the number of edges in the graph described in
Figure 5.26 is at most 7 · n · m for sequences of length n and m.

270

Exercise: What is the approximate number of edges
in this graph?

The Number of Edges is Still
Manageable

© 2024 Phillip Compeau

C H A P T E R 5

FIGURE 5.25 Building a three-level graph for alignment with affine gap penalties. The
lower level corresponds to gap extensions in v, the middle level corresponds to matches
and mismatches, and the upper level corresponds to gap extensions in w.

-ʍ

-

-σ

-

FIGURE 5.26 Every path from source to sink in the standard alignment graph shown
in Figure 5.23 corresponds to a path from source to sink in the three-level graph of
the same length (and vice-versa). Every node in the middle level has one outgoing
(blue) edge to the upper level and one outgoing (green) edge to the lower level, both
represented by dashed edges and having weight equal to the gap opening penalty.
Every node in the middle level also has one incoming blue edge from the upper level
and one incoming green edge from the lower level, both represented by dashed edges
and having zero weight (these edges close a gap).

Exercise Break: Prove that the number of edges in the graph described in
Figure 5.26 is at most 7 · n · m for sequences of length n and m.

270

Answer: Approximately (in fact, at most) 7·|v|·|w|.

ALIGNING MULTIPLE STRINGS

© 2024 Phillip Compeau

Moving to Multiple Sequences

Multiple Alignment Problem: Find the highest-
scoring alignment between multiple strings.
• Input: A collection of t strings (and some way of

scoring columns of a multiple alignment).
• Output: A multiple alignment of these strings

having maximum score.

© 2024 Phillip Compeau

Moving to Multiple Sequences

STOP: What algorithm would you propose to solve
this problem?

© 2024 Phillip Compeau

Multiple Alignment Problem: Find the highest-
scoring alignment between multiple strings.
• Input: A collection of t strings (and some way of

scoring columns of a multiple alignment).
• Output: A multiple alignment of these strings

having maximum score.

Moving to Multiple Dimensions

© 2024 Phillip Compeau

C H A P T E R 5

A T - G T T a T A
A g C G a T C - A
A T C G T - C T c

0 1 2 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 7 8
0 1 2 3 4 5 5 6 7 8

The multiple alignment matrix is a generalization of the pairwise alignment matrix
to more than two sequences. The three arrays shown below this alignment record the
respective number of symbols in ATGTTATA, AGCGATCA, and ATCGTCTC encountered
up to a given position. Together, these three arrays correspond to a path in a three-
dimensional grid:

(0, 0, 0) ! (1, 1, 1) ! (2, 2, 2) ! (2, 3, 3) ! (3, 4, 4) ! (4, 5, 5) ! (5, 6, 5) !
(6, 7, 6) ! (7, 7, 7) ! (8, 8, 8)

As the alignment graph for two sequences is a grid of squares, the alignment graph for
three sequences is a grid of cubes. Every node in the 3-way alignment graph has up to
seven incoming edges, as shown in Figure 5.31.

(i – 1, j – 1, k – 1)

(i, j – 1, k – 1)

(i – 1, j, k – 1)

(i – 1, j – 1, k) (i – 1, j, k)

(i, j, k) (i, j – 1, k)

(i, j, k – 1)

FIGURE 5.31 One cube making up the alignment graph for three sequences. Each
node in the alignment graph for three sequences has up to seven incoming edges.

The score of a multiple alignment is defined as the sum of scores of the alignment
columns (or, equivalently, weights of edges in the alignment path), with an optimal
alignment being one that maximizes this score. In the case of an amino acid alphabet,

278

Moving to Multiple Dimensions

C H A P T E R 5

A T - G T T a T A
A g C G a T C - A
A T C G T - C T c

0 1 2 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 7 8
0 1 2 3 4 5 5 6 7 8

The multiple alignment matrix is a generalization of the pairwise alignment matrix
to more than two sequences. The three arrays shown below this alignment record the
respective number of symbols in ATGTTATA, AGCGATCA, and ATCGTCTC encountered
up to a given position. Together, these three arrays correspond to a path in a three-
dimensional grid:

(0, 0, 0) ! (1, 1, 1) ! (2, 2, 2) ! (2, 3, 3) ! (3, 4, 4) ! (4, 5, 5) ! (5, 6, 5) !
(6, 7, 6) ! (7, 7, 7) ! (8, 8, 8)

As the alignment graph for two sequences is a grid of squares, the alignment graph for
three sequences is a grid of cubes. Every node in the 3-way alignment graph has up to
seven incoming edges, as shown in Figure 5.31.

(i – 1, j – 1, k – 1)

(i, j – 1, k – 1)

(i – 1, j, k – 1)

(i – 1, j – 1, k) (i – 1, j, k)

(i, j, k) (i, j – 1, k)

(i, j, k – 1)

FIGURE 5.31 One cube making up the alignment graph for three sequences. Each
node in the alignment graph for three sequences has up to seven incoming edges.

The score of a multiple alignment is defined as the sum of scores of the alignment
columns (or, equivalently, weights of edges in the alignment path), with an optimal
alignment being one that maximizes this score. In the case of an amino acid alphabet,

278

STOP: What is the issue with the dynamic
programming approach in multiple dimensions?

© 2024 Phillip Compeau

Answer: The number of edges in a single block
grows like 2t – 1...

Moving to Multiple Dimensions

© 2024 Phillip Compeau

C H A P T E R 5

A T - G T T a T A
A g C G a T C - A
A T C G T - C T c

0 1 2 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 7 8
0 1 2 3 4 5 5 6 7 8

The multiple alignment matrix is a generalization of the pairwise alignment matrix
to more than two sequences. The three arrays shown below this alignment record the
respective number of symbols in ATGTTATA, AGCGATCA, and ATCGTCTC encountered
up to a given position. Together, these three arrays correspond to a path in a three-
dimensional grid:

(0, 0, 0) ! (1, 1, 1) ! (2, 2, 2) ! (2, 3, 3) ! (3, 4, 4) ! (4, 5, 5) ! (5, 6, 5) !
(6, 7, 6) ! (7, 7, 7) ! (8, 8, 8)

As the alignment graph for two sequences is a grid of squares, the alignment graph for
three sequences is a grid of cubes. Every node in the 3-way alignment graph has up to
seven incoming edges, as shown in Figure 5.31.

(i – 1, j – 1, k – 1)

(i, j – 1, k – 1)

(i – 1, j, k – 1)

(i – 1, j – 1, k) (i – 1, j, k)

(i, j, k) (i, j – 1, k)

(i, j, k – 1)

FIGURE 5.31 One cube making up the alignment graph for three sequences. Each
node in the alignment graph for three sequences has up to seven incoming edges.

The score of a multiple alignment is defined as the sum of scores of the alignment
columns (or, equivalently, weights of edges in the alignment path), with an optimal
alignment being one that maximizes this score. In the case of an amino acid alphabet,

278

Moving to Multiple Dimensions

STOP: What heuristic might you propose to align
multiple sequences?

© 2024 Phillip Compeau

C H A P T E R 5

A T - G T T a T A
A g C G a T C - A
A T C G T - C T c

0 1 2 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 7 8
0 1 2 3 4 5 5 6 7 8

The multiple alignment matrix is a generalization of the pairwise alignment matrix
to more than two sequences. The three arrays shown below this alignment record the
respective number of symbols in ATGTTATA, AGCGATCA, and ATCGTCTC encountered
up to a given position. Together, these three arrays correspond to a path in a three-
dimensional grid:

(0, 0, 0) ! (1, 1, 1) ! (2, 2, 2) ! (2, 3, 3) ! (3, 4, 4) ! (4, 5, 5) ! (5, 6, 5) !
(6, 7, 6) ! (7, 7, 7) ! (8, 8, 8)

As the alignment graph for two sequences is a grid of squares, the alignment graph for
three sequences is a grid of cubes. Every node in the 3-way alignment graph has up to
seven incoming edges, as shown in Figure 5.31.

(i – 1, j – 1, k – 1)

(i, j – 1, k – 1)

(i – 1, j, k – 1)

(i – 1, j – 1, k) (i – 1, j, k)

(i, j, k) (i, j – 1, k)

(i, j, k – 1)

FIGURE 5.31 One cube making up the alignment graph for three sequences. Each
node in the alignment graph for three sequences has up to seven incoming edges.

The score of a multiple alignment is defined as the sum of scores of the alignment
columns (or, equivalently, weights of edges in the alignment path), with an optimal
alignment being one that maximizes this score. In the case of an amino acid alphabet,

278

Greedy Heuristic for Multiple Alignment

1. Find an optimal pairwise alignment of each pair
of strings.

2. Combine the set of optimal pairwise alignments
into a multiple alignment.

© 2024 Phillip Compeau

Greedy Heuristic for Multiple Alignment

STOP: Try this approach on the strings CCCCTTTT,
TTTTGGGG, and GGGGCCCC.

© 2024 Phillip Compeau

1. Find an optimal pairwise alignment of each pair
of strings.

2. Combine the set of optimal pairwise alignments
into a multiple alignment.

There is no way to combine these optimal pairwise
alignment into a meaningful multiple alignment!

Greedy Heuristic for Multiple Alignment

C H A P T E R 5

A greedy multiple alignment algorithm

Note that the multiple alignment

AT-GTTaTA
AgCGaTC-A
ATCGT-CTc

induces three pairwise alignments:

AT-GTTaTA AT-GTTaTA C-AAgCGaT
AgCGaTC-A ATCGT-CTc ATCGT-CTc

But can we work in the opposite direction, combining optimal pairwise alignments into
a multiple alignment?

STOP and Think:

1. Does an optimal multiple alignment induce optimal pairwise alignments?

2. Try combining the pairwise alignments below into a multiple alignment of
the strings CCCCTTTT, TTTTGGGG, and GGGGCCCC.

CCCCTTTT---- ----CCCCTTTT TTTTGGGG----
----TTTTGGGG GGGGCCCC---- ----GGGGCCCC

Unfortunately, we cannot always combine optimal pairwise alignments into a multiple
alignment because some pairwise alignments may be incompatible. Indeed, the first
pairwise alignment in the above question implies that CCCC occurs before TTTT in
the multiple alignment constructed from these three pairwise alignments. The third
pairwise alignment implies that TTTT occurs before GGGG in the multiple alignment.
But the second pairwise alignment implies that GGGG occurs before CCCC in the multiple
alignment. Thus, CCCC must occur before TTTT, which must occur before GGGG, which
must occur before CCCC, a contradiction.

To avoid incompatibility, some multiple alignment algorithms attempt to greedily
construct a multiple alignment from pairwise alignments that are not necessarily opti-
mal. The greedy heuristic starts by selecting the two strings having the highest scoring
pairwise alignment (among all possible pairs of strings) and then uses this pairwise
alignment as a building block for iteratively adding one string at a time to the growing
multiple alignment. We align the two closest strings at the first step because they often

280

© 2024 Phillip Compeau

1. Find an optimal pairwise alignment of each pair
of strings.

2. Combine the set of optimal pairwise alignments
into a multiple alignment.

Fortunately, strings that we are aligning will often be
so similar that even simple heuristics will find
correct alignments. But not always...

Pairwise Alignment Whispers, Multiple
Alignment Shouts

© 2024 Phillip Compeau

INTERLUDE: WHY DON’T WE
HAVE AN HIV VACCINE?

© 2024 Phillip Compeau

Waiting for an HIV Vaccine …

© 2024 Phillip Compeau

Yet another terrible disease is
about to yield to patience,
persistence and outright genius.

Margaret Heckler
1984

Waiting for an HIV Vaccine …

© 2024 Phillip Compeau

Yet another terrible disease is
about to yield to patience,
persistence and outright genius.

It is no longer a question of
whether we can develop an
AIDS vaccine, it is simply a
question of when.

Margaret Heckler
1984

Bill Clinton
1997

Waiting for an HIV Vaccine …

© 2024 Phillip Compeau

… and yet we got a SARS-CoV-2 vaccine
in under a year #ThanksPfizer

© 2024 Phillip Compeau

Many Vaccines Target Viral Surface
Proteins

© 2024 Phillip Compeau

Source: https://www.bbc.com/news/health-52394485

Many Vaccines Target Viral Surface
Proteins

© 2024 Phillip Compeau

https://www.frontiersin.org/articles/10.3389/fimmu.2015.00336/full

Vaccines training the immune
system to recognize HIV’s
surface proteins fail because
HIV strains are so variable.

human HIV/M
human HIV/M
chimpanzee SIV
chimpanzee SIV

chimpanzee SIV

human HIV/N
human HIV/N

chimpanzee SIV
chimpanzee SIV
chimpanzee SIV
chimpanzee SIV

chimpanzee SIV
chimpanzee SIV
human HIV/O
human HIV/O
chimpanzee SIV
chimpanzee SIV
red-capped manabey SIV
drill SIV
vervet monkey SIV
tantalus monkey SIV
sooty mangabey SIV
human HIV/A
human HIV/B
sooty mangabey SIV
Sykes’s monkey SIV
greater spot-nosed monkey SIV

De Brazzas monkey SIV

HIV Drug “Cocktails” Have to Deal with
Variability

© 2024 Phillip Compeau

VKKLGEQFR-NKTIIFNQPSGGDLEIVMHSFNCGGEFFYCNTTQLFN----------NSTES------DTITL
VKKLGEQFR-NKTIIFNQPSGGDLEIVMHSFNCGGEFFYCNTTQLFN----------NSTDNG-----DTITL
VKKLGEQFR-NKTIIFNQPSGGDLEIVMHSFNCGGEFFYCNTTQLFD----------NSTESNN----DTITL
VDKLREQFGKNKTIIFNQPSGGDLEIVMHTFNCGGEFFYCNTTQLFNSTWNS---TGNGTESYNGQENGTITL
VDKLREQFGKNKTIIFNQPSGGDLEIVMHTFNCGGEFFYCNTTQLFNSTWNG---TNTT--GLDG--NDTITL
VDKLREQFGKNKTIIFNQSSGGDLEIVTHTFNCGGEFFYCNTTQLFNSNWTG---NSTE--GLHG--DDTITL
VKKLGEQFG-NKTIIFNQSSGGGLEIVMHSFNCGGEFFYCNTTQLFNN--TR-----NSTESNNGQGNDTTTL
VKKLREQFGKNKTIIFKQSSGGDLEIVTHTFNCAGEFFYCNTTQLFNSNWTE-----NSITGLDG--NDTITL
VGKLREQFGK-KTIIFNQPSGGDLEIVMHSFNCQGEFFYCNTTRLFNSTWDNSTWNSTGKDKENGN-NDTITL

envelope glycoprotein gp120

The HIV population in a single infected individual
rapidly evolves to evade the immune system.

HIV Drug “Cocktails” Have to Deal with
Variability

© 2024 Phillip Compeau

envelope glycoprotein gp120

The HIV population in a single infected individual
rapidly evolves to evade the immune system.

HIV strains from different patients are diverged
phenotypes requiring different drug cocktails.

VKKLGEQFR-NKTIIFNQPSGGDLEIVMHSFNCGGEFFYCNTTQLFN----------NSTES------DTITL
VKKLGEQFR-NKTIIFNQPSGGDLEIVMHSFNCGGEFFYCNTTQLFN----------NSTDNG-----DTITL
VKKLGEQFR-NKTIIFNQPSGGDLEIVMHSFNCGGEFFYCNTTQLFD----------NSTESNN----DTITL
VDKLREQFGKNKTIIFNQPSGGDLEIVMHTFNCGGEFFYCNTTQLFNSTWNS---TGNGTESYNGQENGTITL
VDKLREQFGKNKTIIFNQPSGGDLEIVMHTFNCGGEFFYCNTTQLFNSTWNG---TNTT--GLDG--NDTITL
VDKLREQFGKNKTIIFNQSSGGDLEIVTHTFNCGGEFFYCNTTQLFNSNWTG---NSTE--GLHG--DDTITL
VKKLGEQFG-NKTIIFNQSSGGGLEIVMHSFNCGGEFFYCNTTQLFNN--TR-----NSTESNNGQGNDTTTL
VKKLREQFGKNKTIIFKQSSGGDLEIVTHTFNCAGEFFYCNTTQLFNSNWTE-----NSITGLDG--NDTITL
VGKLREQFGK-KTIIFNQPSGGDLEIVMHSFNCQGEFFYCNTTRLFNSTWDNSTWNSTGKDKENGN-NDTITL

Returning to Multiple Alignment

© 2024 Phillip Compeau

Multiple Alignment Problem: Find the highest-
scoring alignment between multiple strings.
• Input: A collection of t strings (and some way of

scoring columns of a multiple alignment).
• Output: A multiple alignment of these strings

having maximum score.

A single misalignment could lead to an error, so we
have to be accurate. And so we need a problem
formulation that scores different columns differently.

Another Problem

© 2024 Phillip Compeau

Once we have a collection of known protein
alignments (”families”), we need to be able to
identify which family a new protein belongs to. That
is, add a new string into an existing alignment.

VKKLGEQFR-NKTIIFNQPSGGDLEIVMHSFNCGGEFFYCNTTQLFN----------NSTES------DTITL
VKKLGEQFR-NKTIIFNQPSGGDLEIVMHSFNCGGEFFYCNTTQLFN----------NSTDNG-----DTITL
VKKLGEQFR-NKTIIFNQPSGGDLEIVMHSFNCGGEFFYCNTTQLFD----------NSTESNN----DTITL
VDKLREQFGKNKTIIFNQPSGGDLEIVMHTFNCGGEFFYCNTTQLFNSTWNS---TGNGTESYNGQENGTITL
VDKLREQFGKNKTIIFNQPSGGDLEIVMHTFNCGGEFFYCNTTQLFNSTWNG---TNTT--GLDG--NDTITL
VDKLREQFGKNKTIIFNQSSGGDLEIVTHTFNCGGEFFYCNTTQLFNSNWTG---NSTE--GLHG--DDTITL
VKKLGEQFG-NKTIIFNQSSGGGLEIVMHSFNCGGEFFYCNTTQLFNN--TR-----NSTESNNGQGNDTTTL
VKKLREQFGKNKTIIFKQSSGGDLEIVTHTFNCAGEFFYCNTTQLFNSNWTE-----NSITGLDG--NDTITL
VGKLREQFGK-KTIIFNQPSGGDLEIVMHSFNCQGEFFYCNTTRLFNSTWDNSTWNSTGKDKENGN-NDTITL

Trying to give you a deep understanding
of alignment using an idiotic analogy

© 2024 Phillip Compeau

STOP: If we replace ”chill”
with “refrigerate”, does it
change the meaning of the
sentence?

Trying to give you a deep understanding
of alignment using an idiotic analogy

© 2024 Phillip Compeau

STOP: What about now?
More importantly, what do
you think I am getting at
here?

Trying to give you a deep understanding
of alignment using an idiotic analogy

© 2024 Phillip Compeau

STOP: What about now?
More importantly, what do
you think I am getting at
here?

Key point: Proteins have a
“language”, so why would
we treat every replacement
of two symbols the same?

I am making a good point, I promise

© 2024 Phillip Compeau

VKKLGEQFR-NKTIIFNQPSGGDLEIVMHSFNCGGEFFYCNTTQLFN----------NSTES------DTITL
VKKLGEQFR-NKTIIFNQPSGGDLEIVMHSFNCGGEFFYCNTTQLFN----------NSTDNG-----DTITL
VKKLGEQFR-NKTIIFNQPSGGDLEIVMHSFNCGGEFFYCNTTQLFD----------NSTESNN----DTITL
VDKLREQFGKNKTIIFNQPSGGDLEIVMHTFNCGGEFFYCNTTQLFNSTWNS---TGNGTESYNGQENGTITL
VDKLREQFGKNKTIIFNQPSGGDLEIVMHTFNCGGEFFYCNTTQLFNSTWNG---TNTT--GLDG--NDTITL
VDKLREQFGKNKTIIFNQSSGGDLEIVTHTFNCGGEFFYCNTTQLFNSNWTG---NSTE--GLHG--DDTITL
VKKLGEQFG-NKTIIFNQSSGGGLEIVMHSFNCGGEFFYCNTTQLFNN--TR-----NSTESNNGQGNDTTTL
VKKLREQFGKNKTIIFKQSSGGDLEIVTHTFNCAGEFFYCNTTQLFNSNWTE-----NSITGLDG--NDTITL
VGKLREQFGK-KTIIFNQPSGGDLEIVMHSFNCQGEFFYCNTTRLFNSTWDNSTWNSTGKDKENGN-NDTITL

The cell is
somehow OK
with a G-R
substitution in
these two
columns.

The cell is not
OK with a G-R
substitution in
this column.

Can we introduce a
model that has
different scoring
parameters in
different columns?

GAMBLING WITH YAKUZA

© 2024 Phillip Compeau

Chō-Han and ”Heads or Tails”

© 2024 Phillip Compeau

Chō-Han: A game played in 18th Century Japanese
casinos in which players wager that the sum will be
even (“chō”) or odd (“han”).

We will think about an equivalent game called
“Heads or Tails” in which we bet on a coin toss.

Chō-Han and ”Heads or Tails”

© 2024 Phillip Compeau

We will think about an equivalent game called
“Heads or Tails” in which we bet on a coin toss.

Chō-Han: A game played in 18th Century Japanese
casinos in which players wager that the sum will be
even (“chō”) or odd (“han”).

Identifying a Biased Coin

© 2024 Phillip Compeau

A crooked dealer may use one of two coins:
• The fair coin (F) gives heads with probability ½:

 PrF(“Head”) = 1/2 PrF(“Tail”) = 1/2
• The biased coin (B) gives heads with probability

¾:
 PrB(“Head”) = 3/4 PrB(“Tail”) = 1/4

Identifying a Biased Coin

© 2024 Phillip Compeau

STOP: Say that you play Heads or Tails 100 times,
and the coin produces heads 63 times. Is the dealer
cheating? Was the coin fair or biased?

A crooked dealer may use one of two coins:
• The fair coin (F) gives heads with probability ½:

 PrF(“Head”) = 1/2 PrF(“Tail”) = 1/2
• The biased coin (B) gives heads with probability

¾:
 PrB(“Head”) = 3/4 PrB(“Tail”) = 1/4

Identifying a Biased Coin

© 2024 Phillip Compeau

A crooked dealer may use one of two coins:
• The fair coin (F) gives heads with probability ½:

 PrF(“Head”) = 1/2 PrF(“Tail”) = 1/2
• The biased coin (B) gives heads with probability

¾:
 PrB(“Head”) = 3/4 PrB(“Tail”) = 1/4

STOP: A better question would be, “Which coin is
more likely to have been used if we see heads 63
times?”

Identifying a Biased Coin

© 2024 Phillip Compeau

A crooked dealer may use one of two coins:
• The fair coin (F) gives heads with probability ½:

 PrF(“Head”) = 1/2 PrF(“Tail”) = 1/2
• The biased coin (B) gives heads with probability

¾:
 PrB(“Head”) = 3/4 PrB(“Tail”) = 1/4

Answer: 63 is closer to 75 than 50, but there must
be a more quantitative answer …

Identifying a Biased Coin

© 2024 Phillip Compeau

Given a sequence of n flips with k “Heads”:
x = x1 x2 . . . xn

Identifying a Biased Coin

© 2024 Phillip Compeau

Given a sequence of n flips with k “Heads”:
x = x1 x2 . . . xn

The probability this sequence was generated by the
fair coin:

 Pr(x|F) = PrF(x1) · … · PrF(xn) = (1/2)n

Identifying a Biased Coin

© 2024 Phillip Compeau

Given a sequence of n flips with k “Heads”:
x = x1 x2 . . . xn

The probability this sequence was generated by the
fair coin:

 Pr(x|F) = PrF(x1) · … · PrF(xn) = (1/2)n

The probability that it was generated by the biased
coin:

 Pr(x|B) = PrB(x1) · … · PrB(xn) = (3/4)k · (1/4)n-k

Identifying a Biased Coin

© 2024 Phillip Compeau

Pr(x|F) > Pr(x|B) → fair is more likely
Pr(x|F) < Pr(x|B) → biased is more likely

The probability this sequence was generated by the
fair coin:

 Pr(x|F) = PrF(x1) · … · PrF(xn) = (1/2)n

The probability that it was generated by the biased
coin:

 Pr(x|B) = PrB(x1) · … · PrB(xn) = (3/4)k · (1/4)n-k

Identifying a Biased Coin

© 2024 Phillip Compeau

Exercise: For a sequence of 100 flips with 63 heads,
which coin is more likely?

The probability this sequence was generated by the
fair coin:

 Pr(x|F) = PrF(x1) · … · PrF(xn) = (1/2)n

The probability that it was generated by the biased
coin:

 Pr(x|B) = PrB(x1) · … · PrB(xn) = (3/4)k · (1/4)n-k

Identifying a Biased Coin

© 2024 Phillip Compeau

Both (1/2)100 and (3/4)63 · (1/4)37 are so close to zero
that this question is harder than it seems!

The probability this sequence was generated by the
fair coin:

 Pr(x|F) = PrF(x1) · … · PrF(xn) = (1/2)n

The probability that it was generated by the biased
coin:

 Pr(x|B) = PrB(x1) · … · PrB(xn) = (3/4)k · (1/4)n-k

Identifying a Biased Coin

© 2024 Phillip Compeau

Both (1/2)100 and (3/4)63 · (1/4)37 are so close to zero
that this question is harder than it seems!

Equilibrium occurs when
 Pr(x|F) = Pr(x|B)

Identifying a Biased Coin

© 2024 Phillip Compeau

Both (1/2)100 and (3/4)63 · (1/4)37 are so close to zero
that this question is harder than it seems!

Equilibrium occurs when
 Pr(x|F) = Pr(x|B)
 (1/2)n = (3/4)k · (1/4)n-k

Identifying a Biased Coin

© 2024 Phillip Compeau

Both (1/2)100 and (3/4)63 · (1/4)37 are so close to zero
that this question is harder than it seems!

Equilibrium occurs when
 Pr(x|F) = Pr(x|B)
 (1/2)n = (3/4)k · (1/4)n-k

 (1/2)n = 3k/4n

Identifying a Biased Coin

© 2024 Phillip Compeau

Both (1/2)100 and (3/4)63 · (1/4)37 are so close to zero
that this question is harder than it seems!

Equilibrium occurs when
 Pr(x|F) = Pr(x|B)
 (1/2)n = (3/4)k · (1/4)n-k

 (1/2)n = 3k/4n

 2n = 3k

Identifying a Biased Coin

© 2024 Phillip Compeau

Both (1/2)100 and (3/4)63 · (1/4)37 are so close to zero
that this question is harder than it seems!

Equilibrium occurs when
 Pr(x|F) = Pr(x|B)
 (1/2)n = (3/4)k · (1/4)n-k

 (1/2)n = 3k/4n

 2n = 3k

 n = k · log2(3)

Identifying a Biased Coin

© 2024 Phillip Compeau

Both (1/2)100 and (3/4)63 · (1/4)37 are so close to zero
that this question is harder than it seems!

Equilibrium occurs when
 Pr(x|F) = Pr(x|B)
 (1/2)n = (3/4)k · (1/4)n-k

 (1/2)n = 3k/4n

 2n = 3k

 n = k · log2(3)
 k = n / log2(3) ≈ 0.632 n

Identifying a Biased Coin

© 2024 Phillip Compeau

STOP: So … which coin was more likely?

Equilibrium occurs when
 Pr(x|F) = Pr(x|B)
 (1/2)n = (3/4)k · (1/4)n-k

 (1/2)n = 3k/4n

 2n = 3k

 n = k · log2(3)
 k = n / log2(3) ≈ 0.632 n

Identifying a Biased Coin

© 2024 Phillip Compeau

Answer: The fair coin (!) because k < 0.632 n.

Equilibrium occurs when
 Pr(x|F) = Pr(x|B)
 (1/2)n = (3/4)k · (1/4)n-k

 (1/2)n = 3k/4n

 2n = 3k

 n = k · log2(3)
 k = n / log2(3) ≈ 0.632 n

Identifying a Biased Coin

© 2024 Phillip Compeau

Log-odds ratio: The logarithm of the ratio of Pr(x|F)
and Pr(x|B):

log2(Pr(x|F) / Pr(x|B)) = log2(2n/3k) = n – k · log2(3)

The log-odds ratio is positive when Pr(x|F) > Pr(x|B)
and negative when Pr(x|B) > Pr(x|F).

Bakuto Dealers Were Shirtless for a
Reason…

© 2024 Phillip Compeau

Now let’s assume that the dealer
has both a fair and biased coin
and can switch back and forth.

Bakuto Dealers Were Shirtless for a
Reason…

© 2024 Phillip Compeau

Now let’s assume that the dealer
has both a fair and biased coin
and can switch back and forth.

Casino Problem: Given a sequence of
coin flips, determine when the dealer
used a fair coin and a biased coin.
• Input: A sequence x = x1 x2 . . . xn

of flips made by coins F and B.
• Output: A sequence π = π1 π2 · · ·

πn, with each πi being equal to
either F or B.

Bakuto Dealers Were Shirtless for a
Reason…

© 2024 Phillip Compeau

This is not a computational
problem! Any of the 2n
sequences π can generate any x.

Casino Problem: Given a sequence of
coin flips, determine when the dealer
used a fair coin and a biased coin.
• Input: A sequence x = x1 x2 . . . xn

of flips made by coins F and B.
• Output: A sequence π = π1 π2 · · ·

πn, with each πi being equal to
either F or B.

Grading π Using Log-Odds Ratio

© 2024 Phillip Compeau

HHHTHTHHHT
BBBBB

Pr(x|F) < Pr(x|B)

Grading π Using Log-Odds Ratio

© 2024 Phillip Compeau

HHHTHTHHHT
BBBBB
 FFFFF Pr(x|F) > Pr(x|B)

Pr(x|F) < Pr(x|B)

Grading π Using Log-Odds Ratio

© 2024 Phillip Compeau

Pr(x|F)/Pr(x|B) > 1

HHHTHTHHHT
BBBBB
 FFFFF

Pr(x|F)/Pr(x|B) < 1

Grading π Using Log-Odds Ratio

© 2024 Phillip Compeau

HHHTHTHHHT
BBBBB
 FFFFF

Pr(x|F)/Pr(x|B) < 1

Pr(x|F)/Pr(x|B) > 1

If n = # tosses and k = # heads, use log-odds ratio:
log2(Pr(x|F) / Pr(x|B)) = log2(2n/3k) = n – k · log2(3) .

Grading π Using Log-Odds Ratio

© 2024 Phillip Compeau

HHHTHTHHHT
BBBBB
 FFFFF

Log-odds < 0

Log-odds > 0

Log-odds ratio
0

Log-odds ratio > 0

Fair coin more likely

Log-odds ratio < 0

Biased coin more likely

If n = # tosses and k = # heads, use log-odds ratio:
log2(Pr(x|F) / Pr(x|B)) = log2(2n/3k) = n – k · log2(3) .

Grading π Using Log-Odds Ratio

© 2024 Phillip Compeau

HHHTHTHHHT
BBBBB
 FFFFF
 FFFFF

Grading π Using Log-Odds Ratio

© 2024 Phillip Compeau

HHHTHTHHHT
BBBBB
 FFFFF
 FFFFF
 FFFFF

Grading π Using Log-Odds Ratio

© 2024 Phillip Compeau

HHHTHTHHHT
BBBBB
 FFFFF
 FFFFF
 FFFFF
 BBBBB

Grading π Using Log-Odds Ratio

© 2024 Phillip Compeau

HHHTHTHHHT
BBBBB
 FFFFF
 FFFFF
 FFFFF
 BBBBB
 FFFFF

STOP: What are the disadvantages of this approach?

Grading π Using Log-Odds Ratio

© 2024 Phillip Compeau

HHHTHTHHHT
BBBBB
 FFFFF
 FFFFF
 FFFFF
 BBBBB
 FFFFF

Answer: Overlapping windows may make different
prediction for the same flip.

Grading π Using Log-Odds Ratio

© 2024 Phillip Compeau

HHHTHTHHHT
BBBBB
 FFFFF
 FFFFF
 FFFFF
 BBBBB
 FFFFF

(Also, there is no clear choice for window length.)

HIDDEN MARKOV MODELS

© 2024 Phillip Compeau

Turning the Dealer into a Machine

© 2024 Phillip Compeau

Think of the dealer as a machine with k hidden
states (F and B) that proceeds in a sequence of steps.

Turning the Dealer into a Machine

© 2024 Phillip Compeau

Think of the dealer as a machine with k hidden
states (F and B) that proceeds in a sequence of steps.

In each step, it emits a symbol (H or T) with certain
probability based on its current state.

Turning the Dealer into a Machine

© 2024 Phillip Compeau

While in a certain state, the machine makes two
decisions:
1. Which symbol will I emit?
2. Which hidden state will I move to next?

Think of the dealer as a machine with k hidden
states (F and B) that proceeds in a sequence of steps.

In each step, it emits a symbol (H or T) with certain
probability based on its current state.

Why are the States “Hidden”?

© 2024 Phillip Compeau

An observer can see the emitted symbols of an
HMM but does not know which state the HMM is
currently in.

Why are the States “Hidden”?

© 2024 Phillip Compeau

An observer can see the emitted symbols of an
HMM but does not know which state the HMM is
currently in.

Goal: infer the most likely sequence of hidden states
of an HMM based on the sequence of emitted
symbols.

Why are the States “Hidden”?

© 2024 Phillip Compeau

An observer can see the emitted symbols of an
HMM but does not know which state the HMM is
currently in.

Goal: infer the most likely sequence of hidden states
of an HMM based on the sequence of emitted
symbols.

If we also have a collection of probabilities for the
likelihood of changing states, we have a hidden
Markov model (HMM).

An HMM Consists of Four Objects

© 2024 Phillip Compeau

Σ: an alphabet of emitted symbols H and T

An HMM Consists of Four Objects

© 2024 Phillip Compeau

Σ: an alphabet of emitted symbols

States : a set of hidden states

H and T

F and B

An HMM Consists of Four Objects

© 2024 Phillip Compeau

Σ: an alphabet of emitted symbols

States : a set of hidden states

Transition = (transitionl,k): a |States| ×|States|
matrix of transition probabilities
(of changing from state l to state k)

H and T

F and B

F B
F 0.9 0.1
B 0.1 0.9

An HMM Consists of Four Objects

© 2024 Phillip Compeau

Σ: an alphabet of emitted symbols

States : a set of hidden states

Transition = (transitionl,k): a |States| ×|States|
matrix of transition probabilities
(of changing from state l to state k)

Emission= (emissionk(b)): a |States| × |∑|
matrix of emission probabilities
(emitting symbol b when HMM is in state k)

H and T

F and B

F B
F 0.9 0.1
B 0.1 0.9

H T
F 0.50 0.50
B 0.75 0.25

The HMM Diagram Visualizes an HMM

© 2024 Phillip Compeau

HMM Diagram:
• solid nodes are hidden states
• dashed nodes are emitted symbols
• solid directed edges: connect

states and are labeled by transition
probabilities

• dashed directed edges: connect
state to symbol and labeled by
emission probabilities.

C H A P T E R 10

The HMM diagram

As illustrated in Figure 10.5, an HMM can be visualized using an HMM diagram, a
graph in which every state is represented by a solid node. Solid directed edges connect
every pair of nodes, as well as every node to itself. Each such edge is labeled with the
transition probability of moving from one state to the other (or remaining in the same
state). In addition, the HMM diagram has dashed nodes representing each possible
symbol from the alphabet S and dashed edges connecting each state to each dashed
node. Each such edge is labeled by the probability that the HMM will emit this symbol
while in the given state.

F B

T

H

Emission Transition

H T F B
F 1/2 1/2 F 9/10 1/10
B 3/4 1/4 B 1/10 9/10

FIGURE 10.5 The transition and emission probability matrices for the crooked dealer
HMM described by the HMM diagram shown in the center. This HMM has two states
(gray nodes), F and B. In each state, the HMM can emit one of two symbols (dashed
nodes), heads (“H”) or tails (“T”), with the probabilities shown along dashed edges.
Transition probabilities are shown on solid edges; the crooked dealer HMM transitions
between states F and B with probability 1/10 and remains in the same state with
probability 9/10.

A hidden path p = p1 . . . pn in an HMM is the sequence of states that the HMM
passes through; such a path corresponds to a path of solid edges in the HMM diagram.
Figure 10.6 presents an example in which the crooked dealer HMM produces a sequence
of flips x = “THTHHHTHTTH” with hidden path p = FFFBBBBBFFF, i.e., the fair
coin is used for the first three flips and last three flips, and the biased coin is used for
the five intermediate flips.

Reformulating the Casino Problem

We can now rephrase the improperly formulated Casino Problem as finding the most
likely hidden path p for a string x of symbols emitted by an HMM. To solve this problem,

540

Hidden Paths

© 2024 Phillip Compeau

Hidden path: a sequence π = π1… πn of states that
an HMM passes through.

Pr(x, π): the probability that an HMM follows the
hidden path π and emits the string x = x1 x2 . . . xn.

x: T H T H H H T H T T H
π: F F F B B B B B F F F

Representing Pr(x, π) as a Product

© 2024 Phillip Compeau

HMM follows π and emits x when two events occur.
1. The HMM follows the path π. The probability of

this event is Pr(π).
2. Given that HMM follows path π, it emits x. This

is the conditional probability Pr(x|π).

Representing Pr(x, π) as a Product

© 2024 Phillip Compeau

HMM follows π and emits x when two events occur.
1. The HMM follows the path π. The probability of

this event is Pr(π).
2. Given that HMM follows path π, it emits x. This

is the conditional probability Pr(x|π).

This is a more general result in probability:
Pr(x, π) = Pr(π) · Pr(x|π).

Let’s compute each of the terms on the right.

First: Computing Pr(π)

© 2024 Phillip Compeau

W H Y H AV E B I O L O G I S T S S T I L L N O T D E V E L O P E D A N H I V VA C C I N E ?

i 1 2 3 4 5 6 7 8 9 10 11
x T H T H H H T H T T H
p F F F B B B B B F F F

Pr(pi ! pi+1)
1
2

9
10

9
10

1
10

9
10

9
10

9
10

9
10

1
10

9
10

9
10

Pr(xi | pi) 1
2

1
2

1
2

3
4

3
4

3
4

1
4

3
4

1
2

1
2

1
2

FIGURE 10.6 A sequence x of emitted symbols along with a hidden path p for the
crooked dealer HMM. Pr(pi ! pi+1) denotes the probability transitionpi , pi+1 of tran-
sitioning from state pi to pi+1. Pr(p0 ! p1) is set equal to 1/2 to comply with the
assumption that in the beginning, the dealer is equally likely to use the fair or biased
coin. Pr(xi |pi) denotes the probability that the dealer produced symbol xi from state
pi and is equal to emissionpi (xi).

we will first consider the simpler problem of computing the probability Pr(x, p) that an
HMM follows the hidden path p = p1 . . . pn and emits the string x = x1 . . . xn. Note
that

Â
all strings of emitted symbols x

Â
all hidden paths p

Pr(x, p) = 1.

STOP and Think: What is Pr(x, p) for the x and p in Figure 10.6?

Each emitted string x has probability Pr(x), which is independent of the hidden path
taken by the HMM:

Pr(x) = Â
all hidden paths p

Pr(x, p).

Each hidden path p has probability Pr(p), which is independent of the string that the
HMM emits:

Pr(p) = Â
all strings of emitted symbols x

Pr(x, p).

The event “the HMM follows the hidden path p and emits x” can be thought of as a
combination of two consecutive events:

• The HMM follows the path p. The probability of this event is Pr(p).

• The HMM emits x, given that the HMM follows the path p. We refer to the
probability of this event as the conditional probability of x given p, denoted
Pr(x|p).

541

Pr(π) is just the product of the probabilities Pr(πi →
πi+1), where each Pr(πi → πi+1) is the probability of
transitioning from state πi to state πi+1.

First: Computing Pr(π)

© 2024 Phillip Compeau

W H Y H AV E B I O L O G I S T S S T I L L N O T D E V E L O P E D A N H I V VA C C I N E ?

i 1 2 3 4 5 6 7 8 9 10 11
x T H T H H H T H T T H
p F F F B B B B B F F F

Pr(pi ! pi+1)
1
2

9
10

9
10

1
10

9
10

9
10

9
10

9
10

1
10

9
10

9
10

Pr(xi | pi) 1
2

1
2

1
2

3
4

3
4

3
4

1
4

3
4

1
2

1
2

1
2

FIGURE 10.6 A sequence x of emitted symbols along with a hidden path p for the
crooked dealer HMM. Pr(pi ! pi+1) denotes the probability transitionpi , pi+1 of tran-
sitioning from state pi to pi+1. Pr(p0 ! p1) is set equal to 1/2 to comply with the
assumption that in the beginning, the dealer is equally likely to use the fair or biased
coin. Pr(xi |pi) denotes the probability that the dealer produced symbol xi from state
pi and is equal to emissionpi (xi).

we will first consider the simpler problem of computing the probability Pr(x, p) that an
HMM follows the hidden path p = p1 . . . pn and emits the string x = x1 . . . xn. Note
that

Â
all strings of emitted symbols x

Â
all hidden paths p

Pr(x, p) = 1.

STOP and Think: What is Pr(x, p) for the x and p in Figure 10.6?

Each emitted string x has probability Pr(x), which is independent of the hidden path
taken by the HMM:

Pr(x) = Â
all hidden paths p

Pr(x, p).

Each hidden path p has probability Pr(p), which is independent of the string that the
HMM emits:

Pr(p) = Â
all strings of emitted symbols x

Pr(x, p).

The event “the HMM follows the hidden path p and emits x” can be thought of as a
combination of two consecutive events:

• The HMM follows the path p. The probability of this event is Pr(p).

• The HMM emits x, given that the HMM follows the path p. We refer to the
probability of this event as the conditional probability of x given p, denoted
Pr(x|p).

541

Pr(π) is just the product of the probabilities Pr(πi →
πi+1), where each Pr(πi → πi+1) is the probability of
transitioning from state πi to state πi+1.

Below: Pr(π0→ π1) is ½ since we assume there is a
50-50 chance of starting in state π1.

Next: Computing Pr(x|π)

© 2024 Phillip Compeau

W H Y H AV E B I O L O G I S T S S T I L L N O T D E V E L O P E D A N H I V VA C C I N E ?

i 1 2 3 4 5 6 7 8 9 10 11
x T H T H H H T H T T H
p F F F B B B B B F F F

Pr(pi ! pi+1)
1
2

9
10

9
10

1
10

9
10

9
10

9
10

9
10

1
10

9
10

9
10

Pr(xi | pi) 1
2

1
2

1
2

3
4

3
4

3
4

1
4

3
4

1
2

1
2

1
2

FIGURE 10.6 A sequence x of emitted symbols along with a hidden path p for the
crooked dealer HMM. Pr(pi ! pi+1) denotes the probability transitionpi , pi+1 of tran-
sitioning from state pi to pi+1. Pr(p0 ! p1) is set equal to 1/2 to comply with the
assumption that in the beginning, the dealer is equally likely to use the fair or biased
coin. Pr(xi |pi) denotes the probability that the dealer produced symbol xi from state
pi and is equal to emissionpi (xi).

we will first consider the simpler problem of computing the probability Pr(x, p) that an
HMM follows the hidden path p = p1 . . . pn and emits the string x = x1 . . . xn. Note
that

Â
all strings of emitted symbols x

Â
all hidden paths p

Pr(x, p) = 1.

STOP and Think: What is Pr(x, p) for the x and p in Figure 10.6?

Each emitted string x has probability Pr(x), which is independent of the hidden path
taken by the HMM:

Pr(x) = Â
all hidden paths p

Pr(x, p).

Each hidden path p has probability Pr(p), which is independent of the string that the
HMM emits:

Pr(p) = Â
all strings of emitted symbols x

Pr(x, p).

The event “the HMM follows the hidden path p and emits x” can be thought of as a
combination of two consecutive events:

• The HMM follows the path p. The probability of this event is Pr(p).

• The HMM emits x, given that the HMM follows the path p. We refer to the
probability of this event as the conditional probability of x given p, denoted
Pr(x|p).

541

If we know the hidden path, then the probability of
emitting a string x = x1 ... xn is just the product of the
emission probabilities of each symbol xi .

C H A P T E R 10

Both of these events must occur for the HMM to follow path p and emit string x, which
implies that

Pr(x, p) = Pr(x|p) · Pr(p).

To learn more about this formula, see DETOUR: Conditional Probability.PAGE 583
To compute Pr(x, p), we will first compute Pr(p). As shown in Figure 10.6, we

write Pr(pi ! pi+1) to denote the transition probability of the HMM transitioning
from state pi to pi+1. For simplicity, we assume that in the beginning, the dealer is
equally likely to use the fair or biased coin, an assumption that is modeled by setting
Pr(p0 ! p1) = 1/2 in Figure 10.6, where p0 is a “silent” initial state that does not
emit any symbols. The probability of p is therefore equal to the product of its transition
probabilities (green elements in Figure 10.6),

Pr(p) =
n

’
i=1

Pr(pi�1 ! pi) =
n

’
i=1

transitionpi�1, pi .

Probability of a Hidden Path Problem:
Compute the probability of an HMM’s hidden path.

Input: A hidden path p in an HMM (S, States, Transition, Emission).
Output: The probability of this path, Pr(p).

10A

Note that we have already computed Pr(x|p) for the crooked dealer HMM when the
dealer’s hidden path consisted only of B or F, which we wrote as Pr(x|B) and Pr(x|F),
respectively. To compute Pr(x|p) for a general HMM, we will write Pr(xi|pi) to denote
the emission probability emissionpi (xi) that symbol xi was emitted given that the HMM
was in state pi (Figure 10.6). As a result, for a given path p, the HMM emits a string x
with probability equal to the product of emission probabilities along that path,

Pr(x|p) =
n

’
i=1

Pr(xi|pi)

=
n

’
i=1

emissionpi (xi) .

542

C H A P T E R 10

Both of these events must occur for the HMM to follow path p and emit string x, which
implies that

Pr(x, p) = Pr(x|p) · Pr(p).

To learn more about this formula, see DETOUR: Conditional Probability.PAGE 583
To compute Pr(x, p), we will first compute Pr(p). As shown in Figure 10.6, we

write Pr(pi ! pi+1) to denote the transition probability of the HMM transitioning
from state pi to pi+1. For simplicity, we assume that in the beginning, the dealer is
equally likely to use the fair or biased coin, an assumption that is modeled by setting
Pr(p0 ! p1) = 1/2 in Figure 10.6, where p0 is a “silent” initial state that does not
emit any symbols. The probability of p is therefore equal to the product of its transition
probabilities (green elements in Figure 10.6),

Pr(p) =
n

’
i=1

Pr(pi�1 ! pi) =
n

’
i=1

transitionpi�1, pi .

Probability of a Hidden Path Problem:
Compute the probability of an HMM’s hidden path.

Input: A hidden path p in an HMM (S, States, Transition, Emission).
Output: The probability of this path, Pr(p).

10A

Note that we have already computed Pr(x|p) for the crooked dealer HMM when the
dealer’s hidden path consisted only of B or F, which we wrote as Pr(x|B) and Pr(x|F),
respectively. To compute Pr(x|p) for a general HMM, we will write Pr(xi|pi) to denote
the emission probability emissionpi (xi) that symbol xi was emitted given that the HMM
was in state pi (Figure 10.6). As a result, for a given path p, the HMM emits a string x
with probability equal to the product of emission probabilities along that path,

Pr(x|p) =
n

’
i=1

Pr(xi|pi)

=
n

’
i=1

emissionpi (xi) .

542

Putting it All Together

© 2024 Phillip Compeau

W H Y H AV E B I O L O G I S T S S T I L L N O T D E V E L O P E D A N H I V VA C C I N E ?

i 1 2 3 4 5 6 7 8 9 10 11
x T H T H H H T H T T H
p F F F B B B B B F F F

Pr(pi ! pi+1)
1
2

9
10

9
10

1
10

9
10

9
10

9
10

9
10

1
10

9
10

9
10

Pr(xi | pi) 1
2

1
2

1
2

3
4

3
4

3
4

1
4

3
4

1
2

1
2

1
2

FIGURE 10.6 A sequence x of emitted symbols along with a hidden path p for the
crooked dealer HMM. Pr(pi ! pi+1) denotes the probability transitionpi , pi+1 of tran-
sitioning from state pi to pi+1. Pr(p0 ! p1) is set equal to 1/2 to comply with the
assumption that in the beginning, the dealer is equally likely to use the fair or biased
coin. Pr(xi |pi) denotes the probability that the dealer produced symbol xi from state
pi and is equal to emissionpi (xi).

we will first consider the simpler problem of computing the probability Pr(x, p) that an
HMM follows the hidden path p = p1 . . . pn and emits the string x = x1 . . . xn. Note
that

Â
all strings of emitted symbols x

Â
all hidden paths p

Pr(x, p) = 1.

STOP and Think: What is Pr(x, p) for the x and p in Figure 10.6?

Each emitted string x has probability Pr(x), which is independent of the hidden path
taken by the HMM:

Pr(x) = Â
all hidden paths p

Pr(x, p).

Each hidden path p has probability Pr(p), which is independent of the string that the
HMM emits:

Pr(p) = Â
all strings of emitted symbols x

Pr(x, p).

The event “the HMM follows the hidden path p and emits x” can be thought of as a
combination of two consecutive events:

• The HMM follows the path p. The probability of this event is Pr(p).

• The HMM emits x, given that the HMM follows the path p. We refer to the
probability of this event as the conditional probability of x given p, denoted
Pr(x|p).

541

Exercise: Compute Pr(x, π) = Pr(π) · Pr(x|π) for the x
and π below. Can you find a better explanation for
x = “THTHHHTHTTH” than π = FFFBBBBBFFF?

C H A P T E R 10

Both of these events must occur for the HMM to follow path p and emit string x, which
implies that

Pr(x, p) = Pr(x|p) · Pr(p).

To learn more about this formula, see DETOUR: Conditional Probability.PAGE 583
To compute Pr(x, p), we will first compute Pr(p). As shown in Figure 10.6, we

write Pr(pi ! pi+1) to denote the transition probability of the HMM transitioning
from state pi to pi+1. For simplicity, we assume that in the beginning, the dealer is
equally likely to use the fair or biased coin, an assumption that is modeled by setting
Pr(p0 ! p1) = 1/2 in Figure 10.6, where p0 is a “silent” initial state that does not
emit any symbols. The probability of p is therefore equal to the product of its transition
probabilities (green elements in Figure 10.6),

Pr(p) =
n

’
i=1

Pr(pi�1 ! pi) =
n

’
i=1

transitionpi�1, pi .

Probability of a Hidden Path Problem:
Compute the probability of an HMM’s hidden path.

Input: A hidden path p in an HMM (S, States, Transition, Emission).
Output: The probability of this path, Pr(p).

10A

Note that we have already computed Pr(x|p) for the crooked dealer HMM when the
dealer’s hidden path consisted only of B or F, which we wrote as Pr(x|B) and Pr(x|F),
respectively. To compute Pr(x|p) for a general HMM, we will write Pr(xi|pi) to denote
the emission probability emissionpi (xi) that symbol xi was emitted given that the HMM
was in state pi (Figure 10.6). As a result, for a given path p, the HMM emits a string x
with probability equal to the product of emission probabilities along that path,

Pr(x|p) =
n

’
i=1

Pr(xi|pi)

=
n

’
i=1

emissionpi (xi) .

542

C H A P T E R 10

Both of these events must occur for the HMM to follow path p and emit string x, which
implies that

Pr(x, p) = Pr(x|p) · Pr(p).

To learn more about this formula, see DETOUR: Conditional Probability.PAGE 583
To compute Pr(x, p), we will first compute Pr(p). As shown in Figure 10.6, we

write Pr(pi ! pi+1) to denote the transition probability of the HMM transitioning
from state pi to pi+1. For simplicity, we assume that in the beginning, the dealer is
equally likely to use the fair or biased coin, an assumption that is modeled by setting
Pr(p0 ! p1) = 1/2 in Figure 10.6, where p0 is a “silent” initial state that does not
emit any symbols. The probability of p is therefore equal to the product of its transition
probabilities (green elements in Figure 10.6),

Pr(p) =
n

’
i=1

Pr(pi�1 ! pi) =
n

’
i=1

transitionpi�1, pi .

Probability of a Hidden Path Problem:
Compute the probability of an HMM’s hidden path.

Input: A hidden path p in an HMM (S, States, Transition, Emission).
Output: The probability of this path, Pr(p).

10A

Note that we have already computed Pr(x|p) for the crooked dealer HMM when the
dealer’s hidden path consisted only of B or F, which we wrote as Pr(x|B) and Pr(x|F),
respectively. To compute Pr(x|p) for a general HMM, we will write Pr(xi|pi) to denote
the emission probability emissionpi (xi) that symbol xi was emitted given that the HMM
was in state pi (Figure 10.6). As a result, for a given path p, the HMM emits a string x
with probability equal to the product of emission probabilities along that path,

Pr(x|p) =
n

’
i=1

Pr(xi|pi)

=
n

’
i=1

emissionpi (xi) .

542

THE DECODING PROBLEM

© 2024 Phillip Compeau

Finding the Best Path for a String

© 2024 Phillip Compeau

Decoding Problem: Find an optimal hidden path in
an HMM given its emitted string.
• Input: A string x = x1 . . . xn emitted by an HMM

(∑, States, Transition, Emission).
• Output: A path π that maximizes the probability

Pr(x,π) over all possible paths through this HMM.

Building a DAG for the Crooked Casino

© 2024 Phillip Compeau

HMM diagramF B

1/10

1/10

9/10 9/10

FFFFFF

B B B B B B

x2x1 x3 x4 x5 xn

Building a DAG for the Crooked Casino

© 2024 Phillip Compeau

HMM diagramF B

1/10

1/10

9/10 9/10

FFFFFF

B B B B B Bsource sink

The source and sink are “silent states” (don’t emit
a symbol).

Building a DAG for the Crooked Casino

© 2024 Phillip Compeau

HMM diagramF B

1/10

1/10

9/10 9/10

FFFFFF

B B B B B Bsource sink

F

Building a DAG for the Crooked Casino

© 2024 Phillip Compeau

HMM diagramF B

1/10

1/10

9/10 9/10

FFFFFF

B B B B B Bsource sink

F B

Building a DAG for the Crooked Casino

© 2024 Phillip Compeau

HMM diagramF B

1/10

1/10

9/10 9/10

FFFFFF

B B B B B Bsource sink

F B B

Building a DAG for the Crooked Casino

© 2024 Phillip Compeau

HMM diagramF B

1/10

1/10

9/10 9/10

FFFFFF

B B B B B Bsource sink

F B B B

Building a DAG for the Crooked Casino

© 2024 Phillip Compeau

HMM diagramF B

1/10

1/10

9/10 9/10

FFFFFF

B B B B B Bsource sink

F B B B F

Building a DAG for the Crooked Casino

© 2024 Phillip Compeau

HMM diagramF B

1/10

1/10

9/10 9/10

FFFFFF

B B B B B Bsource sink

F B B B F F

Building a DAG for the Crooked Casino

© 2024 Phillip Compeau

HMM diagramF B

1/10

1/10

9/10 9/10

FFFFFF

B B B B B Bsource sink

F B B B F F

This is the Viterbi
graph of this HMM.

A DAG for an Arbitrary HMM

© 2024 Phillip Compeau

HMM diagram
A

B C

Exercise: What is the Viterbi graph of this HMM
diagram?

A DAG for an Arbitrary HMM

© 2024 Phillip Compeau

HMM diagram
A

B C

!!C C C C C C

B B B B B B

A A A A A A

|States|

A DAG for an Arbitrary HMM

© 2024 Phillip Compeau

HMM diagram

C H A P T E R 10

A B

D C

FIGURE 10.8 (Left) An HMM diagram for an HMM that has four states with some
forbidden transitions, such as from A to D and from C to itself. Edges corresponding to
forbidden transitions between states are not included in the HMM diagram. (Right) The
Viterbi graph for this HMM emitting a string of length 6.

Finding the Most Likely Outcome of an HMM

Dynamic programming allows us to answer questions about HMMs extending beyond
the most likely hidden path. For example, we have already computed the probability
Pr(p) of a hidden path p. But what about computing Pr(x), the probability that the
HMM will emit a string x?

Exercise Break: Which outcome is more likely in the crooked casino: “HHTT”
or “HTHT”? How would you find the most likely sequence of four coin flips?

Outcome Likelihood Problem:
Find the probability that an HMM emits a given string.

Input: A string x = x1 . . . xn emitted by an HMM (S, States, Transition,
Emission).
Output: The probability Pr(x) that the HMM emits x.

STOP and Think: To solve the Outcome Likelihood Problem, you can make a
slight change to the Viterbi recurrence sk, i = maxall states l{sl, i�1 · WEIGHTi(l, k)}.
What is the change?

We have already observed that Pr(x) is equal to the sum of Pr(x, p) over all hidden
paths p. However, the number of paths through the Viterbi graph is exponential in the

548

Exercise: What about this HMM diagram? It has
“forbidden transitions” between states.

A DAG for an Arbitrary HMM

© 2024 Phillip Compeau

HMM diagram
C H A P T E R 10

A A A A A A

B B B B B B

C C

D D D D D D

C C C C

FIGURE 10.8 (Left) An HMM diagram for an HMM that has four states with some
forbidden transitions, such as from A to D and from C to itself. Edges corresponding to
forbidden transitions between states are not included in the HMM diagram. (Right) The
Viterbi graph for this HMM emitting a string of length 6.

Finding the Most Likely Outcome of an HMM

Dynamic programming allows us to answer questions about HMMs extending beyond
the most likely hidden path. For example, we have already computed the probability
Pr(p) of a hidden path p. But what about computing Pr(x), the probability that the
HMM will emit a string x?

Exercise Break: Which outcome is more likely in the crooked casino: “HHTT”
or “HTHT”? How would you find the most likely sequence of four coin flips?

Outcome Likelihood Problem:
Find the probability that an HMM emits a given string.

Input: A string x = x1 . . . xn emitted by an HMM (S, States, Transition,
Emission).
Output: The probability Pr(x) that the HMM emits x.

STOP and Think: To solve the Outcome Likelihood Problem, you can make a
slight change to the Viterbi recurrence sk, i = maxall states l{sl, i�1 · WEIGHTi(l, k)}.
What is the change?

We have already observed that Pr(x) is equal to the sum of Pr(x, p) over all hidden
paths p. However, the number of paths through the Viterbi graph is exponential in the

548

C H A P T E R 10

A B

D C

FIGURE 10.8 (Left) An HMM diagram for an HMM that has four states with some
forbidden transitions, such as from A to D and from C to itself. Edges corresponding to
forbidden transitions between states are not included in the HMM diagram. (Right) The
Viterbi graph for this HMM emitting a string of length 6.

Finding the Most Likely Outcome of an HMM

Dynamic programming allows us to answer questions about HMMs extending beyond
the most likely hidden path. For example, we have already computed the probability
Pr(p) of a hidden path p. But what about computing Pr(x), the probability that the
HMM will emit a string x?

Exercise Break: Which outcome is more likely in the crooked casino: “HHTT”
or “HTHT”? How would you find the most likely sequence of four coin flips?

Outcome Likelihood Problem:
Find the probability that an HMM emits a given string.

Input: A string x = x1 . . . xn emitted by an HMM (S, States, Transition,
Emission).
Output: The probability Pr(x) that the HMM emits x.

STOP and Think: To solve the Outcome Likelihood Problem, you can make a
slight change to the Viterbi recurrence sk, i = maxall states l{sl, i�1 · WEIGHTi(l, k)}.
What is the change?

We have already observed that Pr(x) is equal to the sum of Pr(x, p) over all hidden
paths p. However, the number of paths through the Viterbi graph is exponential in the

548

Alignment Manhattan vs. Decoding Manhattan

Alignment
three valid directions

Decoding
many valid directions

© 2024 Phillip Compeau

Edge-Weighting the Viterbi Graph

© 2024 Phillip Compeau

!!C C C C C C

B B B B B B

A A A A A A

Step i - 1 i

l

k

The edge from (l, i-1) to (k, i) corresponds to:
• transitioning from state l to state k (with

probability transitionl,k)
• emitting symbol xi (with probability emissionk(xi)

Edge-Weighting the Viterbi Graph

!!C C C C C C

B B B B B B

A A A A A A

Step i - 1 i

l

k

We weight this edge with transitionl,k emissionk(xi) .
The product weight of a path π through the Viterbi
graph is the product of its edge weights:

C H A P T E R 10

Decoding Problem:
Find an optimal hidden path in an HMM given a string of its emitted symbols.

Input: A string x = x1 . . . xn emitted by an HMM (S, States, Transition,
Emission).
Output: A path p that maximizes the probability Pr(x, p) over all possible
paths through this HMM.

In 1967, Andrew Viterbi used an HMM-inspired analog of a Manhattan-like grid to
solve the Decoding Problem. For an HMM emitting a string of n symbols x = x1 . . . xn,
the nodes in the HMM’s Viterbi graph are divided into |States| rows and n columns
(Figure 10.7 (middle)). That is, node (k, i) represents state k and the i-th emitted symbol.
Each node is connected to all nodes in the column to its right; the edge connecting
(l, i � 1) to (k, i) corresponds to transitioning from state l to state k (with probability
transitionl,k) and then emitting symbol xi (with probability emissionk(xi)). As a result,
every path connecting a node in the first column of the Viterbi graph to a node in the
final column corresponds to a hidden path p = p1 . . . pn.

We assign a weight of

WEIGHTi(l, k) = transitionpi�1,pi · emissionpi (xi)

to the edge connecting (l, i � 1) to (k, i) in the Viterbi graph. Furthermore, we define
the product weight of a path in the Viterbi graph as the product of its edge weights.
For a path from the leftmost column to the rightmost column in the Viterbi graph
corresponding to the hidden path p, this product weight is equal to the product of n � 1
terms,

n

’
i=2

transitionpi�1, pi · emissionpi (xi) =
n

’
i=2

WEIGHTi(l, k).

STOP and Think: How does this expression differ from the formula for Pr(x, p)

that we derived in the previous section?

The only difference between the above expression and the expression that we obtained
for Pr(x, p),

n

’
i=1

transitionpi�1, pi · emissionpi (xi) ,

544

© 2024 Phillip Compeau

Edge-Weighting the Viterbi Graph

!!C C C C C C

B B B B B B

A A A A A A

Step i - 1 i

l

k

STOP: How does the product weight differ from
Pr(x, π)?

C H A P T E R 10

Decoding Problem:
Find an optimal hidden path in an HMM given a string of its emitted symbols.

Input: A string x = x1 . . . xn emitted by an HMM (S, States, Transition,
Emission).
Output: A path p that maximizes the probability Pr(x, p) over all possible
paths through this HMM.

In 1967, Andrew Viterbi used an HMM-inspired analog of a Manhattan-like grid to
solve the Decoding Problem. For an HMM emitting a string of n symbols x = x1 . . . xn,
the nodes in the HMM’s Viterbi graph are divided into |States| rows and n columns
(Figure 10.7 (middle)). That is, node (k, i) represents state k and the i-th emitted symbol.
Each node is connected to all nodes in the column to its right; the edge connecting
(l, i � 1) to (k, i) corresponds to transitioning from state l to state k (with probability
transitionl,k) and then emitting symbol xi (with probability emissionk(xi)). As a result,
every path connecting a node in the first column of the Viterbi graph to a node in the
final column corresponds to a hidden path p = p1 . . . pn.

We assign a weight of

WEIGHTi(l, k) = transitionpi�1,pi · emissionpi (xi)

to the edge connecting (l, i � 1) to (k, i) in the Viterbi graph. Furthermore, we define
the product weight of a path in the Viterbi graph as the product of its edge weights.
For a path from the leftmost column to the rightmost column in the Viterbi graph
corresponding to the hidden path p, this product weight is equal to the product of n � 1
terms,

n

’
i=2

transitionpi�1, pi · emissionpi (xi) =
n

’
i=2

WEIGHTi(l, k).

STOP and Think: How does this expression differ from the formula for Pr(x, p)

that we derived in the previous section?

The only difference between the above expression and the expression that we obtained
for Pr(x, p),

n

’
i=1

transitionpi�1, pi · emissionpi (xi) ,

544

© 2024 Phillip Compeau

Edge-Weighting the Viterbi Graph

!!C C C C C C

B B B B B B

A A A A A A

Step i - 1 i

l

k

Answer: It is the same ... so to maximize Pr(x, π), we
are looking for a path of maximum product-weight!

C H A P T E R 10

Decoding Problem:
Find an optimal hidden path in an HMM given a string of its emitted symbols.

Input: A string x = x1 . . . xn emitted by an HMM (S, States, Transition,
Emission).
Output: A path p that maximizes the probability Pr(x, p) over all possible
paths through this HMM.

In 1967, Andrew Viterbi used an HMM-inspired analog of a Manhattan-like grid to
solve the Decoding Problem. For an HMM emitting a string of n symbols x = x1 . . . xn,
the nodes in the HMM’s Viterbi graph are divided into |States| rows and n columns
(Figure 10.7 (middle)). That is, node (k, i) represents state k and the i-th emitted symbol.
Each node is connected to all nodes in the column to its right; the edge connecting
(l, i � 1) to (k, i) corresponds to transitioning from state l to state k (with probability
transitionl,k) and then emitting symbol xi (with probability emissionk(xi)). As a result,
every path connecting a node in the first column of the Viterbi graph to a node in the
final column corresponds to a hidden path p = p1 . . . pn.

We assign a weight of

WEIGHTi(l, k) = transitionpi�1,pi · emissionpi (xi)

to the edge connecting (l, i � 1) to (k, i) in the Viterbi graph. Furthermore, we define
the product weight of a path in the Viterbi graph as the product of its edge weights.
For a path from the leftmost column to the rightmost column in the Viterbi graph
corresponding to the hidden path p, this product weight is equal to the product of n � 1
terms,

n

’
i=2

transitionpi�1, pi · emissionpi (xi) =
n

’
i=2

WEIGHTi(l, k).

STOP and Think: How does this expression differ from the formula for Pr(x, p)

that we derived in the previous section?

The only difference between the above expression and the expression that we obtained
for Pr(x, p),

n

’
i=1

transitionpi�1, pi · emissionpi (xi) ,

544

© 2024 Phillip Compeau

Finding a “Longest” Path

© 2024 Phillip Compeau

Maximum Product-Weight Path in a DAG Problem:
Find a path in a DAG of maximum product weight.
• Input: A DAG with positive edge weights, along

with source and sink nodes.
• Output: A path from source to sink of maximum

product weight.

Finding a “Longest” Path

© 2024 Phillip Compeau

STOP: How do we use what we have learned to
solve this problem?

Maximum Product-Weight Path in a DAG Problem:
Find a path in a DAG of maximum product weight.
• Input: A DAG with positive edge weights, along

with source and sink nodes.
• Output: A path from source to sink of maximum

product weight.

Answer 1: Dynamic Programming with a
Recurrence Relation

© 2024 Phillip Compeau

Define sk,i as the weight of an optimal path from
source to the node (k, i).

Answer 1: Dynamic Programming with a
Recurrence Relation

© 2024 Phillip Compeau

Define sk,i as the weight of an optimal path from
source to the node (k, i).

We have “optimal substructure” because an optimal
path from source to (k, i) must be an optimal path
from source to (l, i-1) for some node in column i-1.

Answer 1: Dynamic Programming with a
Recurrence Relation

© 2024 Phillip Compeau

Define sk,i as the weight of an optimal path from
source to the node (k, i).

We have “optimal substructure” because an optimal
path from source to (k, i) must be an optimal path
from source to (l, i-1) for some node in column i-1.

C H A P T E R 10

terminal state that the HMM enters when it has finished emitting symbols. To model
the terminal state, we add a sink node sink to the Viterbi graph and connect every node
in the last column to sink with an edge of weight 1 (Figure 10.7 (bottom)).

Every hidden path p in the HMM now corresponds to a path from source to sink
in the Viterbi graph with product weight Pr(x, p). Therefore, the Decoding Problem
reduces to finding a path in the Viterbi graph of largest product weight over all paths
connecting source to sink.

Exercise Break: Find the maximum product weight path in the Viterbi graph forFind the maximum product weight path in the Viterbi graph for
the crooked dealer HMM whenthe crooked dealer HMM when xx= “HHTT”.= “HHTT”.

The Viterbi algorithm

We will apply a dynamic programming algorithm to solve the Decoding Problem. First,
define sk,i as the product weight of an optimal path (i.e., a path with maximum product
weight) from source to the node (k, i). The Viterbi algorithm relies on the fact that the
first i � 1 edges of an optimal path from source to (k, i) must form an optimal path from
source to (l, i � 1) for some (unknown) state l. This observation yields the following
recurrence:

sk, i = max
all states l

�
sl, i�1 · (weight of edge between nodes(l, i � 1) and (k, i))

= max
all states l

�
sl, i�1 · WEIGHTi(l, k)

= max
all states l

�
sl, i�1 · transitionpi�1, pi · emissionpi (xi)

Since source is connected to every node in the first column of the Viterbi graph,

sk, 1 = ssource · (weight of edge between source and (k, 1))

= ssource · WEIGHT0(source, k)

= ssource · transitionsource, k · emissionk(x1)

In order to initialize this recurrence, we set ssource equal to 1. We can now compute the
maximum product weight over all paths from source to sink as

ssink = max
all states l

sl, n .

STOP and Think: How can we adapt our algorithm for finding a longest path inHow can we adapt our algorithm for finding a longest path in
a DAG to find a path with maximum product weight?a DAG to find a path with maximum product weight?

546

Answer 2: You Never Thought
Logarithms Would be Useful ...

© 2024 Phillip Compeau

Two logarithm
properties:
1. log(x1 · x2) = log(x1)

+ log(x2).
2. It’s increasing; that

is, if x1 < x2, then
log(x1) < log(x2).

Answer 2: You Never Thought
Logarithms Would be Useful ...

© 2024 Phillip Compeau

STOP: How are these properties useful for our
purposes?

Two logarithm
properties:
1. log(x1 · x2) = log(x1)

+ log(x2).
2. It’s increasing; that

is, if x1 < x2, then
log(x1) < log(x2).

Answer 2: You Never Thought
Logarithms Would be Useful ...

© 2024 Phillip Compeau

If we take the logarithm
of a product of edge
weights w1 ... wn , thenby
property 1, we obtain a
sum of edge weights
log(w1) + ... + log(wn).

Two logarithm
properties:
1. log(x1 · x2) = log(x1)

+ log(x2).
2. It’s increasing; that

is, if x1 < x2, then
log(x1) < log(x2).

Answer 2: You Never Thought
Logarithms Would be Useful ...

© 2024 Phillip Compeau

If we take the logarithm
of a product of edge
weights w1 ... wn , thenby
property 1, we obtain a
sum of edge weights
log(w1) + ... + log(wn).

And if the weights correspond to a maximum weight
path, this optimality will be preserved by property 2.

Two logarithm
properties:
1. log(x1 · x2) = log(x1)

+ log(x2).
2. It’s increasing; that

is, if x1 < x2, then
log(x1) < log(x2).

Our Problem is “Longest Path in a DAG”
in Disguise!

© 2024 Phillip Compeau

Maximum Product-Weight Path in a DAG Problem:
Find a path in a DAG of maximum product weight.
• Input: A DAG with positive edge weights, along

with source and sink nodes.
• Output: A path from source to sink of maximum

product weight.

PROFILE HMMS FOR SEQUENCE
ALIGNMENT

© 2024 Phillip Compeau

Remember Our Problem

© 2024 Phillip Compeau

Once we have a collection of known protein
alignments (”families”), we need to be able to
identify which family a new protein belongs to. That
is, add a new string into an existing alignment.

VKKLGEQFR-NKTIIFNQPSGGDLEIVMHSFNCGGEFFYCNTTQLFN----------NSTES------DTITL
VKKLGEQFR-NKTIIFNQPSGGDLEIVMHSFNCGGEFFYCNTTQLFN----------NSTDNG-----DTITL
VKKLGEQFR-NKTIIFNQPSGGDLEIVMHSFNCGGEFFYCNTTQLFD----------NSTESNN----DTITL
VDKLREQFGKNKTIIFNQPSGGDLEIVMHTFNCGGEFFYCNTTQLFNSTWNS---TGNGTESYNGQENGTITL
VDKLREQFGKNKTIIFNQPSGGDLEIVMHTFNCGGEFFYCNTTQLFNSTWNG---TNTT--GLDG--NDTITL
VDKLREQFGKNKTIIFNQSSGGDLEIVTHTFNCGGEFFYCNTTQLFNSNWTG---NSTE--GLHG--DDTITL
VKKLGEQFG-NKTIIFNQSSGGGLEIVMHSFNCGGEFFYCNTTQLFNN--TR-----NSTESNNGQGNDTTTL
VKKLREQFGKNKTIIFKQSSGGDLEIVTHTFNCAGEFFYCNTTQLFNSNWTE-----NSITGLDG--NDTITL
VGKLREQFGK-KTIIFNQPSGGDLEIVMHSFNCQGEFFYCNTTRLFNSTWDNSTWNSTGKDKENGN-NDTITL

Remember Our Problem

© 2024 Phillip Compeau

Once we have a collection of known protein
alignments (”families”), we need to be able to
identify which family a new protein belongs to. That
is, add a new string into an existing alignment.

This sets up as an HMM problem, since when
adding a new string to an alignment, we have:
• a decision to make at each step (align? Gap

symbol?)
• We’re looking for a ”path” (decisions) of sorts

that ”makes the most sense”.

From an Alignment to a Profile

© 2024 Phillip Compeau

Seed alignment: remove columns if the fraction of
space symbols (“-”) exceeds a threshold θ.

W H Y H AV E B I O L O G I S T S S T I L L N O T D E V E L O P E D A N H I V VA C C I N E ?

1 2 3 4 5 6 7 8

A C D E F A C A D F
A F D A - - - C C F

Alignment A - - E F D - F D C
A C A E F - - A - C
A D D E F A A A D F

A C D E F A D F
A F D A - C C F

Alignment⇤ A - - E F F D C
A C A E F A - C
A D D E F A D F

A 1 0 1/4 1/5 0 3/5 0 0
C 0 2/4 0 0 0 1/5 1/4 2/5

PROFILE(Alignment⇤) D 0 1/4 3/4 0 0 0 3/4 0
E 0 0 0 4/5 0 0 0 0
F 0 1/4 0 0 1 1/5 0 3/5

FIGURE 10.9 A 5 ⇥ 10 multiple alignment Alignment (first panel), its 5 ⇥ 8 seed
alignment Alignment⇤ (second panel), the profile matrix PROFILE(Alignment⇤) of the
seed alignment (third panel), and the diagram of a simple HMM that models this profile
(fourth panel). The seed alignment is obtained from the original alignment by ignoring
poorly conserved columns (shaded gray); in this case, we ignore columns for which
the fraction of space symbols is greater than or equal to the column removal threshold
✓ = 0.35. To better illustrate the relationship between the alignment and its seed
alignment, we have separated the first five columns in the seed alignment from its
last three columns and numbered these columns above the original alignment. The
match states MATCH(i) are abbreviated as Mi. The HMM only has one possible path; it
is initially in state MATCH(1), the transition probability from state MATCH(i) to state
MATCH(i+1) is equal to 1 for all i, and all other transitions are forbidden. Emission
probabilities are equal to frequencies in the profile, e.g., emission probabilities for M2
are 0 for A, 2/4 for C, 1/4 for D, 0 for E, and 1/4 for F.

MATCH(1), . . . , MATCH(k). When the HMM enters state MATCH(i), it emits sym-
bol xi with probability equal to the frequency of this symbol in the i-th column of
PROFILE(Alignment⇤). The HMM then moves into state MATCH(i + 1) with transition
probability equal to 1.

551

From an Alignment to a Profile

© 2024 Phillip Compeau

W H Y H AV E B I O L O G I S T S S T I L L N O T D E V E L O P E D A N H I V VA C C I N E ?

1 2 3 4 5 6 7 8

A C D E F A C A D F
A F D A - - - C C F

Alignment A - - E F D - F D C
A C A E F - - A - C
A D D E F A A A D F

A C D E F A D F
A F D A - C C F

Alignment⇤ A - - E F F D C
A C A E F A - C
A D D E F A D F

A 1 0 1/4 1/5 0 3/5 0 0
C 0 2/4 0 0 0 1/5 1/4 2/5

PROFILE(Alignment⇤) D 0 1/4 3/4 0 0 0 3/4 0
E 0 0 0 4/5 0 0 0 0
F 0 1/4 0 0 1 1/5 0 3/5

FIGURE 10.9 A 5 ⇥ 10 multiple alignment Alignment (first panel), its 5 ⇥ 8 seed
alignment Alignment⇤ (second panel), the profile matrix PROFILE(Alignment⇤) of the
seed alignment (third panel), and the diagram of a simple HMM that models this profile
(fourth panel). The seed alignment is obtained from the original alignment by ignoring
poorly conserved columns (shaded gray); in this case, we ignore columns for which
the fraction of space symbols is greater than or equal to the column removal threshold
✓ = 0.35. To better illustrate the relationship between the alignment and its seed
alignment, we have separated the first five columns in the seed alignment from its
last three columns and numbered these columns above the original alignment. The
match states MATCH(i) are abbreviated as Mi. The HMM only has one possible path; it
is initially in state MATCH(1), the transition probability from state MATCH(i) to state
MATCH(i+1) is equal to 1 for all i, and all other transitions are forbidden. Emission
probabilities are equal to frequencies in the profile, e.g., emission probabilities for M2
are 0 for A, 2/4 for C, 1/4 for D, 0 for E, and 1/4 for F.

MATCH(1), . . . , MATCH(k). When the HMM enters state MATCH(i), it emits sym-
bol xi with probability equal to the frequency of this symbol in the i-th column of
PROFILE(Alignment⇤). The HMM then moves into state MATCH(i + 1) with transition
probability equal to 1.

551

From an Alignment to a Profile

© 2024 Phillip Compeau

W H Y H AV E B I O L O G I S T S S T I L L N O T D E V E L O P E D A N H I V VA C C I N E ?

1 2 3 4 5 6 7 8

A C D E F A C A D F
A F D A - - - C C F

Alignment A - - E F D - F D C
A C A E F - - A - C
A D D E F A A A D F

A C D E F A D F
A F D A - C C F

Alignment⇤ A - - E F F D C
A C A E F A - C
A D D E F A D F

A 1 0 1/4 1/5 0 3/5 0 0
C 0 2/4 0 0 0 1/5 1/4 2/5

PROFILE(Alignment⇤) D 0 1/4 3/4 0 0 0 3/4 0
E 0 0 0 4/5 0 0 0 0
F 0 1/4 0 0 1 1/5 0 3/5

FIGURE 10.9 A 5 ⇥ 10 multiple alignment Alignment (first panel), its 5 ⇥ 8 seed
alignment Alignment⇤ (second panel), the profile matrix PROFILE(Alignment⇤) of the
seed alignment (third panel), and the diagram of a simple HMM that models this profile
(fourth panel). The seed alignment is obtained from the original alignment by ignoring
poorly conserved columns (shaded gray); in this case, we ignore columns for which
the fraction of space symbols is greater than or equal to the column removal threshold
✓ = 0.35. To better illustrate the relationship between the alignment and its seed
alignment, we have separated the first five columns in the seed alignment from its
last three columns and numbered these columns above the original alignment. The
match states MATCH(i) are abbreviated as Mi. The HMM only has one possible path; it
is initially in state MATCH(1), the transition probability from state MATCH(i) to state
MATCH(i+1) is equal to 1 for all i, and all other transitions are forbidden. Emission
probabilities are equal to frequencies in the profile, e.g., emission probabilities for M2
are 0 for A, 2/4 for C, 1/4 for D, 0 for E, and 1/4 for F.

MATCH(1), . . . , MATCH(k). When the HMM enters state MATCH(i), it emits sym-
bol xi with probability equal to the frequency of this symbol in the i-th column of
PROFILE(Alignment⇤). The HMM then moves into state MATCH(i + 1) with transition
probability equal to 1.

551

W H Y H AV E B I O L O G I S T S S T I L L N O T D E V E L O P E D A N H I V VA C C I N E ?

1 2 3 4 5 6 7 8

A C D E F A C A D F
A F D A - - - C C F

Alignment A - - E F D - F D C
A C A E F - - A - C
A D D E F A A A D F

A C D E F A D F
A F D A - C C F

Alignment⇤ A - - E F F D C
A C A E F A - C
A D D E F A D F

A 1 0 1/4 1/5 0 3/5 0 0
C 0 2/4 0 0 0 1/5 1/4 2/5

PROFILE(Alignment⇤) D 0 1/4 3/4 0 0 0 3/4 0
E 0 0 0 4/5 0 0 0 0
F 0 1/4 0 0 1 1/5 0 3/5

M1 M2 M3 M4 M5 M6 M7 M8

FIGURE 10.9 A 5 ⇥ 10 multiple alignment Alignment (first panel), its 5 ⇥ 8 seed
alignment Alignment⇤ (second panel), the profile matrix PROFILE(Alignment⇤) of the
seed alignment (third panel), and the diagram of a simple HMM that models this profile
(fourth panel). The seed alignment is obtained from the original alignment by ignoring
poorly conserved columns (shaded gray); in this case, we ignore columns for which
the fraction of space symbols is greater than or equal to the column removal threshold
✓ = 0.35. To better illustrate the relationship between the alignment and its seed
alignment, we have separated the first five columns in the seed alignment from its
last three columns and numbered these columns above the original alignment. The
match states MATCH(i) are abbreviated as Mi. The HMM only has one possible path; it
is initially in state MATCH(1), the transition probability from state MATCH(i) to state
MATCH(i+1) is equal to 1 for all i, and all other transitions are forbidden. Emission
probabilities are equal to frequencies in the profile, e.g., emission probabilities for M2
are 0 for A, 2/4 for C, 1/4 for D, 0 for E, and 1/4 for F.

MATCH(1), . . . , MATCH(k). When the HMM enters state MATCH(i), it emits sym-
bol xi with probability equal to the frequency of this symbol in the i-th column of
PROFILE(Alignment⇤). The HMM then moves into state MATCH(i + 1) with transition
probability equal to 1.

551

From an Alignment to a Profile

© 2024 Phillip Compeau

HMM diagram
A D D A F F D F
1 * .25 * .75 * .20 * 1 * .20 * .75 * .60

Toward a Profile HMM

© 2024 Phillip Compeau

M1 M2 M3 M4 M5 M6 M7 M8

A D D A F F D F F

STOP: How do we model insertions?

Toward a Profile HMM: Insertions

© 2024 Phillip Compeau

M1 M2 M3 M4 M5 M6 M7 M8

I1

A D D A F F D F F

Toward a Profile HMM: Insertions

© 2024 Phillip Compeau

M1 M2 M3 M4 M5 M6 M7 M8

I0 I1 I2 I3 I4 I5 I6 I7 I8

A D D A F F D F F

Toward a Profile HMM: Insertions

© 2024 Phillip Compeau

M1 M2 M3 M4 M5 M6 M7 M8

I0 I1 I2 I3 I4 I5 I6 I7 I8

A D D A F F D F F

Toward a Profile HMM: Insertions

© 2024 Phillip Compeau

M1 M2 M3 M4 M5 M6 M7 M8

I0 I1 I2 I3 I4 I5 I6 I7 I8

A D D A F F D F F

Toward a Profile HMM: Insertions

© 2024 Phillip Compeau

M1 M2 M3 M4 M5 M6 M7 M8

I0 I1 I2 I3 I4 I5 I6 I7 I8

A D D A F F D F F

STOP: How do we model deletions?

Toward a Profile HMM: Deletions

© 2024 Phillip Compeau

M1 M2 M3 M4 M5 M6 M7 M8

I0 I1 I2 I3 I4 I5 I6 I7 I8

A A F F D F

Toward a Profile HMM: Deletions

© 2024 Phillip Compeau

M1 M2 M3 M4 M5 M6 M7 M8

I0 I1 I2 I3 I4 I5 I6 I7 I8

A A F F D F

Toward a Profile HMM: Deletions

© 2024 Phillip Compeau

M1 M2 M3 M4 M5 M6 M7 M8

I0 I1 I2 I3 I4 I5 I6 I7 I8

A A F F D F

STOP: What issues do you see with this approach?

Toward a Profile HMM: Deletions

© 2024 Phillip Compeau

M1 M2 M3 M4 M5 M6 M7 M8

D2 D3

I0 I1 I2 I3 I4 I5 I6 I7 I8

A A F F D F

Answer: Just like with affine alignment, we can have
fewer edges if we create separate “deletion states”.

Toward a Profile HMM: Deletions

© 2024 Phillip Compeau

D1

M1 M2 M3 M4 M5 M6 M7 M8

D2 D3 D4 D5 D6 D7 D8

I0 I1 I2 I3 I4 I5 I6 I7 I8

A A F F D F

Toward a Profile HMM: Deletions

© 2024 Phillip Compeau

D1

M1 M2 M3 M4 M5 M6 M7 M8

D2 D3 D4 D5 D6 D7 D8

I0 I1 I2 I3 I4 I5 I6 I7 I8

A A F F D F

STOP: Are any edges still missing in this HMM
diagram?

Adding Edges Between
Insertion/Deletion States

© 2024 Phillip Compeau

D1

M1 M2 M3 M4 M5 M6 M7 M8

D2 D3 D4 D5 D6 D7 D8

I0 I1 I2 I3 I4 I5 I6 I7 I8

The Profile HMM is Ready to Use!

© 2024 Phillip Compeau

D1

M1 M2 M3 M4 M5 M6 M7 M8

D2 D3 D4 D5 D6 D7 D8

I0 I1 I2 I3 I4 I5 I6 I7 I8 ES

This is the HMM diagram of the profile HMM of a
seed alignment.

S
t
a
r
t

E
n
d

Summarizing a Profile HMM

© 2024 Phillip Compeau

Σ: an alphabet of emitted symbols

States : a set of hidden states

Transition = (transitionl,k): a |States| ×|States|
matrix of transition probabilities
(of changing from state l to state k)

Emission= (emissionk(b)): a |States| × |∑|
matrix of emission probabilities
(emitting symbol b when HMM is in state k)

Amino acids

Start, end, match,
insertion, and
deletion states

It is not yet
clear what the
transition and
emission
probabilities
should be!

Hidden Paths Through Profile HMM

!!

!!

D1

M1 M2 M3 M4 M5 M6 M7 M8

D2 D3 D4 D5 D6 D7 D8

I0 I1 I2 I3 I4 I5 I6 I7 I8

A C D E F AC A D F

S E

Hidden Paths Through Profile HMM

!!

!!

D1

M1 M2 M3 M4 M5 M6 M7 M8

D2 D3 D4 D5 D6 D7 D8

I0 I1 I2 I3 I4 I5 I6 I7 I8

A C D E F AC A D F

S E

A F D A C C F
!!

!!

D1

M1 M2 M3 M4 M5 M6 M7 M8

D2 D3 D4 D5 D6 D7 D8

I0 I1 I2 I3 I4 I5 I6 I7 I8 S E

(-)

Hidden Paths Through Profile HMM

!!

!!

D1

M1 M2 M3 M4 M5 M6 M7 M8

D2 D3 D4 D5 D6 D7 D8

I0 I1 I2 I3 I4 I5 I6 I7 I8

A C D E F AC A D F

S E

A F D A C C F
!!

!!

D1

M1 M2 M3 M4 M5 M6 M7 M8

D2 D3 D4 D5 D6 D7 D8

I0 I1 I2 I3 I4 I5 I6 I7 I8 S E

(-)

!!

!!

D1

M1 M2 M3 M4 M5 M6 M7 M8

D2 D3 D4 D5 D6 D7 D8

I0 I1 I2 I3 I4 I5 I6 I7 I8

D6

A E F F D C

I8 S E

D(-) (-)

Hidden Paths Through Profile HMM

!!

!!

D1

M1 M2 M3 M4 M5 M6 M7 M8

D2 D3 D4 D5 D6 D7 D8

I0 I1 I2 I3 I4 I5 I6 I7 I8

A C D E F AC A D F

S E

A F D A C C F
!!

!!

D1

M1 M2 M3 M4 M5 M6 M7 M8

D2 D3 D4 D5 D6 D7 D8

I0 I1 I2 I3 I4 I5 I6 I7 I8 S E

(-)

!!

!!

D1

M1 M2 M3 M4 M5 M6 M7 M8

D2 D3 D4 D5 D6 D7 D8

I0 I1 I2 I3 I4 I5 I6 I7 I8

D6

A E F F D C

I8 S E

D(-) (-)

Note: this is a hidden path in an HMM
diagram (not in a Viterbi graph).

Transition Probabilities of Profile HMM

© 2024 Phillip Compeau

!!

!!

D1

M1 M2 M3 M4 M5 M6 M7 M8

D2 D3 D4 D5 D6 D7 D8

I0 I1 I2 I3 I4 I5 I6 I7 I8

A C D E F AC A D F

S E

A F D A C C F
!!

!!

D1

M1 M2 M3 M4 M5 M6 M7 M8

D2 D3 D4 D5 D6 D7 D8

I0 I1 I2 I3 I4 I5 I6 I7 I8 S E

(-)

!!

!!

D1

M1 M2 M3 M4 M5 M6 M7 M8

D2 D3 D4 D5 D6 D7 D8

I0 I1 I2 I3 I4 I5 I6 I7 I8

D6

A E F F D C

I8 S E

D(-) (-)

A C A E F A C
!!

!!

D1

M1 M2 M3 M4 M5 M6 M7 M8

D2 D3 D4 D5 D6 D7 D8

I0 I1 I2 I3 I4 I5 I6 I7 I8 S E

(-)

A D D E F AA A D F
!!

!!

D1

M1 M2 M3 M4 M5 M6 M7 M8

D2 D3 D4 D5 D6 D7 D8

I0 I1 I2 I3 I4 I5 I6 I7 I8 S E

4 transitions from M5 :

 1 + 1 + 1 = 3 into I5
1 into M6

0 into D6

Transition Probabilities of Profile HMM

© 2024 Phillip Compeau

!!

!!

D1

M1 M2 M3 M4 M5 M6 M7 M8

D2 D3 D4 D5 D6 D7 D8

I0 I1 I2 I3 I4 I5 I6 I7 I8

A C D E F AC A D F

S E

A F D A C C F
!!

!!

D1

M1 M2 M3 M4 M5 M6 M7 M8

D2 D3 D4 D5 D6 D7 D8

I0 I1 I2 I3 I4 I5 I6 I7 I8 S E

(-)

!!

!!

D1

M1 M2 M3 M4 M5 M6 M7 M8

D2 D3 D4 D5 D6 D7 D8

I0 I1 I2 I3 I4 I5 I6 I7 I8

D6

A E F F D C

I8 S E

D(-) (-)

A C A E F A C
!!

!!

D1

M1 M2 M3 M4 M5 M6 M7 M8

D2 D3 D4 D5 D6 D7 D8

I0 I1 I2 I3 I4 I5 I6 I7 I8 S E

(-)

A D D E F AA A D F
!!

!!

D1

M1 M2 M3 M4 M5 M6 M7 M8

D2 D3 D4 D5 D6 D7 D8

I0 I1 I2 I3 I4 I5 I6 I7 I8 S E

transitionMatch(5),Insertion(5) = 3/4
transitionMatch(5),Match(6) = 1/4
transitionMatch(5),Deletion(6) = 0

4 transitions from M5 :

 1 + 1 + 1 = 3 into I5
1 into M6

0 into D6

Transition Probabilities of Profile HMM

© 2024 Phillip Compeau

!!

!!

D1

M1 M2 M3 M4 M5 M6 M7 M8

D2 D3 D4 D5 D6 D7 D8

I0 I1 I2 I3 I4 I5 I6 I7 I8

A C D E F AC A D F

S E

A F D A C C F
!!

!!

D1

M1 M2 M3 M4 M5 M6 M7 M8

D2 D3 D4 D5 D6 D7 D8

I0 I1 I2 I3 I4 I5 I6 I7 I8 S E

(-)

!!

!!

D1

M1 M2 M3 M4 M5 M6 M7 M8

D2 D3 D4 D5 D6 D7 D8

I0 I1 I2 I3 I4 I5 I6 I7 I8

D6

A E F F D C

I8 S E

D(-) (-)

A C A E F A C
!!

!!

D1

M1 M2 M3 M4 M5 M6 M7 M8

D2 D3 D4 D5 D6 D7 D8

I0 I1 I2 I3 I4 I5 I6 I7 I8 S E

(-)

A D D E F AA A D F
!!

!!

D1

M1 M2 M3 M4 M5 M6 M7 M8

D2 D3 D4 D5 D6 D7 D8

I0 I1 I2 I3 I4 I5 I6 I7 I8 S E

emissionMatch(2)(A) = 0
emissionMatch(2)(C) = 2/4
emissionMatch(2)(D) = 1/4
emissionMatch(2)(E) = 0
emissionMatch(2)(F) = 1/4

symbols emitted from M2:
C, F, C, D

Forbidden Transitions

C H A P T E R 1

S I0 M1 D1 I1 M2 D2 I2 M3 D3 I3 M4 D4 I4 M5 D5 I5 M6 D6 I6 M7 D7 I7 M8 D8 I8 E

S 1

I0

M1 .8 .2

D1

I1

M2 1

D2

I2

M3 1

D3

I3 1

M4 .8 .2

D4

I4

M5 .25 .75

D5 .33 .67

I5 1

M6 .8 .2

D6

I6

M7 1

D7

I7 1

M8 1

D8

I8

E

4

!!

!!

D1

M1 M2 M3 M4 M5 M6 M7 M8

D2 D3 D4 D5 D6 D7 D8

I0 I1 I2 I3 I4 I5 I6 I7 I8 E S

Gray cells:
edges in the
HMM diagram.

Clear cells:
forbidden
transitions.

Empty gray
cells: equal to
zero.

© 2024 Phillip Compeau

Forbidden Transitions

C H A P T E R 1

S I0 M1 D1 I1 M2 D2 I2 M3 D3 I3 M4 D4 I4 M5 D5 I5 M6 D6 I6 M7 D7 I7 M8 D8 I8 E

S 1

I0

M1 .8 .2

D1

I1

M2 1

D2

I2

M3 1

D3

I3 1

M4 .8 .2

D4

I4

M5 .25 .75

D5 .33 .67

I5 1

M6 .8 .2

D6

I6

M7 1

D7

I7 1

M8 1

D8

I8

E

4

!!

!!

D1

M1 M2 M3 M4 M5 M6 M7 M8

D2 D3 D4 D5 D6 D7 D8

I0 I1 I2 I3 I4 I5 I6 I7 I8 E S

Having zero
weights will
cause issues for
two reasons:
1. log(0) is

undefined.
2. One weight

being zero
shouldn’t
disqualify a
path.

© 2024 Phillip Compeau

Forbidden Transitions

C H A P T E R 1

S I0 M1 D1 I1 M2 D2 I2 M3 D3 I3 M4 D4 I4 M5 D5 I5 M6 D6 I6 M7 D7 I7 M8 D8 I8 E

S 1

I0

M1 .8 .2

D1

I1

M2 1

D2

I2

M3 1

D3

I3 1

M4 .8 .2

D4

I4

M5 .25 .75

D5 .33 .67

I5 1

M6 .8 .2

D6

I6

M7 1

D7

I7 1

M8 1

D8

I8

E

4

!!

!!

D1

M1 M2 M3 M4 M5 M6 M7 M8

D2 D3 D4 D5 D6 D7 D8

I0 I1 I2 I3 I4 I5 I6 I7 I8 E S

STOP: What
should we do?

© 2024 Phillip Compeau

Forbidden Transitions

C H A P T E R 1

S I0 M1 D1 I1 M2 D2 I2 M3 D3 I3 M4 D4 I4 M5 D5 I5 M6 D6 I6 M7 D7 I7 M8 D8 I8 E

S 1

I0

M1 .8 .2

D1

I1

M2 1

D2

I2

M3 1

D3

I3 1

M4 .8 .2

D4

I4

M5 .25 .75

D5 .33 .67

I5 1

M6 .8 .2

D6

I6

M7 1

D7

I7 1

M8 1

D8

I8

E

4

!!

!!

D1

M1 M2 M3 M4 M5 M6 M7 M8

D2 D3 D4 D5 D6 D7 D8

I0 I1 I2 I3 I4 I5 I6 I7 I8 E S

STOP: What
should we do?

© 2024 Phillip Compeau

Answer: Add
pseudocounts (!)
to the zero values
and normalize.

CLASSIFYING PROTEINS WITH
PROFILE HMMS

© 2024 Phillip Compeau

Aligning a Protein Against a Profile
HMM

© 2024 Phillip Compeau

Alignment

Protein ACAFDEAF

W H Y H AV E B I O L O G I S T S S T I L L N O T D E V E L O P E D A N H I V VA C C I N E ?

Exercise Break: Construct a profile HMM for the HIV sequences shown in
Figure 10.1 with q = 0.35.

Classifying proteins with profile HMMs

Aligning a protein against a profile HMM

Given a protein family, represented by Alignment, we can now return to the problem of
deciding whether a newly sequenced protein, represented by Text, belongs to the family.
We first form HMM(Alignment, q) for some parameter q. As shown in Figure 10.17, a
hidden path through HMM(Alignment, q) corresponds to a sequence of match, inser-
tion, and deletion states for aligning Text against Alignment.

A C -- D E F AC A D F
A F -- D A - -- C C F

Alignment A - -- - E F D- F D C
A C -- A E F -- A - C
A D -- D E F AA A D F

Text A C AF D E - -- A - F

FIGURE 10.17 (Top) A path through HMM(Alignment, 0.35) for the multiple alignment
from Figure 10.9 and the emitted string Text = ACAFDEAF. (Bottom) The emitted
symbols correspond to aligning Text against Alignment. Specifically, the first two
symbols are emitted from two match states and belong in the first two positions of the
alignment. The next two symbols are emitted from an insertion state and belong in
columns of their own (shown in pink). The space symbols in the seventh and eleventh
columns above correspond to deletion states; these symbols are not emitted by the
HMM. The space symbols in the gray columns do not correspond to any states and are
passed over. The non-shaded columns form an augmented 6 ⇥ 8 seed alignment for
comparison against newly sequenced proteins.

559

!!

!!

D1

M1 M2 M3 M4 M5 M6 M7 M8

D2 D3 D4 D5 D6 D7 D8

I0 I1 I2 I3 I4 I5 I6 I7 I8 E S

Aligning a Protein Against a Profile
HMM

© 2024 Phillip Compeau

Alignment

Protein

Apply Viterbi algorithm to find optimal hidden path.

A C D E (-) A F
!!

!!

D1

M1 M2 M3 M4 M5 M6 M7 M8

D2 D3 D4 D5 D6 D7 D8

I0 I1 I2 I3 I4 I5 I6 I7 I8

AF

S E

(-)

ACAFDEAF

W H Y H AV E B I O L O G I S T S S T I L L N O T D E V E L O P E D A N H I V VA C C I N E ?

Exercise Break: Construct a profile HMM for the HIV sequences shown in
Figure 10.1 with q = 0.35.

Classifying proteins with profile HMMs

Aligning a protein against a profile HMM

Given a protein family, represented by Alignment, we can now return to the problem of
deciding whether a newly sequenced protein, represented by Text, belongs to the family.
We first form HMM(Alignment, q) for some parameter q. As shown in Figure 10.17, a
hidden path through HMM(Alignment, q) corresponds to a sequence of match, inser-
tion, and deletion states for aligning Text against Alignment.

A C -- D E F AC A D F
A F -- D A - -- C C F

Alignment A - -- - E F D- F D C
A C -- A E F -- A - C
A D -- D E F AA A D F

Text A C AF D E - -- A - F

FIGURE 10.17 (Top) A path through HMM(Alignment, 0.35) for the multiple alignment
from Figure 10.9 and the emitted string Text = ACAFDEAF. (Bottom) The emitted
symbols correspond to aligning Text against Alignment. Specifically, the first two
symbols are emitted from two match states and belong in the first two positions of the
alignment. The next two symbols are emitted from an insertion state and belong in
columns of their own (shown in pink). The space symbols in the seventh and eleventh
columns above correspond to deletion states; these symbols are not emitted by the
HMM. The space symbols in the gray columns do not correspond to any states and are
passed over. The non-shaded columns form an augmented 6 ⇥ 8 seed alignment for
comparison against newly sequenced proteins.

559

!!

!!

D1

M1 M2 M3 M4 M5 M6 M7 M8

D2 D3 D4 D5 D6 D7 D8

I0 I1 I2 I3 I4 I5 I6 I7 I8

D6

A E F F D C

I8 S E

D(-) (-)

Profile HMM
diagram

© 2024 Phillip Compeau

!!

!!

D1

M1 M2 M3 M4 M5 M6 M7 M8

D2 D3 D4 D5 D6 D7 D8

I0 I1 I2 I3 I4 I5 I6 I7 I8

D6

A E F F D C

I8 S E

D(-) (-)

STOP: How many rows and columns does the
Viterbi graph of this profile HMM have?

Profile HMM
diagram

© 2024 Phillip Compeau

!!

!!

D1

M1 M2 M3 M4 M5 M6 M7 M8

D2 D3 D4 D5 D6 D7 D8

I0 I1 I2 I3 I4 I5 I6 I7 I8

D6

A E F F D C

I8 S E

D(-) (-)

Profile HMM
diagram

Viterbi graph of
profile HMM:

#columns=
#visited states

M1

I0

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

I8

M1

I0

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

I8

M1

I0

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

I8

M1

I0

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

M1

I0

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

I8

M1

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

I8

M1

I0

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

I8

M1

I0

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

I8

M1

I0

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

I8 I8

A (-) (-) E F D D CF

I0 I0

M1 M1

D1 D1

I1 I1

!!

!!

D1

M1 M2 M3 M4 M5 M6 M7 M8

D2 D3 D4 D5 D6 D7 D8

I0 I1 I2 I3 I4 I5 I6 I7 I8

D6

A E F F D C

I8 S E

D(-) (-)

Profile HMM
diagram

STOP: What is
wrong with this
Viterbi graph?

Viterbi graph of
profile HMM:

#columns=
#visited states

M1

I0

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

I8

M1

I0

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

I8

M1

I0

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

I8

M1

I0

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

M1

I0

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

I8

M1

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

I8

M1

I0

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

I8

M1

I0

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

I8

M1

I0

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

I8 I8

A (-) (-) E F D D CF

I0 I0

M1 M1

D1 D1

I1 I1

!!

!!

D1

M1 M2 M3 M4 M5 M6 M7 M8

D2 D3 D4 D5 D6 D7 D8

I0 I1 I2 I3 I4 I5 I6 I7 I8

D6

A E F F D C

I8 S E

D(-) (-)

Viterbi graph of
profile HMM:

#columns=
#visited states

Profile HMM
diagram

By definition,
#columns =
#emitted symbols

M1

I0

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

I8

M1

I0

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

I8

M1

I0

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

I8

M1

I0

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

M1

I0

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

I8

M1

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

I8

M1

I0

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

I8

M1

I0

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

I8

M1

I0

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

I8 I8

A (-) (-) E F D D CF

I0 I0

M1 M1

D1 D1

I1 I1

I0 I0 I0

I1

I2

M1

I0

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

I8

M1

D1

M2

D2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

I8

M1

I0

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

I8

M1

I0

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

I8

M1

I0

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

I8

M1

I0

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

I8

M1

I0

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

I8

M1

I0

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

I8

!!

!!

D1

M1 M2 M3 M4 M5 M6 M7 M8

D2 D3 D4 D5 D6 D7 D8

I0 I1 I2 I3 I4 I5 I6 I7 I8

D6

A E F F D C

I8 S E

D(-) (-)

Profile HMM
diagram

Vertical edges
enter “silent”
deletion states

Nearly correct
Viterbi graph of
profile HMM:

© 2024 Phillip Compeau

I0 I0

M1

I0

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

I8

M1

I0

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

I8

M1

I0

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

I8

M1

I0

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

I8

M1

I0

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

I8

M1

I0

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

I8

M1

I0

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

I8

D1

D2

D3

D4

D5

D6

D7

D8

!!

!!

D1

M1 M2 M3 M4 M5 M6 M7 M8

D2 D3 D4 D5 D6 D7 D8

I0 I1 I2 I3 I4 I5 I6 I7 I8

D6

A E F F D C

I8 S E

D(-) (-)

Profile HMM
diagram

Adding 0-th
column that
contains only
silent states

Correct Viterbi
graph of profile

HMM:

© 2024 Phillip Compeau

Alignment with a Profile HMM

Sequence Alignment with Profile HMM Problem: Align
a new sequence to a family of aligned sequences using
a profile HMM.
• Input: A multiple alignment Alignment, a string Text,

a threshold θ (maximum fraction of insertions per
column), and a pseudocount σ.

• Output: An optimal hidden path emitting Text in the
profile HMM HMM(Alignment, θ, σ).

A C D E (-) A F
!!

!!

D1

M1 M2 M3 M4 M5 M6 M7 M8

D2 D3 D4 D5 D6 D7 D8

I0 I1 I2 I3 I4 I5 I6 I7 I8

AF

S E

(-)

Have I Wasted Your Time?

A C D E (-) A F
!!

!!

D1

M1 M2 M3 M4 M5 M6 M7 M8

D2 D3 D4 D5 D6 D7 D8

I0 I1 I2 I3 I4 I5 I6 I7 I8

AF

S E

(-)

M1

M2

I2

I2

M3

M4

D5
M6

D7
M8

A

C

A

F

D

E
(-)

A
(-)

F

STOP: A path through the
profile HMM diagram looks
like a lot like a path through an
alignment graph! So what is
different?

A C D E (-) A F
!!

!!

D1

M1 M2 M3 M4 M5 M6 M7 M8

D2 D3 D4 D5 D6 D7 D8

I0 I1 I2 I3 I4 I5 I6 I7 I8

AF

S E

(-)

Key point: The choice of
alignment path is now based on
transition and emission
probabilities that vary from one
column to the next.

M1

M2

I2

I2

M3

M4

D5
M6

D7
M8

A

C

A

F

D

E
(-)

A
(-)

F

sI(j-1),i-1 * weight(I(j-1),M(j),i-1)
sD(j-1),i-1 * weight(D(j-1), M(j),i-1)
sM(j-1),i-1 * weight(M(j-1), M(j),i-1)

sM(j),i = max

I Hope Not! J

Three levels of language understanding

© 2024 Phillip Compeau

Level 1: substitution of one word for
another is always treated the same.

Three levels of language understanding

© 2024 Phillip Compeau

Level 1: substitution of one word for
another is always treated the same.

Level 2: word substitutions are treated
differently depending on context.

Three levels of language understanding

© 2024 Phillip Compeau

Level 1: substitution of one word for
another is always treated the same.

Level 2: word substitutions are treated
differently depending on context.

Level 3: a complete understanding of
the language, allowing us to form new
sentences with custom meanings.

Three levels of protein understanding

© 2024 Phillip Compeau

Scoring
Matrices

Level 1: substitution of one amino acid
for another is always treated the same.

Level 2: word substitutions are treated
differently depending on context.

Level 3: a complete understanding of
the language, allowing us to form new
sentences with custom meanings.

Three levels of protein understanding

© 2024 Phillip Compeau

Level 2: amino acid substitutions are
treated differently depending on context.

Scoring
Matrices

Level 1: substitution of one amino acid
for another is always treated the same.

HMMs

Level 3: a complete understanding of
the language, allowing us to form new
sentences with custom meanings.

Three levels of protein understanding

© 2024 Phillip Compeau

Level 2: amino acid substitutions are
treated differently depending on context.

Level 3: a complete understanding of the
language, allowing us to form new
proteins with custom meanings.

Scoring
Matrices

Level 1: substitution of one amino acid
for another is always treated the same.

HMMs

???

Changing just one letter can produce a
huge change in meaning …

© 2024 Phillip Compeau

... yet sentences can have the same
meaning but completely different words!

© 2024 Phillip Compeau

In proteins, a single mutation can cause
enormous structural changes …

© 2024 Phillip Compeau Image courtesy: Sickle-Cell.com

… and yet we already know that similar
structures have very different sequences!

© 2024 Phillip Compeau

So how can we improve on HMMs?

© 2024 Phillip Compeau

Idea 1 (later in this course):
compare proteins not at the
level of sequence, but as three-
dimensional structures.

So how can we improve on HMMs?

© 2024 Phillip Compeau

Idea 1 (later in this course):
compare proteins not at the
level of sequence, but as three-
dimensional structures.

Idea 2 (unsolved problem in
biology): train AI (e.g., LLMs) to
understand the ”language” of
proteins and how sequence à
structure à protein function

Citations

© 2024 Phillip Compeau

