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Part 1: Predicting and 
Analyzing Protein structures
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https://www.nature.com/articles/s41401-020-0485-4



AN INTRODUCTION TO PROTEIN 
STRUCTURE PREDICTION
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Comparing SARS-CoV and SARS-CoV-2
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Recall that after discussing alignment, we aligned 
the SARS-CoV and SARS-CoV-2 genomes.



Comparing SARS-CoV and SARS-CoV-2
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One of the most critical regions 
encodes the spike protein, 
which coats the surface of the 
virus and binds to receptors on 
the human ACE2 enzyme.

Image Credit: MattLphotography/Shutterstock.com

Recall that after discussing alignment, we aligned 
the SARS-CoV and SARS-CoV-2 genomes.



What exactly does the spike protein do?
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https://www.youtube.com/watch?v=e2Qi-hAXdJo&t=18s



Let’s align the spike proteins!
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SARS-CoV-2 genome accession ID NC_045512.2. 

Spike protein ranges from position 21563 to 25384.

SARS-CoV genome has accession ID NC_004718.3.

Spike protein ranges from position 21492 to 25259 

Great free tool to translate gene from DNA to 
protein at https://web.expasy.org/translate/.

https://web.expasy.org/translate/


Let’s align the spike proteins!
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MFVFLVLLPLVSSQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGTKRFDNPVLPFNDGVYFASTEKSN
IIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLREFVFKNID
GYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLS
ETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVY
ADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSY
GFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGG
VSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQTNSPRRARSVASQSII
AYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDKNTQEVFAQVKQIYKTP
PIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIKQYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAG
AALQIPFAMQMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVNQNAQALNTLVKQLSSNFGAISSVLNDILSRLDKVEAE
VQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQEKNFTTAPAICHDGKAHF
PREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNE
VAKNLNESLIDLQELGKYEQYIKWPWYIWLGFIAGLIAIVMVTIMLCCMTSCCSCLKGCCSCGSCCKFDEDDSEPVLKGVKLHYT 

SARS-CoV-2

MFIFLLFLTLTSGSDLDRCTTFDDVQAPNYTQHTSSMRGVYYPDEIFRSDTLYLTQDLFLPFYSNVTGFHTINHTFGNPVIPFKDGIYFAATEKSNVVR
GWVFGSTMNNKSQSVIIINNSTNVVIRACNFELCDNPFFAVSKPMGTQTHTMIFDNAFNCTFEYISDAFSLDVSEKSGNFKHLREFVFKNKDGFLYVYK
GYQPIDVVRDLPSGFNTLKPIFKLPLGINITNFRAILTAFSPAQDIWGTSAAAYFVGYLKPTTFMLKYDENGTITDAVDCSQNPLAELKCSVKSFEIDK
GIYQTSNFRVVPSGDVVRFPNITNLCPFGEVFNATKFPSVYAWERKKISNCVADYSVLYNSTFFSTFKCYGVSATKLNDLCFSNVYADSFVVKGDDVRQ
IAPGQTGVIADYNYKLPDDFMGCVLAWNTRNIDATSTGNYNYKYRYLRHGKLRPFERDISNVPFSPDGKPCTPPALNCYWPLNDYGFYTTTGIGYQPYR
VVVLSFELLNAPATVCGPKLSTDLIKNQCVNFNFNGLTGTGVLTPSSKRFQPFQQFGRDVSDFTDSVRDPKTSEILDISPCAFGGVSVITPGTNASSEV
AVLYQDVNCTDVSTAIHADQLTPAWRIYSTGNNVFQTQAGCLIGAEHVDTSYECDIPIGAGICASYHTVSLLRSTSQKSIVAYTMSLGADSSIAYSNNT
IAIPTNFSISITTEVMPVSMAKTSVDCNMYICGDSTECANLLLQYGSFCTQLNRALSGIAAEQDRNTREVFAQVKQMYKTPTLKYFGGFNFSQILPDPL
KPTKRSFIEDLLFNKVTLADAGFMKQYGECLGDINARDLICAQKFNGLTVLPPLLTDDMIAAYTAALVSGTATAGWTFGAGAALQIPFAMQMAYRFNGI
GVTQNVLYENQKQIANQFNKAISQIQESLTTTSTALGKLQDVVNQNAQALNTLVKQLSSNFGAISSVLNDILSRLDKVEAEVQIDRLITGRLQSLQTYV
TQQLIRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQAAPHGVVFLHVTYVPSQERNFTTAPAICHEGKAYFPREGVFVFNGTSWFITQR
NFFSPQIITTDNTFVSGNCDVVIGIINNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKY
EQYIKWPWYVWLGFIAGLIAIVMVTILLCCMTSCCSCLKGACSCGSCCKFDEDDSEPVLKGVKLHYT 

SARS-CoV

https://www.ebi.ac.uk/jdispatcher/psa/emboss_needle

https://www.ebi.ac.uk/jdispatcher/psa/emboss_needle


Let’s align the spike proteins!
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The spike proteins are extremely variable in some 
regions. These have been primary focus in 
determining why SARS-CoV-2 was more infectious.



Proteins Come in All Different Shapes
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https://pdb101.rcsb.org/motm/motm-by-date



The Shape of a Protein Influences Its 
Function
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Ribosome in actionhttps://youtu.be/TfYf_rPWUdY



A protein typically folds into the same 
shape every time
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https://www.youtube.com/watch?v=yZ2aY5lxEGE



The Biological Problem is Clear
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Protein Structure Prediction Problem
• Input: An amino acid string corresponding to a 

protein.
• Output: The 3-D shape of the protein.

Nature has devised a “magic algorithm” solving 
this biological problem. Can we reverse engineer 
this algorithm?



The Russian Academy of Sciences’ 
Protein Institute...
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...has tried to solve this problem for over 
50 years!

© 2024 Phillip Compeau



Drug discovery often relies on finding 
drugs that will bind to protein of interest 
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https://blogs.sciencemag.org/pipeline/archives/2012/03/08/erooms_law



We can determine the shape of a protein 
experimentally
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https://www.youtube.com/watch?v=Qq8DO-4BnIY



So … why not use cryo-EM for all 
proteins?

© 2024 Phillip Compeau

The electron microscope needed can cost $5M or 
more and cost a fortune to run.



So … why not use cryo-EM for all 
proteins?

© 2024 Phillip Compeau

The electron microscope needed can cost $5M or 
more and cost a fortune to run.

And remember that just for humans, there are 
between 600,000 and 6 million isoforms!



So … why not use cryo-EM for all 
proteins?

© 2024 Phillip Compeau

The electron microscope needed can cost $5M or 
more and cost a fortune to run.

And remember that just for humans, there are 
between 600,000 and 6 million isoforms!

Key point: with today’s technology, we will never 
be able to experimentally determine the structure 
of all proteins.
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In English, some small 
changes can cause enormous 
differences in meaning …



In proteins, some small mutations can 
cause enormous structural changes …

© 2024 Phillip Compeau Image courtesy: Sickle-Cell.com



… and yet some similar structures have 
very different sequences!
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Two Big Picture Questions
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Question 1: What is the 3-dimensional protein 
corresponding to a string of amino acids?

MFVFLVLLPLVSSQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLP
FFSNVTWFHAIHVSGTNGTKRFDNPVLPFNDGVYFASTEKSNIIRGWIFGTTLDSKT
QSLLIVNNATNVVIKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYV
SQPFLMDLEGKQGNFKNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVD
LPIGINITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTI
TDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVF
NATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADS
FVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLF
RKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVL
SFELLHAPATVCGPKKSTNLVKNKCVNFNFNGLTGTGVLTESNKKFLPFQQFGRDIA
DTTDAVRDPQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHAD
QLTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQTNSPRRA
RSVASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMY
ICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDKNTQEVFAQVKQIYKTPPIKDFG
GFNFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIKQYGDCLGDIAARDLICAQKF
NGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAALQIPFAMQMAYRFNGIGVT
QNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVNQNAQALNTLVKQLSSN
FGAISSVLNDILSRLDKVEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAA
TKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQEKNFTTAPAICH
DGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVNNTVYDP
LQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESL
IDLQELGKYEQYIKWPWYIWLGFIAGLIAIVMVTIMLCCMTSCCSCLKGCCSCGSCC
KFDEDDSEPVLKGVKLHYT https://www.cas.org/blog/covid-19-spike-protein

???



Two Big Picture Questions
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Question 2: How can we compare two (similar) 
proteins on the level of structure?

Key Point: We want to 
make conclusions about 
how a change in the 
structure of a protein (e.g., 
spike protein) affects the 
function of the protein.



SOME NECESSARY 
BIOCHEMISTRY
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What do we mean by ”structure”?
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A protein’s primary structure refers to the amino 
acid sequence of its polypeptide chain.

MFVFLVLLPLVSSQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGTKRFDNPVLPFNDGVYFA
STEKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNF
KNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKY
NENGTITDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSA
SFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFE
RDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFNGLTGTGVLTESNKK
FLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLI
GAEHVNNSYECDIPIGAGICASYQTQTNSPRRARSVASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICG
DSTECSNLLLQYGSFCTQLNRALTGIAVEQDKNTQEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIKQY
GDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAALQIPFAMQMAYRFNGIGVTQNVLYENQKLIANQFNSA
IGKIQDSLSSTASALGKLQDVVNQNAQALNTLVKQLSSNFGAISSVLNDILSRLDKVEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASAN
LAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQEKNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIIT
TDNTFVSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQY
IKWPWYIWLGFIAGLIAIVMVTIMLCCMTSCCSCLKGCCSCGSCCKFDEDDSEPVLKGVKLHYT



What do we mean by ”structure”?
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A secondary structure is a repeating substructure 
that forms as a substructure of the overall folded 
protein. 

https://ib.bioninja.com.au/higher-level/topic-7-nucleic-acids/73-translation/protein-structure.html

Alpha helix Beta sheet



What do we mean by ”structure”?
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A protein’s tertiary structure describes its final 3D 
shape after the polypeptide chain has folded and 
is chemically stable. This is what we most 
commonly refer to as the “structure” of a protein.

https://www.rcsb.org/structure/1SI4



What do we mean by ”structure”?
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Some proteins have a quaternary structure, which 
describes the protein’s interaction with other 
copies of itself to form a single functional unit, or 
a multimer.

https://commons.wikimedia.org/wiki/File:1GZX_Haemoglobin.png

Hemoglobin is a 
multimer consisting of 
two alpha subunits and 
two beta subunits.



A note on the spike protein
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The spike protein is a homotrimer, formed of 
three essentially identical units called chains, each 
one translated from the same genome region.



A note on the spike protein

© 2024 Phillip Compeau

And each chain is formed of two subunits that 
itself is formed of independently folding domains 
that are each responsible for a specific interaction 
or function.



A bit more biochemistry
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An amino acid’s central alpha carbon atom is 
connected to four different molecules:
1. a hydrogen atom (H)
2. a carboxyl group (–COOH)
3. an amino group (-NH2)
4. a side chain (denoted “R”), which differs 

between amino acids.



A bit more biochemistry
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To form a polypeptide chain, consecutive amino 
acids are linked together during a condensation 
reaction in which the amino group of one amino 
acid is joined to the carboxyl group of another, 
while a water molecule (H2O) is expelled.



A bit more biochemistry
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The resulting N-C bond that is produced, called 
a peptide bond, is very strong. The peptide has 
very little rotation around this bond, which is 
almost always locked at 180°. The polypeptide 
chain is formed of consecutive peptide bonds.



A bit more biochemistry

© 2024 Phillip Compeau

The bonds within an amino 
acid are not as rigid. The 
polypeptide is free to rotate 
around these two bonds. This 
rotation produces two angles of 
interest, called the phi angle 
(φ) and psi angle (ψ), where 
the alpha carbon connects to 
its amino group and carboxyl 
group, respectively.



Proteins are flexible and can therefore 
form a huge number of shapes
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Courtesy: Jacob Elmer, https://youtu.be/1usemtIYe_s 

This video illustrates how changing φ and ψ at an 
amino acid can drastically change a protein’s shape.



A good analogy for polypeptide 
flexibility is the “Rubik’s Twist” puzzle

© 2024 Phillip Compeau



Proteins are flexible and can therefore 
form a huge number of shapes

© 2024 Phillip Compeau

A polypeptide with n amino acids has n - 1 peptide 
bonds, meaning n - 1 φ angles and n - 1 ψ angles.



Proteins are flexible and can therefore 
form a huge number of shapes
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A polypeptide with n amino acids has n - 1 peptide 
bonds, meaning n - 1 φ angles and n - 1 ψ angles.

If each bond has k stable conformations, then the 
polypeptide has k2n-2 potential structures!



Proteins are flexible and can therefore 
form a huge number of shapes

© 2024 Phillip Compeau

A polypeptide with n amino acids has n - 1 peptide 
bonds, meaning n - 1 φ angles and n - 1 ψ angles.

If each bond has k stable conformations, then the 
polypeptide has k2n-2 potential structures!

The ability for the magic algorithm to find a single 
conformation despite such an enormous number of 
potential shapes is called Levinthal’s paradox.



Mutations aren’t made alike
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We already know 
from scoring 
alignments that some 
amino acid 
mutations may be 
more favorable than 
others.

C H A P T E R 5

empirical probabilities that one amino acid mutates to another during n PAM units. The
(i, j)-th entry of the PAMn scoring matrix is thus given by

log
✓

Mn(i, j)
f (j)

◆
.

The PAM250 scoring matrix is shown in Figure 5.35.
This approach assumes that the frequencies of the amino acids f (j) remain constant

over time, and that the mutational processes in an interval of 1 PAM unit operate
consistently over long periods. For large n, the resulting PAM matrices often allow us
to find related proteins, even when the alignment has few matches.

A C D E F G H I K L M N P Q R S T V W Y -

A 2 -2 0 0 -3 1 -1 -1 -1 -2 -1 0 1 0 -2 1 1 0 -6 -3 -8

C -2 12 -5 -5 -4 -3 -3 -2 -5 -6 -5 -4 -3 -5 -4 0 -2 -2 -8 0 -8

D 0 -5 4 3 -6 1 1 -2 0 -4 -3 2 -1 2 -1 0 0 -2 -7 -4 -8

E 0 -5 3 4 -5 0 1 -2 0 -3 -2 1 -1 2 -1 0 0 -2 -7 -4 -8

F -3 -4 -6 -5 9 -5 -2 1 -5 2 0 -3 -5 -5 -4 -3 -3 -1 0 7 -8

G 1 -3 1 0 -5 5 -2 -3 -2 -4 -3 0 0 -1 -3 1 0 -1 -7 -5 -8

H -1 -3 1 1 -2 -2 6 -2 0 -2 -2 2 0 3 2 -1 -1 -2 -3 0 -8

I -1 -2 -2 -2 1 -3 -2 5 -2 2 2 -2 -2 -2 -2 -1 0 4 -5 -1 -8

K -1 -5 0 0 -5 -2 0 -2 5 -3 0 1 -1 1 3 0 0 -2 -3 -4 -8

L -2 -6 -4 -3 2 -4 -2 2 -3 6 4 -3 -3 -2 -3 -3 -2 2 -2 -1 -8

M -1 -5 -3 -2 0 -3 -2 2 0 4 6 -2 -2 -1 0 -2 -1 2 -4 -2 -8

N 0 -4 2 1 -3 0 2 -2 1 -3 -2 2 0 1 0 1 0 -2 -4 -2 -8

P 1 -3 -1 -1 -5 0 0 -2 -1 -3 -2 0 6 0 0 1 0 -1 -6 -5 -8

Q 0 -5 2 2 -5 -1 3 -2 1 -2 -1 1 0 4 1 -1 -1 -2 -5 -4 -8

R -2 -4 -1 -1 -4 -3 2 -2 3 -3 0 0 0 1 6 0 -1 -2 2 -4 -8

S 1 0 0 0 -3 1 -1 -1 0 -3 -2 1 1 -1 0 2 1 -1 -2 -3 -8

T 1 -2 0 0 -3 0 -1 0 0 -2 -1 0 0 -1 -1 1 3 0 -5 -3 -8

V 0 -2 -2 -2 -1 -1 -2 4 -2 2 2 -2 -1 -2 -2 -1 0 4 -6 -2 -8

W -6 -8 -7 -7 0 -7 -3 -5 -3 -2 -4 -4 -6 -5 2 -2 -5 -6 17 0 -8

Y -3 0 -4 -4 7 -5 0 -1 -4 -1 -2 -2 -5 -4 -4 -3 -3 -2 0 10 -8

- -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8

FIGURE 5.35 The PAM250 scoring matrix for protein alignment with indel penalty 8.

290

PAM250 matrix



Amino acids’ side chain variety 
produces different chemical properties

© 2024 Phillip Compeau

Courtesy: Technology Networks



Proteins seek the lowest potential energy 
conformation

© 2024 Phillip Compeau

We can view protein folding as finding the tertiary 
structure that is the most stable given a polypeptide’s 
primary structure (i.e., has lowest potential energy).



Proteins seek the lowest potential energy 
conformation

© 2024 Phillip Compeau

We can view protein folding as finding the tertiary 
structure that is the most stable given a polypeptide’s 
primary structure (i.e., has lowest potential energy).

The potential energy (a.k.a. free energy) of a protein 
is the energy stored within it due to its position, 
state, and arrangement. It derives from the protein’s 
bonds as well as non-bonded energy (e.g., 
electrostatic interactions and van der Waals forces).



Electrostatic interactions occur between 
amino acids of opposite charge

© 2024 Phillip Compeau

Courtesy: Technology Networks



© 2024 Phillip Compeau

What are van der Waals forces?

−
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Atoms are dynamic 
systems, with electrons 
constantly buzzing 
around the nucleus. At 
any given moment, they 
are probably relatively 
uniform.



What are van der Waals forces?

© 2024 Phillip Compeau
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Due to random chance, electrons may accumulate 
on one side of an atom, creating a temporary “pole” 
that causes this effect in nearby atoms as well.



A classic analogy of proteins finding 
lowest energy conformation

© 2024 Phillip Compeau

Imagine a ball on a slope; gravity causes it to tend to 
move down the slope. Similarly, a polypeptide tends 
toward lower energy conformations.



AB INITIO PROTEIN 
STRUCTURE PREDICTION

© 2024 Phillip Compeau



ab initio Protein Structure Prediction

© 2024 Phillip Compeau

ab initio Protein Structure Prediction Problem
• Input: An amino acid polypeptide and a force 

field.
• Output: The tertiary structure for this polypeptide 

having minimum potential energy, given this force 
field.

Biochemists have produced scoring functions 
called force fields that compute the potential energy 
of a candidate protein structure.



ab initio Protein Structure Prediction

© 2024 Phillip Compeau

ab initio Protein Structure Prediction Problem
• Input: An amino acid polypeptide and a force 

field.
• Output: The tertiary structure for this polypeptide 

having minimum potential energy, given this force 
field.

Unfortunately, even simple versions of this problem 
wind up being NP-Hard …



ab initio Protein Structure Prediction

© 2024 Phillip Compeau

ab initio Protein Structure Prediction Problem
• Input: An amino acid polypeptide and a force 

field.
• Output: The tertiary structure for this polypeptide 

having minimum potential energy, given this force 
field.

STOP: What does this problem remind us of? 



ab initio Protein Structure Prediction

© 2024 Phillip Compeau

Courtesy: David Beamish.

Answer: This is an optimization problem, and the 
search space is all conformations of the polypeptide. 



ab initio Protein Structure Prediction

© 2024 Phillip Compeau

Courtesy: David Beamish.

STOP: What algorithm for ab initio structure 
prediction might you use? 



A “Local Search” Algorithm for Protein 
Structure Prediction

© 2024 Phillip Compeau

1. Start with an arbitrary protein conformation.
2. Make slight changes to the structure in a variety 

of ways to produce “neighbors”.
3. Consider the neighbor with optimal score. Is its 

score better than the current structure?
• If “yes”, update the current

structure to this neighbor and
iterate at step 2.

• If “no”, return the current
structure.



A “Local Search” Algorithm for Protein 
Structure Prediction

© 2024 Phillip Compeau

1. Start with an arbitrary protein conformation.
2. Make slight changes to the structure in a variety 

of ways to produce “neighbors”.
3. Consider the neighbor with optimal score. Is its 

score better than the current structure?
• If “yes”, update the current

structure to this neighbor and
iterate at step 2.

• If “no”, return the current
structure.

STOP: How could we improve this method?



Improving Local Search

Courtesy: David Beamish

Idea 2: Provide some “jiggle” to allow candidate 
solutions to “bounce” out of local optima.

Idea 1: Run algorithm on many different initial 
values (although search space is huge).



Quantifying “Jiggle”

© 2024 Phillip Compeau

When considering a “neighbor” S’ of a candidate 
protein structure S:
• If energy(S’) < energy(S), update S = S’
• If energy(S’) > energy(S), then update S = S’ with 

probability proportional to 𝝙energy = energy(S) – 
energy(S’).



Quantifying “Jiggle”

© 2024 Phillip Compeau

When considering a “neighbor” S’ of a candidate 
protein structure S:
• If energy(S’) < energy(S), update S = S’
• If energy(S’) > energy(S), then update S = S’ with 

probability proportional to 𝝙energy = energy(S) – 
energy(S’).

Classic function: exp(𝝙energy / T), where T is a 
“temperature” constant or function. This is called 
simulated annealing because of the analogy of 
reducing the temperature of a metal slowly.



The “Hotter” the Temperature, the More 
“Jiggle”

© 2024 Phillip Compeau
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Over time, we lower T, lowering 
probability of changing structure
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The problem with ab initio algorithms

© 2024 Phillip Compeau

Because the search space is so large, and we need 
to run an algorithm with a lot of initial structures, ab 
initio algorithms still are extremely slow to finish. 



The problem with ab initio algorithms

© 2024 Phillip Compeau

Because the search space is so large, and we need 
to run an algorithm with a lot of initial structures, ab 
initio algorithms still are extremely slow to finish. 

STOP: Say that it’s January 2020. Researchers have 
sequenced and annotated the SARS-CoV-2 genome, 
but they have not experimentally determined the 
structure of the spike protein. What might we do?



HOMOLOGY MODELING

© 2024 Phillip Compeau



© 2024 Phillip Compeau

Key point: if the search space of all conformations 
of the SARS-CoV-2 spike protein is enormous, why 
not restrict the search space to structures that are 
similar to the shape of the SARS-CoV spike protein?



Homology modeling
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This idea serves as the foundation of homology 
modeling for protein structure prediction (a.k.a. 
comparative modeling). By using the known protein 
structure of a homologous protein as a template, we 
can in theory improve both the accuracy and speed 
of protein structure prediction.



Homology modeling
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This idea serves as the foundation of homology 
modeling for protein structure prediction (a.k.a. 
comparative modeling). By using the known protein 
structure of a homologous protein as a template, we 
can in theory improve both the accuracy and speed 
of protein structure prediction.

STOP: If we do not know which template to use 
before we begin, how could we find a suitable 
template?



Homology modeling

© 2024 Phillip Compeau

This idea serves as the foundation of homology 
modeling for protein structure prediction (a.k.a. 
comparative modeling). By using the known protein 
structure of a homologous protein as a template, we 
can in theory improve both the accuracy and speed 
of protein structure prediction.

Answer: One natural thing to do would be to search 
for similar sequences for our novel protein in a 
database using an algorithm like BLAST.



Homology modeling

© 2024 Phillip Compeau

This idea serves as the foundation of homology 
modeling for protein structure prediction (a.k.a. 
comparative modeling). By using the known protein 
structure of a homologous protein as a template, we 
can in theory improve both the accuracy and speed 
of protein structure prediction.

STOP: Once we have a template, how might we use 
what we have learned to perform homology 
modeling?



How does homology modeling work?
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One idea is to include an extra “similarity term” in 
our energy function. The more similar a structure is 
to the template, the more this similarity term 
decreases the function we are minimizing. 

f(S) = energy(S) – similarity(S, template)  



How does homology modeling work?
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https://www.youtube.com/watch?v=cHySqQtb-rk

Think of the template 
protein as “pulling 
down” nearby structures 
in the search space.

One idea is to include an extra “similarity term” in 
our energy function. The more similar a structure is 
to the template, the more this similarity term 
decreases the function we are minimizing. 

f(S) = energy(S) – similarity(S, template)  



How does homology modeling work?

© 2024 Phillip Compeau

Some algorithms assume that very conserved 
(similar) regions in two genes correspond to 
essentially identical structures in the proteins.



How does homology modeling work?

© 2024 Phillip Compeau

Some algorithms assume that very conserved 
(similar) regions in two genes correspond to 
essentially identical structures in the proteins.

We can then use fragment libraries, or known 
protein substructures, to fill in the non-conserved 
regions and produce a final structure. This approach 
to homology modeling is called fragment assembly.



Note: we will use this idea in a SARS-CoV-2 
challenge to predict its spike protein structure.

How does homology modeling work?

© 2024 Phillip Compeau

Some algorithms assume that very conserved 
(similar) regions in two genes correspond to 
essentially identical structures in the proteins.

We can then use fragment libraries, or known 
protein substructures, to fill in the non-conserved 
regions and produce a final structure. This approach 
to homology modeling is called fragment assembly.



Popular platforms predict structure 
distributed over many users’ computers
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https://twitter.com/drGregBowman/status/1239629911310192640



COMPARING PROTEIN 
STRUCTURES
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Recall our Second Question
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Question 2: How can we compare two similar 
proteins (e.g., a predicted and experimental 
structure) quantitatively? 



Comparing protein structures is 
analogous to comparing shapes

© 2024 Phillip Compeau

Goal: Develop a “distance function d(S, T) that 
quantifies how different shapes S and T are.



Comparing protein structures is 
analogous to comparing shapes

© 2024 Phillip Compeau

STOP: Consider the two shapes in the figure below. 
How similar are they?



Comparing protein structures is 
analogous to comparing shapes

© 2024 Phillip Compeau

Note: The two shapes are in fact the same! We can 
superimpose/flip/rotate the red shape to see why.



First, align shapes to have same center of 
mass

© 2024 Phillip Compeau

Idea: To define d(S, T), first translate/flip/rotate S so 
that the resulting shape is as similar to T as possible. 
Then, determine how different the shapes are.



First, align shapes to have same center of 
mass

© 2024 Phillip Compeau

Idea: To define d(S, T), first translate/flip/rotate S so 
that the resulting shape is as similar to T as possible. 
Then, determine how different the shapes are.

We will first translate S to have the same centroid 
(a.k.a. center of mass) as T. The centroid of S is the 
point (xS, yS) such that xS is the average of x-
coordinates on the boundary of S and yS is the 
average of y-coordinates on the boundary.



First, align shapes to have same center of 
mass

© 2024 Phillip Compeau

STOP: Let S be the semicircular arc below. What is 
the centroid of this shape?

(1, 0)(-1, 0)



First, align shapes to have same center of 
mass

© 2024 Phillip Compeau

(1, 0)

Answer: The x-coordinate is easy (0), but the y-
coordinate is trickier and requires us to integrate 
over the y-values of the entire semicircle. 

(-1, 0)

(0, 2/π)



Next, rotate and flip S to resemble T as 
closely as possible

© 2024 Phillip Compeau

Kabsch algorithm: uses singular value 
decomposition (matrix algebra) to find flip/rotation 
of one shape that causes it to be “as similar as 
possible” to the other shape.



Next, rotate and flip S to resemble T as 
closely as possible

© 2024 Phillip Compeau

Kabsch algorithm: uses singular value 
decomposition (matrix algebra) to find flip/rotation 
of one shape that causes it to be “as similar as 
possible” to the other shape.

That is, we must be looking for a rotation/flip 
minimizing some function between the two shapes. 
But what function? 



Determining Similarity of Aligned 
Shapes with RMSD
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Sample n points along the boundary of S and T, 
converting S and T into vectors s = (s1, …, sn) 
and t = (t1, …, tn).  



Determining Similarity of Aligned 
Shapes with RMSD

© 2024 Phillip Compeau

Sample n points along the boundary of S and T, 
converting S and T into vectors s = (s1, …, sn) 
and t = (t1, …, tn).  

We then compute the root mean square deviation 
(RMSD) between the two shapes,

the square root of the average squared distance 
between corresponding points in the vectors.



An example of computing RMSD
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Consider the two shapes shown below.



An example of computing RMSD
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(1, 3)

(2, 5)

(2, 4)

(2, 2)

(4, 4)

(5, 6)

(6, 5)

(4, 6)

We vectorize by sampling n = 4 points from each.



An example of computing RMSD
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4

(1, 3)

(2, 5)

(2, 4)

(2, 2)

(4, 4)

(5, 6)

(6, 5)

(4, 6)

Exercise: Compute the RMSD for this example.



An example of computing RMSD
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4

(1, 3)

(2, 5)

(2, 4)

(2, 2)

(4, 4)

(5, 6)

(6, 5)

(4, 6)

We first find the distances between corresponding 
points. 
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An example of computing RMSD
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RMSD = √((1/4) * (2 + 1 + 4 + 2)) = √(9/4) = 3/2. 
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An example of RMSD
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STOP: Do you see any issues with using RMSD?
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Undersampling can cause issues
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1

2

3

4

Because we didn’t sample enough points here, 
RMSD is zero, but the shapes are not the same.



Undersampling can cause issues
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In practice, researchers take the “alpha carbon” 
atom from each amino acid to vectorize a structure 
and prevent undersampling.



Comparing proteins of differing lengths
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The situation below (an inserted substructure) would 
throw off RMSD for every alpha carbon after #2.

1 2 3 4 65

1 2 3 7

46

5

98



Comparing proteins of differing lengths
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STOP: Any ideas on how we could handle situations 
like this?

1 2 3 4 65

1 2 3 7

46

5

98



Comparing proteins of differing lengths
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Answer: First, we align the protein sequences; then, 
any gap columns will not contribute to RMSD.

1 2 3 4 65

1 2 3 7

46

5

98



Small protein changes can have a huge 
impact on RMSD
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Here are two protein structures that are identical 
except for changing a single bond angle (red).



Small protein changes can have a huge 
impact on RMSD
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The Kabsch algorithm will align proteins as shown 
on the right and miss the similarities.
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Comparing structures locally
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We also haven’t discussed how to compare 
structures locally; i.e., at the same position.
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Comparing structures locally
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STOP: Why would d(si, ti) be a bad comparison at 
the i-th alpha carbon? (Hint: look at i = 6.)
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Comparing structures locally
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Answer: The proteins aren’t really different most 
spots (positions 1-3, 4-9 are identical substructures).
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Comparing structures locally
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STOP: Do you have any ideas for a better way of 
comparing structures locally? 



Comparing structures locally
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Note: The set of intraprotein distances d(s6, sj) is 
similar to the distances d(t6, tj).
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Contact maps help us visualize 
intraprotein distances
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Contact map: for some threshold t, given a structure 
S, color cell (i, j) black if d(si, sj) < t and white 
otherwise.



Contact maps help us visualize 
intraprotein distances

© 2024 Phillip Compeau

STOP: How might we use a contact map to look for 
local regions of similarity in protein structures?



Contact maps help us visualize 
intraprotein distances
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Answer: Comparing the i-th row over two maps tells 
us whether to investigate differences at the i-th 
amino acid.



Q per residue offers a single value for 
how much two proteins differ locally
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Q per residue (Qres): defined as follows.

• N is the number of amino acids in each protein;
• k is equal to 2 when i is at either the start or the 

end of the protein, and k is equal to 3 otherwise;
• the variance term σ2

i,j is equal to ∣i − j∣0.15, so that 
nearby amino acids have more influence.



Q per residue offers a single value for 
how much two proteins differ locally

© 2024 Phillip Compeau

STOP: What happens to the interior term of the sum 
if d(si, sj) is comparable to d(ti, tj)? 



Q per residue offers a single value for 
how much two proteins differ locally

© 2024 Phillip Compeau

STOP: What happens to the interior term of the sum 
if d(si, sj) is comparable to d(ti, tj)? 

Answer: It heads toward exp(0) = 1.



Q per residue offers a single value for 
how much two proteins differ locally

© 2024 Phillip Compeau

STOP: What happens to the interior term of the sum 
if d(si, sj) is very different to d(ti, tj)? 



Q per residue offers a single value for 
how much two proteins differ locally

© 2024 Phillip Compeau

STOP: What happens to the interior term of the sum 
if d(si, sj) is very different to d(ti, tj)? 

Answer: It heads toward exp(-∞) = 0.



Q per residue offers a single value for 
how much two proteins differ locally

© 2024 Phillip Compeau

STOP: So, what are the possible values of Qres?



Q per residue offers a single value for 
how much two proteins differ locally

© 2024 Phillip Compeau

STOP: So, what are the possible values of Qres?

Answer: Qres ranges from 0 when proteins are very 
different at the i-th position, to 1 when proteins are 
identical at the i-th position.



PROTEIN STRUCTURE PREDICTION 
IS SOLVED! (KINDA?)

© 2024 Phillip Compeau



CASP contests establish best structure 
prediction algorithms

© 2024 Phillip Compeau

Critical Assessment of protein Structure Prediction 
(CASP): contest run every two years since 1994 that 
tests structure prediction algorithms against each 
other on known (hidden) protein structures.



CASP contests establish best structure 
prediction algorithms

© 2024 Phillip Compeau

Critical Assessment of protein Structure Prediction 
(CASP): contest run every two years since 1994 that 
tests structure prediction algorithms against each 
other on known (hidden) protein structures.

CASP14 (2020) was 
dominated by 
“AlphaFold”, a 
deep learning 
algorithm produced 
by DeepMind.



Instead of RMSD, CASP scores a 
predicted structure using a different test

© 2024 Phillip Compeau

For some threshold t, we first take the percentage of 
alpha carbon positions for which the distance 
between corresponding alpha carbons in the two 
structures is at most t.



Instead of RMSD, CASP scores a 
predicted structure using a different test

© 2024 Phillip Compeau

For some threshold t, we first take the percentage of 
alpha carbon positions for which the distance 
between corresponding alpha carbons in the two 
structures is at most t.

The global distance test (GDT) score averages the 
percentages obtained when t is equal to each of 1, 
2, 4, and 8 angstroms. A GDT score of 90% is good, 
and a score of 95% is excellent (comparable to 
minor experimental errors).



So, how well did AlphaFold do?
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Source: Mohammed AlQuraishi, https://bit.ly/39Mnym3.

Here’s the plot of GDT scores for AlphaFold (blue) 
and the 2nd place method (orange), produced by 
same lab that developed Rosetta@Home.

https://bit.ly/39Mnym3


So, how well did AlphaFold do?
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Source: Mohammed AlQuraishi, https://bit.ly/39Mnym3.

To show how decisive the victory is, here is 2nd 
place vs. the 3rd place method (submitted by the 
Yang Zhang lab).

https://bit.ly/39Mnym3


DeepMind received lots of positive press
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But some scientists remain skeptical

© 2024 Phillip Compeau

AlphaFold obtained a median RMSD of 1.6, but to 
be trustworthy for a sensitive application like 
designing drug targets, it would need an RMSD 
about 90% lower.



But some scientists remain skeptical
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AlphaFold obtained a median RMSD of 1.6, but to 
be trustworthy for a sensitive application like 
designing drug targets, it would need an RMSD 
about 90% lower.

~1/3 of AlphaFold’s CASP14 predictions have an 
RMSD over 2.0, an often-used threshold for whether 
a predicted structure is reliable. And there is no way 
of knowing in advance whether AlphaFold will 
perform well on a given protein, unless we validate 
the protein’s structure, which causes a catch-22. 



AlphaFold is Still Pretty, Pretty Good
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Nevertheless, we may never again see such an 
improvement to the state of the art in a problem that 
has puzzled biologists for fifty years.



Part 2: A Story About 
Peptide Sequencing

© 2024 Phillip Compeau



Let’s Hear From Karl Pilkington on the 
Infinite Monkey Theorem

© 2024 Phillip Compeau

https://www.youtube.com/watch?v=FWs0ujLrGl0



Karl is a wise man
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Last Time: We Used RNA as Proxy for 
Gene Expression

© 2024 Phillip Compeau

GTGAAACTTTTTCCTTGGTTTAATCAATAT
CACTTTGAAAAAGGAACCAAATTAGTTATA

DNA

Translated peptides

CACUUUGAAAAAGGAACCAAAUUAGUUAUA

GUGAAACUUUUUCCUUGGUUUAAUCAAUAU

HisPheLysLysArgProLysIleLeuIle
 PheSerLysGlyGlnAsnLeu***Tyr
  SerValLysGluLysThr***AspIle

Transcribed RNA

  GluThrPheSerLeuVal***SerIle
 ***AsnPhePheLeuGlyLeuIleAsn
ValTyrGlnAsnPheTrpProPheLeuLys

5'
5'3'
3'

Transcribed RNA

Translated peptides



But the Central Dogma Has Exceptions
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Antibiotic Peptides Can Be Produced 
Outside the Genetic Code
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Module 1 Module 2 Module 3 Module 4 Module 5 Modules 6-10
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Antibiotic Peptides Can Be Produced 
Outside the Genetic Code
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Module 1 Module 2 Module 3 Module 4 Module 5 Modules 6-10

O

O

NH

O
NH3

NH

O

NH

O

NH

HO

O

NH2

O

NH

O
O

H2N
NH

O

NH

O

NH

O

N
O

NH3

O

N
H

O

NH3

N
H

O

HN

O

NH

OH

O

NH2

O

NH

O

O

NH2

N
H

O

HN

O

HN

O

N O

NH2

S
O

NH3

S

O

N
O

NH3

S

O

NH

O

N
O

NH3

... ... ...

Linear Tyrocidine B1 
before circularization

Completed cyclic 
Tyrocidine B1

So how could we sequence this antibiotic peptide?
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Another Application of Peptide 
Sequencing: Dino Peptides

© 2024 Phillip Compeau



A Scientific Battle Over Statistics
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Basics of Mass Spectrometry
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Mass spectrometer: a machine that fragments a 
peptide into two pieces, ionizes the fragments, and 
then measures the mass-charge ratio of fragments. 



Basics of Mass Spectrometry
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Mass spectrometer: a machine that fragments a 
peptide into two pieces, ionizes the fragments, and 
then measures the mass-charge ratio of fragments. 

An MS machine can only read short 
fragments, so we typically first break 
long proteins into short pieces using 
other proteins called proteases. 



Basics of Mass Spectrometry

© 2024 Phillip Compeau

Mass spectrometer: a machine that fragments a 
peptide into two pieces, ionizes the fragments, and 
then measures the mass-charge ratio of fragments. 

An MS machine can only read short 
fragments, so we typically first break 
long proteins into short pieces using 
other proteins called proteases. 

Note: the fragmentation process is messy and 
somewhat unpredictable.



Sample T. rex Spectrum
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Mass spectrum: range of intensities of fragments 
detected at each mass-charge ratio (denoted m/z) 
for a given peptide.
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Sample T. rex Spectrum
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Most common charge is z = +1, so we can compare 
all peptide fragment masses against a spectrum 
using a table of amino acid masses (in Daltons).



”Annotating” This T. rex Spectrum by 
GLVGAPGLRGLPGK
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bi: prefix peptide of length i
yi: suffix peptide of length i

In this case, y12++ means that this peak 
corresponds to a charge z of +2. 
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Peptide Sequencing Problem:
• Input: A mass spectrum spectrum and a peptide-

spectrum scoring function Score().
• Output: An amino acid string peptide that 

maximizes Score(peptide, spectrum) over all 
amino acid strings.

An entire area of research is devoted to deriving 
robust peptide-spectrum scoring functions. 
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Exercise: Count the following two things.
1. The number of possible peptides of length 10.
2. The number of peptides of length 10 in the 

human proteome (20,000 genes, average length 
~400 amino acids). 
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Answer:
1. 20 choices at each position, so 2010 ~ 10 trillion.
2. Approx. 20,000 * 400 = 8 million.

Exercise: Count the following two things.
1. The number of possible peptides of length 10.
2. The number of peptides of length 10 in the 

human proteome (20,000 genes, average length 
~400 amino acids). 
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Peptide Sequencing Problem:
• Input: A mass spectrum spectrum and a peptide-

spectrum scoring function Score().
• Output: An amino acid string peptide that 

maximizes Score(peptide, spectrum) over all 
amino acid strings.

The highest-scoring peptide is often not in the 
proteome being considered, missing the biologically 
correct protein that produced a spectrum.



From Peptide Sequencing to 
Identification
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Peptide Identification Problem:
• Input: A mass spectrum spectrum, a peptide-

spectrum scoring function Score(), and a 
database proteome of amino acid strings.

• Output: An amino acid string peptide that 
maximizes Score(peptide, spectrum) over all 
amino acid strings from proteome.

Note: a brute force algorithm, which we call 
PeptideIdentification(), is reasonable because the 
size of proteome is manageable.



Peptide Identification Over a Spectrum 
Database
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PSMSearch(spectra, proteome, t)
    PSMSet ß an empty set
    for every mass spectrum spectrum in spectra
        peptide ß PeptideIdentification(spectrum, proteome)
        if Score(peptide, spectrum) ≥ t
            PSMSet ß append(PSMSet, spectrum)
    return PSMSet

So, for a family of spectra and a proteome database, 
we aim to find the collection of peptides scoring at 
least t against a spectrum for some choice of t.
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PSMSearch(spectra, proteome, t)
    PSMSet ß an empty set
    for every mass spectrum spectrum in spectra
        peptide ß PeptideIdentification(spectrum, proteome)
        if Score(peptide, spectrum) ≥ t
            PSMSet ß append(PSMSet, spectrum)
    return PSMSet

If for some threshold parameter t, we find that the 
highest-scoring peptide peptide in proteome scores 
at least t against spectrum, then we call (peptide, 
spectrum) a peptide-spectrum match (PSM).
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C H A P T E R 11

T. rex Peptides: Contaminants or Treasure Trove of Ancient Proteins?

The hemoglobin riddle

Upon receiving criticism regarding the statistical foundations of his claims, Asara
acknowledged some of the problems with his analysis, withdrew DinosaurPeptide as
an explanation for DinosaurSpectrum, changed some of his previously proposed T.
rex peptides, and released all 31,372 spectra from the T. rex fossil. Afterwards, other
scientists re-analyzed all spectra and verified that although some of the originally
reported T. rex PSMs are questionable, others are statistically solid (Figure 11.13).

However, Asara’s release of T. rex spectra raised more questions than it answered.
In these spectra, Matthew Fitzgibbon and Martin McIntosh identified an additional
spectrum (Figure 11.14) that perfectly matched ostrich hemoglobin, thus adding another
T. rex peptide to the seven collagen peptides in Figure 11.13. The hemoglobin PSM,
which was missed by Asara, is an order of magnitude more statistically significant than
any previously reported T. rex collagen peptide!

It would be shocking if the hemoglobin peptide indeed belonged to T. rex because
hemoglobins are much less conserved than collagens. For example, human beta chain
hemoglobin is 146 amino acids long and has 27, 38, and 45 amino acid differences with
mouse, kangaroo, and, chicken respectively. Furthermore, intact hemoglobin peptides
have never been found in much younger and widely available fossils, such as the bones
of extinct cave bears. These fossils are so common in European caves that they were
used as a source of phosphates to produce gunpowder during World War I.

ID Peptide Protein Probability n · Probability
P1 GLVGAPGLRGLPGK Collagen a1t2 1.8 · 10-4 36,000
P2 GVVGLPohGQR Collagen a1t1 7.6 · 10-8 16
P3 GVQGPPohGPQGPR Collagen a1t1 7.9 · 10-11 1.6 · 10-2

P4 GATGAPohGIAGAPohGFPohGAR Collagen a1t1 3.2 · 10-12 6.4 · 10-4

P5 GLPGESGAVGPAGPIGSR Collagen a2t1 9.9 · 10-14 2.0 · 10-5

P6 GSAGPPohGATGFPohGAAGR Collagen a1t1 3.2 · 10-14 6.4 · 10-6

P7 GAPGPQGPSGAPohGPK Collagen a1t1 7.0 · 10-16 1.4 · 10-7

P8 VNVADCGAEALAR Hemoglobin b 7.8 · 10-17 1.6 · 10-8

FIGURE 11.13 The seven candidate T. rex collagen peptides (P1 - P7) reported by Asara
as well as a hemoglobin peptide (P8). The last column shows the probabilities of
the PSM dictionaries formed by these peptides. Red symbols indicate mutated amino
acids compared to peptides in the UniProt database. The amino acid Poh stands for
hydroxyproline, a modified form of proline that is common in collagens.
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After collecting thousands of spectra, the T. rex 
researchers consulted collagen proteins in the 
Uniprot database (hundreds of species), along with 
mutations. (Poh is a hydroxylated version of proline.)
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FIGURE 11.13 The seven candidate T. rex collagen peptides (P1 - P7) reported by Asara
as well as a hemoglobin peptide (P8). The last column shows the probabilities of
the PSM dictionaries formed by these peptides. Red symbols indicate mutated amino
acids compared to peptides in the UniProt database. The amino acid Poh stands for
hydroxyproline, a modified form of proline that is common in collagens.
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STOP: How can we determine if a single reported 
PSM is any good? 
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Upon receiving criticism regarding the statistical foundations of his claims, Asara
acknowledged some of the problems with his analysis, withdrew DinosaurPeptide as
an explanation for DinosaurSpectrum, changed some of his previously proposed T.
rex peptides, and released all 31,372 spectra from the T. rex fossil. Afterwards, other
scientists re-analyzed all spectra and verified that although some of the originally
reported T. rex PSMs are questionable, others are statistically solid (Figure 11.13).

However, Asara’s release of T. rex spectra raised more questions than it answered.
In these spectra, Matthew Fitzgibbon and Martin McIntosh identified an additional
spectrum (Figure 11.14) that perfectly matched ostrich hemoglobin, thus adding another
T. rex peptide to the seven collagen peptides in Figure 11.13. The hemoglobin PSM,
which was missed by Asara, is an order of magnitude more statistically significant than
any previously reported T. rex collagen peptide!

It would be shocking if the hemoglobin peptide indeed belonged to T. rex because
hemoglobins are much less conserved than collagens. For example, human beta chain
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mouse, kangaroo, and, chicken respectively. Furthermore, intact hemoglobin peptides
have never been found in much younger and widely available fossils, such as the bones
of extinct cave bears. These fossils are so common in European caves that they were
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FIGURE 11.13 The seven candidate T. rex collagen peptides (P1 - P7) reported by Asara
as well as a hemoglobin peptide (P8). The last column shows the probabilities of
the PSM dictionaries formed by these peptides. Red symbols indicate mutated amino
acids compared to peptides in the UniProt database. The amino acid Poh stands for
hydroxyproline, a modified form of proline that is common in collagens.

614

Answer: Rather than ask “Is this peptide above the 
threshold?”, we ask “What are the odds that a PSM 
of this quality would occur in a random database?”
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Exercise: What is the probability that if a monkey 
typed 11 English letters, that the monkey would type 
SHAKESPEARE?
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Answer: 1/2611.



The Monkey and the Typewriter
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Exercise: What is the expected number of times that 
SHAKESPEARE would occur in 20 million randomly 
generated ”words” of length 11?
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© 2024 Phillip Compeau

Answer: Expected number in one word is the 
probability of SHAKESPEARE, 1/2611. Expected 
number over all words is 20 million · (1/2611) = 5.45 
· 10-9.
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Answer: Expected number in one word is the 
probability of SHAKESPEARE, 1/2611. Expected 
number over all words is 20 million · (1/2611) = 5.45 
· 10-9.

This calculation relies on a probabilistic fact called 
the linearity of expectation: the expected value E(X1 
+ X2 + … + Xn) is equal to E(X1) + E(X2) + … + E(Xn) 
for any collection of random variables X1, X2, …, Xn .
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Exercise: What is the expected number of 
occurrences of all words from an English dictionary 
in a randomly generated string of length n?
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Answer: Expected number of occurrences of a single 
string word is (n – |word| + 1) · (1/26|word|). If n is 
large, then this is approximately n · (1/26|word|).
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Answer: Expected number of occurrences of a single 
string word is (n – |word| + 1) · (1/26|word|). If n is 
large, then this is approximately n · (1/26|word|).

Linearity of expectation yields that the expected 
number of occurrences of all words is 
approximately 

n · Σeach string word in dictionary (1/26 |word|).
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Before: “What are the odds of a monkey typing an 
English word?” 

Now: “What are the odds of a PSM with such a 
good score appearing due to random chance?” 
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Before: “What are the odds of a monkey typing an 
English word?” 

Now: “What are the odds of a PSM with such a 
good score appearing due to random chance?” 

Given a PSM (peptide, spectrum) with score s, 
define its PSM dictionary as the set of all peptides 
scoring at least s against spectrum.
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Given a PSM (peptide, spectrum) with score s, 
define its PSM dictionary as the set of all peptides 
scoring at least s against spectrum.

PSM Dictionary Problem (solvable)
• Input: An amino acid string peptide , a mass 

spectrum spectrum, and a peptide-spectrum 
scoring function Score().

• Output: The set of all amino acid strings having 
score at least Score(peptide, spectrum).
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Given a PSM (peptide, spectrum) with score s, 
define its PSM dictionary as the set of all peptides 
scoring at least s against spectrum.

We will then compare a given PSM dictionary 
against a randomly generated decoy proteome 
having the same size n as the real protein database – 
what is the expected number of hits that we find 
from the PSM dictionary in the decoy?
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We will then compare a given PSM dictionary 
against a randomly generated decoy proteome 
having the same size n as the real protein database – 
what is the expected number of hits that we find 
from the PSM dictionary in the decoy?

STOP: If the score of the PSM is good, what does 
this mean for the expected number of hits against 
the decoy proteome?
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We will then compare a given PSM dictionary 
against a randomly generated decoy proteome 
having the same size n as the real protein database – 
what is the expected number of hits that we find 
from the PSM dictionary in the decoy?

Answer: It will be very low (hopefully close to zero) 
because the dictionary will have few strings.
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Define E(Dictionary, n) as the expected number of 
hits in the PSM dictionary Dictionary against a 
decoy proteome containing n amino acids.
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Define E(Dictionary, n) as the expected number of 
hits in the PSM dictionary Dictionary against a 
decoy proteome containing n amino acids.

From our previous work with the monkey and the 
typewriter, we know that 

E(Dictionary, n) ≈ n · Σeach peptide in dict. (1/20 |peptide|).

We denote the sum as Pr(Dictionary).
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From our previous work with the monkey and the 
typewriter, we know that 

E(Dictionary, n) ≈ n · Σeach peptide in dict. (1/20 |peptide|).

We denote the sum as Pr(Dictionary).

Note: This assumes a peptide can have up to n hits 
in a database with n amino acids, but there are < n 
substrings of length peptide in a real database.    
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The authors of the T. rex peptide paper released the 
~31,000 spectra they had found, allowing the 
following statistical analysis.

C H A P T E R 11

T. rex Peptides: Contaminants or Treasure Trove of Ancient Proteins?

The hemoglobin riddle

Upon receiving criticism regarding the statistical foundations of his claims, Asara
acknowledged some of the problems with his analysis, withdrew DinosaurPeptide as
an explanation for DinosaurSpectrum, changed some of his previously proposed T.
rex peptides, and released all 31,372 spectra from the T. rex fossil. Afterwards, other
scientists re-analyzed all spectra and verified that although some of the originally
reported T. rex PSMs are questionable, others are statistically solid (Figure 11.13).

However, Asara’s release of T. rex spectra raised more questions than it answered.
In these spectra, Matthew Fitzgibbon and Martin McIntosh identified an additional
spectrum (Figure 11.14) that perfectly matched ostrich hemoglobin, thus adding another
T. rex peptide to the seven collagen peptides in Figure 11.13. The hemoglobin PSM,
which was missed by Asara, is an order of magnitude more statistically significant than
any previously reported T. rex collagen peptide!

It would be shocking if the hemoglobin peptide indeed belonged to T. rex because
hemoglobins are much less conserved than collagens. For example, human beta chain
hemoglobin is 146 amino acids long and has 27, 38, and 45 amino acid differences with
mouse, kangaroo, and, chicken respectively. Furthermore, intact hemoglobin peptides
have never been found in much younger and widely available fossils, such as the bones
of extinct cave bears. These fossils are so common in European caves that they were
used as a source of phosphates to produce gunpowder during World War I.

ID Peptide Protein Probability n · Probability
P1 GLVGAPGLRGLPGK Collagen a1t2 1.8 · 10-4 36,000
P2 GVVGLPohGQR Collagen a1t1 7.6 · 10-8 16
P3 GVQGPPohGPQGPR Collagen a1t1 7.9 · 10-11 1.6 · 10-2

P4 GATGAPohGIAGAPohGFPohGAR Collagen a1t1 3.2 · 10-12 6.4 · 10-4

P5 GLPGESGAVGPAGPIGSR Collagen a2t1 9.9 · 10-14 2.0 · 10-5

P6 GSAGPPohGATGFPohGAAGR Collagen a1t1 3.2 · 10-14 6.4 · 10-6

P7 GAPGPQGPSGAPohGPK Collagen a1t1 7.0 · 10-16 1.4 · 10-7

P8 VNVADCGAEALAR Hemoglobin b 7.8 · 10-17 1.6 · 10-8

FIGURE 11.13 The seven candidate T. rex collagen peptides (P1 - P7) reported by Asara
as well as a hemoglobin peptide (P8). The last column shows the probabilities of
the PSM dictionaries formed by these peptides. Red symbols indicate mutated amino
acids compared to peptides in the UniProt database. The amino acid Poh stands for
hydroxyproline, a modified form of proline that is common in collagens.
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T. rex Peptides: Contaminants or Treasure Trove of Ancient Proteins?

The hemoglobin riddle

Upon receiving criticism regarding the statistical foundations of his claims, Asara
acknowledged some of the problems with his analysis, withdrew DinosaurPeptide as
an explanation for DinosaurSpectrum, changed some of his previously proposed T.
rex peptides, and released all 31,372 spectra from the T. rex fossil. Afterwards, other
scientists re-analyzed all spectra and verified that although some of the originally
reported T. rex PSMs are questionable, others are statistically solid (Figure 11.13).

However, Asara’s release of T. rex spectra raised more questions than it answered.
In these spectra, Matthew Fitzgibbon and Martin McIntosh identified an additional
spectrum (Figure 11.14) that perfectly matched ostrich hemoglobin, thus adding another
T. rex peptide to the seven collagen peptides in Figure 11.13. The hemoglobin PSM,
which was missed by Asara, is an order of magnitude more statistically significant than
any previously reported T. rex collagen peptide!

It would be shocking if the hemoglobin peptide indeed belonged to T. rex because
hemoglobins are much less conserved than collagens. For example, human beta chain
hemoglobin is 146 amino acids long and has 27, 38, and 45 amino acid differences with
mouse, kangaroo, and, chicken respectively. Furthermore, intact hemoglobin peptides
have never been found in much younger and widely available fossils, such as the bones
of extinct cave bears. These fossils are so common in European caves that they were
used as a source of phosphates to produce gunpowder during World War I.

ID Peptide Protein Probability n · Probability
P1 GLVGAPGLRGLPGK Collagen a1t2 1.8 · 10-4 36,000
P2 GVVGLPohGQR Collagen a1t1 7.6 · 10-8 16
P3 GVQGPPohGPQGPR Collagen a1t1 7.9 · 10-11 1.6 · 10-2

P4 GATGAPohGIAGAPohGFPohGAR Collagen a1t1 3.2 · 10-12 6.4 · 10-4

P5 GLPGESGAVGPAGPIGSR Collagen a2t1 9.9 · 10-14 2.0 · 10-5

P6 GSAGPPohGATGFPohGAAGR Collagen a1t1 3.2 · 10-14 6.4 · 10-6

P7 GAPGPQGPSGAPohGPK Collagen a1t1 7.0 · 10-16 1.4 · 10-7

P8 VNVADCGAEALAR Hemoglobin b 7.8 · 10-17 1.6 · 10-8

FIGURE 11.13 The seven candidate T. rex collagen peptides (P1 - P7) reported by Asara
as well as a hemoglobin peptide (P8). The last column shows the probabilities of
the PSM dictionaries formed by these peptides. Red symbols indicate mutated amino
acids compared to peptides in the UniProt database. The amino acid Poh stands for
hydroxyproline, a modified form of proline that is common in collagens.
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Problem 1: When we use expected values, we see 
that at least two of the hits are very poor.
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mouse, kangaroo, and, chicken respectively. Furthermore, intact hemoglobin peptides
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used as a source of phosphates to produce gunpowder during World War I.
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FIGURE 11.13 The seven candidate T. rex collagen peptides (P1 - P7) reported by Asara
as well as a hemoglobin peptide (P8). The last column shows the probabilities of
the PSM dictionaries formed by these peptides. Red symbols indicate mutated amino
acids compared to peptides in the UniProt database. The amino acid Poh stands for
hydroxyproline, a modified form of proline that is common in collagens.
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Problem 3: For the sake of fairness, we should 
search spectra against all vertebrate proteins (with 
up to 1 mismatch). This produces even more baffling 
results …

C H A P T E R 11

peptides in Figure 11.15 as statistical artifacts, then we might have to throw out the T.
rex peptides in Figure 11.13 as well.

ID Peptide Protein Probability n · Probability
P9 EDCLSGAKPK ATG7 (Chicken) 3.2 · 10-12 6.4 · 10-4

P10 ENAGEDPGLAR DCD (Human) 2.7 · 10-12 5.4 · 10-4

P11 EGVDAGAAGDPER TTL11 (Mouse) 1.2 · 10-12 2.4 · 10-4

P12 SWIHVALVTGGNK CBR1 (Human) 1.2 · 10-12 2.4 · 10-4

P13 SSNVLSGSTLR MAMD1 (Human) 5.9 · 10-13 1.8 · 10-4

P14 DEVTPAYVVVAR ASPM (Mouse) 1.9 · 10-13 3.8 · 10-5

P15 RNVADCGAEALAR HBB (Ostrich) 3.5 · 10-15 7.0 · 10-7

FIGURE 11.15 Matching T. rex spectra against all vertebrate proteins in the UniProt
database (allowing for up to 1 mutation) reveals a diverse set of peptides. Red symbols
indicate mutated amino acids. Note the presence of another ostrich hemoglobin peptide
(P15), which is slightly heavier (by 57 daltons) than the previously reported hemoglobin
peptide in Figure 11.13 (P8). This change in mass may represent either a mutation of V
into R (as shown above) or a modification of an amino acid.

The dinosaur DNA controversy

As the “T. rex peptides” paper continues to age, there is no end in sight to its controversy.
Yet it was not the first paper to report the retrieval of genetic material from dinosaurs.
In 1994, Scott Woodward announced that he had sequenced DNA from an 80 million
year-old dinosaur bone. The most vehement critic of his finding was — believe it or not
— Mary Schweitzer, who proved that Woodward had only sequenced contaminated
human DNA.

The moral is that although we often present scientific discoveries as clear and incon-
trovertible, the reality is that some of the interesting avenues of modern science often
fall short of this ideal. In a sense, the academic battleground is part of the appeal of
becoming a scientist in the first place. But we also cannot help but wonder if we would
have a conclusive answer to whether Horner’s fossil really contained dinosaur peptides
if it had originally been shared with dozens of independent researchers, who would
have undoubtedly unearthed the shocking appearance of hemoglobin in the T. rex
samples. Fittingly, in their criticism of Woodward’s “dinosaur DNA” paper, Schweitzer
wrote, “real advance in [paleontology] will come only when it is demonstrated that
those studies can be replicated in independent laboratories.”

616



Running this Analysis on the T. rex PSMs

© 2024 Phillip Compeau

Problem 4: The researchers had worked with ostrich 
samples beforehand (and ostrich shows up with low 
probability in both analyses).

C H A P T E R 11

peptides in Figure 11.15 as statistical artifacts, then we might have to throw out the T.
rex peptides in Figure 11.13 as well.

ID Peptide Protein Probability n · Probability
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P10 ENAGEDPGLAR DCD (Human) 2.7 · 10-12 5.4 · 10-4

P11 EGVDAGAAGDPER TTL11 (Mouse) 1.2 · 10-12 2.4 · 10-4

P12 SWIHVALVTGGNK CBR1 (Human) 1.2 · 10-12 2.4 · 10-4

P13 SSNVLSGSTLR MAMD1 (Human) 5.9 · 10-13 1.8 · 10-4

P14 DEVTPAYVVVAR ASPM (Mouse) 1.9 · 10-13 3.8 · 10-5

P15 RNVADCGAEALAR HBB (Ostrich) 3.5 · 10-15 7.0 · 10-7

FIGURE 11.15 Matching T. rex spectra against all vertebrate proteins in the UniProt
database (allowing for up to 1 mutation) reveals a diverse set of peptides. Red symbols
indicate mutated amino acids. Note the presence of another ostrich hemoglobin peptide
(P15), which is slightly heavier (by 57 daltons) than the previously reported hemoglobin
peptide in Figure 11.13 (P8). This change in mass may represent either a mutation of V
into R (as shown above) or a modification of an amino acid.

The dinosaur DNA controversy

As the “T. rex peptides” paper continues to age, there is no end in sight to its controversy.
Yet it was not the first paper to report the retrieval of genetic material from dinosaurs.
In 1994, Scott Woodward announced that he had sequenced DNA from an 80 million
year-old dinosaur bone. The most vehement critic of his finding was — believe it or not
— Mary Schweitzer, who proved that Woodward had only sequenced contaminated
human DNA.

The moral is that although we often present scientific discoveries as clear and incon-
trovertible, the reality is that some of the interesting avenues of modern science often
fall short of this ideal. In a sense, the academic battleground is part of the appeal of
becoming a scientist in the first place. But we also cannot help but wonder if we would
have a conclusive answer to whether Horner’s fossil really contained dinosaur peptides
if it had originally been shared with dozens of independent researchers, who would
have undoubtedly unearthed the shocking appearance of hemoglobin in the T. rex
samples. Fittingly, in their criticism of Woodward’s “dinosaur DNA” paper, Schweitzer
wrote, “real advance in [paleontology] will come only when it is demonstrated that
those studies can be replicated in independent laboratories.”
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