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MODULARITY WUT?
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Quick Review Question
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Reverse Complement Problem
• Input: A DNA string s.
• Output: The reverse complement of s.

STOP: How would you write code to solve this?



A “Modular” Reverse Complement 
Function is Best!
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ReverseComplement(s)
    return Reverse(Complement(s))

STOP: What does it mean for code to be “modular”?



Modularity is everywhere in biology
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We already know that modularity occurs 
in biological networks
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The “network 
motifs” that we 
saw in TF networks 
are their own form 
of modularity.  



Modularity in Graphs
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Modular Non-modular

STOP: What should it mean for a graph to be 
“modular”?



Modularity in Graphs
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Modular Non-modular

STOP: What should it mean for a graph to be 
“modular”?

Answer: It should divide into subgraphs so that two 
nodes from one subgraph are more likely to be 
connected than two nodes from different subgraphs. 



Modular Code is Best, Right?
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ReverseComplement(s)
    return Reverse(Complement(s))

STOP: Is our 
ReverseComplement() 
function the best way to 
reverse complement a string?



Not if we care about speed!
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ReverseComplement(s):
    revComp = ""
    
    complementMap = {
        'A': 'T',
        'T': 'A',
        'C': 'G',
        'G': 'C'
    }
    
    for i = Length(DNAString) – 1 to 0
        currentChar = DNAString[i]
        complementChar = complementMap[currentChar]
        revComp = revComp + ComplementChar
    
    return revComp



Modular code is good practice, but 
optimized code can be non-modular
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Here is some HTML source code from google.com.



Much of biology is hyper-optimized …
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https://xkcd.com/1605/



… and yet modularity in some contexts 
must be worth preserving 
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Although modularity is important to many biological 
processes, no one built a model in which modularity 
spontaneously evolved until 2005.



MCCULLOCH-PITTS NEURONS: THE 
HUMBLE FOUNDATIONS OF AI 
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Neurons form a network of cells 
exchanging information
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https://en.wikipedia.org/wiki/Neuron#/media/File:Components_of_neuron.jpg



Hooray for interdisciplinary research
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Warren McCulloch
Walter Pitts



McCulloch-Pitts Neurons
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A McCulloch-Pitts (MP) 
neuron takes as input n 
binary variables x1, ..., 
xn. For a threshold θ, it 
fires (returns 1) if x1 + 
… + xn ≥ θ; otherwise, it 
returns 0.

Example: At right is an 
MP neuron for n = 2 
and θ = 2. 
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McCulloch-Pitts Neurons
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Example: And here is 
the MP neuron for n = 2 
and θ = 1. 
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McCulloch-Pitts Neurons
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Example: And here is 
the MP neuron for n = 2 
and θ = 1. 

STOP: Do these neurons 
remind you of anything?
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McCulloch-Pitts Neurons
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Example: And here is 
the MP neuron for n = 2 
and θ = 1. 

STOP: Do these neurons 
remind you of anything?

Answer: The output is 
just x1 ∨ x2.
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McCulloch-Pitts Neurons
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And the output of the 
MP neuron when θ = 2 
is x1 ∧  x2.

We say that an MP 
neuron represents a 
truth table if the inputs 
and outputs of the 
neuron and the truth 
table are the same. 
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A Quick Exercise
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Exercise: The AND of n input variables returns true if 
all of the input variables are true, and false 
otherwise; the OR of n input variables returns true if 
at least one of them is true, and false if they are 
all false. Construct MP neurons representing the 
AND and OR of n binary input variables.



An Even Simpler Logical Connective: 
NOT
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x1 x2 x1 ^ x2 x1 _ x2
true true true true

true false false true

false true false true

false false false false

Figure 3.4 All four pairs of truth values for two binary variables,
and the associated values of AND (^) and OR (_) for each pair.

Because of this correspondence between McCulloch-Pitts neu-
rons and logic, for the rest of this chapter, we will use the “1” and “0”
inputs and outputs of neurons interchangeably with true and false.
We will also say that a neuron represents a truth table if the inputs
and outputs of the neuron and the truth table are the same.

STOP: The AND of n input variables returns true if all of the input
variables are true, and false otherwise; the OR of n input variables
is defined as being true if at least one of them is true and false if
they are all false. Construct neurons representing the AND and OR of
n binary input variables.

An even simpler logical connective is NOT, denoted by ⇠. Its truth
table, which returns the opposite of an input variable’s value, is shown
in Figure 3.5. Can we represent this connective with a McCulloch-
Pitts neuron? The answer to this question is “no”, and it is a statement
that we can prove by contradiction.

x1 ⇠ x1
true false

false true

Figure 3.5 The truth table for NOT, denoted by⇠, which takes the
opposite of an input truth value.

Theorem. There is no McCulloch-Pitts neuron representing the con-
nective NOT.

Essential Mathematics © 2020 Phillip Compeau.

Here is a truth table representing 
the logical connective NOT.  
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Here is a truth table representing 
the logical connective NOT.  

Theorem: There is no McCulloch-Pitts neuron 
representing NOT.
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Here is a truth table representing 
the logical connective NOT.  

Theorem: There is no McCulloch-Pitts neuron 
representing NOT.

Proof: Assume that there is such an MP neuron with 
one input variable x1.
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Here is a truth table representing 
the logical connective NOT.  

Theorem: There is no McCulloch-Pitts neuron 
representing NOT.

Proof: Assume that there is such an MP neuron with 
one input variable x1. There must be some threshold 
θ such that when x1 =1, x1 < θ, and when x1 = 0, x1 
≥ θ. In other words, 1 < θ ≤ 0, a contradiction. □



FROM MCCULLOCH-PITTS 
NEURONS TO PERCEPTRONS
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Perceptrons Generalize MP Neurons
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Perceptron: A neuron having a threshold θ and 
constants w1, w2, ..., wn, which fires if and only if
w1 · x1 + w2 · x2 + … + wn · xn ≥ θ.



Perceptrons Generalize MP Neurons
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Perceptron: A neuron having a threshold θ and 
constants w1, w2, ..., wn, which fires if and only if w1 
· x1 + w2 · x2 + … + wn · xn ≥ θ.

STOP: Why does a perceptron generalize the MP 
neuron?



Perceptrons Generalize MP Neurons
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Perceptron: A neuron having a threshold θ and 
constants w1, w2, ..., wn, which fires if and only if
w1 · x1 + w2 · x2 + … + wn · xn ≥ θ.

STOP: Why does a perceptron generalize the MP 
neuron?

Answer: An MP neuron is a perceptron with all 
weights wi equal to 1.



Perceptrons Generalize MP Neurons
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Perceptron: A neuron having a threshold θ and 
constants w1, w2, ..., wn, which fires if and only if
w1 · x1 + w2 · x2 + … + wn · xn ≥ θ.

x1
Input

Variable
Threshold

0
Outputw1 = -1Although an MP 

neuron cannot 
represent NOT, here 
is a perceptron 
representing NOT.

x1 -x1 Output

1 -1 0

0 0 1



Consider the ambiguity of the word “or”
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“Would you like ketchup or mustard with your hot 
dog?”

“Would you like to visit the beach or the mountains 
on vacation?”
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“Would you like ketchup or mustard with your hot 
dog?”

“Would you like to visit the beach or the mountains 
on vacation?”

STOP: What is the difference in “or” in these two 
questions?



Consider the ambiguity of the word “or”
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“Would you like ketchup or mustard with your hot 
dog?”

“Would you like to visit the beach or the mountains 
on vacation?”

STOP: What is the difference in “or” in these two 
questions?

Answer: The first question implies that both options 
are possible (“and/or”).



Introducing XOR
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Theorem. There is no McCulloch-Pitts neuron representing the con-
nective NOT.

Essential Mathematics © 2020 Phillip Compeau.
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it returns false.

x1 x2 x1 Y x2
true true false

true false true

false true true

false false false

Figure 3.7 All four pairs of truth values for two binary variables,
and the associated values of XOR (denoted Y) for each pair.

The word “or” offers an excellent microcosm for the ambiguity
of human language; after all, consider how its meaning differs in the
following two questions.

• “Would you like ketchup or mustard with your hot dog?”

• “Would you like to visit the beach or the mountains on vaca-
tion?”

There is nothing other than context clues to indicate it, but the first
question implies that both alternatives are allowed, which we think of
as OR; California aside, the second question implies that only a single
alternative is allowed, which we think of as XOR.

STOP: Find a perceptron representing XOR.

If you tried the preceding question, then you may be perplexed.
We have tricked you once again.

Theorem. There is no perceptron representing XOR.

Proof. We proceed by contradiction. Assume that there is some per-
ceptron representing XOR. By definition, there must be some real num-
bers w1, w2, and q such that the perceptron outputs 1 when w1 · x1 +
w2 · x2 � q and the perceptron outputs 0 otherwise.

Because the perceptron represents XOR, it outputs 0 when x1 = x2,
in which case w1 · x1 +w2 · x2 < q . In other words,

w1 ·0+w2 ·0 = 0 < q
w1 ·1+w2 ·1 = w1 +w2 < q

Essential Mathematics © 2020 Phillip Compeau.

Exclusive or (XOR): x1 ⊻ x2 is true precisely when 
exactly one of x1 and x2 is true (i.e., when x1 ≠ x2).
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Theorem. There is no perceptron representing XOR.
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w1 ·1+w2 ·1 = w1 +w2 < q

Essential Mathematics © 2020 Phillip Compeau.

Exercise: Find a perceptron that models x1 ⊻ x2.

Exclusive or (XOR): x1 ⊻ x2 is true precisely when 
exactly one of x1 and x2 is true (i.e., when x1 ≠ x2).



Perceptrons have limits too
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Theorem: There is no perceptron representing XOR. 

x1

x2

Input Output

θ

w1

w2

x1 ⊻ x2

Proof: Assume there is, 
so there must be 
constants w1, w2,  such 
that
• when x1 = x2,

w1 · x1 + w2 · x2 < θ
• when x1 ≠ x2,

w1 · x1 + w2 · x2 ≥ θ



Perceptrons have limits too
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x1

x2

Input Output

θ

w1

w2

x1 ⊻ x2

Proof: When x1 = x2, the 
neuron doesn’t fire, and

w1·0 + w2·0 = 0 < θ
w1·1 + w2·1 = w1+w2 < θ 

Theorem: There is no perceptron representing XOR. 



Perceptrons have limits too
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x1

x2

Input Output

θ

w1

w2

x1 ⊻ x2

Proof: When x1 ≠ x2, the 
neuron fires, and

w1·1 + w2·0 = w1 ≥ θ
w1·0 + w2·1 = w2 ≥ θ 

Theorem: There is no perceptron representing XOR. 



Perceptrons have limits too
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x1

x2

Input Output

θ

w1

w2

x1 ⊻ x2

Proof: In summary:
• w1 ≥ θ
• w2 ≥ θ
• 0 < θ
• w1+w2 < θ
Adding eqs. 1 and 2 
gives w1+w2 ≥ 2θ, which 
contradicts w1+w2 < θ 
since θ is positive.     □

Theorem: There is no perceptron representing XOR. 



A less rigorous view of this proof
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1

1

x1

x2

Note: The collection of 
all points (x1, x2) such 
that w1 · x1 + w2 · x2 = θ
must form a line. The 
points such that w1 · x1 
+ w2 · x2 ≥ θ fall on one 
side of this line.



A less rigorous view of this proof
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1

1

x1

x2
We color the points (x1, 
x2) by whether x1 ⊻ x2 is 
true (black) or false 
(white).



A less rigorous view of this proof
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1

1

x1

x2
We color the points (x1, 
x2) by whether x1 ⊻ x2 is 
true (black) or false 
(white).

There is no line through 
the points such that 
shaded points are on 
one side; i.e., XOR is not 
linearly separable.



Linear Separability of AND and OR
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1

1

x1

x2
STOP: Draw lines that 
separate points based 
on the values of x1 ∨ x2. 
Do the same for x1 ∧  x2.



Linear Separability of AND and OR

© 2024 Phillip Compeau

1

1

x1

x2
STOP: Draw lines that 
separate points based 
on the values of x1 ∨ x2. 
Do the same for x1 ∧  x2.

Answer: Shown at right.
x1 ∨ x2

x1 ∧ x2



Linear Separability of AND and OR
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1

1

x1

x2
STOP: Draw lines that 
separate points based 
on the values of x1 ∨ x2. 
Do the same for x1 ∧  x2.

Answer: Shown at right.
x1 ∨ x2

x1 ∧ x2

You may be wondering 
how useful perceptrons 
can be if they can’t 
model XOR. Sit tight!



A BIT MORE LOGIC
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Propositions use logical connectives as 
building blocks
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Proposition: A combination of logical connectives 
in which outputs of one connective can be used as 
inputs of another (e.g., (x1 ∧ (x2 ∨ ~x3)) ⊻ (x4 ∨ x5).
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in which outputs of one connective can be used as 
inputs of another (e.g., (x1 ∧ (x2 ∨ ~x3)) ⊻ (x4 ∨ x5).

CHAPTER 3. THE EVOLUTION OF MODULARITY 44

nective that separates points (x1,x2) depending on whether x1 ^ x2 is
true or false. Do the same for the connective OR.

It might seem that perceptrons are not very powerful if they can-
not model something as simple as the XOR logical connective. How
can such a weak model of neurons serve as the foundation of modern
artificial intelligence research? Hold onto that thought.

A Bit More about Logic, and Two Additional Proof Techniques

Before continuing our discussion of artificial neurons, we will make
an aside to further discuss logic. The logical connectives we have in-
troduced become much more powerful when we start combining them
together into more complicated expressions of connectives called propo-
sitions.

For example, note what happens when we consider the nega-
tion of an AND statement to produce ⇠ (x1 ^ x2), as shown in Fig-
ure 3.9. There are three cases when this formula outputs true, and
one case when it outputs false (when x1 and x2 are both false). In
other words, as we show in the last three columns of Figure 3.9, the
proposition ⇠ (x1 ^ x2) has the same truth values as the proposition
⇠ x1_ ⇠ x2.

x1 x2 x1 ^ x2 ⇠ (x1 ^ x2) ⇠ x1 ⇠ x2 ⇠ x1_ ⇠ x2
true true true false false false false

true false false true false true true

false true false true true false true

false false false true true true true

Figure 3.9 Truth tables demonstrating the �rst of DeMorgan’s
laws, that⇠ (x1 ^ x2)⌘⇠ x1_ ⇠ x2.

The particular equivalence in Figure 3.9 is one of DeMorgan’s
laws, the other being that ⇠ (x1 _ x2) has the same truth values as ⇠
x1^⇠ x2. If two propositions have the same truth values, then we say
that the two propositions are logically equivalent and use the symbol

Essential Mathematics © 2020 Phillip Compeau.

Example: Truth table below demonstrates one of 
DeMorgan’s Laws: ~(x1 ∧  x2) ≡ ~x1 ∨ ~x2.



Propositions use logical connectives as 
building blocks
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Note: Here “≡” denotes logical equivalence, 
meaning that the truth table values are the same.
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Example: Truth table below demonstrates one of 
DeMorgan’s Laws: ~(x1 ∧  x2) ≡ ~x1 ∨ ~x2.

The expression ~(x1 ∧  x2) is so common that it has 
its own connective, NAND (“not AND”): x1 ↑  x2.



Let’s do a couple of exercises!
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The expression ~(x1 ∧  x2) is so common that it has 
its own connective, NAND (“not AND”): x1 ↑  x2.

Exercise 2: Find a proposition using connectives 
other than ⊻ that is logically equivalent to x1 ⊻  x2.

Exercise 1: Find a perceptron representing x1 ↑  x2.



LINKING PERCEPTRONS INTO 
NEURAL NETWORKS MAKES THEM 
MORE POWERFUL
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One solution to exercise 1
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Exercise 1: Find a perceptron representing x1 ↑  x2.

1

1

x1

x2

x1

x2

Input Output

-1

-1

-1

x1 ↑ x2



One solution to exercise 2
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Exercise 2: Find a proposition using connectives 
other than ⊻ that is logically equivalent to x1 ⊻  x2.

One common solution is that x1 ⊻  x2 ≡ (x1 ∨ x2) ∧ 
(∼x1 ∨ ∼x2), which in turn is just (x1 ∨ x2) ∧ (x1 ↑  x2).



One solution to exercise 2
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Exercise 2: Find a proposition using connectives 
other than ⊻ that is logically equivalent to x1 ⊻  x2.

One common solution is that x1 ⊻  x2 ≡ (x1 ∨ x2) ∧ 
(∼x1 ∨ ∼x2), which in turn is just (x1 ∨ x2) ∧ (x1 ↑  x2).

Note: Although we don’t have a perceptron 
representing ⊻, we do have perceptrons representing 
∨, ∧, and ↑ …



Constructing a network of perceptrons 
representing x1 ⊻ x2 
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1x1

1

1

-1

-1
y2 = x1 ↑  x2

y1 = x1 ∨ x2 

x2 -1

x1 x2 x1 + x2 y1 -x1 - x2 y2
1 1 2 1 -2 0

1 0 1 1 -1 1

0 1 1 1 -1 1

0 0 0 0 0 1



Constructing a network of perceptrons 
representing x1 ⊻ x2 
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1x1

1

1

-1

-1
y2 = x1 ↑  x2

y1 = x1 ∨ x2 

2

1

x2 -1
1

x1 x2 x1 + x2 y1 -x1 - x2 y2 y1 + y2 Output

1 1 2 1 -2 0 1 0

1 0 1 1 -1 1 2 1

0 1 1 1 -1 1 2 1

0 0 0 0 0 1 1 0

Output: y1 ∧  y2 =
(x1 ∨ x2) ∧ (x1 ↑  x2) = 

x1 ⊻  x2 



Constructing a network of perceptrons 
representing x1 ⊻ x2 
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1x1

1

1

-1

-1
y2 = x1 ↑  x2

y1 = x1 ∨ x2 

2

1

x2 -1
1

Output: y1 ∧  y2 =
(x1 ∨ x2) ∧ (x1 ↑  x2) = 

x1 ⊻  x2 

Neural network: a network of artificial neurons in 
which neuron outputs are inputs into other neurons. 
The above network has a single hidden layer of 
neurons (gray) that are not input variables or output.



THE UNIVERSALITY OF 
PERCEPTRON NEURAL NETWORKS
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Binary Functions
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Binary function: a function having n binary 
variables as input and producing a binary output.

STOP: How many different binary functions are 
there with n input variables?

Example: f(0,0) = 1; f(0,1) = 1; f(1,0) = 0; f(1,1) = 1.



Binary Functions
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Binary function: a function having n binary 
variables as input and producing a binary output.

Example: f(0,0) = 1; f(0,1) = 1; f(1,0) = 0; f(1,1) = 1.

STOP: How many different binary functions are 
there with n input variables?

Answer: There are 2n different possible inputs. Each 
input can produce a 1 or 0; therefore, there are 
2^{2n} total binary functions.



Our building blocks can be used to 
build any binary function
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Note: this binary function can be represented by the 
proposition ~x1 ∨ x2, with 1 = true and 0 = false.

Example: f(0,0) = 1; f(0,1) = 1; f(1,0) = 0; f(1,1) = 1.



Our building blocks can be used to 
build any binary function
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Example: f(0,0) = 1; f(0,1) = 1; f(1,0) = 0; f(1,1) = 1.

Theorem: Any binary function can be represented 
by some proposition formed by a finite number of 
the logical connectives ∧, ∨, and ∼. 

Note: this binary function can be represented by the 
proposition ~x1 ∨ x2, with 1 = true and 0 = false.
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build any binary function
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Example: f(0,0) = 1; f(0,1) = 1; f(1,0) = 0; f(1,1) = 1.

Theorem: Any binary function can be represented 
by some proposition formed by a finite number of 
the logical connectives ∧, ∨, and ∼. 

Note: this binary function can be represented by the 
proposition ~x1 ∨ x2, with 1 = true and 0 = false.

Key point: All these connectives can be represented 
by single perceptrons… 



Our building blocks can be used to 
build any binary function
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Example: f(0,0) = 1; f(0,1) = 1; f(1,0) = 0; f(1,1) = 1.

Corollary: Any binary function can be represented 
by a neural network of finitely many perceptrons. 

Key point: All these connectives can be represented 
by single perceptrons… 

Note: this binary function can be represented by the 
proposition ~x1 ∨ x2, with 1 = true and 0 = false.



The only building block we need is NAND
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Recall that ~(x1 ∧  x2) is 
abbreviated as x1 ↑  x2.

x1 x2 x1 ↑ x2
1 1 0

1 0 1

0 1 1

0 0 1



The only building block we need is NAND
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Theorem: Any binary function can be represented 
by some proposition formed exclusively by a finite 
number of ↑ connectors. 

Recall that ~(x1 ∧  x2) is 
abbreviated as x1 ↑  x2.

x1 x2 x1 ↑ x2
1 1 0

1 0 1

0 1 1

0 0 1



The only building block we need is NAND
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Proof: We will show that each of the expressions 
~x1 , (x1 ∧  x2), and (x1 ∨ x2) can be represented with 
just NAND (↑) connectors.

Recall that ~(x1 ∧  x2) is 
abbreviated as x1 ↑  x2.

x1 x2 x1 ↑ x2
1 1 0

1 0 1

0 1 1

0 0 1



The only building block we need is NAND
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Proof: We will show that each of the expressions 
~x1 , (x1 ∧  x2), and (x1 ∨ x2) can be represented with 
just NAND (↑) connectors.

Recall that ~(x1 ∧  x2) is 
abbreviated as x1 ↑  x2.

x1 x2 x1 ↑ x2
1 1 0

1 0 1

0 1 1

0 0 1

STOP: Find a proposition formed only of ↑ 
connectors that is logically equivalent to ~x1 .



The only building block we need is NAND
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Proof: We will show that each of the expressions 
~x1 , (x1 ∧  x2), and (x1 ∨ x2) can be represented with 
just NAND (↑) connectors.

Recall that ~(x1 ∧  x2) is 
abbreviated as x1 ↑  x2.

x1 x2 x1 ↑ x2
1 1 0

1 0 1

0 1 1

0 0 1

Answer: ~x1 ≡ x1 ↑  x1 . 



The only building block we need is NAND
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Proof: We will show that each of the expressions 
~x1 , (x1 ∧  x2), and (x1 ∨ x2) can be represented with 
just NAND (↑) connectors.

Recall that ~(x1 ∧  x2) is 
abbreviated as x1 ↑  x2.

x1 x2 x1 ↑ x2
1 1 0

1 0 1

0 1 1

0 0 1

Exercise: Find propositions of ↑ connectors that are 
logically equivalent to (x1 ∧  x2) and (x1 ∨ x2).



The only building block we need is NAND
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x1 x2 x1 ∧ x2 x1 ↑ x2 (x1 ↑ x2) ↑ (x1 ↑ x2) 
1 1 1 0 1

1 0 0 1 0

0 1 0 1 0

0 0 0 1 0

x1 x2 x1 ∨ x2 x1 ↑ x1 x2 ↑ x2 (x1 ↑ x1) ↑ (x2 ↑ x2) 
1 1 1 0 0 1

1 0 1 0 1 1

0 1 1 1 0 1

0 0 0 1 1 0



The only building block we need is NAND
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Theorem: Any binary function can be represented 
by some proposition formed exclusively by a finite 
number of ↑ connectors. 

Recall that ~(x1 ∧  x2) is 
abbreviated as x1 ↑  x2.

x1 x2 x1 ↑ x2
1 1 0

1 0 1

0 1 1

0 0 1

STOP: Now that we have proven this theorem, what 
is the corollary?



The only building block we need is NAND
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Corollary: Any binary function can be represented 
by a neural network of NAND perceptrons.

Recall that ~(x1 ∧  x2) is 
abbreviated as x1 ↑  x2.

x1 x2 x1 ↑ x2
1 1 0

1 0 1

0 1 1

0 0 1

Note:        is called 
a NAND gate.

x1

x2

x1 ↑ x2



MODELING THE EVOLUTION 
OF BIOLOGICAL MODULARITY
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Returning to our original question
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Can we build a (simple) model in which modularity 
spontaneously evolves as an optimal solution?



The Kashtan-Alon Model
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Organisms: all 4-input networks of NAND perceptrons 

x1

x2 Output

x3

x4

Note:        is called 
a NAND gate.



The Kashtan-Alon Model
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Organisms: all 4-input networks of NAND perceptrons 

Goal (G): correctly ”compute” as many inputs as 
possible for the proposition (x1 ⊻ x2) ∧ (x3 ⊻ x4).



The Kashtan-Alon Model
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Organisms: all 4-input networks of NAND perceptrons 

STOP: How many different choices of input are 
there for this proposition?

Goal (G): correctly ”compute” as many inputs as 
possible for the proposition (x1 ⊻ x2) ∧ (x3 ⊻ x4).



The Kashtan-Alon Model
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Organisms: all 4-input networks of NAND perceptrons 

STOP: How many different choices of input are 
there for this proposition?

Answer: Two possibilities for each variable, so 24 = 
16.

Goal (G): correctly ”compute” as many inputs as 
possible for the proposition (x1 ⊻ x2) ∧ (x3 ⊻ x4).



One way of reaching the goal
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Recall that (x1 ⊻ x2) ≡ (x1 ∨ x2) ∧ (x1 ↑  x2). 

By the theorem from previously, there is some neural 
network of NAND gates for (x1 ∨ x2) ∧ (x1 ↑  x2).

x1

x2

Output



One way of reaching the goal
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And yet there is a simpler network for x1 ⊻ x2, which 
is [x1 ↑ (x1 ↑ x2)] ↑ [x2 ↑ (x1 ↑ x2)], as shown below.

x1

x2

Output



One way of reaching the goal
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And yet there is a simpler network for x1 ⊻ x2, which 
is [x1 ↑ (x1 ↑ x2)] ↑ [x2 ↑ (x1 ↑ x2)], as shown below.

x1

x2

Output

Key point: we should prioritize this smaller network 
because it would be easier to have evolved.



One way of reaching the goal
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And yet there is a simpler network for x1 ⊻ x2, which 
is [x1 ↑ (x1 ↑ x2)] ↑ [x2 ↑ (x1 ↑ x2)], as shown below.

Key point: we should prioritize this smaller network 
because it would be easier to have evolved.

To prefer a smaller network over a larger network, 
Kashtan and Alon defined a fitness function for a 
network as the fraction of the 16 input assignments 
whose output matches the goal G, minus a small 
positive ε times the number m of NAND gates. 



The Kashtan-Alon Algorithm
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1. Construct 100 random initial networks.
2. Run the following algorithm for 10,000 “generations”.

1. Consider only the 50 networks having highest fitness.
2. Use these networks to produce 100 “children” 

networks that have mutations compared to the parent 
networks.

3. At the end, return the network(s) having maximum fitness 
as the winner(s).



The Kashtan-Alon Algorithm
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1. Construct 100 random initial networks.
2. Run the following algorithm for 10,000 “generations”.

1. Consider only the 50 networks having highest fitness.
2. Use these networks to produce 100 “children” 

networks that have mutations compared to the parent 
networks.

3. At the end, return the network(s) having maximum fitness 
as the winner(s).

This type of search heuristic, which mimics 
evolution, is called a genetic algorithm.



Our winner isn’t very modular… L

© 2024 Phillip Compeau

x1

x2 Output

x3

x4



Life changes, and fitness should change 
too

© 2024 Phillip Compeau

Key point: a more realistic model of a competitive 
landscape would use a variable fitness function.
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Key point: a more realistic model of a competitive 
landscape would use a variable fitness function.

Previous goal (G): correctly ”compute” as many 
inputs as possible for (x1 ⊻ x2) ∧ (x3 ⊻ x4).



Life changes, and fitness should change 
too

© 2024 Phillip Compeau

Key point: a more realistic model of a competitive 
landscape would use a variable fitness function.

Alternate goal (H): correctly ”compute” as many 
inputs as possible for (x1 ⊻ x2) ∨ (x3 ⊻ x4).

Previous goal (G): correctly ”compute” as many 
inputs as possible for (x1 ⊻ x2) ∧ (x3 ⊻ x4).



Adapting the algorithm to incorporate 
variable fitness
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1. Construct 100 random initial networks.
2. Run the following algorithm for 10,000 “generations”.

1. Consider only the 50 networks having highest fitness.
2. Use these networks to produce 100 “children” 

networks that have mutations compared to the parent 
networks.

3. Every e generations (e = 20 in original paper), switch 
the goal function from G to H or vice-versa.

3. At the end, return the network(s) having maximum fitness 
as the winner(s).



With the static goal G, we found a non-
modular solution
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x1

x2 Output

x3

x4

Key point: 
when the goal 
is H, we need 
many mutations 
to this network.



Dynamic fitness leads to a modular 
solution to G in ~5000 generations
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x1

x2
Output

x3

x4



Switching the goal to H yields a very 
slightly different modular solution
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x1

x2
Output

x3

x4



A great idea leads to more questions
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1. What is the extent to which real fitness functions 
reward modularity?

2. What are the limits of modularity in biology?
3. And what happens when we start building 

models of consciousness that are more advanced 
than the neural networks presented here?



EPILOGUE: PRACTICAL 
APPLICATIONS OF NEURAL 
NETWORKS AI MAGIC IN 20 
MINUTES
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Many problems can be framed as 
classification
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Classification Problem
• Input: A collection of data divided into a training 

set and a test set. Each training data point is 
labeled into one of k classes.

• Output: a predictive labeling of all the points in 
the test set into one of k classes.

Example: Our data might be images of skin lesions, 
which we want to classify as non-neoplastic, a 
benign tumor, or malignant (cancer).



Converting data into a manageable form
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Example: If each image has n 
pixels, then each pixel has three 
RGB values, representing the 
amount of red, green, and blue in 
each pixel. This produces 3n 0-1 
decimal values for each image.

We then need to vectorize our data 
in some way, converting each 
object into a collection of 
variables.

https://excelatfinance.com/xlf/xlf-colors-1.php



Generalizing neural networks
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x1

x2

Input Output

b

w1

f(w1 · x1 + w2 · x2 – b)

w2

A generalized neuron allows n arbitrary decimal 
inputs (often between 0 and 1) and fires f(w1 · x1 + 
w2 · x2 + … + wn · xn – b) for an activation function 
f and a constant bias b.



Generalizing neural networks
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One common activation function is the logistic 
function: f(x) = 1/(1 + e-x), shown below.

https://en.wikipedia.org/wiki/Logistic_function

x1

x2

Input Output

b

w1

f(w1 · x1 + w2 · x2 – b)

w2



Generalizing neural networks
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https://en.wikipedia.org/wiki/Logistic_function

x1

x2

Input Output

b

w1

f(w1 · x1 + w2 · x2 – b)

w2

STOP: What was the “activation function” that we 
were using with perceptrons?



Generalizing neural networks
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Answer: The “step function” S(x) that outputs 1 if x is 
≥ θ and outputs 0 if x < θ.

θ

1



Generalizing neural networks
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Note: even though it’s simple, researchers now often 
use a “rectifier” function: f(x) = max(0, x).

1



We then build some gigantic network 
with several hidden layers
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Output

Input

Hidden Neurons

...

x1

x3n

...
... b3

b1

b2

non-
neoplastic

benign

malignant

...

Congrats! You are now a deep learning expert.



We then build some gigantic network 
with several hidden layers
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Output

Input

Hidden Neurons

...

x1

x3n

...
... b3

b1

b2

non-
neoplastic

benign

malignant

...

For a data value x, its output is a vector P(x).



We then build some gigantic network 
with several hidden layers
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Output

Input

Hidden Neurons

...

x1

x3n

...
... b3

b1

b2

non-
neoplastic

benign

malignant

...

We want P(x) for a benign image similar to (0, 1, 0). 



We have a lot of freedom in parameter 
selection
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Note: For every neuron in our network, all of the 
input weights wi are parameters.

Network Parameter Learning Problem
• Input: A collection of vectorized data and a 

neural network.
• Output: a collection of weights and biases that 

minimizes the average RMSD between an object 
x’s correct label vector, L(x), and the prediction 
from the network, P(x), over all objects x.



We have a lot of freedom in parameter 
selection
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STOP: Does “distance between two vectors” ring 
any bells?

Network Parameter Learning Problem
• Input: A collection of vectorized data and a 

neural network.
• Output: a collection of weights and biases that 

minimizes the average RMSD between an object 
x’s correct label vector, L(x), and the prediction 
from the network, P(x), over all objects x.



We have a lot of freedom in parameter 
selection
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Answer: RMSD is one way of quantifying this 
distance.

Network Parameter Learning Problem
• Input: A collection of vectorized data and a 

neural network.
• Output: a collection of weights and biases that 

minimizes the average RMSD between an object 
x’s correct label vector, L(x), and the prediction 
from the network, P(x), over all objects x.



We have a lot of freedom in parameter 
selection
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Network Parameter Learning Problem
• Input: A collection of vectorized data and a 

neural network.
• Output: a collection of weights and biases that 

minimizes the average RMSD between an object 
x’s correct label vector, L(x), and the prediction 
from the network, P(x), over all objects x.

STOP: What kind of computational problem is this?



We have a lot of freedom in parameter 
selection
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Network Parameter Learning Problem
• Input: A collection of vectorized data and a 

neural network.
• Output: a collection of weights and biases that 

minimizes the average RMSD between an object 
x’s correct label vector, L(x), and the prediction 
from the network, P(x), over all objects x.

Answer: It’s an optimization problem, where the 
search space is the collection of weights/biases.



We have a lot of freedom in parameter 
selection
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Network Parameter Learning Problem
• Input: A collection of vectorized data and a 

neural network.
• Output: a collection of weights and biases that 

minimizes the average RMSD between an object 
x’s correct label vector, L(x), and the prediction 
from the network, P(x), over all objects x.

Note: Much of deep learning is just “build a big 
network and apply a local search heuristic”.



Still, deep learning can be impressive…
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... and a fancier version of our skin 
lesion network was a real paper!
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STOP: Any guesses on how 
accurate their algorithm was?



... and a fancier version of our skin 
lesion network was a real paper!
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STOP: Any guesses on how 
accurate their algorithm was?

Answer: Around 70% 
accurate, compared to 67% 
accuracy for a dermatologist.



Deep Learning + CB = 0 Great Ideas?
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“Following from an extensive literature review, we 
find that deep learning has yet to revolutionize 
biomedicine or definitively resolve any of the most 
pressing challenges in the field, but promising 
advances have been made on the prior state of the 
art.”



This Might Not Age the Best!
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Source: Mohammed AlQuraishi, https://bit.ly/39Mnym3.

https://bit.ly/39Mnym3


… but is this really a model of 
intelligence?
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≠

“Let's not impose artificial constraints based on 
cartoon models of topics in science that we don't 
yet understand.” – Michael I. Jordan, 2014

https://www.reddit.com/r/MachineLearning/comments/2fxi6v/ama_michael_i_jordan/
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… but is this really a model of 
intelligence?
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≠

Idea: if nature is good at solving problems, why 
don’t we study the algorithms that it has developed 
over the course of evolution?
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