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Part 1:
DNA Computing

Source: https://thehealthcaretechnologyreport.com/microsoft-
illumina-and-twist-bioscience-lead-the-way-in-dna-data-storage/



What is DNA Computing?

DNA Computing: Using DNA as hardware of 
computer due to its molecular-scale storage 
capabilities.

W H E R E I N T H E G E N O M E D O E S D N A R E P L I C AT I O N B E G I N ?

STOP and Think: Is any one of the four most frequent 9-mers in the oriC of Vibrio

cholerae “more surprising” than the others?

Some Hidden Messages are More Surprising than Others

Recall that nucleotides A and T are complements of each other, as are C and G. Having
one strand of DNA and a supply of “free floating” nucleotides as shown in Figure 1.1,
one can imagine the synthesis of a complementary strand on a template strand. This
model of replication was confirmed by Meselson and Stahl in 1958 (see DETOUR: PAGE 57
The Most Beautiful Experiment in Biology). Figure 1.4 shows a template strand
AGTCGCATAGT and its complementary strand ACTATGCGACT.

At this point, you may think that we have made a mistake, since the comple-
mentary strand in Figure 1.4 reads out TCAGCGTATCA from left to right rather than
ACTATGCGACT. We have not: each DNA strand has a direction, and the complementary
strand runs in the opposite direction to the template strand, as shown by the arrows in
Figure 1.4. Each strand is read in the 5’ ! 3’ direction (see DETOUR: Directionality PAGE 59
of DNA Strands to learn why biologists refer to the beginning and end of a strand of
DNA using the terms 5’ and 3’).

T C A G C G T A T C A 

A G T C G C A T A G T 

3  

3  

5  

5  

FIGURE 1.4 Complementary strands run in opposite directions.

Given a nucleotide p, we denote its complementary nucleotide as p. The reverse
complement of a string Pattern = p1 · · · pn is the string Pattern = pn · · · p1 formed by
taking the complement of each nucleotide in Pattern, then reversing the resulting string.
We will need the solution to the following problem throughout this chapter.
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Barriers to DNA Computing

DNA Computing: Using DNA as hardware of 
computer due to its molecular-scale storage 
capabilities.

STOP: What practical barriers do you see for using 
DNA as a system of storage? 
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Barriers to DNA Computing

DNA Computing: Using DNA as hardware of 
computer due to its molecular-scale storage 
capabilities.

Answer: Reading DNA is expensive, and (until 
recently) editing DNA has been impossible.
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STOP: What practical barriers do you see for using 
DNA as a system of storage? 



Some DNA Manipulations are Easy

© 2024 Phillip Compeau

DNA Computing: Using DNA as hardware of 
computer due to its molecular-scale storage 
capabilities.

However, there are some things that aren’t hard:
• Synthesizing a strand (oligonucleotide) of DNA.
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• Synthesizing a strand (oligonucleotide) of DNA.
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Some DNA Manipulations are Easy
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DNA Computing: Using DNA as hardware of 
computer due to its molecular-scale storage 
capabilities.

However, there are some things that aren’t hard:
• Synthesizing a strand (oligonucleotide) of DNA.
• Forcing a DNA strand to base pair given free 

nucleotides and DNA polymerase.
• Filtering all fragments of DNA in a sample of 

some (approximate) length.
• Amplifying a strand of DNA with given start/end 

into many copies (PCR, Nobel Prize in 1993).



Recall: Easy and Difficult Problems

Hamiltonian Cycle Problem
Input: a directed network with n nodes.
Output: “Yes” if there is a cycle visiting every 
node in the network; “No” otherwise.

Eulerian Cycle Problem
Input: a directed network with n nodes.
Output: “Yes” if there is a cycle visiting every 
edge in the network; “No” otherwise.

NP-Complete

Polynomial
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Recall: Easy and Difficult Problems

In particular, all NP-Complete problems are 
equivalent; if we solve the Hamiltonian Cycle 
Problem, then we solve them all.

Hamiltonian Cycle Problem
Input: a directed network with n nodes.
Output: “Yes” if there is a cycle visiting every 
node in the network; “No” otherwise.

NP-Complete
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Programming a DNA computer to solve 
the Hamiltonian cycle problem

© 2024 Phillip Compeau

Key insight: Rather than trying to use DNA as 
storage, why not use it to solve difficult problems?

Note: Adleman is also famous for public key 
cryptography (he is the “A” in “RSA” cryptosystem).



Programming a DNA computer to solve 
the Hamiltonian cycle problem

© 2024 Phillip Compeau

The difficulty here is that it’s not clear at all what it 
means to “program” a DNA computer.

Key insight: Rather than trying to use DNA as 
storage, why not use it to solve difficult problems?



Adleman’s Algorithm

Algorithm for Determining if there is 
Hamiltonian Path in Graph G Connecting v1 to vn
1. Generate many “random paths” through G to 

ensure that any Hamiltonian path is captured.
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Adleman’s Algorithm

Algorithm for Determining if there is 
Hamiltonian Path in Graph G Connecting v1 to vn
1. Generate many “random paths” through G to 

ensure that any Hamiltonian path is captured.
2. Keep only those paths that begin with v1 and 

end with vn .
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Adleman’s Algorithm

Algorithm for Determining if there is 
Hamiltonian Path in Graph G Connecting v1 to vn
1. Generate many “random paths” through G to 

ensure that any Hamiltonian path is captured.
2. Keep only those paths that begin with v1 and 

end with vn .
3. Keep only those paths that have n nodes.
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Adleman’s Algorithm

Algorithm for Determining if there is 
Hamiltonian Path in Graph G Connecting v1 to vn
1. Generate many “random paths” through G to 

ensure that any Hamiltonian path is captured.
2. Keep only those paths that begin with v1 and 

end with vn .
3. Keep only those paths that have n nodes.
4. Keep only those paths that enter all the nodes 

of the graph at least once.
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Adleman’s Algorithm

Algorithm for Determining if there is 
Hamiltonian Path in Graph G Connecting v1 to vn
1. Generate many “random paths” through G to 

ensure that any Hamiltonian path is captured.
2. Keep only those paths that begin with v1 and 

end with vn .
3. Keep only those paths that have n nodes.
4. Keep only those paths that enter all the nodes 

of the graph at least once.
5. If any paths remain, return “Yes”; otherwise, 

return “No”.
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Converting Each Step to Experiment

1. Generate many “random paths” through G to 
ensure that any Hamiltonian path is present.
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Converting Each Step to Experiment

1. Generate many “random paths” through G to 
ensure that any Hamiltonian path is present.

Associate every node i of G with a DNA k-mer 
denoted Oi . Call its complement O’i .

ACTGCG
i

O’i 

TGACGCOi 
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Converting Each Step to Experiment

1. Generate many “random paths” through G to 
ensure that any Hamiltonian path is present.

Associate every edge (i, j) with a DNA k-mer Ei,j 
consisting of last k/2 symbols of Oi followed by first 
k/2 symbols of Oj . (Preserves edge orientation.)

i j

TGACGCOi 

Oj AAGACT

Ei,j CGCAAG
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Converting Each Step to Experiment

1. Generate many “random paths” through G to 
ensure that any Hamiltonian path is present.

Note: If i = 1, use all k symbols of O1. If j = n, use all 
k symbols of On .

1 j

CATTATO1 

Oj AAGACT

E1,j CATTATAAG
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Converting Each Step to Experiment

1. Generate many “random paths” through G to 
ensure that any Hamiltonian path is present.

Key Point: recall that generating oligonucleotides is 
cheap and easy.
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Converting Each Step to Experiment

1. Generate many “random paths” through G to 
ensure that any Hamiltonian path is present.
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Produce many oligonucleotides:
• copies of Ei,j for every edge (i, j)
• copies of O’i for every node other than v1 and vn .



Converting Each Step to Experiment

1. Generate many “random paths” through G to 
ensure that any Hamiltonian path is present.
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Produce many oligonucleotides:
• copies of Ei,j for every edge (i, j)
• copies of O’i for every node other than v1 and vn .

STOP: What will happen when we combine all these 
DNA oligonucleotides in the lab?



Converting Each Step to Experiment

1. Generate many “random paths” through G to 
ensure that any Hamiltonian path is present.
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Produce many oligonucleotides:
• copies of Ei,j for every edge (i, j)
• copies of O’i for every node other than v1 and vn .

Answer: edge Ei,j will hybridize to O’i and O’j .  
Adjacent edges will therefore join into a path.



Converting Each Step to Experiment

1. Generate many “random paths” through G to 
ensure that any Hamiltonian path is captured.

CATTATO1 

O2 CGTCCAE1,4 
CATTATAAG

O’4 
TTCTGA

O4 AAGACT

O7 CTTTAG

© 2024 Phillip Compeau

1 4 2 7

Hypothetical path in G 



Converting Each Step to Experiment

1. Generate many “random paths” through G to 
ensure that any Hamiltonian path is captured.

CATTATO1 

O2 CGTCCAE1,4 
CATTATAAGACTCGT

O’4 
TTCTGA

E4,2 

O4 AAGACT

O7 CTTTAG

1 4 2
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Converting Each Step to Experiment

1. Generate many “random paths” through G to 
ensure that any Hamiltonian path is captured.

CATTATO1 

O2 CGTCCAE1,4 
CATTATAAGACTCGT

O’4 
TTCTGA

E4,2 

GCAGGT

O’2

O4 AAGACT

O7 CTTTAG

1 4 2
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Hypothetical path in G 
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Converting Each Step to Experiment

1. Generate many “random paths” through G to 
ensure that any Hamiltonian path is captured.

CATTATO1 

O2 CGTCCAE1,4 
CATTATAAGACTCGTCCACTTTAG

O’4 
TTCTGA

E4,2 

GCAGGT

O’2

O4 AAGACT

E2,7 

O7 CTTTAG

1 4 2 7
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Hypothetical path in G 



Converting Each Step to Experiment

1. Generate many “random paths” through G to 
ensure that any Hamiltonian path is captured.

As a result, every path in the graph will be present as 
some double-stranded DNA molecule.
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Converting Each Step to Experiment

2. Keep only those paths that begin with v1 and end 
with vn .

Use PCR to amplify only those remaining fragments 
of DNA that begin with O1 and end with On .
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Converting Each Step to Experiment

3. Keep only those paths that have n nodes.

Filter remaining DNA fragments by length, and throw 
out all fragments that don’t have length 
approximately equal to n * k nucleotides.
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Converting Each Step to Experiment

4. Keep only those paths that enter all the nodes of 
the graph at least once.

Convert all DNA to single strands, and hybridize 
DNA against O’i for some i. Filter out strands that 
don’t bind.  Repeat for all O’i .

CATTATAAGAAGCGTCCACTTTAG CATTATO1 

O2 CGTCCA

O3 GACCGT
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Converting Each Step to Experiment

4. Keep only those paths that enter all the nodes of 
the graph at least once.

CATTATAAGAAGCGTCCACTTTAG CATTATO1 

O2 CGTCCA

O3 GACCGT

GTAATA

O’1 
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Convert all DNA to single strands, and hybridize 
DNA against O’i for some i. Filter out strands that 
don’t bind.  Repeat for all O’i .



Converting Each Step to Experiment

4. Keep only those paths that enter all the nodes of 
the graph at least once.

CATTATAAGAAGCGTCCACTTTAG CATTATO1 

O2 CGTCCA

O3 GACCGT

GCAGGT
O’2 
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Convert all DNA to single strands, and hybridize 
DNA against O’i for some i. Filter out strands that 
don’t bind.  Repeat for all O’i .



Converting Each Step to Experiment

4. Keep only those paths that enter all the nodes of 
the graph at least once.

CATTATAAGAAGCGTCCACTTTAG CATTATO1 

O2 CGTCCA

O3 GACCGT
O’3 = CTGGCA doesn’t align!
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Convert all DNA to single strands, and hybridize 
DNA against O’i for some i. Filter out strands that 
don’t bind.  Repeat for all O’i .



Converting Each Step to Experiment

5. If any paths remain, return “Yes”; otherwise, 
return “No”.

If any DNA remains from 
our experiment, then we 
know that the answer must 
be “Yes”! Otherwise, it is 
“No”.
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We’ve Solved an NP-Complete 
Problem?!
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STOP: What issues do you see with this approach?



We’ve Solved an NP-Complete 
Problem?!
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STOP: What issues do you see with this approach?

Answer: Three immediate barriers:
1. Possibility of errors is high.
2. We still need to generate, at a minimum, n! 

strands of DNA. So this is impossible for networks 
with, say, 100 nodes.

3. An enormous amount of lab work needs to be 
done, with hours of waiting times.



DNA is nevertheless promising as hard 
drive storage
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Part 2: Self-
Replicating 

Cellular 
Automata



Can a Machine Replicate Itself?

Cornell University. Taken from https://www.youtube.com/watch?v=gZwTcLeelAY



Why Haven’t We Seen Alien Spacecraft?

Fermi paradox: No evidence of alien life has been 
found in the galaxy despite its likelihood.
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Why Haven’t We Seen Alien Spacecraft?

von Neumann Probes: a theorized space probe that 
can use resources it finds to self-replicate.
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Von Neumann’s Question

What is the simplest 
possible self-
replicating system?

John von Neumann 
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Von Neumann’s Question

Stanislaw Ulam

Learn some 
biology, John!
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John von Neumann 

What is the simplest 
possible self-
replicating system?



Cells are Self-Replicators

Source: https://singularityhub.com/2017/11/10/the-dream-of-regenerative-medicine-is-alive-and-well/
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Psst ... There’s a Simpler Self-Replicator
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Cellular Automata

Cellular Automaton: A grid of (typically square) cells, 
along with a collection of simple rules that allow the 
cells to change from one “state” to another.
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Cellular Automata

A lot of the cellular automata you could come up 
with are pretty boring, but then there is …
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Cellular Automaton: A grid of (typically square) cells, 
along with a collection of simple rules that allow the 
cells to change from one “state” to another.



The Game of Life: Rules

Neighborhood

A: If a cell is alive and has either two 
or three live neighbors, then it remains 
alive.
B: If a cell is alive and has zero or one 
live neighbors, then it dies out.
C: If a cell is alive and has four or 
more live neighbors, then it dies out.
D: If a cell is dead and has more than 
or fewer than three live neighbors, 
then it remains dead.
E: If a cell is dead and has exactly 
three live neighbors, then it becomes 
alive.
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What’s the Next Generation?

A: If a cell is alive and has either two 
or three live neighbors, then it remains 
alive.
B: If a cell is alive and has zero or one 
live neighbors, then it dies out.
C: If a cell is alive and has four or 
more live neighbors, then it dies out.
D: If a cell is dead and has more than 
or fewer than three live neighbors, 
then it remains dead.
E: If a cell is dead and has exactly 
three live neighbors, then it becomes 
alive.

Dark = alive
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What’s the Next Generation?

A: If a cell is alive and has either two 
or three live neighbors, then it remains 
alive.
B: If a cell is alive and has zero or one 
live neighbors, then it dies out.
C: If a cell is alive and has four or 
more live neighbors, then it dies out.
D: If a cell is dead and has more than 
or fewer than three live neighbors, 
then it remains dead.
E: If a cell is dead and has exactly 
three live neighbors, then it becomes 
alive.

D D D D D D

D B E E D D

D D C C A D

D A C C D D

D D E E B D

D D D D D D
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What’s the Next Generation?

D D D D D D

D B E E D D

D D C C A D

D A C C D D

D D E E B D

D D D D D D
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Quick Quiz

Exercise: What is the next generation?

A: If a cell is alive and has either two or 
three live neighbors, then it remains 
alive.
B: If a cell is alive and has zero or one 
live neighbors, then it dies out.
C: If a cell is alive and has four or more 
live neighbors, then it dies out.
D: If a cell is dead and has more than 
or fewer than three live neighbors, then 
it remains dead.
E: If a cell is dead and has exactly three 
live neighbors, then it becomes alive.
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Stable Forms
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Quick Quiz

Exercise: Carry out the next few generations of 
this board. What happens?
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Oscillators
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Oscillators
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Oscillators
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Oscillators
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Oscillators
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Oscillators
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Getting More Complicated …
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In case you were curious …
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The Curious Case of the R-Pentomino
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The Curious Case of the R-Pentomino
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John Conway’s Question

Courtesy: Thane Plambeck

Is it possible for the 
number of live cells to 
grow without bound as 
time goes on?

© 2024 Phillip Compeau



Bill Gosper’s “Glider Gun”
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Definitely!



Bill Gosper’s “Glider Gun” Resembles a 
Factory with Linear Growth
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Self-Replicating Automata: A History

Courtesy: Cary Herz

John von Neumann Edgar Codd Chris Langton

Courtesy: IBM

Year: 1952

Number of States: 29

Size of Self Replicator:
130,622 cells

Year: 1968

Number of States: 8

Size of Self Replicator:
283,126,588 cells

Year: 1984

Number of States: 8

Size of Self Replicator:
86 cells
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Langton Loops: A (Beautiful) Self-
Replicating Cellular Automaton
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Video link: https://youtu.be/7bP76zt3uGw
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Part 3: Spatial Games



Cooperation is Everywhere. But Why?

Courtesy: milkwood.net



“Prisoner’s Dilemma”

Prisoner’s Dilemma: A 
simple two-player game 
with choices between 
“cooperation” and 
“defection” against an 
opponent.

Partner’s
decision

Cooperate Defect

Your 
decision

Cooperate 1 0

Defect b > 1 0
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“Prisoner’s Dilemma”

Prisoner’s Dilemma: A 
simple two-player game 
with choices between 
“cooperation” and 
“defection” against an 
opponent.

Partner’s
decision

Cooperate Defect

Your 
decision

Cooperate 1 0

Defect b > 1 0

STOP: Why would 
you cooperate?
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Axelrod’s Tournament (1978): What if 
the game is played multiple times?

© 2024 Phillip Compeau

Partner’s
decision

Cooperate Defect

Your 
decision

Cooperate 5 1

Defect 7 3

Group Exercise: Design a strategy.
• We are playing an (unknown) 

m number of games.
• Opponent’s strategy is hidden.
• We play a variety of opponents 

but use same strategy.



Idea 0: “Poor-Trusting Fool”

STOP: What are its strengths and weaknesses?

for every integer i between 1 and m 
 cooperate!



Idea 1: “All-Defect”  

for every integer i between 1 and m 
 defect!

STOP: What are its strengths and weaknesses?



Idea 2: “Grudger”

betrayed ß false
for every integer i between 1 and m 
 if betrayed
  defect!
 else
  if opponent defected in game i - 1
   betrayed = true
   defect!
  else 
   cooperate!

STOP: What are its strengths and weaknesses?



The Clear Winner: “Tit-for-Tat”

cooperate in game 1
for every integer i between 2 and m
 do whatever opponent did in game i – 1

Anatol Rapoport

STOP: What properties of this 
strategy make it so good?

This was the winning strategy 
(and the simplest!) among 15 
submissions. 



Words to Live By ...

More tournaments have shown that the highest-
scoring strategies tend to have four qualities:

• Niceness: Never be the first to defect.
• Provocability: Get mad quickly at defectors 

and retaliate.
• Forgiveness: Do not hold a grudge once you 

have vented your anger.
• Clarity: Act in ways that are straightforward for 

others to understand.

http://www2.econ.iastate.edu/classes/econ308/tesfatsion/axeltmts.pdf



Spatial Game Theory: Playing Games on 
a 2-D Automaton

Spatial Games: Every cell in a 
2-D field plays a simplified 
Prisoner’s Dilemma with each 
of its neighbors.

Partner’s
decision

Cooperate Defect

Your 
decision

Cooperate 1 0

Defect b > 1 0
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Spatial Game Theory: Playing Games on 
a 2-D Automaton

Spatial Games: Every cell in a 
2-D field plays a simplified 
Prisoner’s Dilemma with each 
of its neighbors.

All use same strategy: in 
“generation” i, each cell 
adopts the strategy of its “best-
scoring” Moore neighbor 
(including itself) in generation 
i – 1.

D D C 

D C D 

C D C 
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Partner’s
decision

Cooperate Defect

Your 
decision

Cooperate 1 0

Defect b > 1 0



Spatial Game Theory: Playing Games on 
a 2-D Automaton

STOP: What is the score of the 
central square on the right?

© 2024 Phillip Compeau

D D C 

D C D 

C D C 

Partner’s
decision

Cooperate Defect

Your 
decision

Cooperate 1 0

Defect b > 1 0



Spatial Game Theory: Playing Games on 
a 2-D Automaton

STOP: What is the score of the 
central square on the right?
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D D C 

D C D 

C D C 

Partner’s
decision

Cooperate Defect

Your 
decision

Cooperate 1 0

Defect b > 1 0

Answer: It is a cooperator, and 
its neighborhood has three 
cooperators, so its total score 
is 3.



Spatial Game Theory: Playing Games on 
a 2-D Automaton

After computing the score of 
all neighbors, we ask “Do any 
neighbors have higher score?”
• If “no”, the cell remains a 

cooperator in the next 
generation.

• If “yes”, the cell adopts the 
strategy of its highest-
scoring neighbor (it may be 
cooperation or defection) 
in the next generation.
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D D C 

D C D 

C D C 

Partner’s
decision

Cooperate Defect

Your 
decision

Cooperate 1 0

Defect b > 1 0



Spatial Game Theory: Playing Games on 
a 2-D Automaton

Idea: Let’s animate the spatial game board over the 
generations.
• Cells choosing to cooperate with their neighbors 

= blue
• Cells choosing to defect = red
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Spatial Game Theory: Playing Games on 
a 2-D Automaton

Idea: Let’s animate the spatial game board over the 
generations.
• Cells choosing to cooperate with their neighbors 

= blue
• Cells choosing to defect = red

Let’s put one defector in the middle of our board.  I 
wonder what we will see?
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Spatial Game Theory: Playing Games on 
a 2-D Automaton

Idea: Let’s animate the spatial game board over the 
generations.
• Cells choosing to cooperate with their neighbors 

= blue
• Cells choosing to defect = red

Let’s put one defector in the middle of our board.  I 
wonder what we will see?

Note: Our early reasoning would imply that the 
defectors would take over completely... 
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Spatial Games with b = 1.65
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Citation presented without comment
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https://www.buzzfeednews.com/article/peteraldhous/jeffrey-epstein-science-donations-apologies-statements



Part 4: Tripping with Turing
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Why Do Animals Have Stripes (or 
Spots)?
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https://en.wikipedia.org/wiki/Leopard#/media/File:Nagarhol
e_Kabini_Karnataka_India,_Leopard_September_2013.jpg

https://lv.wikipedia.org/wiki/Čapmana_zebra#
/media/File:Common_zebra_1.jpg

https://i.ebayimg.com/images/g/gy4AAOxylpNT
UTCl/s-l300.jpg

https://en.wikipedia.org/wiki/Mbu_pufferfish#/media/File:Giant_
Puffer_fish_skin_pattern.JPG



Alan Turing has the answer!
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Turing patterns: stripe/spot patterns that occur due 
to specific reactions and diffusion.

Well, the stripes are 
easy. But what about 
the horse part?



We’ve already seen reaction-diffusion…
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'Member MCell?! 

Ooh I ‘member …

'Member modeling 
network motifs?! 



The model we will use is similar to a 
predator-prey simulation

© 2024 Phillip Compeau

“Prey” molecules enter 
the system at a constant 
feed rate f.

“Predator” molecules are 
removed at a constant kill 
rate k.



The model we will use is similar to a 
predator-prey simulation
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“Prey” molecules enter 
the system at a constant 
feed rate f.

“Predator” molecules are 
removed at a constant kill 
rate k.



The model we will use is similar to a 
predator-prey simulation
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The model we will use is similar to a 
predator-prey simulation
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The predators can “eat” the prey and reproduce via
2 Predator + Prey à 3 Predator

But the prey are “faster swimmers”, having a 
diffusion rate that is twice as fast.



Running our simulation
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f = 1,000 and k = 500,000

If the kill rate is too 
high, then the 
predators die out 
more quickly than 
they can eat the prey, 
and so only prey will 
survive.



Running our simulation
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f = 1,000,000 and k = 100,000

On the other hand, 
if f is too high, then 
the prey will increase, 
feeding the predators, 
and we will see an 
explosion in the 
number of predators.



Running our simulation
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f = 100,000 and k = 200,000

Finding a sweet spot 
set of parameters 
produces waves of 
predator “stripes” 
expanding outward 
against a background 
of prey.



Running our simulation
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f = 140,000 and k = 200,000

Holding k fixed and 
increasing f by a little 
increases the 
likelihood of predator-
prey interactions, 
producing even more 
predator stripes.



Running our simulation
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f = 175,000 and k = 200,000

Increasing f further 
produces a chaotic 
stripe pattern because 
there are so many 
pockets of predators 
that they constantly 
collide and mix.
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Running our simulation
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f = 200,000 and k = 200,000

Once f equals k, the 
stripes disappear. We 
might expect to see a 
uniform mix, but 
instead, we see a 
“mottling” of red and 
green clusters, or 
spots.



Turing pattern systems have been 
identified in fish (but not zebras)!
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Source: NSG Coghlan,
Wikimedia Commons

Source: Chiswick Chap,
Wikimedia Commons

These pufferfish 
are very similar 
genetically, and 
yet they display 
different patterns.

Unlike other 
robust biological 
systems, Turing 
patterns are fine-
tuned.



An Automaton-Like Model of Reaction-
Diffusion
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Gray-Scott Model: a ”discretized” simulation with 
improved runtime by partitioning space into blocks 
and assuming concentration of a given molecule in 
a block is uniform throughout the block.



An Automaton-Like Model of Reaction-
Diffusion
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Gray-Scott Model: a ”discretized” simulation with 
improved runtime by partitioning space into blocks 
and assuming concentration of a given molecule in 
a block is uniform throughout the block.

https://www.karlsims.com/rd.html

A = prey; B = predators



Implementing Reactions as Cellular 
Operations
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0, 0 0, 0 0, 0 0, 0 0, 0

0, 0 0, 0 0, 0 0, 0 0, 0

0, 0 0, 0 1,1 0, 0 0, 0

0, 0 0, 0 0, 0 0, 0 0, 0

0, 0 0, 0 0, 0 0, 0 0, 0

0, 0 0, 0 0, 0 0, 0 0, 0

0, 0 .01, .005 .04,.02 .01, .005 0, 0

0, 0 .04,.02 .8, .9 .04,.02 0, 0

0, 0 .01, .005 .04,.02 .01, .005 0, 0

0, 0 0, 0 0, 0 0, 0 0, 0

Parameters dA and dB indicate what fraction of a 
cell’s two particle types to diffuse into neighbors.

dA = 0.2
dB = 0.1



Implementing Reactions as Cellular 
Operations
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Parameters dA and dB indicate what fraction of a 
cell’s two particle types to diffuse into neighbors.

Then, we apply reactions cell by cell.
[A]new = [A] + f(1 – [A]) – [A][B]2

[B]new =        [B] – k[B] + [A][B]2

Here, f is the feed rate parameter, and k is the kill 
rate parameter; both are between 0 and 1.



Running the Gray-Scott Model
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A cell’s color is based 
on its value of [B]/([A] 
+ [B]). If this value is 
close to zero (many 
prey), then it will be 
colored red, and if it is 
close to 1 (many 
predators), then it will 
be colored dark blue.

f = 0.034 and k = 0.095



Running the Gray-Scott Model
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Creating multiple 
initial predator 
locations leads to 
more complex 
patterns.

f = 0.034 and k = 0.095



Running the Gray-Scott Model
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f = 0.034 and k = 0.097

If we hold the feed 
rate constant and 
increase k by just 
0.002, then the 
patterns change 
significantly into 
spots.



Running the Gray-Scott Model
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If we make the prey 
just a little bit happier, 
raising f by 0.004 and 
k by 0.002, then we 
get a striped pattern 
again, but a different 
one.

f = 0.038 and k = 0.099



Running the Gray-Scott Model
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And if we raise f by 
another 0.004 and k 
by another 0.002, we 
again see a spot 
pattern.

f = 0.042 and k = 0.101



Convergent patterns are very parameter 
dependent
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Key point: Gray-Scott 
is a faster model that 
confirms the highly 
fine-tuned parameters 
of this system.

This plot shows final 
convergent patterns 
for varying values of k 
(x-axis) and f (y-axis).

Image source: Robert Munafo
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PRETTY TRIPPY HUH



We all trip in similar ways. But why?
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Form constant (Klüver, 1928): a commonly 
recurring shape in visual hallucinations.

Ermentrout and Cowan, 1979



We all trip in similar ways. But why?
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Ermentrout and Cowan, 1979

Key point: Hallucinations happen in the blind and 
don’t move in visual field, so they originate in brain.



The brain encodes signals from retina
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Ermentrout and Cowan, 1979

Cowan 1978: determined 
details for transformation of 
retinal coordinates (polar) to 
cortex (rectangular). 



The brain encodes signals from retina
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Ermentrout and Cowan, 1979

Cowan 1978: determined 
details for transformation of 
retinal coordinates (polar) to 
cortex (rectangular). 

All the form constants 
reduce to “stripes” in the 
visual cortex!



How Does This Relate to Hallucinations?
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The visual cortex contains ”activator” neurons that 
tend to be connected more tightly and “inhibitor” 
neurons with fewer, sparser connections.

Hypothesis: activators/inhibitors are analogous to 
”predator”/”prey” molecules; some events 
(migraines, hallucinogens) change the underlying 
parameters of the system and produce Turing 
patterns within the visual cortex.



WHAT – IF ANYTHING – DID 
YOU LEARN?
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Some Parting 
Words
"The Lord gives us so little 
time for a career: forty years if 
we start early ... and remain in 
good health, fifty if fortune 
smiles. The Devil takes so 
much away - primarily in 
administrative burdens that 
fall upon all but the most 
resistant and singularly 
purposeful SOBs.”

– Stephen Jay Gould



The End?

Time for 
FCEs!


