CATACT CAGTCAAGCCTCTTCTCGTTCCTCATCACGTAGTCGCAACAGTTCAAGAAATTCAACTCCAGGCAGCAGTAG GGGAGGACTTGAAAGAGCCACCACATTTTCACCGAGGCCACGCGGAGTACGATCGAGTGTACAGTGAACAATGCTAGGGA

# PART 1: HIDDEN MESSAGES IN THE REPLICATION ORIGIN

### A Prophetic One-Liner (1953)



"It has not escaped our notice that the specific pairing we have postulated immediately suggests a possible copying mechanism for the genetic material."

# The "Copying Mechanism"



# The "Copying Mechanism"



# The "Copying Mechanism"



# What a Biologist Sees...



#### What a Computer Scientist Sees...

#### ...ACTGATAACCCAGTATCAGACCAGTATCGAGGACGATACGTA... DNA String

#### **Complicated Biological Process**

#### Copy 1

... ACTGATAACCCAGTATCAGACCAGTATCGAGGACGATACGTA...

...ACTGATAACCCAGTATCAGACCAGTATCGAGGACGATACGTA...

Copy 2

# Origin of Replication

Replication begins in a region called the **replication origin** (denoted *ori*).



# Looking for ori

Verified *ori* of *Vibrio cholerae*, the bacterium that causes cholera (~500 nucleotides):

# Looking for ori

Verified *ori* of *Vibrio cholerae*, the bacterium that causes cholera (~500 nucleotides):

There must be a *hidden message* telling the cell to start replication here.

#### We Have Two Scientific Problems

1. Given *ori* (~500 bp), what is the "hidden message" saying that replication should start here?



2. Given a bacterial genome (~5 Mbp), where is ori?

### Let's Start with Question #1

#### **Hidden Message Problem**

- **Input:** A string *text* (representing *ori*).
- **Output:** A hidden message in *text*.

# This is not a well-defined problem, since we don't know what is meant by "hidden message".

#### **Hidden Message Problem**

- **Input:** A string *text* (representing *ori*).
- **Output:** A hidden message in *text*.

# Replication initiation is mediated by a protein called **DnaA**.

#### **Hidden Message Problem**

- **Input:** A string *text* (representing *ori*).
- **Output:** A hidden message in *text*.

Replication initiation is mediated by a protein called **DnaA**.

*DnaA* binds to a short segment in *ori* known as a **DnaA** box, a hidden message saying: "*bind here*!"

**STOP:** Would it make sense for an organism to have multiple *DnaA* boxes, or just one?

Replication initiation is mediated by a protein called **DnaA**.

*DnaA* binds to a short segment in *ori* known as a **DnaA** box, a hidden message saying: "*bind here*!"

# **Answer:** Multiple *DnaA* boxes $\rightarrow$ higher chance of binding $\rightarrow$ higher "fitness"



"Nothing in biology makes sense except in the light of \_\_\_\_\_."

**Theodosius Dobzhansky** 

# **Answer:** Multiple *DnaA* boxes $\rightarrow$ higher chance of binding $\rightarrow$ higher "fitness"



"Nothing in biology makes sense except in the light of evolution."

Theodosius Dobzhansky

#### The Frequent Words Problem

A *k*-mer *pattern* is a **most frequent** *k*-mer in a string if no other *k*-mer is more frequent than *pattern*.

### The Frequent Words Problem

A *k*-mer *pattern* is a **most frequent** *k*-mer in a string if no other *k*-mer is more frequent than *pattern*.

#### **Frequent Words Problem**

- **Input:** A string *text* and an integer *k*.
- **Output:** All most frequent *k*-mers in *text*.

### The Frequent Words Problem

A *k*-mer *pattern* is a **most frequent** *k*-mer in a string if no other *k*-mer is more frequent than *pattern*.

#### **Frequent Words Problem**

- **Input:** A string *text* and an integer *k*.
- **Output:** All most frequent *k*-mers in *text*.

#### **STOP:** Now is this problem clearly stated?

## Returning to ori of Vibrio cholerae

atcaatgatcaacgtaagcttctaagcatgatcaaggtgctcacacagtttatccacaacctgagtgg atgacatcaagataggtcgttgtatctccttcctctcgtactctcatgaccacggaaagatgatcaag agaggatgatttcttggccatatcgcaatgaatacttgtgacttgtgcttccaattgacatcttcagc gccatattgcgctggccaaggtgacggagcgggattacgaaagcatgatcatggctgttgttctgttt atcttgttttgactgagacttgttaggatagacggtttttcatcactgactagccaaagccttactct gcctgacatcgaccgtaaattgataatgaatttacatgcttccgcgacgatttacctcttgatcatcg atccgattgaagatcttcaattgttaattccttgcctcgaccatagccatgatgagctcttgatca tgtttccttaaccctctattttttacggaagaatgatcaagctgctgctcttgatcatcgttc

| k              | 3   | 4    | 5     | 6      | 7       | 8        | 9         |
|----------------|-----|------|-------|--------|---------|----------|-----------|
| count          | 25  | 12   | 8     | 8      | 5       | 4        | 3         |
| <i>k</i> -mers | tga | atga | gatca | tgatca | atgatca | atgatcaa | atgatcaag |
|                |     |      | tgatc |        |         |          | cttgatcat |
|                |     |      |       |        |         |          | tcttgatca |
|                |     |      |       |        |         |          | ctcttgatc |
|                |     |      |       |        |         |          |           |

## Returning to ori of Vibrio cholerae

atcaatgatcaacgtaagcttctaagcATGATCAAGgtgctcacacagtttatccacaacctgagtgg atgacatcaagataggtcgttgtatctccttcctcgtactctcatgaccacggaaagATGATCAAG agaggatgatttcttggccatatcgcaatgaatacttgtgacttgtgcttccaattgacatcttcagc gccatattgcgctggccaaggtgacggagcgggattacgaaagcatgatcatggctgttgttctgttt atcttgttttgactgagacttgttaggatagacggtttttcatcactgactagccaaagccttactct gcctgacatcgaccgtaaattgataatgaatttacatgcttccgcgacgatttacCTCTTGATCATcg atccgattgaagatcttcaattgttaattctcttgcctcgactcatagccatgatgagGCTCTTGATCA TgtttccttaaccctctattttttacggaagaATGATCAAGctgctgCTCTTGATCATcgtttc

Most frequent 9-mers in this *ori* (all appear 3 times): **ATGATCAAG, CTTGATCAT, TCTTGATCA, CTCTTGATC** 

## Returning to ori of Vibrio cholerae

atcaatgatcaacgtaagcttctaagcATGATCAAGgtgctcacacagtttatccacaacctgagtgg atgacatcaagataggtcgttgtatctccttcctcgtactctcatgaccacggaaagATGATCAAG agaggatgatttcttggccatatcgcaatgaatacttgtgacttgtgcttccaattgacatcttcagc gccatattgcgctggccaaggtgacggagcgggattacgaaagcatgatcatggctgttgttctgttt atcttgttttgactgagacttgttaggatagacggtttttcatcactgactagccaaagccttactct gcctgacatcgaccgtaaattgataatgaatttacatgcttccgcgacgatttacCTCTTGATCATcg atccgattgaagatcttcaattgttaattctcttgcctcgactcatagccatgatgagCTCTTGATCA TgtttccttaaccctctattttttacggaagaATGATCAAGctgctgCTCTTGATCATcgtttc

Most frequent 9-mers in this *ori* (all appear 3 times): **ATGATCAAG, CTTGATCAT, TCTTGATCA, CTCTTGATC** 

#### **STOP:** Now what do you see?

## Complementarity of DNA

DNA is double-stranded, and the two strands are **reverse complements** of each other.



© 2024 Phillip Compeau

## Complementarity of DNA

The reverse complement of AGTCGCATAGT is ACTATGCGACT.



## Hidden Message Found!

atcaatgatcaacgtaagcttctaagcATGATCAAGgtgctcacacagtttatccacaacctgagtgg atgacatcaagataggtcgttgtatctccttcctctcgtactctcatgaccacggaaagATGATCAAG agaggatgatttcttggccatatcgcaatgaatacttgtgacttgtgcttccaattgacatcttcagc gccatattgcgctggccaaggtgacggagcgggattacgaaagcatgatcatggctgttgttctgttt atcttgttttgactgagacttgttaggatagacggtttttcatcactgactagccaaagccttactct gcctgacatcgaccgtaaattgataatgaatttacatgcttccgcgacgatttacctCTTGATCATcg atccgattgaagatcttcaattgttaattctcttgcctcgactcatagccatgatgagctCTTGATCA TgtttccttaaccctctattttttacggaagaATGATCAAGctgctgctCTTGATCATcgtttc



are *reverse complements* and likely *DnaA* boxes (*DnaA* does not know which strand it binds to).

## Hidden Message Found!

atcaatgatcaacgtaagcttctaagcATGATCAAGgtgctcacacagtttatccacaacctgagtgg atgacatcaagataggtcgttgtatctccttcctcgtactctcatgaccacggaaagATGATCAAG agaggatgatttcttggccatatcgcaatgaatacttgtgacttgtgcttccaattgacatcttcagc gccatattgcgctggccaaggtgacggagcgggattacgaaagcatgatcatggctgttgttctgttt atcttgttttgactgagacttgttaggatagacggtttttcatcactgactagccaaagccttactct gcctgacatcgaccgtaaattgataatgaatttacatgcttccgcgacgatttacctCTTGATCATcg atccgattgaagatcttcaattgttaattctcttgcctcgactcatagccatgatgagctCTTGATCA TgtttccttaaccctctattttttacggaagaATGATCAAGctgctgctCTTGATCATcgtttc



are *reverse complements* and likely *DnaA* boxes (*DnaA* does not know which strand it binds to).

It is **VERY SURPRISING** to find a 9-mer appearing **6 or more** times (with reverse complements) within  $\approx$  500 nucleotides.

# Looking for other Hidden Messages?

**STOP:** Now that we know the "hidden message" in *Vibrio cholerae*, how would we look for a hidden message starting replication in *other* bacteria?

# Looking for other Hidden Messages?

**STOP:** Now that we know the "hidden message" in *Vibrio cholerae*, how would we look for a hidden message starting replication in *other* bacteria?

**Answer:** Perhaps we could look for the same *k*-mers in other bacteria's replication origins...

# Hidden Messages in T. petrophila?

#### Not one occurrence of **ATGATCAAG** or **CTTGATCAT**!

# Hidden Messages in T. petrophila?

Not one occurrence of **ATGATCAAG** or **CTTGATCAT**!

Applying Frequent Words Problem to this ori: AACCTACCA, ACCTACCAC, GGTAGGTTT TGGTAGGTT, AAACCTACC, CCTACCACC

# Hidden Messages in T. petrophila?

#### Different genomes $\rightarrow$ different hidden messages

Applying Frequent Words Problem to this ori: AACCTACCA, ACCTACCAC, GGTAGGTTT TGGTAGGTT, AAACCTACC, CCTACCACC

#### Hidden Messages in Thermotoga petrophila

aactctatacctcctttttgtcgaatttgtgtgatttatagagaaaatcttattaactgaaactaa aatggtaggtttGGTGGTAGGttttgtgtacattttgtagtatctgatttttaattacataccgta tattgtattaaattgacgaacaattgcatggaattgaatatatgcaaaacaaaCCTACCACCaaac tctgtattgaccattttaggacaacttcagGGTGGTAGGtttctgaagctctcatcaatagactat tttagtctttacaaacaatattaccgttcagattcaagattctacaacgctgttttaatgggcgtt gcagaaaacttaccacctaaaatccagtatccaagccgatttcagagaaacctaccacttacctac cacttaCCTACCACCcgggtggtaagttgcagacattattaaaaacctcatcagaagcttgttcaa aaatttcaatactcgaaaCCTACCACCtgcgtcccctattattactactactaatagcagta taattgatctgaaaagaggtggtaaaaaa

CCTACCACC ||||||||| are candidate hidden messages. GGATGGTGG

# Returning to "Question #2"

# We can find hidden messages if *ori* is given. But we still don't know how to find *ori* in a (long) genome.



#### Bacteria with Unknown ori

**STOP:** Now that we know that "hidden messages" may differ, how could we look for *ori* in a newly sequenced bacterial genome?
# Finding ori Computationally

**OLD** strategy: given a previously **known** *ori* (500 nucleotide window), find **frequent words** (clumps) in *ori* as candidate *DnaA* boxes.

**replication origin** → **frequent words** 

# Finding ori Computationally

**OLD** strategy: given a previously **known** *ori* (500 nucleotide window), find **frequent words** (clumps) in *ori* as candidate *DnaA* boxes.

#### **replication origin** → **frequent words**



NEW strategy: find frequent words in ALL windows within a (3 million nucleotide) genome. Windows with **clumps** of frequent words are candidate replication origins. frequent words → replication origin

# Finding ori Computationally

**Exercise:** Formulate a computational problem modeling our new strategy.



**NEW** strategy: find frequent words in **ALL** windows within a (3 million nucleotide) genome. Windows with **clumps** of frequent words are candidate replication origins.

**frequent words** → **replication origin** 

# Defining and Hunting for "Clumps"

A *k*-mer forms an (*L*, *t*)-clump inside *Genome* if there is a **short** (length *L*) interval of *Genome* in which it appears **many** (at least *t*) times.

# Defining and Hunting for "Clumps"

A *k*-mer forms an (*L*, *t*)-clump inside *Genome* if there is a **short** (length *L*) interval of *Genome* in which it appears **many** (at least *t*) times.

#### **Clump Finding Problem**

- Input: A string *Genome* and integers *k* (length of a pattern), *L* (window length), and *t* (number of patterns in a clump).
- Output: All *k*-mers forming (*L*, *t*)-clumps in *Genome*.

# Defining and Hunting for "Clumps"

**STOP:** Why is looking for clumps in bacterial genomes as a source of hidden messages destined to fail?

#### **Clump Finding Problem**

- Input: A string *Genome* and integers *k* (length of a pattern), *L* (window length), and *t* (number of patterns in a clump).
- **Output:** All *k*-mers forming (*L*, *t*)-**clumps** in *Genome*.

### What's the Issue?

Recall from our work in genome assembly that genomes have *many* **repeats**.

### What's the Issue?

Recall from our work in genome assembly that genomes have *many* **repeats**.

#### In *E. coli*, over 1900 *different* 9-mers form (500,3)clumps. It is unclear which ones point to *ori* ...

Let's run a very simple computational analysis: take frequency of each nucleotide in 100,000 nucleotide windows of *E*. *coli* (verified *ori*).

Why would there be more C on half the genome?



Let's run a very simple computational analysis: take frequency of each nucleotide in 100,000 nucleotide windows of *E*. *coli* (verified *ori*).

And why would the story be opposite when we count G's?



The pattern is even more stark if we take the *difference* between the frequency of G and the frequency of C ...



And the pattern is still there even if we didn't know where *ori* was and start counting at some arbitrary spot.



And the pattern is still there even if we didn't know where *ori* was and start counting at some arbitrary spot.

Let's learn more about replication in the hope of finding an answer...



### **DNA Strands Have Directions**



### Four DNA Polymerases Can Do the Job



### Continue as Replication Fork Enlarges





Big problem replicating lagging half-strands (thin lines).



**Note:** Leading/lagging half-strands are *complementary*.

## Wait until the Fork Opens and ...



### Wait until the Fork Opens and Replicate



#### **Iterate this Process**



#### Iterate this Process



## **DNA Ligase Ties Together Fragments**



# Different Lifestyles of Half-strands

The **leading half-strand** lives a **double-stranded** life most of the time.

The **lagging half-strand** spends a large portion of its life **single-stranded**, **waiting** to be replicated.



# Different Lifestyles of Half-strands

The **leading half-strand** lives a **double-stranded** life most of the time.

The **lagging half-strand** spends a large portion of its life **single-stranded**, **waiting** to be replicated.

But why would a computer scientist care?





# Asymmetry of Replication Affects Nucleotide Frequencies

Single-stranded DNA has a much higher mutation rate than doublestranded DNA.



# Asymmetry of Replication Affects Nucleotide Frequencies

Single-stranded DNA has a much higher mutation rate than doublestranded DNA.



Thus, if one nucleotide has a greater mutation rate, then we should observe its **shortage** on the lagging half-strand, since it is more often single-stranded!

Cytosine (**C**) rapidly mutates into thymine (**T**) through **deamination**; deamination rates rise 100-fold when DNA is single-stranded!

Cytosine (**C**) rapidly mutates into thymine (**T**) through **deamination**; deamination rates rise 100-fold when DNA is single-stranded!



Cytosine (**C**) rapidly mutates into thymine (**T**) through **deamination**; deamination rates rise 100-fold when DNA is single-stranded!



Cytosine (**C**) rapidly mutates into thymine (**T**) through **deamination**; deamination rates rise 100-fold when DNA is single-stranded!



Cytosine (**C**) rapidly mutates into thymine (**T**) through **deamination**; deamination rates rise 100-fold when DNA is single-stranded!





C high/G low → #G - #C is DECREASING as we walk along the LEADING half-strand C low/G high  $\rightarrow$  #G - #C is INCREASING as we walk along the LAGGING half-strand

## Skew Array/Diagram

**Skew array**: *Skew*[*k*] = #G - #C for the **first** *k* **nucleotides** of *Genome*.

**Skew diagram**: Plot *Skew*[*k*] against *k*.



# Skew Array/Diagram



# Skew Diagram of E. Coli



You walk along the genome and see that #G - #C have been decreasing and then suddenly starts increasing. Where are you in the genome?
### We Have Now "Solved" Question 1!

#### Given a bacterial genome (~3 Mbp), where is ori?

#### Analyzing genomes with cumulative skew diagrams | Nucleic ...

A novel method of **cumulative diagrams** shows that the nucleotide composition of a microbial chromosome changes at two points separated by about a half of its length. These points coincide with sites of replication origin and terminus for all bacteria where such sites are known. by A Grigoriev · 1998 · Cited by 438 · Related articles

### PART 2: FINDING SEQUENCE MOTIFS

# Today's Seemingly Random Analogy

You are orbiting a newly discovered planet that you know nothing about, apart from the fact that it has a smooth, solid surface. A droid that can roll around the planet's surface and take measurements. How might you "program" the droid to look for the hottest part of the planet?



### Central Dogma of Molecular Biology

# **Central Dogma:** DNA is transcribed into RNA, which is then translated into proteins.

Tra

Tra



| nslated peptides | GluThrPheSerLeuValSTPSerIle<br>STPAsnPhePheLeuGlyLeuIleAsn<br>ValLysLeuPheProTrpPheAsnGlnTyr |
|------------------|----------------------------------------------------------------------------------------------|
| ranscribed RNA   | GUGAAACUUUUUCCUUGGUUUAAUCAAUAU                                                               |
| DNA              | 5' GTGAAACTTTTTCCTTGGTTTAATCAATAT 3'<br>3' CACTTTGAAAAAGGAACCAAATTAGTTATA 5'                 |
| ranscribed RNA   | CACUUUGAAAAAGGAACCAAAUUAGUUAUA                                                               |
| nslated peptides | HisPheLysLysArgProLysIleLeuIle<br>SerValLysGluLysThrSTPAspIle<br>PheSerLysGlyGlnAsnLeuSTPTyr |

Transcription factor proteins cause a feedback loop by affecting transcription

A transcription factor can either cause the cell to increase (activate) or decrease (repress) the production of **RNA**/protein corresponding to a given gene.



### ChIP-seq uses DNA sequencing to identify protein-DNA binding



## Looking for Hidden Messages Again

If a collection of genes are implicated in the same function (e.g., the circadian clock), then a single transcription factor may bind to the same "keyword" in many of the genes' upstream regions, perhaps with minor variations.



## Looking for Hidden Messages Again

**Key Point:** we want to find these keywords for a collection of genes without knowing anything in advance about what the keywords are ...



### Illustrating Motif Selection

Let *Dna* denote a collection of *t* strings of length *n*.

### Illustrating Motif Selection

Let *Dna* denote a collection of *t* strings of length *n*.

If we choose a *k*-mer from each of the *t* strings in *Dna*, then we obtain a collection *Motifs*.



### Illustrating Motif Selection

Let *Dna* denote a collection of *t* strings of length *n*.

**Key Point:** if we choose a different collection of *k*-mers, how do we know whether this collection is "better"?



**STOP:** Given a collection of *Motifs*, how can we assess how good it is?

Motifs



**Consensus string:** The string formed by the most frequent symbol in each column.

|                   | Т | С | G | G | G | G | g | т | Т | Т | t | t |
|-------------------|---|---|---|---|---|---|---|---|---|---|---|---|
|                   | С | С | G | G | t | G | A | С | Т | Т | a | С |
|                   | а | С | G | G | G | G | A | Т | Т | Т | t | С |
|                   | Т | t | G | G | G | G | A | С | Т | Т | t | t |
| Motifs            | a | а | G | G | G | G | A | С | Т | Т | С | С |
| WOUIS             | Т | t | G | G | G | G | A | С | Т | Т | С | С |
|                   | Т | С | G | G | G | G | A | Т | Т | С | a | t |
|                   | Т | С | G | G | G | G | A | Т | Т | С | С | t |
|                   | Т | а | G | G | G | G | A | а | С | Т | а | С |
|                   | Т | С | G | G | G | t | A | Т | a | a | С | С |
| Consensus(Motifs) | т | с | G | G | G | G | A | т | т | т | с | с |



*Score*(*Motifs*): sum of the number of symbols that disagree with the consensus symbol in each column.



**STOP:** Any ideas on how this scoring function could be improved?



### **Motif Finding Problem**.

- **Input:** A collection of *t* strings *Dna* and an integer *k*.
- **Output:** A collection *Motifs* of *k*-mers, one from each string in *Dna*, minimizing *Score*(*Motifs*) over all choices of *Motifs*.

### **Motif Finding Problem**.

- **Input:** A collection of *t* strings *Dna* and an integer *k*.
- **Output:** A collection *Motifs* of *k*-mers, one from each string in *Dna*, minimizing *Score*(*Motifs*) over all choices of *Motifs*.

**Optimization Problem:** A computational problem in which we are trying to find an object from a **search space** minimizing or maximizing a **scoring function** that assigns a value to each object.

### **Motif Finding Problem**.

- **Input:** A collection of *t* strings *Dna* and an integer *k*.
- **Output:** A collection *Motifs* of *k*-mers, one from each string in *Dna*, minimizing *Score*(*Motifs*) over all choices of *Motifs*.

**STOP:** What is the search space for this problem, and how many elements does it contain?

### **Motif Finding Problem**.

- **Input:** A collection of *t* strings *Dna* and an integer *k*.
- **Output:** A collection *Motifs* of *k*-mers, one from each string in *Dna*, minimizing *Score*(*Motifs*) over all choices of *Motifs*.

**Answer:** The collection of all possible choices of *Motifs*. Each of *t* strings in *Dna* has n-k+1 *k*-mer starting positions, and so there are  $(n-k+1)^t$  possibilities.

### **Motif Finding Problem**.

- **Input:** A collection of *t* strings *Dna* and an integer *k*.
- **Output:** A collection *Motifs* of *k*-mers, one from each string in *Dna*, minimizing *Score*(*Motifs*) over all choices of *Motifs*.

In other words, brute force won't work, and so we will need to explore the search space intelligently.

### Returning to Our Analogy

**Note:** it can be helpful to think about optimization problems using the analogy of a droid exploring a planet's surface (search space) for the hottest location (optimizing some function).



### Returning to Our Analogy

Since our search space is all collection of Motifs, we ask "given a choice of Motifs, what is the best direction to move?" That is, for one set of *Motifs*, we need to move to some new choice of *Motifs* that is somehow "better"...



### From Motifs to a Profile Matrix

**Profile Matrix:** formed by taking the frequency of symbols in each column of *Motifs*.

|               |            | Т  | С  | G | G | G  | G  | g  | Т  | Т  | т  | t  | t  |
|---------------|------------|----|----|---|---|----|----|----|----|----|----|----|----|
|               |            | С  | С  | G | G | t  | G  | A  | С  | Т  | Т  | a  | С  |
|               |            | а  | С  | G | G | G  | G  | A  | Т  | Т  | Т  | t  | С  |
|               |            | Т  | t  | G | G | G  | G  | A  | С  | Т  | Т  | t  | t  |
| Motife        |            | а  | a  | G | G | G  | G  | A  | С  | Т  | Т  | С  | С  |
| Mours         |            | Т  | t  | G | G | G  | G  | A  | С  | T  | Т  | С  | С  |
|               |            | Т  | С  | G | G | G  | G  | A  | Т  | Т  | С  | а  | t  |
|               |            | Т  | С  | G | G | G  | G  | A  | Т  | Т  | С  | С  | t  |
|               |            | т  | а  | G | G | G  | G  | A  | а  | С  | Т  | a  | С  |
|               |            | Т  | С  | G | G | G  | t  | A  | Т  | а  | а  | С  | С  |
|               |            |    |    |   |   |    |    |    |    |    |    |    |    |
|               | <b>A</b> : | .2 | .2 | 0 | 0 | 0  | 0  | .9 | .1 | .1 | .1 | .3 | 0  |
|               | <b>C</b> : | .1 | .6 | 0 | 0 | 0  | 0  | 0  | .4 | .1 | .2 | .4 | .6 |
| KOFILE(MOUIS) | G:         | 0  | 0  | 1 | 1 | .9 | .9 | .1 | 0  | 0  | 0  | 0  | 0  |
|               | <b>T</b> : | .7 | .2 | 0 | 0 | .1 | .1 | 0  | .5 | .8 | .7 | .3 | .4 |

P

The **probability** of a *k*-mer *text* for a given profile matrix *Profile*, written Pr(*text*|*Profile*), is the product of profile matrix values for each symbol of *text*.

| Pr(ACGGGGATTACC   Profi  | 'le) =     | .2    | · .6 · | 1   | • 1 | ·.9 | · .9 | · .9 | · .5 | · .8 | · .1 | • .4 | · .6 |
|--------------------------|------------|-------|--------|-----|-----|-----|------|------|------|------|------|------|------|
|                          | =          | = 0.0 | )0083  | 980 | 8   |     |      |      |      |      |      |      |      |
|                          | A:         | .2    | .2     | 0   | 0   | 0   | 0    | .9   | .1   | .1   | .1   | .3   | 0    |
| Drocus (Matifa)          | <b>C</b> : | .1    | .6     | 0   | 0   | 0   | 0    | 0    | .4   | .1   | .2   | .4   | .6   |
| PROFILE( <i>Motifs</i> ) | G:         | 0     | 0      | 1   | 1   | .9  | .9   | .1   | 0    | 0    | 0    | 0    | 0    |
|                          | <b>T</b> : | .7    | .2     | 0   | 0   | .1  | .1   | 0    | .5   | .8   | .7   | .3   | .4   |

The **probability** of a *k*-mer *text* for a given profile matrix *Profile*, written Pr(*text*|*Profile*), is the product of profile matrix values for each symbol of *text*.

**STOP:** What happens to Pr(*text*|*Profile*) as *text* becomes more similar to the consensus of *Profile*?

The **probability** of a *k*-mer *text* for a given profile matrix *Profile*, written Pr(*text*|*Profile*), is the product of profile matrix values for each symbol of *text*.

**Answer:** It increases, so we should be looking for *k*-mers that have large values of Pr(*text*|*Profile*).

Given a profile matrix of strings *Dna*, *Motifs*(*Profile*) is the strings formed by taking the most probable *k*-mer in each string.

Given a profile matrix of strings *Dna*, *Motifs*(*Profile*) is the strings formed by taking the most probable *k*-mer in each string.

So we can move from one collection of motifs in the search space to the next by taking two steps:  $Motifs \rightarrow Profile(Motifs) \rightarrow Motifs(Profile(Motifs))$ 

Given a profile matrix of strings *Dna*, *Motifs*(*Profile*) is the strings formed by taking the most probable *k*-mer in each string.

So we can move from one collection of motifs in the search space to the next by taking two steps:  $Motifs \rightarrow Profile(Motifs) \rightarrow Motifs(Profile(Motifs))$ 

We then repeatedly iterate these steps until *Score*(*Motifs*) stops improving.

In *Dna* shown at right, we placed four occurrences of "ACGT" with one mutation, shown in all caps. Say we pick the *Motifs* in red.

ttACCT**taac** gAT**GTct**gtc **ccgG**CGTtag c**acta**ACGAg cgtcag**AGGT** 

#### Motifs

| t | а | а | С |
|---|---|---|---|
| G | Т | С | t |
| С | С | g | G |
| a | С | t | а |
| А | G | G | Т |

First, we form the profile matrix of these motifs.

Τ

G

Α

G

ttACCT**taac** gAT**GTct**gtc **ccgG**CGTtag c**acta**ACGAg cgtcag**AGGT** 

| Motifs |   |   |   |    | <b>PROFILE</b> ( <i>Motifs</i> ) |     |     |     |  |  |  |  |
|--------|---|---|---|----|----------------------------------|-----|-----|-----|--|--|--|--|
| t      | а | а | С | A: | 0.4                              | 0.2 | 0.2 | 0.2 |  |  |  |  |
| G      | Т | С | t | C: | 0.2                              | 0.4 | 0.2 | 0.2 |  |  |  |  |
| С      | С | g | G | G: | 0.2                              | 0.2 | 0.4 | 0.2 |  |  |  |  |
| a      | С | t | a | Т: | 0.2                              | 0.2 | 0.2 | 0.4 |  |  |  |  |

We then use this profile to compute the probabilities of each substring in *Dna* and take the most likely one in each.

ttACCT**taac** gAT**GTct**gtc **ccgG**CGTtag c**acta**ACGAg cgtcag**AGGT** 

| ttAC  | tACC         | ACCT  | CCTt         | CTta  | Ttaa         | taac         |
|-------|--------------|-------|--------------|-------|--------------|--------------|
| .0016 | .0016        | .0128 | .0064        | .0016 | .0016        | .0016        |
| gATG  | ATGT         | TGTc  | GTct         | Tctg  | ctgt         | tgtc         |
| .0016 | <b>.0128</b> | .0016 | .0032        | .0032 | .0032        | .0016        |
| ccgG  | cgGC         | gGCG  | GCGT         | CGTt  | GTta         | Ttag         |
| .0064 | .0036        | .0016 | <b>.0128</b> | .0032 | .0016        | .0016        |
| cact  | acta         | ctaA  | taAC         | aACG  | ACGA         | CGAg         |
| .0032 | .0064        | .0016 | .0016        | .0032 | <b>.0128</b> | .0016        |
| cgtc  | gtca         | tcag  | cagA         | agAG  | gAGG         | AGGT         |
| .0016 | .0016        | .0016 | .0032        | .0032 | .0032        | <b>.0128</b> |

Updating these motifs shows that we have found the "correct" motifs in just a single step!

tt**ACCT**taac g**ATGT**ctgtc ccg**GCGT**tag cacta**ACGA**g cgtcag**AGGT** 

|       | tACC  | ACCT  | CCTt  | CTta  | Ttaa  | taac  |
|-------|-------|-------|-------|-------|-------|-------|
| STOP  | .0016 | .0128 | .0064 | .0016 | .0016 | .0016 |
| YATG  | ATGT  | TGTC  | GTct  | Tctg  | ctgt  | tgtc  |
| .0016 | .0128 | .0016 | .0032 | .0032 | .0032 | .0016 |
| ccgG  | cgGC  | gGCG  | GCGT  | CGTt  | GTta  | Ttag  |
| .0064 | .0036 | .0016 | .0128 | .0032 | .0016 | .0016 |
| cact  | acta  | ctaA  | taAC  | aACG  | ACGA  | CGAg  |
| .0032 | .0064 | .0016 | .0016 | .0032 | .0128 | .0016 |
| cgtc  | gtca  | tcag  | cagA  | agAG  | gAGG  | AGGT  |
| .0016 | .0016 | .0016 | .0032 | .0032 | .0032 | .0128 |

### But Where Do We Start?

**STOP:** What motifs should we choose at the *start* of our algorithm?



### But Where Do We Start?

**STOP:** What motifs should we choose at the *start* of our algorithm?

Answer: *Dna* is in many regards an "unexplored planet", and so let's pick a *random* set of *Motifs*.



### But Where Do We Start?

**STOP:** What motifs should we choose at the *start* of our algorithm?

Answer: *Dna* is in many regards an "unexplored planet", and so let's pick a *random* set of *Motifs*.



**Note:** we run our algorithm multiple times for many starting *Motifs*, taking the best scoring ones.
#### Pseudocode for "Randomized Motif Search"

#### **RandomizedMotifSearch**(*Dna*, *k*, *t*)

 $Motifs \leftarrow randomly chosen k-mer from each string in Dna$  $BestMotifs \leftarrow Motifs$ while forever $Profile \leftarrow Profile(Motifs)$  $Motifs \leftarrow Motifs(Profile, Dna)$ 

**if** *Score*(*Motifs*) < *Score*(*BestMotifs*)

 $BestMotifs \leftarrow Motifs$ 

else

return BestMotifs

**Note:** we run our algorithm multiple times for many starting *Motifs*, taking the best scoring ones.

If the strings in *Dna* were truly random, then we would expect a uniform profile matrix, which is useless for motif finding...

| A: | 0.25 | 0.25 | 0.25 | 0.25 |
|----|------|------|------|------|
| C: | 0.25 | 0.25 | 0.25 | 0.25 |
| G: | 0.25 | 0.25 | 0.25 | 0.25 |
| T: | 0.25 | 0.25 | 0.25 | 0.25 |

If we were very lucky, then we might get a profile matrix that is much less uniform. (Say that the true motif is "ACGT".)

| A: | 0.8 | 0.0 | 0.0 | 0.2 |
|----|-----|-----|-----|-----|
| C: | 0.0 | 0.6 | 0.2 | 0.0 |
| G: | 0.2 | 0.2 | 0.8 | 0.0 |
| T: | 0.0 | 0.2 | 0.0 | 0.8 |

In practice, we are hoping that some of our randomized initial motifs find a little bit of signal and start to point us toward the correct motifs.

| A: | 0.4 | 0.2 | 0.2 | 0.2 |
|----|-----|-----|-----|-----|
| C: | 0.2 | 0.4 | 0.2 | 0.2 |
| G: | 0.2 | 0.2 | 0.4 | 0.2 |
| Т: | 0.2 | 0.2 | 0.2 | 0.4 |

In practice, we are hoping that some of our randomized initial motifs find a little bit of signal and start to point us toward the correct motifs.

| A: | 0.4 | 0.2 | 0.2 | 0.2 |
|----|-----|-----|-----|-----|
| C: | 0.2 | 0.4 | 0.2 | 0.2 |
| G: | 0.2 | 0.2 | 0.4 | 0.2 |
| Т: | 0.2 | 0.2 | 0.2 | 0.4 |

By taking the *Profile*-most probable *k*-mer in each string, we have a greater chance of moving toward "ACGT" (although this is not certain).

#### Before We Continue ...

For a profile matrix *Profile* and string  $Dna_i$ , the *Profile-most probable k-mer* of  $Dna_i$  is the *k-mer* substring *text* of  $Dna_i$  that maximizes Pr(text|Profile).

**Exercise:** What is the *Profile*-most probable 12-mer of GTCGTGGATTTCCTA using the profile matrix below?

| Profile( <i>Motifs</i> ) | <b>A</b> : | .2 | .2 | 0 | 0 | 0  | 0  | .9 | .1 | .1 | .1 | .3 | 0  |
|--------------------------|------------|----|----|---|---|----|----|----|----|----|----|----|----|
|                          | <b>C</b> : | .1 | .6 | 0 | 0 | 0  | 0  | 0  | .4 | .1 | .2 | .4 | .6 |
|                          | <b>G</b> : | 0  | 0  | 1 | 1 | .9 | .9 | .1 | 0  | 0  | 0  | 0  | 0  |
|                          | <b>T</b> : | .7 | .2 | 0 | 0 | .1 | .1 | 0  | .5 | .8 | .7 | .3 | .4 |

#### Before We Continue ...

For a profile matrix *Profile* and string  $Dna_i$ , the *Profile-most probable k-mer* of  $Dna_i$  is the *k-mer* substring *text* of  $Dna_i$  that maximizes Pr(text|Profile).

**Answer:** They *all* have probability zero, even TCGTGGATTTCC, which matches well against the profile. Bad! How can we fix this?

|                         | <b>A</b> : | .2 | .2 | 0 | 0 | 0  | 0  | .9 | .1 | .1 | .1 | .3 | (  |
|-------------------------|------------|----|----|---|---|----|----|----|----|----|----|----|----|
| rofile( <i>Motifs</i> ) | <b>C</b> : | .1 | .6 | 0 | 0 | 0  | 0  | 0  | .4 | .1 | .2 | .4 | .6 |
|                         | G:         | 0  | 0  | 1 | 1 | .9 | .9 | .1 | 0  | 0  | 0  | 0  | (  |
|                         | <b>T</b> : | .7 | .2 | 0 | 0 | .1 | .1 | 0  | .5 | .8 | .7 | .3 | .4 |

P

#### Historical Aside: The Sunrise Problem

What are the chances that the sun will not rise tomorrow?

#### Historical Aside: The Sunrise Problem

What are the chances that the sun will not rise tomorrow?

#### 1 in 1,826,200, of course!

#### **Pierre-Simon Laplace**



#### Historical Aside: The Sunrise Problem

What are the chances that the sun will not rise tomorrow?

#### 1 in 1,826,200, of course!

#### **Pierre-Simon Laplace**



### The Rule of Succession

**Key Point:** just because we have not observed an event does not mean that we should assign its future probability to be zero.

### The Rule of Succession

**Key Point:** just because we have not observed an event does not mean that we should assign its future probability to be zero.

We address this by adding a **pseudocount** value to the counts of each type of event before normalizing.

### Applying Pseudocounts to Motif Finding

Say that we have the following *Motifs* and its profile matrix.



#### Applying Pseudocounts to Motif Finding

Say that we have the following *Motifs* and its profile matrix.

|        | Т | А | А | С |                            | 2/4 | 1/4 | 1/4 | 1/4 |
|--------|---|---|---|---|----------------------------|-----|-----|-----|-----|
| Motifs | G | Т | С | Т | <b>DD</b> OELLE(Matifa)    | 0   | 1/4 | 1/4 | 1/4 |
|        | A | С | Т | А | I KOFILE( <i>lvioujs</i> ) | 1/4 | 1/4 | 1/4 | 0   |
|        | A | G | G | Т |                            | 1/4 | 1/4 | 1/4 | 2/4 |

Adding a pseudocount of 1 produces following count and profile matrix.

| COUNT(Motife)  | A: 2+1 | 1+1 1+1 1+1 |                                 | 3/8 | 2/8 | 2/8 | 2/8 |
|----------------|--------|-------------|---------------------------------|-----|-----|-----|-----|
|                | C: 0+1 | 1+1 1+1 1+1 | <b>DDDDDUE</b> $(M_{a}+if_{a})$ | 1/8 | 2/8 | 2/8 | 2/8 |
| COUNT(IVIOUJS) | G: 1+1 | 1+1 1+1 0+1 | PROFILE( <i>IVIOUJS</i> )       | 2/8 | 2/8 | 2/8 | 1/8 |
|                | T: 1+1 | 1+1 1+1 2+1 |                                 | 2/8 | 2/8 | 2/8 | 3/8 |

#### Another Issue with Randomized Motif Search

By taking only the most probable *k*-mer at each step, **RandomizedMotifSearch** is very "rigid", as it can move only in one direction. (In fact, its only randomization is in the initial choice of *k*-mers.)

#### Another Issue with Randomized Motif Search

By taking only the most probable *k*-mer at each step, **RandomizedMotifSearch** is very "rigid", as it can move only in one direction. (In fact, its only randomization is in the initial choice of *k*-mers.)

**Idea:** Perhaps we could allow moving from one collection of motifs to another based on randomization.

### Overview of Gibbs Sampling

Unlike **RandomizedMotifSearch**, **Gibbs sampling** will change only a single *k*-mer in each step, as well as changing this *k*-mer more liberally.

| ttacctt <b>aac</b>               | t <b>tac</b> cttaac | ttacctt <b>aac</b>               | ttacctt <b>aac</b>  |
|----------------------------------|---------------------|----------------------------------|---------------------|
| g <b>ata</b> tctgtc              | gat <b>atc</b> tgtc | g <b>ata</b> tctgtc              | gatatc <b>tgt</b> c |
| <b>acg</b> gcgttcg $\rightarrow$ | acggcg <b>ttc</b> g | <b>acg</b> gcgttcg $\rightarrow$ | <b>acg</b> gcgttcg  |
| ccct <b>aaa</b> gag              | ccctaa <b>aga</b> g | ccct <b>aaa</b> gag              | ccct <b>aaa</b> gag |
| cgtc <b>aga</b> ggt              | <b>cgt</b> cagaggt  | cgtc <b>aga</b> ggt              | cgtc <b>aga</b> ggt |

#### RANDOMIZEDMOTIFSEARCH

(may change all k-mers in one step)

**GIBBSSAMPLER** 

(changes one *k*-mer in one step)

Say that we pick the red strings as our *Motifs* of length k = 4. Gibbs sampling randomly selects one of the strings to be replaced.

|     | ttACCT <b>taac</b>  |                   | ttACCT <b>taac</b>  |
|-----|---------------------|-------------------|---------------------|
|     | gAT <b>GTct</b> gtc |                   | gAT <b>GTct</b> gtc |
| Dna | <b>ccgG</b> CGTtag  | $\longrightarrow$ |                     |
|     | c <b>acta</b> ACGAg |                   | c <b>acta</b> ACGAg |
|     | cgtcag <b>AGGT</b>  |                   | cgtcag <b>AGGT</b>  |

Adding pseudocounts allows us to compute a new profile matrix using just the t - 1 strings that are remaining.

|               | t   | tł                  | AC | C  | [ <b>taa</b> | C    |               | ttACCT <b>taac</b>  |              |     |     |     |     |
|---------------|-----|---------------------|----|----|--------------|------|---------------|---------------------|--------------|-----|-----|-----|-----|
|               | 9   | gAT <b>GTct</b> gtc |    |    |              |      |               | gAT <b>GT</b>       | gtc          |     |     |     |     |
| Dna           | . C | :09                 | gG | СС | GTta         | g    | $\rightarrow$ |                     |              |     |     |     |     |
|               | С   | a                   | ct | a  | ACGA         | g    |               | c <b>acta</b> ACGAg |              |     |     |     |     |
|               | С   | :gt                 | tc | ag | g <b>AGG</b> | T    |               | cgtcag              | g <b>A</b> C | GT  |     |     |     |
|               | A:  | 3                   | 2  | 2  | 2            |      |               |                     | A:           | 3/8 | 2/8 | 2/8 | 2/8 |
| COUNT(Matifa) | C:  | 1                   | 2  | 2  | 2            |      |               | (Matifa)            | C:           | 1/8 | 2/8 | 2/8 | 2/8 |
| COUNT (MOUJS) | G:  | 2                   | 2  | 2  | 1            | PROF |               | E(1VIOUJS)          | G:           | 2/8 | 2/8 | 2/8 | 1/8 |
|               | Т:  | 2                   | 2  | 2  | 3            |      |               |                     |              | 2/8 | 2/8 | 2/8 | 3/8 |

# We then find Pr(*text*|*Profile*) for every 4-mer in the removed string CCGGCGTTAG.

| ccgG          | cgG                  | С        |                                   | g   | GCG |           | GCGT    | CC                                            | GT1 | Ξ   | (   | GTta | £   | Tt  | aç |
|---------------|----------------------|----------|-----------------------------------|-----|-----|-----------|---------|-----------------------------------------------|-----|-----|-----|------|-----|-----|----|
| $4/8^{4}$     | 8/84                 |          | 5/8 <sup>4</sup> 8/8 <sup>4</sup> |     |     |           | 24/84   | <sup>1</sup> 8 <sup>4</sup> 12/8 <sup>4</sup> |     | 4   | 1   | 8/   | 84  |     |    |
|               |                      | A:       | 3                                 | 2   | 2 2 |           |         |                                               |     | A:  | 3/8 | 2/8  | 2/8 | 2/8 |    |
| COUNT(Motifs) | Matifa)              | C:       | 1                                 | 2   | 2 2 |           |         | II E (Motife)                                 |     | С:  | 1/8 | 2/8  | 2/8 | 2/8 |    |
|               | UNT( <i>Motifs</i> ) | G: 2 2 2 |                                   | 2 1 |     | F KOFILE( | IVIOLIJ | 5)                                            | G:  | 2/8 | 2/8 | 2/8  | 1/8 |     |    |
|               | T:                   |          | 2                                 | 2   | 2 3 |           |         |                                               |     | г:  | 2/8 | 2/8  | 2/8 | 3/8 |    |

Rather than take the most probable 4-mer, we choose one randomly weighted by the probabilities after normalizing them so that they sum to 1.

ccgGcgGCgGCGGCGTCGTtGTtaTtag4/808/808/8024/8012/8016/808/80

We now have a new collection of *Motifs* after choosing one based on this "weighted die roll" to replace the one we had removed.

|     | ttACCT <b>taac</b>  |                   | ttACCT <b>taac</b>  |
|-----|---------------------|-------------------|---------------------|
|     | gAT <b>GTct</b> gtc |                   | gAT <b>GTct</b> gtc |
| Dna | <b>ccgG</b> CGTtag  | $\longrightarrow$ |                     |
|     | c <b>acta</b> ACGAg |                   | c <b>acta</b> ACGAg |
|     | cgtcag <b>AGGT</b>  |                   | cgtcag <b>AGGT</b>  |

We now have a new collection of *Motifs* after choosing one based on this "weighted die roll" to replace the one we had removed.

|     | ttACCT <b>taac</b>  |                   | ttACCT <b>taac</b>  |
|-----|---------------------|-------------------|---------------------|
|     | gAT <b>GTct</b> gtc |                   | gAT <b>GTct</b> gtc |
| Dna | <b>ccgG</b> CGTtag  | $\longrightarrow$ | ccg <b>GCGT</b> tag |
|     | c <b>acta</b> ACGAg |                   | c <b>acta</b> ACGAg |
|     | cqtcaq <b>AGGT</b>  |                   | cqtcaq <b>AGGT</b>  |

Running these steps *N* times for some parameter *N* yields the Gibbs sampler algorithm.

### Gibbs Sampling Pseudocode

**GibbsSampler**(*Dna*, *k*, *t*, *N*)

randomly select k-mers  $Motifs = (Motif_1, ..., Motif_t)$  from Dna $BestMotifs \leftarrow Motifs$ 

for  $j \leftarrow 1$  to N

 $i \leftarrow$  randomly generated integer between 1 and t  $Profile \leftarrow$  profile formed from all *Motifs* other than *Motif<sub>i</sub>*   $Motif_i \leftarrow Profile$ -randomly generated k-mer in  $Dna_i$  **if** Score(Motifs) < Score(BestMotifs) BestMotifs \leftarrow Motifs

return BestMotifs

### Gibbs Sampling Weakness

By making a random choice, Gibbs sampling may miss "direction" of true motifs because of bad luck.

ccqG cqGC qGCG GCGT CGTt GTta Ttaq  $4/8^{4}$  $8/8^{4}$  $8/8^{4}$  $24/8^4$  $12/8^4$  $16/8^4$  $8/8^{4}$ A: 3/8 2/8 2/8 2/8 A: 3 2 2 2 C: 1/8 2/8 2/8 2/8 C: 1 2 2 2 COUNT(*Motifs*) PROFILE(*Motifs*) G: 2 2 2 1 G: 2/8 2/8 2/8 1/8 T: 2 2 2 3 T: 2/8 2/8 2/8 3/8

### Gibbs Sampling Weakness

By making a random choice, Gibbs sampling may miss "direction" of true motifs because of bad luck.

**Goal:** Design an algorithm that can take "multiple directions" into account.

| ccgG             | cgGC                                    | gGCG                                     | GCGT                    | CGTt                              | GTta                                                     | Ttag                     |
|------------------|-----------------------------------------|------------------------------------------|-------------------------|-----------------------------------|----------------------------------------------------------|--------------------------|
| 4/8 <sup>4</sup> | 8/8 <sup>4</sup>                        | 8/8 <sup>4</sup>                         | <b>24/8<sup>4</sup></b> | 12/8 <sup>4</sup>                 | 16/8 <sup>4</sup>                                        | 8/8 <sup>4</sup>         |
| Count(           | A: 3<br><i>Motifs</i> )<br>G: 2<br>T: 2 | 2 2 2 2<br>2 2 2 2<br>2 2 2 1<br>2 2 2 3 | Profile(λ               | A:<br><i>Motifs</i> )<br>G:<br>T: | 3/8 2/8 2/8<br>1/8 2/8 2/8<br>2/8 2/8 2/8<br>2/8 2/8 2/8 | 2/8<br>2/8<br>1/8<br>3/8 |

#### Toward a New Algorithm

# In **RandomizedMotifSearch**, we formed *Motifs(Profile)* by taking the **most probable** *k*-mer in each string (after pseudocounts).

 CCGG
 CGGC
 GGCG
 GCGT
 CGTT
 GTTA
 TTAG

 4/8<sup>4</sup>
 8/8<sup>4</sup>
 8/8<sup>4</sup>
 24/8<sup>4</sup>
 12/8<sup>4</sup>
 16/8<sup>4</sup>
 8/8<sup>4</sup>

#### Toward a New Algorithm

# In **GibbsSampling**, we normalized these probabilities, but then we chose only one *randomly*.

 CCGG
 CGGC
 GGCG
 GCGT
 CGTT
 GTTA
 TTAG

 4/80
 8/80
 8/80
 24/80
 12/80
 16/80
 8/80

### Expectation Maximization for Motif Finding

The **expectation maximization (EM)** algorithm says, "Keep them all!" These form a matrix *HiddenMatrix*.

 CCGG
 CGGC
 GGCG
 GCGT
 CGTT
 GTTA
 TTAG

 4/80
 8/80
 8/80
 24/80
 12/80
 16/80
 8/80

#### We have already seen HiddenMatrix!

#### Dna

tt**ACCT**taac g**ATGT**ctgtc ccg**GCGT**tag cacta**ACGA**g cgtcag**AGGT** 

#### **PROFILE**(*Motifs*) 0.4 0.2 0.2 0.2 A: 0.2 0.4 0.2 0.2 C: 0.2 0.2 0.4 0.2 G: 0.2 0.2 0.2 0.4 T:

#### *HiddenMatrix*

| ttAC  | tACC  | ACCT  | CCTt  | CTta  | Ttaa  | taac  |
|-------|-------|-------|-------|-------|-------|-------|
| .0016 | .0016 | .0128 | .0064 | .0016 | .0016 | .0016 |
|       |       |       |       |       |       |       |
| gATG  | ATGT  | TGTC  | GTct  | Tctg  | ctgt  | tgtc  |
| .0016 | .0128 | .0016 | .0032 | .0032 | .0032 | .0016 |
|       |       |       |       |       |       |       |
| ccgG  | cgGC  | gGCG  | GCGT  | CGTt  | GTta  | Ttag  |
| .0064 | .0036 | .0016 | .0128 | .0032 | .0016 | .0016 |
|       |       |       |       |       |       |       |
| cact  | acta  | ctaA  | taAC  | aACG  | ACGA  | CGAg  |
| .0032 | .0064 | .0016 | .0016 | .0032 | .0128 | .0016 |
|       |       |       |       |       |       |       |
| cgtc  | gtca  | tcag  | cagA  | agAG  | gAGG  | AGGT  |
| .0016 | .0016 | .0016 | .0032 | .0032 | .0032 | .0128 |
|       |       |       |       |       |       |       |



#### We have already seen HiddenMatrix!

#### Dna

tt**ACCT**taac g**ATGT**ctgtc ccg**GCGT**tag cacta**ACGA**g cgtcag**AGGT** 

#### **PROFILE**(*Motifs*) 0.4 0.2 0.2 0.2 A: 0.2 0.4 0.2 0.2 C: 0.4 0.2 0.2 0.2 G: 0.2 0.2 0.2 T: 0.4

#### **STOP:** How many rows and columns does *HiddenMatrix* have?

#### **HiddenMatrix**

| ttAC  | tACC         | ACCT  | CCTt  | CTta  | Ttaa  | taac         |
|-------|--------------|-------|-------|-------|-------|--------------|
| .0016 | .0016        | .0128 | .0064 | .0016 | .0016 | .0016        |
| gATG  | ATGT         | TGTc  | GTct  | Tctg  | ctgt  | tgtc         |
| .0016 | <b>.0128</b> | .0016 | .0032 | .0032 | .0032 | .0016        |
| ccgG  | cgGC         | gGCG  | GCGT  | CGTt  | GTta  | Ttag         |
| .0064 | .0036        | .0016 | .0128 | .0032 | .0016 | .0016        |
| cact  | acta         | ctaA  | taAC  | aACG  | ACGA  | CGAg         |
| .0032 | .0064        | .0016 | .0016 | .0032 | .0128 | .0016        |
| cgtc  | gtca         | tcag  | cagA  | agAG  | gAGG  | AGGT         |
| .0016 | .0016        | .0016 | .0032 | .0032 | .0032 | <b>.0128</b> |

#### We have already seen HiddenMatrix!

#### Dna

tt**ACCT**taac g**ATGT**ctgtc ccg**GCGT**tag cacta**ACGA**g cgtcag**AGGT** 

| <b>PROFILE</b> ( <i>Motifs</i> ) |     |     |     |     |  |  |  |  |
|----------------------------------|-----|-----|-----|-----|--|--|--|--|
| A:                               | 0.4 | 0.2 | 0.2 | 0.2 |  |  |  |  |
| C:                               | 0.2 | 0.4 | 0.2 | 0.2 |  |  |  |  |
| G:                               | 0.2 | 0.2 | 0.4 | 0.2 |  |  |  |  |
| Τ:                               | 0.2 | 0.2 | 0.2 | 0.4 |  |  |  |  |

#### *HiddenMatrix*

| ttac  | tACC         | ACCT  | CCTt         | CTta  | Ttaa  | taac         |
|-------|--------------|-------|--------------|-------|-------|--------------|
| .0016 | .0016        | .0128 | .0064        | .0016 | .0016 | .0016        |
| gATG  | ATGT         | TGTc  | GTct         | Tctg  | ctgt  | tgtc         |
| .0016 | <b>.0128</b> | .0016 | .0032        | .0032 | .0032 | .0016        |
| ccgG  | cgGC         | gGCG  | GCGT         | CGTt  | GTta  | Ttag         |
| .0064 | .0036        | .0016 | <b>.0128</b> | .0032 | .0016 | .0016        |
| cact  | acta         | ctaA  | taAC         | aACG  | ACGA  | CGAg         |
| .0032 | .0064        | .0016 | .0016        | .0032 | .0128 | .0016        |
| cgtc  | gtca         | tcag  | cagA         | agAG  | gAGG  | AGGT         |
| .0016 | .0016        | .0016 | .0032        | .0032 | .0032 | <b>.0128</b> |

**STOP:** How many rows and columns does *HiddenMatrix* have?

#### Answer:

#rows = #strings = t

# cols = # k-mers in each string = n-k+1

#### From HiddenMatrix to a New Profile

We can form a hidden matrix from a profile matrix, but how do we *recompute* the profile matrix?

| CCGG | CGGC | GGCG | GCGT  | CGTT  | GTTA  | TTAG |
|------|------|------|-------|-------|-------|------|
| 4/80 | 8/80 | 8/80 | 24/80 | 12/80 | 16/80 | 8/80 |





HiddenMatrix(Profile) → Profile(HiddenMatrix(Profile))

#### From HiddenMatrix to a New Profile

# To form a profile matrix from a hidden matrix, weight a profile over every value in matrix.

| HiddenMat    | rix | # of starting positions |     |     |     |  |
|--------------|-----|-------------------------|-----|-----|-----|--|
|              | 0.1 | 0.2                     | 0.1 | 0.4 | 0.2 |  |
| # of strings | 0.5 | 0.1                     | 0.1 | 0.2 | 0.1 |  |
|              | 0.1 | 0.3                     | 0.3 | 0.1 | 0.2 |  |

Dna TACAGAC ACCCAGT CAGCATT

#### From HiddenMatrix to a New Profile

# To form a profile matrix from a hidden matrix, weight a profile over every value in matrix.

| HiddenMat    | rix  | # of star      | ting posi | tions       |               |               | Dna     |
|--------------|------|----------------|-----------|-------------|---------------|---------------|---------|
| # of strings | 0.1  | 0.2            | 0.1       | 0.4         | 0.2           |               | TACAGAC |
|              | 0.5  | 0.1            | 0.1       | 0.2         | 0.1           |               | ACCCAGT |
|              | 0.1  | 0.3            | 0.3       | 0.1         | 0.2           |               | CAGCATT |
|              | Prot | A:<br>C:<br>G: |           | 0<br>0<br>0 | 0.1<br>0<br>0 | 0<br>0.1<br>0 |         |
|              |      | Τ:             | 0         | .1          | 0             | 0             |         |
## To form a profile matrix from a hidden matrix, weight a profile over every value in matrix.

| HiddenMat    | rix  | # of star            | ting posi | tions              |                      | Dna                  |                        |
|--------------|------|----------------------|-----------|--------------------|----------------------|----------------------|------------------------|
|              | 0.1  | 0.2                  | 0.1       | 0.4                | 0.2                  |                      | T <mark>ACA</mark> GAC |
| # of strings | 0.5  | 0.1                  | 0.1       | 0.2                | 0.1                  |                      | ACCCAGT                |
|              | 0.1  | 0.3                  | 0.3       | 0.1                | 0.2                  |                      | CAGCATT                |
|              | Prof | A:<br>C:<br>G:<br>T: | 0<br>0    | .2<br>0<br>0<br>.1 | 0.1<br>0.2<br>0<br>0 | 0.2<br>0.1<br>0<br>0 |                        |
|              |      |                      |           |                    |                      |                      |                        |

## To form a profile matrix from a hidden matrix, weight a profile over every value in matrix.

| HiddenMat    | trix | # of starting positions |     |     |     |     | Dna                    |
|--------------|------|-------------------------|-----|-----|-----|-----|------------------------|
|              | 0.1  | 0.2                     | 0.1 | 0.4 | 0.2 |     | TA <mark>CAG</mark> AC |
| # of strings | 0.5  | 0.1                     | 0.1 | 0.2 | 0.1 |     | ACCCAGT                |
|              | 0.1  | 0.3                     | 0.3 | 0.1 | 0.2 |     | CAGCATT                |
|              |      | A:                      | 0   | .2  | 0.2 | 0.2 |                        |
|              | Duct | C:                      | 0   | .1  | 0.2 | 0.1 |                        |
|              | PTO  | G:                      |     | 0   | 0   | 0.1 |                        |
|              |      | Т:                      | 0   | .1  | 0   | 0   |                        |
|              |      |                         |     |     |     |     |                        |

## To form a profile matrix from a hidden matrix, weight a profile over every value in matrix.

| HiddenMat    | trix | # of starting positions |     |     |     |     | Dna                    |
|--------------|------|-------------------------|-----|-----|-----|-----|------------------------|
|              | 0.1  | 0.2                     | 0.1 | 0.4 | 0.2 |     | TAC <mark>AG</mark> AC |
| # of strings | 0.5  | 0.1                     | 0.1 | 0.2 | 0.1 |     | ACCCAGT                |
|              | 0.1  | 0.3                     | 0.3 | 0.1 | 0.2 |     | CAGCATT                |
|              |      | A                       | : 0 | .6  | 0.2 | 0.6 |                        |
|              | Prot | file C :                | : 0 | .1  | 0.2 | 0.1 |                        |
|              |      | G                       |     | 0   | 0.4 | 0.1 |                        |
|              |      |                         | : 0 | .1  | 0   | 0   |                        |

## To form a profile matrix from a hidden matrix, weight a profile over every value in matrix.

| HiddenMat    | rix     | # of starting positions |        |          |                         |            | Dna                   |
|--------------|---------|-------------------------|--------|----------|-------------------------|------------|-----------------------|
|              | 0.1     | 0.2                     | 0.1    | 0.4      | 0.2                     |            | TACA <mark>GAC</mark> |
| # of strings | 0.5     | 0.1                     | 0.1    | 0.2      | 0.1                     |            | ACCCAGT               |
|              | 0.1     | 0.3                     | 0.3    | 0.1      | 0.2                     |            | CAGCATT               |
| D            |         | A:<br>C:                | 0<br>0 | .6<br>.1 | <mark>0.4</mark><br>0.2 | 0.6<br>0.3 |                       |
|              | Profile |                         | 0<br>0 | .2<br>.1 | 0.4<br>0                | 0.1<br>0   |                       |

#### To form a profile matrix from a hidden matrix, weight a profile over every value in matrix.

| HiddenMat    | rix            | # of star | ting posi   | tions          |                                |                                | Dna     |
|--------------|----------------|-----------|-------------|----------------|--------------------------------|--------------------------------|---------|
|              | 0.1            | 0.2       | 0.1         | 0.4            | 0.2                            |                                | TACAGAC |
| # of strings | 0.5            | 0.1       | 0.1         | 0.2            | 0.1                            |                                | ACCCAGT |
|              | 0.1            | 0.3       | 0.3         | 0.1            | 0.2                            |                                | CAGCATT |
|              | A:<br>C:<br>G: |           | 1<br>0<br>0 | .1<br>.1<br>.2 | 0.4<br><mark>0.7</mark><br>0.4 | 0.6<br><mark>0.8</mark><br>0.1 |         |
|              |                | Т:        | 0           | .1             | 0                              | 0                              |         |

© 2024 Phillip Compeau

## To form a profile matrix from a hidden matrix, weight a profile over every value in matrix.

| HiddenMat    | rix  | <pre># of starting positions</pre> |     |     |     |     | Dna                    |
|--------------|------|------------------------------------|-----|-----|-----|-----|------------------------|
|              | 0.1  | 0.2                                | 0.1 | 0.4 | 0.2 |     | TACAGAC                |
| # of strings | 0.5  | 0.1                                | 0.1 | 0.2 | 0.1 |     | A <mark>CCC</mark> AGT |
|              | 0.1  | 0.3                                | 0.3 | 0.1 | 0.2 |     | CAGCATT                |
|              |      | A:                                 | 1   | .1  | 0.4 | 0.6 |                        |
|              | Prot | C:                                 | 0   | .2  | 0.8 | 0.9 |                        |
|              | 1101 | G:                                 | 0   | .2  | 0.4 | 0.1 |                        |
|              |      | Т:                                 | 0   | .1  | 0   | 0   |                        |

## To form a profile matrix from a hidden matrix, weight a profile over every value in matrix.

| HiddenMat    | rix                    | <pre># of starting positions</pre> |             |                |                   |                   | Dna                    |
|--------------|------------------------|------------------------------------|-------------|----------------|-------------------|-------------------|------------------------|
|              | 0.1                    | 0.2                                | 0.1         | 0.4            | 0.2               |                   | TACAGAC                |
| # of strings | 0.5                    | 0.1                                | 0.1         | 0.2            | 0.1               |                   | AC <mark>CCA</mark> GT |
|              | 0.1                    | 0.3                                | 0.3         | 0.1            | 0.2               |                   | CAGCATT                |
|              | A:<br>Profile C:<br>G: |                                    | 1<br>0<br>0 | .1<br>.3<br>.2 | 0.4<br>0.9<br>0.4 | 0.6<br>1.0<br>0.1 |                        |
|              |                        | Τ:                                 | 0           | .1             | 0                 | 0                 |                        |

## To form a profile matrix from a hidden matrix, weight a profile over every value in matrix.

| HiddenMat    | rix  | # of starting positions |     |     |     |     | Dna                    |
|--------------|------|-------------------------|-----|-----|-----|-----|------------------------|
|              | 0.1  | 0.2                     | 0.1 | 0.4 | 0.2 |     | TACAGAC                |
| # of strings | 0.5  | 0.1                     | 0.1 | 0.2 | 0.1 |     | ACC <mark>CAG</mark> T |
|              | 0.1  | 0.3                     | 0.3 | 0.1 | 0.2 |     | CAGCATT                |
|              |      | A:                      | 1   | .1  | 0.6 | 0.6 |                        |
|              | Drot | C:                      | 0   | .5  | 0.9 | 1.0 |                        |
|              | PTO  | G:                      | 0   | .2  | 0.4 | 0.3 |                        |
|              |      |                         | 0   | .1  | 0   | 0   |                        |

## To form a profile matrix from a hidden matrix, weight a profile over every value in matrix.

| HiddenMat    | rix  | # of starting positions |     |     |     |     |  |  |
|--------------|------|-------------------------|-----|-----|-----|-----|--|--|
|              | 0.1  | 0.2                     | 0.1 | 0.4 | 0.2 |     |  |  |
| # of strings | 0.5  | 0.1                     | 0.1 | 0.2 | 0.1 |     |  |  |
|              | 0.1  | 0.3                     | 0.3 | 0.1 | 0.2 |     |  |  |
|              |      | A:                      | 1   | .2  | 0.6 | 0.6 |  |  |
|              | D    | с:                      | 0   | .5  | 0.9 | 1.0 |  |  |
|              | Proi | G:                      | 0   | .2  | 0.5 | 0.3 |  |  |
|              |      | Т:                      | 0   | .1  | 0   | 0.1 |  |  |

Dna TACAGAC ACCC<mark>AGT</mark> CAGCATT

## To form a profile matrix from a hidden matrix, weight a profile over every value in matrix.

| HiddenMat    | rix  | # of starting positions |                  |                      |                        |                          | Dna     |
|--------------|------|-------------------------|------------------|----------------------|------------------------|--------------------------|---------|
|              | 0.1  | 0.2                     | 0.1              | 0.4                  | 0.2                    |                          | TACAGAC |
| # of strings | 0.5  | 0.1                     | 0.1              | 0.2                  | 0.1                    |                          | ACCCAGT |
|              | 0.1  | 0.3                     | 0.3              | 0.1                  | 0.2                    |                          | CAGCAGT |
|              | Prof | A:<br>C:<br>G:<br>T:    | 1<br>0<br>0<br>0 | .2<br>.6<br>.2<br>.1 | 0.7<br>0.9<br>0.5<br>0 | 0.6<br>1.0<br>0.4<br>0.1 |         |

#### To form a profile matrix from a hidden matrix, weight a profile over every value in matrix.

| HiddenMat    | rix  | # of starting positions |             |                |                   |                   | Dna                    |
|--------------|------|-------------------------|-------------|----------------|-------------------|-------------------|------------------------|
|              | 0.1  | 0.2                     | 0.1         | 0.4            | 0.2               |                   | TACAGAC                |
| # of strings | 0.5  | 0.1                     | 0.1         | 0.2            | 0.1               |                   | ACCCAGT                |
|              | 0.1  | 0.3                     | 0.3         | 0.1            | 0.2               |                   | C <mark>AGC</mark> AGT |
|              | Prot | A:<br>C:<br>G:          | 1<br>0<br>0 | .5<br>.6<br>.2 | 0.7<br>0.9<br>0.8 | 0.6<br>1.3<br>0.4 |                        |
|              |      | т:                      | 0           | .1             | 0                 | 0.1               |                        |

© 2024 Phillip Compeau

## To form a profile matrix from a hidden matrix, weight a profile over every value in matrix.

| HiddenMatrix |                                  | # of starting positions                                                     |                                                                                                   |                                                                                                                              |                                                                                                                                                                                            |                                                                                                                                                                              |  |  |
|--------------|----------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 0.1          | 0.2                              | 0.1                                                                         | 0.4                                                                                               | 0.2                                                                                                                          |                                                                                                                                                                                            | T.                                                                                                                                                                           |  |  |
| 0.5          | 0.1                              | 0.1                                                                         | 0.2                                                                                               | 0.1                                                                                                                          |                                                                                                                                                                                            | A                                                                                                                                                                            |  |  |
| 0.1          | 0.3                              | 0.3                                                                         | 0.1                                                                                               | 0.2                                                                                                                          |                                                                                                                                                                                            | C.                                                                                                                                                                           |  |  |
|              | A:                               | 1                                                                           | .5                                                                                                | 0.7                                                                                                                          | 0.9                                                                                                                                                                                        |                                                                                                                                                                              |  |  |
| D            | C:                               | 0                                                                           | .6                                                                                                | 1.2                                                                                                                          | 1.3                                                                                                                                                                                        |                                                                                                                                                                              |  |  |
| Proi         | G:                               | 0                                                                           | .5                                                                                                | 0.8                                                                                                                          | 0.4                                                                                                                                                                                        |                                                                                                                                                                              |  |  |
|              | т:                               | 0                                                                           | .1                                                                                                | 0                                                                                                                            | 0.1                                                                                                                                                                                        |                                                                                                                                                                              |  |  |
|              | rix<br>0.1<br>0.5<br>0.1<br>Prof | trix # of star   0.1 0.2   0.5 0.1   0.1 0.3   A:   Profile   C: G:   T: T: | trix# of starting position $0.1$ $0.2$ $0.1$ $0.5$ $0.1$ $0.1$ $0.1$ $0.3$ $0.3$ A: 1C: 0G: 0T: 0 | trix# of starting positions $0.1$ $0.2$ $0.1$ $0.4$ $0.5$ $0.1$ $0.1$ $0.2$ $0.1$ $0.3$ $0.3$ $0.1$ A: 1.5C: 0.6G: 0.5T: 0.1 | trix# of starting positions $0.1$ $0.2$ $0.1$ $0.4$ $0.2$ $0.5$ $0.1$ $0.1$ $0.2$ $0.1$ $0.1$ $0.3$ $0.3$ $0.1$ $0.2$ $0.1$ $0.3$ $0.3$ $0.1$ $0.2$ A: 1.5 0.7C: 0.6 1.2G: 0.5 0.8T: 0.1 0 | trix# of starting positions $0.1$ $0.2$ $0.1$ $0.4$ $0.2$ $0.5$ $0.1$ $0.1$ $0.2$ $0.1$ $0.1$ $0.3$ $0.3$ $0.1$ $0.2$ A: 1.5 0.7 0.9C: 0.6 1.2 1.3G: 0.5 0.8 0.4T: 0.1 0 0.1 |  |  |

TACAGAC ACCCAGT CAGCAGT

Dna

#### To form a profile matrix from a hidden matrix, weight a profile over every value in matrix.

| ia  |
|-----|
| GAC |
| AGT |
| ATT |
|     |
|     |
|     |
|     |
|     |

© 2024 Phillip Compeau

## To form a profile matrix from a hidden matrix, weight a profile over every value in matrix.

| HiddenMat    | rix  | # of star | ting posi | itions |     |     | Dna     |
|--------------|------|-----------|-----------|--------|-----|-----|---------|
|              | 0.1  | 0.2       | 0.1       | 0.4    | 0.2 |     | TACAGAC |
| # of strings | 0.5  | 0.1       | 0.1       | 0.2    | 0.1 |     | ACCCAGT |
|              | 0.1  | 0.3       | 0.3       | 0.1    | 0.2 |     | CAGCATT |
|              |      | A:        | 1         | .7     | 0.8 | 0.9 |         |
|              |      | с. С:     | 0         | .7     | 1.2 | 1.3 |         |
|              | Proi | G:        | 0         | .5     | 0.8 | 0.4 |         |
|              |      | т:        | 0         | .1     | 0.2 | 0.4 |         |

## Finally, each column currently sums to t (=3) and should sum to 1, so divide each column by t.

| HiddenMatri  | ix   | # of star            | ting posi            | tions                        |                                  |                                  | Dna     |
|--------------|------|----------------------|----------------------|------------------------------|----------------------------------|----------------------------------|---------|
|              | 0.1  | 0.2                  | 0.1                  | 0.4                          | 0.2                              |                                  | TACAGAC |
| # of strings | 0.5  | 0.1                  | 0.1                  | 0.2                          | 0.1                              |                                  | ACCCAGT |
|              | 0.1  | 0.3                  | 0.3                  | 0.1                          | 0.2                              |                                  | CAGCATT |
|              | Prof | A:<br>C:<br>G:<br>T: | 1.<br>0.<br>0.<br>0. | .7/3<br>.7/3<br>.5/3<br>.1/3 | 0.8/3<br>1.2/3<br>0.8/3<br>0.2/3 | 0.9/3<br>1.3/3<br>0.4/3<br>0.4/3 |         |



**STOP:** We should probably get some pseudocounts in there, shouldn't we? How?

| # | of strings |  |
|---|------------|--|
|   |            |  |

**HiddenMatrix** 

| # of starting | positions |
|---------------|-----------|
|---------------|-----------|

| /.   | 0.2  | <u> </u>             | 0.1                  | 0.4                                  | 0.2                              |                                  |
|------|------|----------------------|----------------------|--------------------------------------|----------------------------------|----------------------------------|
| ).5  | 0.1  | 1                    | 0.1                  | 0.2                                  | 0.1                              |                                  |
| ).1  | 0.3  | 3                    | 0.3                  | 0.1                                  | 0.2                              |                                  |
| Prof | file | A:<br>C:<br>G:<br>T: | 1.<br>0.<br>0.<br>0. | .7/3 (<br>.7/3 1<br>.5/3 (<br>.1/3 ( | ).8/3<br>1.2/3<br>).8/3<br>).2/3 | 0.9/3<br>1.3/3<br>0.4/3<br>0.4/3 |

Dna

TACAGAC ACCCAGT CAGCATT



**Answer:** Add some small value  $\sigma$  to each numerator and normalize by dividing by (# of strings)  $\cdot \sigma$ .

| П | uu | eniv | Taux                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---|----|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |    |      | Section of the sectio |

Liddon Matrix

# of strings

| # of starting posit | ions |
|---------------------|------|
|---------------------|------|

A:

C :

G:

**T**:

Profile

| 0.1 | 0.2 | 0.1 | 0.4 | 0.2 |
|-----|-----|-----|-----|-----|
| 0.5 | 0.1 | 0.1 | 0.2 | 0.1 |
| 0.1 | 0.3 | 0.3 | 0.1 | 0.2 |
|     |     |     |     |     |

Dna

TACAGAC ACCCAGT CAGCATT

 $(0.8+\sigma)/(3+4\sigma)$  $(1.2+\sigma)/(3+4\sigma)$  $(0.8+\sigma)/(3+4\sigma)$  $(0.2+\sigma)/(3+4\sigma)$   $(0.9 + \sigma)/(3+4\sigma)$ (1.3 + \sigma)/(3+4\sigma) (0.4 + \sigma)/(3+4\sigma) (0.4 + \sigma)/(3+4\sigma)

© 2024 Phillip Compeau

 $(1.7+\sigma)/(3+4\sigma)$ 

 $(0.7+\sigma)/(3+4\sigma)$ 

 $(0.5 + \sigma)/(3 + 4\sigma)$ 

 $(0.1+\sigma)/(3+4\sigma)$ 

The expectation maximization algorithm chooses a random collection of *k*-mers *Motifs*, forms the profile matrix, and then repeats two steps:

*Profile* → *HiddenMatrix*(*Profile*)

HiddenMatrix(Profile) → Profile(HiddenMatrix(Profile))

The expectation maximization algorithm chooses a random collection of *k*-mers *Motifs*, forms the profile matrix, and then repeats two steps:

*Profile* → *HiddenMatrix*(*Profile*)

HiddenMatrix(Profile) → Profile(HiddenMatrix(Profile))

The first step is called the "E-step", and the second step is called the "M-step". (We will say more soon.)

The expectation maximization algorithm chooses a random collection of *k*-mers *Motifs*, forms the profile matrix, and then repeats two steps:

*Profile* → *HiddenMatrix*(*Profile*)

HiddenMatrix(Profile) → Profile(HiddenMatrix(Profile))

#### **STOP:** When should we stop the algorithm?

The expectation maximization algorithm chooses a random collection of *k*-mers *Motifs*, forms the profile matrix, and then repeats two steps:

*Profile* → *HiddenMatrix*(*Profile*)

HiddenMatrix(Profile) → Profile(HiddenMatrix(Profile))

**Answer:** When the profile matrix stops changing much between steps.

#### Visualizing HiddenMatrix for Motif Finding skip the sampling step

s<sub>ij</sub> = score of motif starting at j in sequence i

ttgccacaaaataatccgccttcgcaaattgacctacc

 $\$ 

 ${\tt gtaagtacctgaaagttacggtctgcgaacgcta}$ 

 $\verb|ccatacccggaaagagttactccttatttgccgtgtgg||$ 

(Borrowing visual from Carl Kingsford)

**RandomizedMotifSearch** takes the *tallest* peak in each string.

#### Visualizing HiddenMatrix for Motif Finding skip the sampling step

s<sub>ij</sub> = score of motif starting at j in sequence i

ttgccacaaaataatccgccttcgcaaattgacctacc

 ${\tt gtaagtacctgaaagttacggtctgcgaacgcta}$ 

 $\verb|ccatacccggaaagagttactccttatttgccgtgtgg||$ 

(Borrowing visual from Carl Kingsford)

**RandomizedMotifSearch** takes the *tallest* peak in each string.

**GibbsSampling** chooses a peak in one string randomly, with tall peaks more likely.

#### Visualizing HiddenMatrix for Motif Finding skip the sampling step

s<sub>ij</sub> = score of motif starting at j in sequence i

ttgccacaaaataatccgccttcgcaaattgacctacc

gtaagtacctgaaagttacggtctgcgaacgcta

 $\verb|ccatacccggaaagagttactccttatttgccgtgtgg||$ 

(Borrowing visual from Carl Kingsford)

**RandomizedMotifSearch** takes the *tallest* peak in each string.

**GibbsSampling** chooses a peak in one string randomly, with tall peaks more likely.

# **EM** keeps all peaks around.

### Moral: Great Ideas Are Not Necessarily Complicated or Old

www.ncbi.nlm.nih.gov > pmc > articles > PMC1538909

MEME: discovering and analyzing DNA and protein sequence ... Jump to MOTIF DISCOVERY STRATEGIES — MEME (Multiple EM for Motif Elicitation) is one of the most widely used tools for searching for novel 'signals' in ... by TL Bailey · 2006 · Cited by 2122 · Related articles

www.ncbi.nlm.nih.gov > pmc > articles > PMC2703892

#### MEME Suite: tools for motif discovery and searching

May 20, 2009 — First, the MEME Suite can compare your DNA motifs to known compendia of motifs (such as JASPAR, Flyreg and DPINTERACT) to see if your ...

by TL Bailey · 2009 · Cited by 5578 · Related articles