
>NC_045512.2 Severe acute respiratory syndrome coronavirus 2 isolate Wuhan-Hu-1, complete genome
ATTAAAGGTTTATACCTTCCCAGGTAACAAACCAACCAACTTTCGATCTCTTGTAGATCTGTTCTCTAAACGAACTTTAAAATCTGTGTGGCTGTCACTCGGCTGCATGCTTAGTGCACTCACGCAGTATAATTAATAACTAATTACTGTCGTTGACAGGACACGAGTAACTCGTCTATCTTCTGCAGGCTGCTTACGGTTTCGTCCGTGTTGCAGCCGATCATCAGCACATCTAGGTTTCGTCCGGGTGTGACCGAAAGGTAAGATGGAGAGCCTTGTCCCTGGTTTCAACGAGAA
AACACACGTCCAACTCAGTTTGCCTGTTTTACAGGTTCGCGACGTGCTCGTACGTGGCTTTGGAGACTCCGTGGAGGAGGTCTTATCAGAGGCACGTCAACATCTTAAAGATGGCACTTGTGGCTTAGTAGAAGTTGAAAAAGGCGTTTTGCCTCAACTTGAACAGCCCTATGTGTTCATCAAACGTTCGGATGCTCGAACTGCACCTCATGGTCATGTTATGGTTGAGCTGGTAGCAGAACTCGAAGGCATTCAGTACGGTCGTAGTGGTGAGACACTTGGTGTCCTTGTCCCTCA
TGTGGGCGAAATACCAGTGGCTTACCGCAAGGTTCTTCTTCGTAAGAACGGTAATAAAGGAGCTGGTGGCCATAGTTACGGCGCCGATCTAAAGTCATTTGACTTAGGCGACGAGCTTGGCACTGATCCTTATGAAGATTTTCAAGAAAACTGGAACACTAAACATAGCAGTGGTGTTACCCGTGAACTCATGCGTGAGCTTAACGGAGGGGCATACACTCGCTATGTCGATAACAACTTCTGTGGCCCTGATGGCTACCCTCTTGAGTGCATTAAAGACCTTCTAGCACGTGCTGG
TAAAGCTTCATGCACTTTGTCCGAACAACTGGACTTTATTGACACTAAGAGGGGTGTATACTGCTGCCGTGAACATGAGCATGAAATTGCTTGGTACACGGAACGTTCTGAAAAGAGCTATGAATTGCAGACACCTTTTGAAATTAAATTGGCAAAGAAATTTGACACCTTCAATGGGGAATGTCCAAATTTTGTATTTCCCTTAAATTCCATAATCAAGACTATTCAACCAAGGGTTGAAAAGAAAAAGCTTGATGGCTTTATGGGTAGAATTCGATCTGTCTATCCAGTTGCGTC
ACCAAATGAATGCAACCAAATGTGCCTTTCAACTCTCATGAAGTGTGATCATTGTGGTGAAACTTCATGGCAGACGGGCGATTTTGTTAAAGCCACTTGCGAATTTTGTGGCACTGAGAATTTGACTAAAGAAGGTGCCACTACTTGTGGTTACTTACCCCAAAATGCTGTTGTTAAAATTTATTGTCCAGCATGTCACAATTCAGAAGTAGGACCTGAGCATAGTCTTGCCGAATACCATAATGAATCTGGCTTGAAAACCATTCTTCGTAAGGGTGGTCGCACTATTGCCTTTGG
AGGCTGTGTGTTCTCTTATGTTGGTTGCCATAACAAGTGTGCCTATTGGGTTCCACGTGCTAGCGCTAACATAGGTTGTAACCATACAGGTGTTGTTGGAGAAGGTTCCGAAGGTCTTAATGACAACCTTCTTGAAATACTCCAAAAAGAGAAAGTCAACATCAATATTGTTGGTGACTTTAAACTTAATGAAGAGATCGCCATTATTTTGGCATCTTTTTCTGCTTCCACAAGTGCTTTTGTGGAAACTGTGAAAGGTTTGGATTATAAAGCATTCAAACAAATTGTTGAATCCTG
TGGTAATTTTAAAGTTACAAAAGGAAAAGCTAAAAAAGGTGCCTGGAATATTGGTGAACAGAAATCAATACTGAGTCCTCTTTATGCATTTGCATCAGAGGCTGCTCGTGTTGTACGATCAATTTTCTCCCGCACTCTTGAAACTGCTCAAAATTCTGTGCGTGTTTTACAGAAGGCCGCTATAACAATACTAGATGGAATTTCACAGTATTCACTGAGACTCATTGATGCTATGATGTTCACATCTGATTTGGCTACTAACAATCTAGTTGTAATGGCCTACATTACAGGTGGTGT
TGTTCAGTTGACTTCGCAGTGGCTAACTAACATCTTTGGCACTGTTTATGAAAAACTCAAACCCGTCCTTGATTGGCTTGAAGAGAAGTTTAAGGAAGGTGTAGAGTTTCTTAGAGACGGTTGGGAAATTGTTAAATTTATCTCAACCTGTGCTTGTGAAATTGTCGGTGGACAAATTGTCACCTGTGCAAAGGAAATTAAGGAGAGTGTTCAGACATTCTTTAAGCTTGTAAATAAATTTTTGGCTTTGTGTGCTGACTCTATCATTATTGGTGGAGCTAAACTTAAAGCCTTGAA
TTTAGGTGAAACATTTGTCACGCACTCAAAGGGATTGTACAGAAAGTGTGTTAAATCCAGAGAAGAAACTGGCCTACTCATGCCTCTAAAAGCCCCAAAAGAAATTATCTTCTTAGAGGGAGAAACACTTCCCACAGAAGTGTTAACAGAGGAAGTTGTCTTGAAAACTGGTGATTTACAACCATTAGAACAACCTACTAGTGAAGCTGTTGAAGCTCCATTGGTTGGTACACCAGTTTGTATTAACGGGCTTATGTTGCTCGAAATCAAAGACACAGAAAAGTACTGTGCCCTTGC
ACCTAATATGATGGTAACAAACAATACCTTCACACTCAAAGGCGGTGCACCAACAAAGGTTACTTTTGGTGATGACACTGTGATAGAAGTGCAAGGTTACAAGAGTGTGAATATCACTTTTGAACTTGATGAAAGGATTGATAAAGTACTTAATGAGAAGTGCTCTGCCTATACAGTTGAACTCGGTACAGAAGTAAATGAGTTCGCCTGTGTTGTGGCAGATGCTGTCATAAAAACTTTGCAACCAGTATCTGAATTACTTACACCACTGGGCATTGATTTAGATGAGTGGAGTAT
GGCTACATACTACTTATTTGATGAGTCTGGTGAGTTTAAATTGGCTTCACATATGTATTGTTCTTTCTACCCTCCAGATGAGGATGAAGAAGAAGGTGATTGTGAAGAAGAAGAGTTTGAGCCATCAACTCAATATGAGTATGGTACTGAAGATGATTACCAAGGTAAACCTTTGGAATTTGGTGCCACTTCTGCTGCTCTTCAACCTGAAGAAGAGCAAGAAGAAGATTGGTTAGATGATGATAGTCAACAAACTGTTGGTCAACAAGACGGCAGTGAGGACAATCAGACAACTAC
TATTCAAACAATTGTTGAGGTTCAACCTCAATTAGAGATGGAACTTACACCAGTTGTTCAGACTATTGAAGTGAATAGTTTTAGTGGTTATTTAAAACTTACTGACAATGTATACATTAAAAATGCAGACATTGTGGAAGAAGCTAAAAAGGTAAAACCAACAGTGGTTGTTAATGCAGCCAATGTTTACCTTAAACATGGAGGAGGTGTTGCAGGAGCCTTAAATAAGGCTACTAACAATGCCATGCAAGTTGAATCTGATGATTACATAGCTACTAATGGACCACTTAAAGTGGG
TGGTAGTTGTGTTTTAAGCGGACACAATCTTGCTAAACACTGTCTTCATGTTGTCGGCCCAAATGTTAACAAAGGTGAAGACATTCAACTTCTTAAGAGTGCTTATGAAAATTTTAATCAGCACGAAGTTCTACTTGCACCATTATTATCAGCTGGTATTTTTGGTGCTGACCCTATACATTCTTTAAGAGTTTGTGTAGATACTGTTCGCACAAATGTCTACTTAGCTGTCTTTGATAAAAATCTCTATGACAAACTTGTTTCAAGCTTTTTGGAAATGAAGAGTGAAAAGCAAGT
TGAACAAAAGATCGCTGAGATTCCTAAAGAGGAAGTTAAGCCATTTATAACTGAAAGTAAACCTTCAGTTGAACAGAGAAAACAAGATGATAAGAAAATCAAAGCTTGTGTTGAAGAAGTTACAACAACTCTGGAAGAAACTAAGTTCCTCACAGAAAACTTGTTACTTTATATTGACATTAATGGCAATCTTCATCCAGATTCTGCCACTCTTGTTAGTGACATTGACATCACTTTCTTAAAGAAAGATGCTCCATATATAGTGGGTGATGTTGTTCAAGAGGGTGTTTTAACTGC
TGTGGTTATACCTACTAAAAAGGCTGGTGGCACTACTGAAATGCTAGCGAAAGCTTTGAGAAAAGTGCCAACAGACAATTATATAACCACTTACCCGGGTCAGGGTTTAAATGGTTACACTGTAGAGGAGGCAAAGACAGTGCTTAAAAAGTGTAAAAGTGCCTTTTACATTCTACCATCTATTATCTCTAATGAGAAGCAAGAAATTCTTGGAACTGTTTCTTGGAATTTGCGAGAAATGCTTGCACATGCAGAAGAAACACGCAAATTAATGCCTGTCTGTGTGGAAACTAAAGC
CATAGTTTCAACTATACAGCGTAAATATAAGGGTATTAAAATACAAGAGGGTGTGGTTGATTATGGTGCTAGATTTTACTTTTACACCAGTAAAACAACTGTAGCGTCACTTATCAACACACTTAACGATCTAAATGAAACTCTTGTTACAATGCCACTTGGCTATGTAACACATGGCTTAAATTTGGAAGAAGCTGCTCGGTATATGAGATCTCTCAAAGTGCCAGCTACAGTTTCTGTTTCTTCACCTGATGCTGTTACAGCGTATAATGGTTATCTTACTTCTTCTTCTAAAAC
ACCTGAAGAACATTTTATTGAAACCATCTCACTTGCTGGTTCCTATAAAGATTGGTCCTATTCTGGACAATCTACACAACTAGGTATAGAATTTCTTAAGAGAGGTGATAAAAGTGTATATTACACTAGTAATCCTACCACATTCCACCTAGATGGTGAAGTTATCACCTTTGACAATCTTAAGACACTTCTTTCTTTGAGAGAAGTGAGGACTATTAAGGTGTTTACAACAGTAGACAACATTAACCTCCACACGCAAGTTGTGGACATGTCAATGACATATGGACAACAGTTTGG
TCCAACTTATTTGGATGGAGCTGATGTTACTAAAATAAAACCTCATAATTCACATGAAGGTAAAACATTTTATGTTTTACCTAATGATGACACTCTACGTGTTGAGGCTTTTGAGTACTACCACACAACTGATCCTAGTTTTCTGGGTAGGTACATGTCAGCATTAAATCACACTAAAAAGTGGAAATACCCACAAGTTAATGGTTTAACTTCTATTAAATGGGCAGATAACAACTGTTATCTTGCCACTGCATTGTTAACACTCCAACAAATAGAGTTGAAGTTTAATCCACCTGC
TCTACAAGATGCTTATTACAGAGCAAGGGCTGGTGAAGCTGCTAACTTTTGTGCACTTATCTTAGCCTACTGTAATAAGACAGTAGGTGAGTTAGGTGATGTTAGAGAAACAATGAGTTACTTGTTTCAACATGCCAATTTAGATTCTTGCAAAAGAGTCTTGAACGTGGTGTGTAAAACTTGTGGACAACAGCAGACAACCCTTAAGGGTGTAGAAGCTGTTATGTACATGGGCACACTTTCTTATGAACAATTTAAGAAAGGTGTTCAGATACCTTGTACGTGTGGTAAACAAGC
TACAAAATATCTAGTACAACAGGAGTCACCTTTTGTTATGATGTCAGCACCACCTGCTCAGTATGAACTTAAGCATGGTACATTTACTTGTGCTAGTGAGTACACTGGTAATTACCAGTGTGGTCACTATAAACATATAACTTCTAAAGAAACTTTGTATTGCATAGACGGTGCTTTACTTACAAAGTCCTCAGAATACAAAGGTCCTATTACGGATGTTTTCTACAAAGAAAACAGTTACACAACAACCATAAAACCAGTTACTTATAAATTGGATGGTGTTGTTTGTACAGAAAT
TGACCCTAAGTTGGACAATTATTATAAGAAAGACAATTCTTATTTCACAGAGCAACCAATTGATCTTGTACCAAACCAACCATATCCAAACGCAAGCTTCGATAATTTTAAGTTTGTATGTGATAATATCAAATTTGCTGATGATTTAAACCAGTTAACTGGTTATAAGAAACCTGCTTCAAGAGAGCTTAAAGTTACATTTTTCCCTGACTTAAATGGTGATGTGGTGGCTATTGATTATAAACACTACACACCCTCTTTTAAGAAAGGAGCTAAATTGTTACATAAACCTATTGT
TTGGCATGTTAACAATGCAACTAATAAAGCCACGTATAAACCAAATACCTGGTGTATACGTTGTCTTTGGAGCACAAAACCAGTTGAAACATCAAATTCGTTTGATGTACTGAAGTCAGAGGACGCGCAGGGAATGGATAATCTTGCCTGCGAAGATCTAAAACCAGTCTCTGAAGAAGTAGTGGAAAATCCTACCATACAGAAAGACGTTCTTGAGTGTAATGTGAAAACTACCGAAGTTGTAGGAGACATTATACTTAAACCAGCAAATAATAGTTTAAAAATTACAGAAGAGGT
TGGCCACACAGATCTAATGGCTGCTTATGTAGACAATTCTAGTCTTACTATTAAGAAACCTAATGAATTATCTAGAGTATTAGGTTTGAAAACCCTTGCTACTCATGGTTTAGCTGCTGTTAATAGTGTCCCTTGGGATACTATAGCTAATTATGCTAAGCCTTTTCTTAACAAAGTTGTTAGTACAACTACTAACATAGTTACACGGTGTTTAAACCGTGTTTGTACTAATTATATGCCTTATTTCTTTACTTTATTGCTACAATTGTGTACTTTTACTAGAAGTACAAATTCTAG
AATTAAAGCATCTATGCCGACTACTATAGCAAAGAATACTGTTAAGAGTGTCGGTAAATTTTGTCTAGAGGCTTCATTTAATTATTTGAAGTCACCTAATTTTTCTAAACTGATAAATATTATAATTTGGTTTTTACTATTAAGTGTTTGCCTAGGTTCTTTAATCTACTCAACCGCTGCTTTAGGTGTTTTAATGTCTAATTTAGGCATGCCTTCTTACTGTACTGGTTACAGAGAAGGCTATTTGAACTCTACTAATGTCACTATTGCAACCTACTGTACTGGTTCTATACCTTG
TAGTGTTTGTCTTAGTGGTTTAGATTCTTTAGACACCTATCCTTCTTTAGAAACTATACAAATTACCATTTCATCTTTTAAATGGGATTTAACTGCTTTTGGCTTAGTTGCAGAGTGGTTTTTGGCATATATTCTTTTCACTAGGTTTTTCTATGTACTTGGATTGGCTGCAATCATGCAATTGTTTTTCAGCTATTTTGCAGTACATTTTATTAGTAATTCTTGGCTTATGTGGTTAATAATTAATCTTGTACAAATGGCCCCGATTTCAGCTATGGTTAGAATGTACATCTTCTT
TGCATCATTTTATTATGTATGGAAAAGTTATGTGCATGTTGTAGACGGTTGTAATTCATCAACTTGTATGATGTGTTACAAACGTAATAGAGCAACAAGAGTCGAATGTACAACTATTGTTAATGGTGTTAGAAGGTCCTTTTATGTCTATGCTAATGGAGGTAAAGGCTTTTGCAAACTACACAATTGGAATTGTGTTAATTGTGATACATTCTGTGCTGGTAGTACATTTATTAGTGATGAAGTTGCGAGAGACTTGTCACTACAGTTTAAAAGACCAATAAATCCTACTGACCA
GTCTTCTTACATCGTTGATAGTGTTACAGTGAAGAATGGTTCCATCCATCTTTACTTTGATAAAGCTGGTCAAAAGACTTATGAAAGACATTCTCTCTCTCATTTTGTTAACTTAGACAACCTGAGAGCTAATAACACTAAAGGTTCATTGCCTATTAATGTTATAGTTTTTGATGGTAAATCAAAATGTGAAGAATCATCTGCAAAATCAGCGTCTGTTTACTACAGTCAGCTTATGTGTCAACCTATACTGTTACTAGATCAGGCATTAGTGTCTGATGTTGGTGATAGTGCGGA
AGTTGCAGTTAAAATGTTTGATGCTTACGTTAATACGTTTTCATCAACTTTTAACGTACCAATGGAAAAACTCAAAACACTAGTTGCAACTGCAGAAGCTGAACTTGCAAAGAATGTGTCCTTAGACAATGTCTTATCTACTTTTATTTCAGCAGCTCGGCAAGGGTTTGTTGATTCAGATGTAGAAACTAAAGATGTTGTTGAATGTCTTAAATTGTCACATCAATCTGACATAGAAGTTACTGGCGATAGTTGTAATAACTATATGCTCACCTATAACAAAGTTGAAAACATGAC
ACCCCGTGACCTTGGTGCTTGTATTGACTGTAGTGCGCGTCATATTAATGCGCAGGTAGCAAAAAGTCACAACATTGCTTTGATATGGAACGTTAAAGATTTCATGTCATTGTCTGAACAACTACGAAAACAAATACGTAGTGCTGCTAAAAAGAATAACTTACCTTTTAAGTTGACATGTGCAACTACTAGACAAGTTGTTAATGTTGTAACAACAAAGATAGCACTTAAGGGTGGTAAAATTGTTAATAATTGGTTGAAGCAGTTAATTAAAGTTACACTTGTGTTCCTTTTTGT
TGCTGCTATTTTCTATTTAATAACACCTGTTCATGTCATGTCTAAACATACTGACTTTTCAAGTGAAATCATAGGATACAAGGCTATTGATGGTGGTGTCACTCGTGACATAGCATCTACAGATACTTGTTTTGCTAACAAACATGCTGATTTTGACACATGGTTTAGCCAGCGTGGTGGTAGTTATACTAATGACAAAGCTTGCCCATTGATTGCTGCAGTCATAACAAGAGAAGTGGGTTTTGTCGTGCCTGGTTTGCCTGGCACGATATTACGCACAACTAATGGTGACTTTTT
GCATTTCTTACCTAGAGTTTTTAGTGCAGTTGGTAACATCTGTTACACACCATCAAAACTTATAGAGTACACTGACTTTGCAACATCAGCTTGTGTTTTGGCTGCTGAATGTACAATTTTTAAAGATGCTTCTGGTAAGCCAGTACCATATTGTTATGATACCAATGTACTAGAAGGTTCTGTTGCTTATGAAAGTTTACGCCCTGACACACGTTATGTGCTCATGGATGGCTCTATTATTCAATTTCCTAACACCTACCTTGAAGGTTCTGTTAGAGTGGTAACAACTTTTGATTC
TGAGTACTGTAGGCACGGCACTTGTGAAAGATCAGAAGCTGGTGTTTGTGTATCTACTAGTGGTAGATGGGTACTTAACAATGATTATTACAGATCTTTACCAGGAGTTTTCTGTGGTGTAGATGCTGTAAATTTACTTACTAATATGTTTACACCACTAATTCAACCTATTGGTGCTTTGGACATATCAGCATCTATAGTAGCTGGTGGTATTGTAGCTATCGTAGTAACATGCCTTGCCTACTATTTTATGAGGTTTAGAAGAGCTTTTGGTGAATACAGTCATGTAGTTGCCTT
TAATACTTTACTATTCCTTATGTCATTCACTGTACTCTGTTTAACACCAGTTTACTCATTCTTACCTGGTGTTTATTCTGTTATTTACTTGTACTTGACATTTTATCTTACTAATGATGTTTCTTTTTTAGCACATATTCAGTGGATGGTTATGTTCACACCTTTAGTACCTTTCTGGATAACAATTGCTTATATCATTTGTATTTCCACAAAGCATTTCTATTGGTTCTTTAGTAATTACCTAAAGAGACGTGTAGTCTTTAATGGTGTTTCCTTTAGTACTTTTGAAGAAGCTGC
GCTGTGCACCTTTTTGTTAAATAAAGAAATGTATCTAAAGTTGCGTAGTGATGTGCTATTACCTCTTACGCAATATAATAGATACTTAGCTCTTTATAATAAGTACAAGTATTTTAGTGGAGCAATGGATACAACTAGCTACAGAGAAGCTGCTTGTTGTCATCTCGCAAAGGCTCTCAATGACTTCAGTAACTCAGGTTCTGATGTTCTTTACCAACCACCACAAACCTCTATCACCTCAGCTGTTTTGCAGAGTGGTTTTAGAAAAATGGCATTCCCATCTGGTAAAGTTGAGGG
TTGTATGGTACAAGTAACTTGTGGTACAACTACACTTAACGGTCTTTGGCTTGATGACGTAGTTTACTGTCCAAGACATGTGATCTGCACCTCTGAAGACATGCTTAACCCTAATTATGAAGATTTACTCATTCGTAAGTCTAATCATAATTTCTTGGTACAGGCTGGTAATGTTCAACTCAGGGTTATTGGACATTCTATGCAAAATTGTGTACTTAAGCTTAAGGTTGATACAGCCAATCCTAAGACACCTAAGTATAAGTTTGTTCGCATTCAACCAGGACAGACTTTTTCAGT
GTTAGCTTGTTACAATGGTTCACCATCTGGTGTTTACCAATGTGCTATGAGGCCCAATTTCACTATTAAGGGTTCATTCCTTAATGGTTCATGTGGTAGTGTTGGTTTTAACATAGATTATGACTGTGTCTCTTTTTGTTACATGCACCATATGGAATTACCAACTGGAGTTCATGCTGGCACAGACTTAGAAGGTAACTTTTATGGACCTTTTGTTGACAGGCAAACAGCACAAGCAGCTGGTACGGACACAACTATTACAGTTAATGTTTTAGCTTGGTTGTACGCTGCTGTTAT
AAATGGAGACAGGTGGTTTCTCAATCGATTTACCACAACTCTTAATGACTTTAACCTTGTGGCTATGAAGTACAATTATGAACCTCTAACACAAGACCATGTTGACATACTAGGACCTCTTTCTGCTCAAACTGGAATTGCCGTTTTAGATATGTGTGCTTCATTAAAAGAATTACTGCAAAATGGTATGAATGGACGTACCATATTGGGTAGTGCTTTATTAGAAGATGAATTTACACCTTTTGATGTTGTTAGACAATGCTCAGGTGTTACTTTCCAAAGTGCAGTGAAAAGAAC
AATCAAGGGTACACACCACTGGTTGTTACTCACAATTTTGACTTCACTTTTAGTTTTAGTCCAGAGTACTCAATGGTCTTTGTTCTTTTTTTTGTATGAAAATGCCTTTTTACCTTTTGCTATGGGTATTATTGCTATGTCTGCTTTTGCAATGATGTTTGTCAAACATAAGCATGCATTTCTCTGTTTGTTTTTGTTACCTTCTCTTGCCACTGTAGCTTATTTTAATATGGTCTATATGCCTGCTAGTTGGGTGATGCGTATTATGACATGGTTGGATATGGTTGATACTAGTTT
GTCTGGTTTTAAGCTAAAAGACTGTGTTATGTATGCATCAGCTGTAGTGTTACTAATCCTTATGACAGCAAGAACTGTGTATGATGATGGTGCTAGGAGAGTGTGGACACTTATGAATGTCTTGACACTCGTTTATAAAGTTTATTATGGTAATGCTTTAGATCAAGCCATTTCCATGTGGGCTCTTATAATCTCTGTTACTTCTAACTACTCAGGTGTAGTTACAACTGTCATGTTTTTGGCCAGAGGTATTGTTTTTATGTGTGTTGAGTATTGCCCTATTTTCTTCATAACTGG
TAATACACTTCAGTGTATAATGCTAGTTTATTGTTTCTTAGGCTATTTTTGTACTTGTTACTTTGGCCTCTTTTGTTTACTCAACCGCTACTTTAGACTGACTCTTGGTGTTTATGATTACTTAGTTTCTACACAGGAGTTTAGATATATGAATTCACAGGGACTACTCCCACCCAAGAATAGCATAGATGCCTTCAAACTCAACATTAAATTGTTGGGTGTTGGTGGCAAACCTTGTATCAAAGTAGCCACTGTACAGTCTAAAATGTCAGATGTAAAGTGCACATCAGTAGTCTT
ACTCTCAGTTTTGCAACAACTCAGAGTAGAATCATCATCTAAATTGTGGGCTCAATGTGTCCAGTTACACAATGACATTCTCTTAGCTAAAGATACTACTGAAGCCTTTGAAAAAATGGTTTCACTACTTTCTGTTTTGCTTTCCATGCAGGGTGCTGTAGACATAAACAAGCTTTGTGAAGAAATGCTGGACAACAGGGCAACCTTACAAGCTATAGCCTCAGAGTTTAGTTCCCTTCCATCATATGCAGCTTTTGCTACTGCTCAAGAAGCTTATGAGCAGGCTGTTGCTAATGG
TGATTCTGAAGTTGTTCTTAAAAAGTTGAAGAAGTCTTTGAATGTGGCTAAATCTGAATTTGACCGTGATGCAGCCATGCAACGTAAGTTGGAAAAGATGGCTGATCAAGCTATGACCCAAATGTATAAACAGGCTAGATCTGAGGACAAGAGGGCAAAAGTTACTAGTGCTATGCAGACAATGCTTTTCACTATGCTTAGAAAGTTGGATAATGATGCACTCAACAACATTATCAACAATGCAAGAGATGGTTGTGTTCCCTTGAACATAATACCTCTTACAACAGCAGCCAAACT
AATGGTTGTCATACCAGACTATAACACATATAAAAATACGTGTGATGGTACAACATTTACTTATGCATCAGCATTGTGGGAAATCCAACAGGTTGTAGATGCAGATAGTAAAATTGTTCAACTTAGTGAAATTAGTATGGACAATTCACCTAATTTAGCATGGCCTCTTATTGTAACAGCTTTAAGGGCCAATTCTGCTGTCAAATTACAGAATAATGAGCTTAGTCCTGTTGCACTACGACAGATGTCTTGTGCTGCCGGTACTACACAAACTGCTTGCACTGATGACAATGCGTT
AGCTTACTACAACACAACAAAGGGAGGTAGGTTTGTACTTGCACTGTTATCCGATTTACAGGATTTGAAATGGGCTAGATTCCCTAAGAGTGATGGAACTGGTACTATCTATACAGAACTGGAACCACCTTGTAGGTTTGTTACAGACACACCTAAAGGTCCTAAAGTGAAGTATTTATACTTTATTAAAGGATTAAACAACCTAAATAGAGGTATGGTACTTGGTAGTTTAGCTGCCACAGTACGTCTACAAGCTGGTAATGCAACAGAAGTGCCTGCCAATTCAACTGTATTATC
TTTCTGTGCTTTTGCTGTAGATGCTGCTAAAGCTTACAAAGATTATCTAGCTAGTGGGGGACAACCAATCACTAATTGTGTTAAGATGTTGTGTACACACACTGGTACTGGTCAGGCAATAACAGTTACACCGGAAGCCAATATGGATCAAGAATCCTTTGGTGGTGCATCGTGTTGTCTGTACTGCCGTTGCCACATAGATCATCCAAATCCTAAAGGATTTTGTGACTTAAAAGGTAAGTATGTACAAATACCTACAACTTGTGCTAATGACCCTGTGGGTTTTACACTTAAAAA
CACAGTCTGTACCGTCTGCGGTATGTGGAAAGGTTATGGCTGTAGTTGTGATCAACTCCGCGAACCCATGCTTCAGTCAGCTGATGCACAATCGTTTTTAAACGGGTTTGCGGTGTAAGTGCAGCCCGTCTTACACCGTGCGGCACAGGCACTAGTACTGATGTCGTATACAGGGCTTTTGACATCTACAATGATAAAGTAGCTGGTTTTGCTAAATTCCTAAAAACTAATTGTTGTCGCTTCCAAGAAAAGGACGAAGATGACAATTTAATTGATTCTTACTTTGTAGTTAAGAGA
CACACTTTCTCTAACTACCAACATGAAGAAACAATTTATAATTTACTTAAGGATTGTCCAGCTGTTGCTAAACATGACTTCTTTAAGTTTAGAATAGACGGTGACATGGTACCACATATATCACGTCAACGTCTTACTAAATACACAATGGCAGACCTCGTCTATGCTTTAAGGCATTTTGATGAAGGTAATTGTGACACATTAAAAGAAATACTTGTCACATACAATTGTTGTGATGATGATTATTTCAATAAAAAGGACTGGTATGATTTTGTAGAAAACCCAGATATATTACGC
GTATACGCCAACTTAGGTGAACGTGTACGCCAAGCTTTGTTAAAAACAGTACAATTCTGTGATGCCATGCGAAATGCTGGTATTGTTGGTGTACTGACATTAGATAATCAAGATCTCAATGGTAACTGGTATGATTTCGGTGATTTCATACAAACCACGCCAGGTAGTGGAGTTCCTGTTGTAGATTCTTATTATTCATTGTTAATGCCTATATTAACCTTGACCAGGGCTTTAACTGCAGAGTCACATGTTGACACTGACTTAACAAAGCCTTACATTAAGTGGGATTTGTTAAAA
TATGACTTCACGGAAGAGAGGTTAAAACTCTTTGACCGTTATTTTAAATATTGGGATCAGACATACCACCCAAATTGTGTTAACTGTTTGGATGACAGATGCATTCTGCATTGTGCAAACTTTAATGTTTTATTCTCTACAGTGTTCCCACCTACAAGTTTTGGACCACTAGTGAGAAAAATATTTGTTGATGGTGTTCCATTTGTAGTTTCAACTGGATACCACTTCAGAGAGCTAGGTGTTGTACATAATCAGGATGTAAACTTACATAGCTCTAGACTTAGTTTTAAGGAATTA
CTTGTGTATGCTGCTGACCCTGCTATGCACGCTGCTTCTGGTAATCTATTACTAGATAAACGCACTACGTGCTTTTCAGTAGCTGCACTTACTAACAATGTTGCTTTTCAAACTGTCAAACCCGGTAATTTTAACAAAGACTTCTATGACTTTGCTGTGTCTAAGGGTTTCTTTAAGGAAGGAAGTTCTGTTGAATTAAAACACTTCTTCTTTGCTCAGGATGGTAATGCTGCTATCAGCGATTATGACTACTATCGTTATAATCTACCAACAATGTGTGATATCAGACAACTACTA
TTTGTAGTTGAAGTTGTTGATAAGTACTTTGATTGTTACGATGGTGGCTGTATTAATGCTAACCAAGTCATCGTCAACAACCTAGACAAATCAGCTGGTTTTCCATTTAATAAATGGGGTAAGGCTAGACTTTATTATGATTCAATGAGTTATGAGGATCAAGATGCACTTTTCGCATATACAAAACGTAATGTCATCCCTACTATAACTCAAATGAATCTTAAGTATGCCATTAGTGCAAAGAATAGAGCTCGCACCGTAGCTGGTGTCTCTATCTGTAGTACTATGACCAATAGA
CAGTTTCATCAAAAATTATTGAAATCAATAGCCGCCACTAGAGGAGCTACTGTAGTAATTGGAACAAGCAAATTCTATGGTGGTTGGCACAACATGTTAAAAACTGTTTATAGTGATGTAGAAAACCCTCACCTTATGGGTTGGGATTATCCTAAATGTGATAGAGCCATGCCTAACATGCTTAGAATTATGGCCTCACTTGTTCTTGCTCGCAAACATACAACGTGTTGTAGCTTGTCACACCGTTTCTATAGATTAGCTAATGAGTGTGCTCAAGTATTGAGTGAAATGGTCATG
TGTGGCGGTTCACTATATGTTAAACCAGGTGGAACCTCATCAGGAGATGCCACAACTGCTTATGCTAATAGTGTTTTTAACATTTGTCAAGCTGTCACGGCCAATGTTAATGCACTTTTATCTACTGATGGTAACAAAATTGCCGATAAGTATGTCCGCAATTTACAACACAGACTTTATGAGTGTCTCTATAGAAATAGAGATGTTGACACAGACTTTGTGAATGAGTTTTACGCATATTTGCGTAAACATTTCTCAATGATGATACTCTCTGACGATGCTGTTGTGTGTTTCAAT
AGCACTTATGCATCTCAAGGTCTAGTGGCTAGCATAAAGAACTTTAAGTCAGTTCTTTATTATCAAAACAATGTTTTTATGTCTGAAGCAAAATGTTGGACTGAGACTGACCTTACTAAAGGACCTCATGAATTTTGCTCTCAACATACAATGCTAGTTAAACAGGGTGATGATTATGTGTACCTTCCTTACCCAGATCCATCAAGAATCCTAGGGGCCGGCTGTTTTGTAGATGATATCGTAAAAACAGATGGTACACTTATGATTGAACGGTTCGTGTCTTTAGCTATAGATGCT
TACCCACTTACTAAACATCCTAATCAGGAGTATGCTGATGTCTTTCATTTGTACTTACAATACATAAGAAAGCTACATGATGAGTTAACAGGACACATGTTAGACATGTATTCTGTTATGCTTACTAATGATAACACTTCAAGGTATTGGGAACCTGAGTTTTATGAGGCTATGTACACACCGCATACAGTCTTACAGGCTGTTGGGGCTTGTGTTCTTTGCAATTCACAGACTTCATTAAGATGTGGTGCTTGCATACGTAGACCATTCTTATGTTGTAAATGCTGTTACGACCAT
GTCATATCAACATCACATAAATTAGTCTTGTCTGTTAATCCGTATGTTTGCAATGCTCCAGGTTGTGATGTCACAGATGTGACTCAACTTTACTTAGGAGGTATGAGCTATTATTGTAAATCACATAAACCACCCATTAGTTTTCCATTGTGTGCTAATGGACAAGTTTTTGGTTTATATAAAAATACATGTGTTGGTAGCGATAATGTTACTGACTTTAATGCAATTGCAACATGTGACTGGACAAATGCTGGTGATTACATTTTAGCTAACACCTGTACTGAAAGACTCAAGCTT
TTTGCAGCAGAAACGCTCAAAGCTACTGAGGAGACATTTAAACTGTCTTATGGTATTGCTACTGTACGTGAAGTGCTGTCTGACAGAGAATTACATCTTTCATGGGAAGTTGGTAAACCTAGACCACCACTTAACCGAAATTATGTCTTTACTGGTTATCGTGTAACTAAAAACAGTAAAGTACAAATAGGAGAGTACACCTTTGAAAAAGGTGACTATGGTGATGCTGTTGTTTACCGAGGTACAACAACTTACAAATTAAATGTTGGTGATTATTTTGTGCTGACATCACATACA
GTAATGCCATTAAGTGCACCTACACTAGTGCCACAAGAGCACTATGTTAGAATTACTGGCTTATACCCAACACTCAATATCTCAGATGAGTTTTCTAGCAATGTTGCAAATTATCAAAAGGTTGGTATGCAAAAGTATTCTACACTCCAGGGACCACCTGGTACTGGTAAGAGTCATTTTGCTATTGGCCTAGCTCTCTACTACCCTTCTGCTCGCATAGTGTATACAGCTTGCTCTCATGCCGCTGTTGATGCACTATGTGAGAAGGCATTAAAATATTTGCCTATAGATAAATGT
AGTAGAATTATACCTGCACGTGCTCGTGTAGAGTGTTTTGATAAATTCAAAGTGAATTCAACATTAGAACAGTATGTCTTTTGTACTGTAAATGCATTGCCTGAGACGACAGCAGATATAGTTGTCTTTGATGAAATTTCAATGGCCACAAATTATGATTTGAGTGTTGTCAATGCCAGATTACGTGCTAAGCACTATGTGTACATTGGCGACCCTGCTCAATTACCTGCACCACGCACATTGCTAACTAAGGGCACACTAGAACCAGAATATTTCAATTCAGTGTGTAGACTTATG
AAAACTATAGGTCCAGACATGTTCCTCGGAACTTGTCGGCGTTGTCCTGCTGAAATTGTTGACACTGTGAGTGCTTTGGTTTATGATAATAAGCTTAAAGCACATAAAGACAAATCAGCTCAATGCTTTAAAATGTTTTATAAGGGTGTTATCACGCATGATGTTTCATCTGCAATTAACAGGCCACAAATAGGCGTGGTAAGAGAATTCCTTACACGTAACCCTGCTTGGAGAAAAGCTGTCTTTATTTCACCTTATAATTCACAGAATGCTGTAGCCTCAAAGATTTTGGGACTA
CCAACTCAAACTGTTGATTCATCACAGGGCTCAGAATATGACTATGTCATATTCACTCAAACCACTGAAACAGCTCACTCTTGTAATGTAAACAGATTTAATGTTGCTATTACCAGAGCAAAAGTAGGCATACTTTGCATAATGTCTGATAGAGACCTTTATGACAAGTTGCAATTTACAAGTCTTGAAATTCCACGTAGGAATGTGGCAACTTTACAAGCTGAAAATGTAACAGGACTCTTTAAAGATTGTAGTAAGGTAATCACTGGGTTACATCCTACACAGGCACCTACACAC
CTCAGTGTTGACACTAAATTCAAAACTGAAGGTTTATGTGTTGACATACCTGGCATACCTAAGGACATGACCTATAGAAGACTCATCTCTATGATGGGTTTTAAAATGAATTATCAAGTTAATGGTTACCCTAACATGTTTATCACCCGCGAAGAAGCTATAAGACATGTACGTGCATGGATTGGCTTCGATGTCGAGGGGTGTCATGCTACTAGAGAAGCTGTTGGTACCAATTTACCTTTACAGCTAGGTTTTTCTACAGGTGTTAACCTAGTTGCTGTACCTACAGGTTATGTT
GATACACCTAATAATACAGATTTTTCCAGAGTTAGTGCTAAACCACCGCCTGGAGATCAATTTAAACACCTCATACCACTTATGTACAAAGGACTTCCTTGGAATGTAGTGCGTATAAAGATTGTACAAATGTTAAGTGACACACTTAAAAATCTCTCTGACAGAGTCGTATTTGTCTTATGGGCACATGGCTTTGAGTTGACATCTATGAAGTATTTTGTGAAAATAGGACCTGAGCGCACCTGTTGTCTATGTGATAGACGTGCCACATGCTTTTCCACTGCTTCAGACACTTAT
GCCTGTTGGCATCATTCTATTGGATTTGATTACGTCTATAATCCGTTTATGATTGATGTTCAACAATGGGGTTTTACAGGTAACCTACAAAGCAACCATGATCTGTATTGTCAAGTCCATGGTAATGCACATGTAGCTAGTTGTGATGCAATCATGACTAGGTGTCTAGCTGTCCACGAGTGCTTTGTTAAGCGTGTTGACTGGACTATTGAATATCCTATAATTGGTGATGAACTGAAGATTAATGCGGCTTGTAGAAAGGTTCAACACATGGTTGTTAAAGCTGCATTATTAGCA
GACAAATTCCCAGTTCTTCACGACATTGGTAACCCTAAAGCTATTAAGTGTGTACCTCAAGCTGATGTAGAATGGAAGTTCTATGATGCACAGCCTTGTAGTGACAAAGCTTATAAAATAGAAGAATTATTCTATTCTTATGCCACACATTCTGACAAATTCACAGATGGTGTATGCCTATTTTGGAATTGCAATGTCGATAGATATCCTGCTAATTCCATTGTTTGTAGATTTGACACTAGAGTGCTATCTAACCTTAACTTGCCTGGTTGTGATGGTGGCAGTTTGTATGTAAAT
AAACATGCATTCCACACACCAGCTTTTGATAAAAGTGCTTTTGTTAATTTAAAACAATTACCATTTTTCTATTACTCTGACAGTCCATGTGAGTCTCATGGAAAACAAGTAGTGTCAGATATAGATTATGTACCACTAAAGTCTGCTACGTGTATAACACGTTGCAATTTAGGTGGTGCTGTCTGTAGACATCATGCTAATGAGTACAGATTGTATCTCGATGCTTATAACATGATGATCTCAGCTGGCTTTAGCTTGTGGGTTTACAAACAATTTGATACTTATAACCTCTGGAAC
ACTTTTACAAGACTTCAGAGTTTAGAAAATGTGGCTTTTAATGTTGTAAATAAGGGACACTTTGATGGACAACAGGGTGAAGTACCAGTTTCTATCATTAATAACACTGTTTACACAAAAGTTGATGGTGTTGATGTAGAATTGTTTGAAAATAAAACAACATTACCTGTTAATGTAGCATTTGAGCTTTGGGCTAAGCGCAACATTAAACCAGTACCAGAGGTGAAAATACTCAATAATTTGGGTGTGGACATTGCTGCTAATACTGTGATCTGGGACTACAAAAGAGATGCTCCA
GCACATATATCTACTATTGGTGTTTGTTCTATGACTGACATAGCCAAGAAACCAACTGAAACGATTTGTGCACCACTCACTGTCTTTTTTGATGGTAGAGTTGATGGTCAAGTAGACTTATTTAGAAATGCCCGTAATGGTGTTCTTATTACAGAAGGTAGTGTTAAAGGTTTACAACCATCTGTAGGTCCCAAACAAGCTAGTCTTAATGGAGTCACATTAATTGGAGAAGCCGTAAAAACACAGTTCAATTATTATAAGAAAGTTGATGGTGTTGTCCAACAATTACCTGAAACT
TACTTTACTCAGAGTAGAAATTTACAAGAATTTAAACCCAGGAGTCAAATGGAAATTGATTTCTTAGAATTAGCTATGGATGAATTCATTGAACGGTATAAATTAGAAGGCTATGCCTTCGAACATATCGTTTATGGAGATTTTAGTCATAGTCAGTTAGGTGGTTTACATCTACTGATTGGACTAGCTAAACGTTTTAAGGAATCACCTTTTGAATTAGAAGATTTTATTCCTATGGACAGTACAGTTAAAAACTATTTCATAACAGATGCGCAAACAGGTTCATCTAAGTGTGTG
TGTTCTGTTATTGATTTATTACTTGATGATTTTGTTGAAATAATAAAATCCCAAGATTTATCTGTAGTTTCTAAGGTTGTCAAAGTGACTATTGACTATACAGAAATTTCATTTATGCTTTGGTGTAAAGATGGCCATGTAGAAACATTTTACCCAAAATTACAATCTAGTCAAGCGTGGCAACCGGGTGTTGCTATGCCTAATCTTTACAAAATGCAAAGAATGCTATTAGAAAAGTGTGACCTTCAAAATTATGGTGATAGTGCAACATTACCTAAAGGCATAATGATGAATGTC
GCAAAATATACTCAACTGTGTCAATATTTAAACACATTAACATTAGCTGTACCCTATAATATGAGAGTTATACATTTTGGTGCTGGTTCTGATAAAGGAGTTGCACCAGGTACAGCTGTTTTAAGACAGTGGTTGCCTACGGGTACGCTGCTTGTCGATTCAGATCTTAATGACTTTGTCTCTGATGCAGATTCAACTTTGATTGGTGATTGTGCAACTGTACATACAGCTAATAAATGGGATCTCATTATTAGTGATATGTACGACCCTAAGACTAAAAATGTTACAAAAGAAAAT
GACTCTAAAGAGGGTTTTTTCACTTACATTTGTGGGTTTATACAACAAAAGCTAGCTCTTGGAGGTTCCGTGGCTATAAAGATAACAGAACATTCTTGGAATGCTGATCTTTATAAGCTCATGGGACACTTCGCATGGTGGACAGCCTTTGTTACTAATGTGAATGCGTCATCATCTGAAGCATTTTTAATTGGATGTAATTATCTTGGCAAACCACGCGAACAAATAGATGGTTATGTCATGCATGCAAATTACATATTTTGGAGGAATACAAATCCAATTCAGTTGTCTTCCTAT
TCTTTATTTGACATGAGTAAATTTCCCCTTAAATTAAGGGGTACTGCTGTTATGTCTTTAAAAGAAGGTCAAATCAATGATATGATTTTATCTCTTCTTAGTAAAGGTAGACTTATAATTAGAGAAAACAACAGAGTTGTTATTTCTAGTGATGTTCTTGTTAACAACTAAACGAACAATGTTTGTTTTTCTTGTTTTATTGCCACTAGTCTCTAGTCAGTGTGTTAATCTTACAACCAGAACTCAATTACCCCCTGCATACACTAATTCTTTCACACGTGGTGTTTATTACCCTGA
CAAAGTTTTCAGATCCTCAGTTTTACATTCAACTCAGGACTTGTTCTTACCTTTCTTTTCCAATGTTACTTGGTTCCATGCTATACATGTCTCTGGGACCAATGGTACTAAGAGGTTTGATAACCCTGTCCTACCATTTAATGATGGTGTTTATTTTGCTTCCACTGAGAAGTCTAACATAATAAGAGGCTGGATTTTTGGTACTACTTTAGATTCGAAGACCCAGTCCCTACTTATTGTTAATAACGCTACTAATGTTGTTATTAAAGTCTGTGAATTTCAATTTTGTAATGATCC
ATTTTTGGGTGTTTATTACCACAAAAACAACAAAAGTTGGATGGAAAGTGAGTTCAGAGTTTATTCTAGTGCGAATAATTGCACTTTTGAATATGTCTCTCAGCCTTTTCTTATGGACCTTGAAGGAAAACAGGGTAATTTCAAAAATCTTAGGGAATTTGTGTTTAAGAATATTGATGGTTATTTTAAAATATATTCTAAGCACACGCCTATTAATTTAGTGCGTGATCTCCCTCAGGGTTTTTCGGCTTTAGAACCATTGGTAGATTTGCCAATAGGTATTAACATCACTAGGTT
TCAAACTTTACTTGCTTTACATAGAAGTTATTTGACTCCTGGTGATTCTTCTTCAGGTTGGACAGCTGGTGCTGCAGCTTATTATGTGGGTTATCTTCAACCTAGGACTTTTCTATTAAAATATAATGAAAATGGAACCATTACAGATGCTGTAGACTGTGCACTTGACCCTCTCTCAGAAACAAAGTGTACGTTGAAATCCTTCACTGTAGAAAAAGGAATCTATCAAACTTCTAACTTTAGAGTCCAACCAACAGAATCTATTGTTAGATTTCCTAATATTACAAACTTGTGCCC
TTTTGGTGAAGTTTTTAACGCCACCAGATTTGCATCTGTTTATGCTTGGAACAGGAAGAGAATCAGCAACTGTGTTGCTGATTATTCTGTCCTATATAATTCCGCATCATTTTCCACTTTTAAGTGTTATGGAGTGTCTCCTACTAAATTAAATGATCTCTGCTTTACTAATGTCTATGCAGATTCATTTGTAATTAGAGGTGATGAAGTCAGACAAATCGCTCCAGGGCAAACTGGAAAGATTGCTGATTATAATTATAAATTACCAGATGATTTTACAGGCTGCGTTATAGCTTG
GAATTCTAACAATCTTGATTCTAAGGTTGGTGGTAATTATAATTACCTGTATAGATTGTTTAGGAAGTCTAATCTCAAACCTTTTGAGAGAGATATTTCAACTGAAATCTATCAGGCCGGTAGCACACCTTGTAATGGTGTTGAAGGTTTTAATTGTTACTTTCCTTTACAATCATATGGTTTCCAACCCACTAATGGTGTTGGTTACCAACCATACAGAGTAGTAGTACTTTCTTTTGAACTTCTACATGCACCAGCAACTGTTTGTGGACCTAAAAAGTCTACTAATTTGGTTAA
AAACAAATGTGTCAATTTCAACTTCAATGGTTTAACAGGCACAGGTGTTCTTACTGAGTCTAACAAAAAGTTTCTGCCTTTCCAACAATTTGGCAGAGACATTGCTGACACTACTGATGCTGTCCGTGATCCACAGACACTTGAGATTCTTGACATTACACCATGTTCTTTTGGTGGTGTCAGTGTTATAACACCAGGAACAAATACTTCTAACCAGGTTGCTGTTCTTTATCAGGATGTTAACTGCACAGAAGTCCCTGTTGCTATTCATGCAGATCAACTTACTCCTACTTGGCG
TGTTTATTCTACAGGTTCTAATGTTTTTCAAACACGTGCAGGCTGTTTAATAGGGGCTGAACATGTCAACAACTCATATGAGTGTGACATACCCATTGGTGCAGGTATATGCGCTAGTTATCAGACTCAGACTAATTCTCCTCGGCGGGCACGTAGTGTAGCTAGTCAATCCATCATTGCCTACACTATGTCACTTGGTGCAGAAAATTCAGTTGCTTACTCTAATAACTCTATTGCCATACCCACAAATTTTACTATTAGTGTTACCACAGAAATTCTACCAGTGTCTATGACCAA
GACATCAGTAGATTGTACAATGTACATTTGTGGTGATTCAACTGAATGCAGCAATCTTTTGTTGCAATATGGCAGTTTTTGTACACAATTAAACCGTGCTTTAACTGGAATAGCTGTTGAACAAGACAAAAACACCCAAGAAGTTTTTGCACAAGTCAAACAAATTTACAAAACACCACCAATTAAAGATTTTGGTGGTTTTAATTTTTCACAAATATTACCAGATCCATCAAAACCAAGCAAGAGGTCATTTATTGAAGATCTACTTTTCAACAAAGTGACACTTGCAGATGCTGG
CTTCATCAAACAATATGGTGATTGCCTTGGTGATATTGCTGCTAGAGACCTCATTTGTGCACAAAAGTTTAACGGCCTTACTGTTTTGCCACCTTTGCTCACAGATGAAATGATTGCTCAATACACTTCTGCACTGTTAGCGGGTACAATCACTTCTGGTTGGACCTTTGGTGCAGGTGCTGCATTACAAATACCATTTGCTATGCAAATGGCTTATAGGTTTAATGGTATTGGAGTTACACAGAATGTTCTCTATGAGAACCAAAAATTGATTGCCAACCAATTTAATAGTGCTAT
TGGCAAAATTCAAGACTCACTTTCTTCCACAGCAAGTGCACTTGGAAAACTTCAAGATGTGGTCAACCAAAATGCACAAGCTTTAAACACGCTTGTTAAACAACTTAGCTCCAATTTTGGTGCAATTTCAAGTGTTTTAAATGATATCCTTTCACGTCTTGACAAAGTTGAGGCTGAAGTGCAAATTGATAGGTTGATCACAGGCAGACTTCAAAGTTTGCAGACATATGTGACTCAACAATTAATTAGAGCTGCAGAAATCAGAGCTTCTGCTAATCTTGCTGCTACTAAAATGTC
AGAGTGTGTACTTGGACAATCAAAAAGAGTTGATTTTTGTGGAAAGGGCTATCATCTTATGTCCTTCCCTCAGTCAGCACCTCATGGTGTAGTCTTCTTGCATGTGACTTATGTCCCTGCACAAGAAAAGAACTTCACAACTGCTCCTGCCATTTGTCATGATGGAAAAGCACACTTTCCTCGTGAAGGTGTCTTTGTTTCAAATGGCACACACTGGTTTGTAACACAAAGGAATTTTTATGAACCACAAATCATTACTACAGACAACACATTTGTGTCTGGTAACTGTGATGTTGT
AATAGGAATTGTCAACAACACAGTTTATGATCCTTTGCAACCTGAATTAGACTCATTCAAGGAGGAGTTAGATAAATATTTTAAGAATCATACATCACCAGATGTTGATTTAGGTGACATCTCTGGCATTAATGCTTCAGTTGTAAACATTCAAAAAGAAATTGACCGCCTCAATGAGGTTGCCAAGAATTTAAATGAATCTCTCATCGATCTCCAAGAACTTGGAAAGTATGAGCAGTATATAAAATGGCCATGGTACATTTGGCTAGGTTTTATAGCTGGCTTGATTGCCATAGT
AATGGTGACAATTATGCTTTGCTGTATGACCAGTTGCTGTAGTTGTCTCAAGGGCTGTTGTTCTTGTGGATCCTGCTGCAAATTTGATGAAGACGACTCTGAGCCAGTGCTCAAAGGAGTCAAATTACATTACACATAAACGAACTTATGGATTTGTTTATGAGAATCTTCACAATTGGAACTGTAACTTTGAAGCAAGGTGAAATCAAGGATGCTACTCCTTCAGATTTTGTTCGCGCTACTGCAACGATACCGATACAAGCCTCACTCCCTTTCGGATGGCTTATTGTTGGCGTT
GCACTTCTTGCTGTTTTTCAGAGCGCTTCCAAAATCATAACCCTCAAAAAGAGATGGCAACTAGCACTCTCCAAGGGTGTTCACTTTGTTTGCAACTTGCTGTTGTTGTTTGTAACAGTTTACTCACACCTTTTGCTCGTTGCTGCTGGCCTTGAAGCCCCTTTTCTCTATCTTTATGCTTTAGTCTACTTCTTGCAGAGTATAAACTTTGTAAGAATAATAATGAGGCTTTGGCTTTGCTGGAAATGCCGTTCCAAAAACCCATTACTTTATGATGCCAACTATTTTCTTTGCTGG
CATACTAATTGTTACGACTATTGTATACCTTACAATAGTGTAACTTCTTCAATTGTCATTACTTCAGGTGATGGCACAACAAGTCCTATTTCTGAACATGACTACCAGATTGGTGGTTATACTGAAAAATGGGAATCTGGAGTAAAAGACTGTGTTGTATTACACAGTTACTTCACTTCAGACTATTACCAGCTGTACTCAACTCAATTGAGTACAGACACTGGTGTTGAACATGTTACCTTCTTCATCTACAATAAAATTGTTGATGAGCCTGAAGAACATGTCCAAATTCACACA
ATCGACGGTTCATCCGGAGTTGTTAATCCAGTAATGGAACCAATTTATGATGAACCGACGACGACTACTAGCGTGCCTTTGTAAGCACAAGCTGATGAGTACGAACTTATGTACTCATTCGTTTCGGAAGAGACAGGTACGTTAATAGTTAATAGCGTACTTCTTTTTCTTGCTTTCGTGGTATTCTTGCTAGTTACACTAGCCATCCTTACTGCGCTTCGATTGTGTGCGTACTGCTGCAATATTGTTAACGTGAGTCTTGTAAAACCTTCTTTTTACGTTTACTCTCGTGTTAAA
AATCTGAATTCTTCTAGAGTTCCTGATCTTCTGGTCTAAACGAACTAAATATTATATTAGTTTTTCTGTTTGGAACTTTAATTTTAGCCATGGCAGATTCCAACGGTACTATTACCGTTGAAGAGCTTAAAAAGCTCCTTGAACAATGGAACCTAGTAATAGGTTTCCTATTCCTTACATGGATTTGTCTTCTACAATTTGCCTATGCCAACAGGAATAGGTTTTTGTATATAATTAAGTTAATTTTCCTCTGGCTGTTATGGCCAGTAACTTTAGCTTGTTTTGTGCTTGCTGCTG
TTTACAGAATAAATTGGATCACCGGTGGAATTGCTATCGCAATGGCTTGTCTTGTAGGCTTGATGTGGCTCAGCTACTTCATTGCTTCTTTCAGACTGTTTGCGCGTACGCGTTCCATGTGGTCATTCAATCCAGAAACTAACATTCTTCTCAACGTGCCACTCCATGGCACTATTCTGACCAGACCGCTTCTAGAAAGTGAACTCGTAATCGGAGCTGTGATCCTTCGTGGACATCTTCGTATTGCTGGACACCATCTAGGACGCTGTGACATCAAGGACCTGCCTAAAGAAATCA
CTGTTGCTACATCACGAACGCTTTCTTATTACAAATTGGGAGCTTCGCAGCGTGTAGCAGGTGACTCAGGTTTTGCTGCATACAGTCGCTACAGGATTGGCAACTATAAATTAAACACAGACCATTCCAGTAGCAGTGACAATATTGCTTTGCTTGTACAGTAAGTGACAACAGATGTTTCATCTCGTTGACTTTCAGGTTACTATAGCAGAGATATTACTAATTATTATGAGGACTTTTAAAGTTTCCATTTGGAATCTTGATTACATCATAAACCTCATAATTAAAAATTTATCT
AAGTCACTAACTGAGAATAAATATTCTCAATTAGATGAAGAGCAACCAATGGAGATTGATTAAACGAACATGAAAATTATTCTTTTCTTGGCACTGATAACACTCGCTACTTGTGAGCTTTATCACTACCAAGAGTGTGTTAGAGGTACAACAGTACTTTTAAAAGAACCTTGCTCTTCTGGAACATACGAGGGCAATTCACCATTTCATCCTCTAGCTGATAACAAATTTGCACTGACTTGCTTTAGCACTCAATTTGCTTTTGCTTGTCCTGACGGCGTAAAACACGTCTATCAG
TTACGTGCCAGATCAGTTTCACCTAAACTGTTCATCAGACAAGAGGAAGTTCAAGAACTTTACTCTCCAATTTTTCTTATTGTTGCGGCAATAGTGTTTATAACACTTTGCTTCACACTCAAAAGAAAGACAGAATGATTGAACTTTCATTAATTGACTTCTATTTGTGCTTTTTAGCCTTTCTGCTATTCCTTGTTTTAATTATGCTTATTATCTTTTGGTTCTCACTTGAACTGCAAGATCATAATGAAACTTGTCACGCCTAAACGAACATGAAATTTCTTGTTTTCTTAGGAA
TCATCACAACTGTAGCTGCATTTCACCAAGAATGTAGTTTACAGTCATGTACTCAACATCAACCATATGTAGTTGATGACCCGTGTCCTATTCACTTCTATTCTAAATGGTATATTAGAGTAGGAGCTAGAAAATCAGCACCTTTAATTGAATTGTGCGTGGATGAGGCTGGTTCTAAATCACCCATTCAGTACATCGATATCGGTAATTATACAGTTTCCTGTTTACCTTTTACAATTAATTGCCAGGAACCTAAATTGGGTAGTCTTGTAGTGCGTTGTTCGTTCTATGAAGACT
TTTTAGAGTATCATGACGTTCGTGTTGTTTTAGATTTCATCTAAACGAACAAACTAAAATGTCTGATAATGGACCCCAAAATCAGCGAAATGCACCCCGCATTACGTTTGGTGGACCCTCAGATTCAACTGGCAGTAACCAGAATGGAGAACGCAGTGGGGCGCGATCAAAACAACGTCGGCCCCAAGGTTTACCCAATAATACTGCGTCTTGGTTCACCGCTCTCACTCAACATGGCAAGGAAGACCTTAAATTCCCTCGAGGACAAGGCGTTCCAATTAACACCAATAGCAGTCC
AGATGACCAAATTGGCTACTACCGAAGAGCTACCAGACGAATTCGTGGTGGTGACGGTAAAATGAAAGATCTCAGTCCAAGATGGTATTTCTACTACCTAGGAACTGGGCCAGAAGCTGGACTTCCCTATGGTGCTAACAAAGACGGCATCATATGGGTTGCAACTGAGGGAGCCTTGAATACACCAAAAGATCACATTGGCACCCGCAATCCTGCTAACAATGCTGCAATCGTGCTACAACTTCCTCAAGGAACAACATTGCCAAAAGGCTTCTACGCAGAAGGGAGCAGAGGCGG
CAGTCAAGCCTCTTCTCGTTCCTCATCACGTAGTCGCAACAGTTCAAGAAATTCAACTCCAGGCAGCAGTAGGGGAACTTCTCCTGCTAGAATGGCTGGCAATGGCGGTGATGCTGCTCTTGCTTTGCTGCTGCTTGACAGATTGAACCAGCTTGAGAGCAAAATGTCTGGTAAAGGCCAACAACAACAAGGCCAAACTGTCACTAAGAAATCTGCTGCTGAGGCTTCTAAGAAGCCTCGGCAAAAACGTACTGCCACTAAAGCATACAATGTAACACAAGCTTTCGGCAGACGTGG
TCCAGAACAAACCCAAGGAAATTTTGGGGACCAGGAACTAATCAGACAAGGAACTGATTACAAACATTGGCCGCAAATTGCACAATTTGCCCCCAGCGCTTCAGCGTTCTTCGGAATGTCGCGCATTGGCATGGAAGTCACACCTTCGGGAACGTGGTTGACCTACACAGGTGCCATCAAATTGGATGACAAAGATCCAAATTTCAAAGATCAAGTCATTTTGCTGAATAAGCATATTGACGCATACAAAACATTCCCACCAACAGAGCCTAAAAAGGACAAAAAGAAGAAGGCTGA
TGAAACTCAAGCCTTACCGCAGAGACAGAAGAAACAGCAAACTGTGACTCTTCTTCCTGCTGCAGATTTGGATGATTTCTCCAAACAATTGCAACAATCCATGAGCAGTGCTGACTCAACTCAGGCCTAAACTCATGCAGACCACACAAGGCAGATGGGCTATATAAACGTTTTCGCTTTTCCGTTTACGATATATAGTCTACTCTTGTGCAGAATGAATTCTCGTAACTACATAGCACAAGTAGATGTAGTTAACTTTAATCTCACATAGCAATCTTTAATCAGTGTGTAACATTA
GGGAGGACTTGAAAGAGCCACCACATTTTCACCGAGGCCACGCGGAGTACGATCGAGTGTACAGTGAACAATGCTAGGGAGAGCTGCCTATATGGAAGAGCCCTAATGTGTAAAATTAATTTTAGTAGTGCTATCCCCATGTGATTTTAATAGCTTCTTAGGAGAATGACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Finding Hidden Messages in DNA

PART 1: HIDDEN MESSAGES IN
THE REPLICATION ORIGIN

© 2024 Phillip Compeau

A Prophetic One-Liner (1953)

"It has not escaped
our notice that the
specific pairing we
have postulated
immediately suggests
a possible copying
mechanism for the
genetic material."

Francis
Crick

James
Watson

© 2024 Phillip Compeau

The “Copying Mechanism”

© 2024 Phillip Compeau

The “Copying Mechanism”

© 2024 Phillip Compeau

The “Copying Mechanism”

© 2024 Phillip Compeau

What a Biologist Sees...

© 2024 Phillip Compeau

What a Computer Scientist Sees...

...ACTGATAACCCAGTATCAGACCAGTATCGAGGACGATACGTA...

Complicated Biological Process

...ACTGATAACCCAGTATCAGACCAGTATCGAGGACGATACGTA...

...ACTGATAACCCAGTATCAGACCAGTATCGAGGACGATACGTA...

DNA String

Copy 1

Copy 2

© 2024 Phillip Compeau

Origin of Replication

Replication begins in a region called the replication
origin (denoted ori).

© 2024 Phillip Compeau

Looking for ori

Verified ori of Vibrio cholerae, the bacterium
that causes cholera (~500 nucleotides):

© 2024 Phillip Compeau

atcaatgatcaacgtaagcttctaagcatgatcaaggtgctcacacagtttatccacaac
ctgagtggatgacatcaagataggtcgttgtatctccttcctctcgtactctcatgacca
cggaaagatgatcaagagaggatgatttcttggccatatcgcaatgaatacttgtgactt
gtgcttccaattgacatcttcagcgccatattgcgctggccaaggtgacggagcgggatt
acgaaagcatgatcatggctgttgttctgtttatcttgttttgactgagacttgttagga
tagacggtttttcatcactgactagccaaagccttactctgcctgacatcgaccgtaaat
tgataatgaatttacatgcttccgcgacgatttacctcttgatcatcgatccgattgaag
atcttcaattgttaattctcttgcctcgactcatagccatgatgagctcttgatcatgtt
tccttaaccctctattttttacggaagaatgatcaagctgctgctcttgatcatcgtttc

Looking for ori

Verified ori of Vibrio cholerae, the bacterium
that causes cholera (~500 nucleotides):

There must be a hidden message telling the cell
to start replication here.

atcaatgatcaacgtaagcttctaagcatgatcaaggtgctcacacagtttatccacaac
ctgagtggatgacatcaagataggtcgttgtatctccttcctctcgtactctcatgacca
cggaaagatgatcaagagaggatgatttcttggccatatcgcaatgaatacttgtgactt
gtgcttccaattgacatcttcagcgccatattgcgctggccaaggtgacggagcgggatt
acgaaagcatgatcatggctgttgttctgtttatcttgttttgactgagacttgttagga
tagacggtttttcatcactgactagccaaagccttactctgcctgacatcgaccgtaaat
tgataatgaatttacatgcttccgcgacgatttacctcttgatcatcgatccgattgaag
atcttcaattgttaattctcttgcctcgactcatagccatgatgagctcttgatcatgtt
tccttaaccctctattttttacggaagaatgatcaagctgctgctcttgatcatcgtttc

© 2024 Phillip Compeau

We Have Two Scientific Problems

2. Given a bacterial genome (~5 Mbp), where is ori?

1. Given ori (~500 bp), what is the “hidden
message” saying that replication should start here?

© 2024 Phillip Compeau

Let’s Start with Question #1

This is not a well-defined problem, since we don’t
know what is meant by “hidden message”.

Hidden Message Problem
• Input: A string text (representing ori).
• Output: A hidden message in text.

© 2024 Phillip Compeau

Hidden Message Problem Revisited

Hidden Message Problem
• Input: A string text (representing ori).
• Output: A hidden message in text.

Replication initiation is mediated by a protein called
DnaA.

© 2024 Phillip Compeau

Hidden Message Problem Revisited

Replication initiation is mediated by a protein called
DnaA.

DnaA binds to a short segment in ori known as a
DnaA box, a hidden message saying: “bind here!”

Hidden Message Problem
• Input: A string text (representing ori).
• Output: A hidden message in text.

© 2024 Phillip Compeau

Hidden Message Problem Revisited

STOP: Would it make sense for an organism to have
multiple DnaA boxes, or just one?

© 2024 Phillip Compeau

Replication initiation is mediated by a protein called
DnaA.

DnaA binds to a short segment in ori known as a
DnaA box, a hidden message saying: “bind here!”

Hidden Message Problem Revisited

Answer: Multiple DnaA boxes à higher chance of
binding à higher “fitness”

Theodosius Dobzhansky

“Nothing in biology
makes sense except in
the light of ________.”

© 2024 Phillip Compeau

Hidden Message Problem Revisited

Answer: Multiple DnaA boxes à higher chance of
binding à higher “fitness”

© 2024 Phillip Compeau

Theodosius Dobzhansky

“Nothing in biology
makes sense except in
the light of evolution.”

The Frequent Words Problem

A k-mer pattern is a most frequent k-mer in a string
if no other k-mer is more frequent than pattern.

© 2024 Phillip Compeau

The Frequent Words Problem

A k-mer pattern is a most frequent k-mer in a string
if no other k-mer is more frequent than pattern.

Frequent Words Problem
• Input: A string text and an integer k.
• Output: All most frequent k-mers in text.

© 2024 Phillip Compeau

The Frequent Words Problem

STOP: Now is this problem clearly stated?

A k-mer pattern is a most frequent k-mer in a string
if no other k-mer is more frequent than pattern.

Frequent Words Problem
• Input: A string text and an integer k.
• Output: All most frequent k-mers in text.

© 2024 Phillip Compeau

atcaatgatcaacgtaagcttctaagcatgatcaaggtgctcacacagtttatccacaacctgagtgg
atgacatcaagataggtcgttgtatctccttcctctcgtactctcatgaccacggaaagatgatcaag
agaggatgatttcttggccatatcgcaatgaatacttgtgacttgtgcttccaattgacatcttcagc
gccatattgcgctggccaaggtgacggagcgggattacgaaagcatgatcatggctgttgttctgttt
atcttgttttgactgagacttgttaggatagacggtttttcatcactgactagccaaagccttactct
gcctgacatcgaccgtaaattgataatgaatttacatgcttccgcgacgatttacctcttgatcatcg
atccgattgaagatcttcaattgttaattctcttgcctcgactcatagccatgatgagctcttgatca
tgtttccttaaccctctattttttacggaagaatgatcaagctgctgctcttgatcatcgtttc

W H E R E I N T H E G E N O M E D O E S D N A R E P L I C AT I O N B E G I N ?

Frequent words in Vibrio cholerae

Figure 1.3 reveals the most frequent k-mers in the oriC region from Vibrio cholerae.

k 3 4 5 6 7 8 9
count 25 12 8 8 5 4 3
k-mers tga atga gatca tgatca atgatca atgatcaa atgatcaag

tgatc cttgatcat
tcttgatca
ctcttgatc

FIGURE 1.3 The most frequent k-mers in the oriC region of Vibrio cholerae for k from
3 to 9, along with the number of times that each k-mer occurs.

STOP and Think: Do any of the counts in Figure 1.3 seem surprisingly large?

For example, the 9-mer ATGATCAAG appears three times in the oriC region of Vibrio

cholerae — is it surprising?

atcaatgatcaacgtaagcttctaagcATGATCAAGgtgctcacacagtttatccacaac
ctgagtggatgacatcaagataggtcgttgtatctccttcctctcgtactctcatgacca
cggaaagATGATCAAGagaggatgatttcttggccatatcgcaatgaatacttgtgactt
gtgcttccaattgacatcttcagcgccatattgcgctggccaaggtgacggagcgggatt
acgaaagcatgatcatggctgttgttctgtttatcttgttttgactgagacttgttagga
tagacggtttttcatcactgactagccaaagccttactctgcctgacatcgaccgtaaat
tgataatgaatttacatgcttccgcgacgatttacctcttgatcatcgatccgattgaag
atcttcaattgttaattctcttgcctcgactcatagccatgatgagctcttgatcatgtt
tccttaaccctctattttttacggaagaATGATCAAGctgctgctcttgatcatcgtttc

We highlight a most frequent 9-mer instead of using some other value of k because
experiments have revealed that bacterial DnaA boxes are usually nine nucleotides long.
The probability that there exists a 9-mer appearing three or more times in a randomly
generated DNA string of length 500 is approximately 1/1300 (see DETOUR: Probabili- PAGE 52
ties of Patterns in a String). In fact, there are four different 9-mers repeated three or
more times in this region: ATGATCAAG, CTTGATCAT, TCTTGATCA, and CTCTTGATC.

The low likelihood of witnessing even one repeated 9-mer in the oriC region of Vibrio

cholerae leads us to the working hypothesis that one of these four 9-mers may represent
a potential DnaA box that, when appearing multiple times in a short region, jump-starts
replication. But which one?

10

Returning to ori of Vibrio cholerae

© 2024 Phillip Compeau

atcaatgatcaacgtaagcttctaagcATGATCAAGgtgctcacacagtttatccacaacctgagtgg
atgacatcaagataggtcgttgtatctccttcctctcgtactctcatgaccacggaaagATGATCAAG
agaggatgatttcttggccatatcgcaatgaatacttgtgacttgtgcttccaattgacatcttcagc
gccatattgcgctggccaaggtgacggagcgggattacgaaagcatgatcatggctgttgttctgttt
atcttgttttgactgagacttgttaggatagacggtttttcatcactgactagccaaagccttactct
gcctgacatcgaccgtaaattgataatgaatttacatgcttccgcgacgatttacCTCTTGATCATcg
atccgattgaagatcttcaattgttaattctcttgcctcgactcatagccatgatgagCTCTTGATCA
TgtttccttaaccctctattttttacggaagaATGATCAAGctgctgCTCTTGATCATcgtttc

Returning to ori of Vibrio cholerae

© 2024 Phillip Compeau

Most frequent 9-mers in this ori (all appear 3 times):
ATGATCAAG, CTTGATCAT, TCTTGATCA, CTCTTGATC

Most frequent 9-mers in this ori (all appear 3 times):
ATGATCAAG, CTTGATCAT, TCTTGATCA, CTCTTGATC

atcaatgatcaacgtaagcttctaagcATGATCAAGgtgctcacacagtttatccacaacctgagtgg
atgacatcaagataggtcgttgtatctccttcctctcgtactctcatgaccacggaaagATGATCAAG
agaggatgatttcttggccatatcgcaatgaatacttgtgacttgtgcttccaattgacatcttcagc
gccatattgcgctggccaaggtgacggagcgggattacgaaagcatgatcatggctgttgttctgttt
atcttgttttgactgagacttgttaggatagacggtttttcatcactgactagccaaagccttactct
gcctgacatcgaccgtaaattgataatgaatttacatgcttccgcgacgatttacCTCTTGATCATcg
atccgattgaagatcttcaattgttaattctcttgcctcgactcatagccatgatgagCTCTTGATCA
TgtttccttaaccctctattttttacggaagaATGATCAAGctgctgCTCTTGATCATcgtttc

STOP: Now what do you see?

Returning to ori of Vibrio cholerae

© 2024 Phillip Compeau

Complementarity of DNA

W H E R E I N T H E G E N O M E D O E S D N A R E P L I C AT I O N B E G I N ?

STOP and Think: Is any one of the four most frequent 9-mers in the oriC of Vibrio

cholerae “more surprising” than the others?

Some Hidden Messages are More Surprising than Others

Recall that nucleotides A and T are complements of each other, as are C and G. Having
one strand of DNA and a supply of “free floating” nucleotides as shown in Figure 1.1,
one can imagine the synthesis of a complementary strand on a template strand. This
model of replication was confirmed by Meselson and Stahl in 1958 (see DETOUR: PAGE 57
The Most Beautiful Experiment in Biology). Figure 1.4 shows a template strand
AGTCGCATAGT and its complementary strand ACTATGCGACT.

At this point, you may think that we have made a mistake, since the comple-
mentary strand in Figure 1.4 reads out TCAGCGTATCA from left to right rather than
ACTATGCGACT. We have not: each DNA strand has a direction, and the complementary
strand runs in the opposite direction to the template strand, as shown by the arrows in
Figure 1.4. Each strand is read in the 5’ ! 3’ direction (see DETOUR: Directionality PAGE 59
of DNA Strands to learn why biologists refer to the beginning and end of a strand of
DNA using the terms 5’ and 3’).

T C A G C G T A T C A

A G T C G C A T A G T

3

3

5

5

FIGURE 1.4 Complementary strands run in opposite directions.

Given a nucleotide p, we denote its complementary nucleotide as p. The reverse
complement of a string Pattern = p1 · · · pn is the string Pattern = pn · · · p1 formed by
taking the complement of each nucleotide in Pattern, then reversing the resulting string.
We will need the solution to the following problem throughout this chapter.

11

DNA is double-stranded, and the two strands are
reverse complements of each other.

© 2024 Phillip Compeau

Complementarity of DNA

W H E R E I N T H E G E N O M E D O E S D N A R E P L I C AT I O N B E G I N ?

STOP and Think: Is any one of the four most frequent 9-mers in the oriC of Vibrio

cholerae “more surprising” than the others?

Some Hidden Messages are More Surprising than Others

Recall that nucleotides A and T are complements of each other, as are C and G. Having
one strand of DNA and a supply of “free floating” nucleotides as shown in Figure 1.1,
one can imagine the synthesis of a complementary strand on a template strand. This
model of replication was confirmed by Meselson and Stahl in 1958 (see DETOUR: PAGE 57
The Most Beautiful Experiment in Biology). Figure 1.4 shows a template strand
AGTCGCATAGT and its complementary strand ACTATGCGACT.

At this point, you may think that we have made a mistake, since the comple-
mentary strand in Figure 1.4 reads out TCAGCGTATCA from left to right rather than
ACTATGCGACT. We have not: each DNA strand has a direction, and the complementary
strand runs in the opposite direction to the template strand, as shown by the arrows in
Figure 1.4. Each strand is read in the 5’ ! 3’ direction (see DETOUR: Directionality PAGE 59
of DNA Strands to learn why biologists refer to the beginning and end of a strand of
DNA using the terms 5’ and 3’).

T C A G C G T A T C A

A G T C G C A T A G T

3

3

5

5

FIGURE 1.4 Complementary strands run in opposite directions.

Given a nucleotide p, we denote its complementary nucleotide as p. The reverse
complement of a string Pattern = p1 · · · pn is the string Pattern = pn · · · p1 formed by
taking the complement of each nucleotide in Pattern, then reversing the resulting string.
We will need the solution to the following problem throughout this chapter.

11

The reverse complement of AGTCGCATAGT is
ACTATGCGACT.

© 2024 Phillip Compeau

Hidden Message Found!

atcaatgatcaacgtaagcttctaagcATGATCAAGgtgctcacacagtttatccacaacctgagtgg
atgacatcaagataggtcgttgtatctccttcctctcgtactctcatgaccacggaaagATGATCAAG
agaggatgatttcttggccatatcgcaatgaatacttgtgacttgtgcttccaattgacatcttcagc
gccatattgcgctggccaaggtgacggagcgggattacgaaagcatgatcatggctgttgttctgttt
atcttgttttgactgagacttgttaggatagacggtttttcatcactgactagccaaagccttactct
gcctgacatcgaccgtaaattgataatgaatttacatgcttccgcgacgatttacctCTTGATCATcg
atccgattgaagatcttcaattgttaattctcttgcctcgactcatagccatgatgagctCTTGATCA
TgtttccttaaccctctattttttacggaagaATGATCAAGctgctgctCTTGATCATcgtttc

© 2024 Phillip Compeau

ATGATCAAG
|||||||||
TACTAGTTC

are reverse complements and likely
DnaA boxes (DnaA does not know
which strand it binds to).

Hidden Message Found!

ATGATCAAG
|||||||||
TACTAGTTC

It is VERY SURPRISING to find a 9-mer appearing 6 or more
times (with reverse complements) within ≈ 500 nucleotides.

atcaatgatcaacgtaagcttctaagcATGATCAAGgtgctcacacagtttatccacaacctgagtgg
atgacatcaagataggtcgttgtatctccttcctctcgtactctcatgaccacggaaagATGATCAAG
agaggatgatttcttggccatatcgcaatgaatacttgtgacttgtgcttccaattgacatcttcagc
gccatattgcgctggccaaggtgacggagcgggattacgaaagcatgatcatggctgttgttctgttt
atcttgttttgactgagacttgttaggatagacggtttttcatcactgactagccaaagccttactct
gcctgacatcgaccgtaaattgataatgaatttacatgcttccgcgacgatttacctCTTGATCATcg
atccgattgaagatcttcaattgttaattctcttgcctcgactcatagccatgatgagctCTTGATCA
TgtttccttaaccctctattttttacggaagaATGATCAAGctgctgctCTTGATCATcgtttc

are reverse complements and likely
DnaA boxes (DnaA does not know
which strand it binds to).

© 2024 Phillip Compeau

Looking for other Hidden Messages?

STOP: Now that we know the “hidden message” in
Vibrio cholerae, how would we look for a hidden
message starting replication in other bacteria?

© 2024 Phillip Compeau

Looking for other Hidden Messages?

STOP: Now that we know the “hidden message” in
Vibrio cholerae, how would we look for a hidden
message starting replication in other bacteria?

© 2024 Phillip Compeau

Answer: Perhaps we could look for the same k-mers in
other bacteria’s replication origins…

Not one occurrence of ATGATCAAG or CTTGATCAT!

aactctatacctcctttttgtcgaatttgtgtgatttatagagaaaatcttattaactgaaactaa
aatggtaggtttggtggtaggttttgtgtacattttgtagtatctgatttttaattacataccgta
tattgtattaaattgacgaacaattgcatggaattgaatatatgcaaaacaaacctaccaccaaac
tctgtattgaccattttaggacaacttcagggtggtaggtttctgaagctctcatcaatagactat
tttagtctttacaaacaatattaccgttcagattcaagattctacaacgctgttttaatgggcgtt
gcagaaaacttaccacctaaaatccagtatccaagccgatttcagagaaacctaccacttacctac
cacttacctaccacccgggtggtaagttgcagacattattaaaaacctcatcagaagcttgttcaa
aaatttcaatactcgaaacctaccacctgcgtcccctattatttactactactaataatagcagta
taattgatctgaaaagaggtggtaaaaaa

Hidden Messages in T. petrophila?

© 2024 Phillip Compeau

Not one occurrence of ATGATCAAG or CTTGATCAT!

aactctatacctcctttttgtcgaatttgtgtgatttatagagaaaatcttattaactgaaactaa
aatggtaggtttggtggtaggttttgtgtacattttgtagtatctgatttttaattacataccgta
tattgtattaaattgacgaacaattgcatggaattgaatatatgcaaaacaaacctaccaccaaac
tctgtattgaccattttaggacaacttcagggtggtaggtttctgaagctctcatcaatagactat
tttagtctttacaaacaatattaccgttcagattcaagattctacaacgctgttttaatgggcgtt
gcagaaaacttaccacctaaaatccagtatccaagccgatttcagagaaacctaccacttacctac
cacttacctaccacccgggtggtaagttgcagacattattaaaaacctcatcagaagcttgttcaa
aaatttcaatactcgaaacctaccacctgcgtcccctattatttactactactaataatagcagta
taattgatctgaaaagaggtggtaaaaaa

Hidden Messages in T. petrophila?

Applying Frequent Words Problem to this ori:
AACCTACCA, ACCTACCAC, GGTAGGTTT
TGGTAGGTT, AAACCTACC, CCTACCACC

© 2024 Phillip Compeau

aactctatacctcctttttgtcgaatttgtgtgatttatagagaaaatcttattaactgaaactaa
aatggtaggtttggtggtaggttttgtgtacattttgtagtatctgatttttaattacataccgta
tattgtattaaattgacgaacaattgcatggaattgaatatatgcaaaacaaacctaccaccaaac
tctgtattgaccattttaggacaacttcagggtggtaggtttctgaagctctcatcaatagactat
tttagtctttacaaacaatattaccgttcagattcaagattctacaacgctgttttaatgggcgtt
gcagaaaacttaccacctaaaatccagtatccaagccgatttcagagaaacctaccacttacctac
cacttacctaccacccgggtggtaagttgcagacattattaaaaacctcatcagaagcttgttcaa
aaatttcaatactcgaaacctaccacctgcgtcccctattatttactactactaataatagcagta
taattgatctgaaaagaggtggtaaaaaa

Hidden Messages in T. petrophila?

Applying Frequent Words Problem to this ori:
AACCTACCA, ACCTACCAC, GGTAGGTTT
TGGTAGGTT, AAACCTACC, CCTACCACC

© 2024 Phillip Compeau

Different genomes à different hidden messages

CCTACCACC
||||||||| are candidate hidden messages.
GGATGGTGG

Hidden Messages in Thermotoga petrophila

aactctatacctcctttttgtcgaatttgtgtgatttatagagaaaatcttattaactgaaactaa
aatggtaggtttGGTGGTAGGttttgtgtacattttgtagtatctgatttttaattacataccgta
tattgtattaaattgacgaacaattgcatggaattgaatatatgcaaaacaaaCCTACCACCaaac
tctgtattgaccattttaggacaacttcagGGTGGTAGGtttctgaagctctcatcaatagactat
tttagtctttacaaacaatattaccgttcagattcaagattctacaacgctgttttaatgggcgtt
gcagaaaacttaccacctaaaatccagtatccaagccgatttcagagaaacctaccacttacctac
cacttaCCTACCACCcgggtggtaagttgcagacattattaaaaacctcatcagaagcttgttcaa
aaatttcaatactcgaaaCCTACCACCtgcgtcccctattatttactactactaataatagcagta
taattgatctgaaaagaggtggtaaaaaa

© 2024 Phillip Compeau

Returning to “Question #2”

We can find hidden messages if ori is given. But we
still don’t know how to find ori in a (long) genome.

© 2024 Phillip Compeau

Bacteria with Unknown ori

STOP: Now that we know that “hidden messages”
may differ, how could we look for ori in a newly
sequenced bacterial genome?

© 2024 Phillip Compeau

Finding ori Computationally

OLD strategy: given a previously known ori (500 nucleotide
window), find frequent words (clumps) in ori as candidate
DnaA boxes.

replication origin → frequent words

© 2024 Phillip Compeau

Finding ori Computationally

NEW strategy: find frequent words in ALL windows within a
(3 million nucleotide) genome. Windows with clumps of
frequent words are candidate replication origins.

frequent words → replication origin

OLD strategy: given a previously known ori (500 nucleotide
window), find frequent words (clumps) in ori as candidate
DnaA boxes.

replication origin → frequent words

© 2024 Phillip Compeau

Finding ori Computationally

Exercise: Formulate a computational problem
modeling our new strategy.

NEW strategy: find frequent words in ALL windows within a
(3 million nucleotide) genome. Windows with clumps of
frequent words are candidate replication origins.

frequent words → replication origin
© 2024 Phillip Compeau

Defining and Hunting for “Clumps”

Intui&ve: A k-mer forms a clump inside Genome if there is a
short interval of Genome in which it appears many 5mes.

A k-mer forms an (L, t)-clump inside Genome if
there is a short (length L) interval of Genome in
which it appears many (at least t) times.

© 2024 Phillip Compeau

Defining and Hunting for “Clumps”

Clump Finding Problem
• Input: A string Genome and integers k (length of

a pattern), L (window length), and t (number of
patterns in a clump).

• Output: All k-mers forming (L, t)-clumps in
Genome.

A k-mer forms an (L, t)-clump inside Genome if
there is a short (length L) interval of Genome in
which it appears many (at least t) times.

© 2024 Phillip Compeau

Defining and Hunting for “Clumps”

Clump Finding Problem
• Input: A string Genome and integers k (length of

a pattern), L (window length), and t (number of
patterns in a clump).

• Output: All k-mers forming (L, t)-clumps in
Genome.

© 2024 Phillip Compeau

STOP: Why is looking for clumps in bacterial
genomes as a source of hidden messages destined to
fail?

What’s the Issue?

© 2024 Phillip Compeau

Recall from our work in genome assembly that
genomes have many repeats.

What’s the Issue?

In E. coli, over 1900 different 9-mers form (500,3)-
clumps. It is unclear which ones point to ori …

© 2024 Phillip Compeau

Recall from our work in genome assembly that
genomes have many repeats.

A Surprising Pattern in Nucleotide Counts

Fr
eq

ue
nc

y
of

 C

(%
)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

21

23

25

27

29

Genome position (MB)

Let’s run a very simple
computational analysis:
take frequency of each
nucleotide in 100,000
nucleotide windows of E.
coli (verified ori).

Why would there be
more C on half the
genome?

ori ter

© 2024 Phillip Compeau

Fr
eq

ue
nc

y
of

 G

(%
)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Genome position (MB)

21

23

25

27

29

A Surprising Pattern in Nucleotide Counts

Let’s run a very simple
computational analysis:
take frequency of each
nucleotide in 100,000
nucleotide windows of E.
coli (verified ori).

And why would the
story be opposite when
we count G’s?

ori ter

© 2024 Phillip Compeau

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

-4

-2

0

2

4

Genome position (MB)

Fr
eq

ue
nc

y
of

 G

–
fr

eq
ue

nc
y

of
 C
 (

%
)

A Surprising Pattern in Nucleotide Counts

The pattern is even more
stark if we take the
difference between the
frequency of G and the
frequency of C ...

ori ter

© 2024 Phillip Compeau

A Surprising Pattern in Nucleotide Counts

And the pattern is still
there even if we didn’t
know where ori was and
start counting at some
arbitrary spot.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

-4

-2

0

2

4

Genome position (MB)

Fr
eq

ue
nc

y
of

 G

–
fr

eq
ue

nc
y

of
 C
 (

%
)

© 2024 Phillip Compeau

A Surprising Pattern in Nucleotide Counts

And the pattern is still
there even if we didn’t
know where ori was and
start counting at some
arbitrary spot.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

-4

-2

0

2

4

Genome position (MB)

Fr
eq

ue
nc

y
of

 G

–
fr

eq
ue

nc
y

of
 C
 (

%
)

© 2024 Phillip Compeau

Let’s learn more
about replication in
the hope of finding
an answer...

3’

3’ 5’

5’ ori

terC

ori

terC

The two strands run in opposite directions
(from 5’ to 3’).

Blue Strand: Clockwise,
Green Strand: Counter-Clockwise

DNA Strands Have Directions

© 2024 Phillip Compeau

Four DNA Polymerases Can Do the Job

3’

3’ 5’

5’

ori

ori

terC

terC

© 2024 Phillip Compeau

Continue as Replication Fork Enlarges

Simple, but wrong: DNA polymerases
are unidirectional: they can only
traverse a parent strand in the 3’ à 5’
direction.

3’

3’ 5’

5’

© 2024 Phillip Compeau

3’

3’ 5’

5’

If you Were a UNIDIRECTIONAL DNA
Polymerase, how Would you Replicate a

Genome?

No problem replicating leading half-strands (thick lines).

Leading
half-strand

Leading
half-strand

Lagging
half-strand

Lagging
half-strand

Big problem replicating lagging half-strands (thin lines).

3’

3’ 5’

5’

If you Were a UNIDIRECTIONAL DNA
Polymerase, how Would you Replicate a

Genome?

No problem replicating reverse half-strands (thick lines).

Leading
half-strand

Leading
half-strand

Lagging
half-strand

Lagging
half-strand

Note: Leading/lagging half-strands are complementary.

3’

3’ 5’

5’

Wait until the Fork Opens and ...

© 2024 Phillip Compeau

Wait until the Fork Opens and Replicate

3’

3’ 5’

5’

© 2024 Phillip Compeau

Okazaki
fragments

Iterate this Process

© 2024 Phillip Compeau

Many Okazaki
fragments are

replicated.

Iterate this Process

Okazaki
fragments

Okazaki
fragments

© 2024 Phillip Compeau

DNA Ligase Ties Together Fragments

The genome has been
replicated!

© 2024 Phillip Compeau

Different Lifestyles of Half-strands

The leading half-strand
lives a double-stranded life
most of the time.

waiting

waiting

The lagging half-strand
spends a large portion of its
life single-stranded, waiting
to be replicated.

© 2024 Phillip Compeau

Different Lifestyles of Half-strands

The leading half-strand
lives a double-stranded life
most of the time.

But why would a
computer scientist care?

waiting

waiting

The lagging half-strand
spends a large portion of its
life single-stranded, waiting
to be replicated.

© 2024 Phillip Compeau

Asymmetry of Replication Affects
Nucleotide Frequencies

Single-stranded DNA has
a much higher mutation
rate than double-
stranded DNA.

waiting

waiting

© 2024 Phillip Compeau

Asymmetry of Replication Affects
Nucleotide Frequencies

Single-stranded DNA has
a much higher mutation
rate than double-
stranded DNA.

Thus, if one nucleotide has a greater mutation rate,
then we should observe its shortage on the lagging
half-strand, since it is more often single-stranded!

wai'ng

waiting

© 2024 Phillip Compeau

Deamination is the Answer

Cytosine (C) rapidly mutates into thymine (T) through
deamination; deamination rates rise 100-fold when
DNA is single-stranded!

© 2024 Phillip Compeau

Deamination is the Answer

Cytosine (C) rapidly mutates into thymine (T) through
deamination; deamination rates rise 100-fold when
DNA is single-stranded!

...C...

...G...
leading

lagging

© 2024 Phillip Compeau

Deamination is the Answer

Cytosine (C) rapidly mutates into thymine (T) through
deamination; deamination rates rise 100-fold when
DNA is single-stranded!

...C...

...G...

...C...

...G...

...C...
leading

lagging

lagging

© 2024 Phillip Compeau

Deamination is the Answer

Cytosine (C) rapidly mutates into thymine (T) through
deamination; deamination rates rise 100-fold when
DNA is single-stranded!

...C...

...G...

...C...

...G...

...C...

...T...

...G...

...C...
leading

lagging

lagging lagging

© 2024 Phillip Compeau

Deamination is the Answer

Cytosine (C) rapidly mutates into thymine (T) through
deamination; deamination rates rise 100-fold when
DNA is single-stranded!

...C...

...G...

...C...

...G...

...C...

...T...

...G...

...C...

...T...

...G...

...C...

...A...

leading

lagging

lagging lagging lagging

leading

© 2024 Phillip Compeau

3’

3’ 5’

5’

ori

terC

Take a Walk Along the Genome

C high
G low

C low
G high

C high/G low → #G - #C is DECREASING as
we walk along the LEADING half-strand

C low/G high → #G - #C is INCREASING
as we walk along the LAGGING half-strand

#G - #C is DECREASING #G - #C is INCREASING

You walk along the genome and see that #G - #C has
been decreasing and then suddenly starts increasing.

Where are you in the genome?

© 2024 Phillip Compeau

Skew Array/Diagram

Skew array: Skew[k] = #G - #C for the first k
nucleotides of Genome.

Skew diagram: Plot Skew[k] against k.

C A T G G G C A T C G G C C A T A C G C C

C H A P T E R 1

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Skew[i] 0 -1 -1 -1 0 1 2 1 1 1 0 1 2 1 0 0 0 0 -1 0 -1 -2

Text C A T G G G C A T C G G C C A T A C G C C

sk
ew

position
0 5 10 15 20 -2

-1

0

1

2

FIGURE 1.16 (Top) The array Skew for Genome = CATGGGCATCGGCCATACGCC. Ev-
ery time we encounter a G, Skew[i] is equal to Skew[i-1]+1; every time we encounter
a C, Skew[i] is equal to Skew[i-1]-1; otherwise, Skew[i] is equal to Skew[i-1].
(Bottom) The skew diagram corresponding to Genome. The skew increases when we
encounter G and decreases when we encounter C.

position

sk
ew

1000000 2000000 3000000 4000000 5000000 0

0

-5000

-10000

-15000

15000

10000

20000

25000

30000

5000

FIGURE 1.17 The skew diagram for E. coli achieves a maximum and minimum at
positions 1550413 and 3923620, respectively.

Let’s follow the 50 ! 30 direction of DNA and walk along the chromosome from terC to
oriC (along a reverse half-strand), then continue on from oriC to terC (along a forward
half-strand). In Figure 1.15, we saw that the skew is decreasing along the reverse half-
strand and increasing along the forward half-strand. Thus, the skew should achieve a
minimum at the position where the reverse half-strand ends and the forward half-strand
begins, which is exactly the location of oriC!

34

© 2024 Phillip Compeau

Skew Array/Diagram

3’

3’ 5’

5’

ori

terC

C high
G low

C low
G high

#G - #C is DECREASING #G - #C is INCREASING

STOP: What will the skew array
of a bacterial genome look like?

© 2024 Phillip Compeau

Skew Diagram of E. Coli

ori

You walk along the genome and see that #G - #C have been decreasing and
then suddenly starts increasing. Where are you in the genome?

We Have Now “Solved” Question 1!

Given a bacterial genome (~3 Mbp), where is ori?

© 2024 Phillip Compeau

PART 2: FINDING SEQUENCE
MOTIFS

© 2024 Phillip Compeau

Today’s Seemingly Random Analogy

© 2024 Phillip Compeau

You are orbiting a newly
discovered planet that you
know nothing about, apart
from the fact that it has a
smooth, solid surface. A droid
that can roll around the
planet’s surface and take
measurements. How might you
“program” the droid to look for
the hottest part of the planet?

Central Dogma of Molecular Biology

H O W D O W E S E Q U E N C E A N T I B I O T I C S ?

positions of the string. These different ways of dividing a DNA string into codons are
called reading frames. Since DNA is double-stranded, a genome has six reading frames
(three on each strand), as shown in Figure 4.3.

GTGAAACTTTTTCCTTGGTTTAATCAATAT
CACTTTGAAAAAGGAACCAAATTAGTTATADNA

Translated peptides

CACUUUGAAAAAGGAACCAAAUUAGUUAUA

GUGAAACUUUUUCCUUGGUUUAAUCAAUAU

HisPheLysLysArgProLysIleLeuIle
 SerValLysGluLysThrSTPAspIle
 PheSerLysGlyGlnAsnLeuSTPTyr

Transcribed RNA

 GluThrPheSerLeuValSTPSerIle
 STPAsnPhePheLeuGlyLeuIleAsn
ValLysLeuPheProTrpPheAsnGlnTyr

5'
5'3'
3'

Transcribed RNA

Translated peptides

FIGURE 4.3 Six different reading frames give six different ways for the same fragment
of DNA to be transcribed and translated (three from each strand). The top three amino
acid strings are read from left to right, whereas the bottom three strings are read from
right to left. The highlighted amino acid string spells out the sequence of Tyrocidine B1.
Stop codons are represented by STP.

We say that a DNA string Pattern encodes an amino acid string Peptide if the RNA
string transcribed from either Pattern or its reverse complement Pattern translates into
Peptide. For example, the DNA string GAAACT is transcribed into GAAACU and trans-
lated into ET. The reverse complement of this DNA string, AGTTTC, is transcribed into
AGUUUC and translated into SF. Thus, GAAACT encodes both ET and SF.

Peptide Encoding Problem:
Find substrings of a genome encoding a given amino acid sequence.

Input: A DNA string Text and an amino acid string Peptide.
Output: All substrings of Text encoding Peptide (if any such substrings exist).

4B

189

Central Dogma: DNA is transcribed into RNA,
which is then translated into proteins.

© 2024 Phillip Compeau

H O W D O W E S E Q U E N C E A N T I B I O T I C S ?

all occurrences of T with U. The resulting strand of RNA is translated into an amino
acid sequence as follows. During translation, the RNA strand is partitioned into non-
overlapping 3-mers called codons. Then, each codon is converted into one of 20 amino
acids via the genetic code; the resulting sequence can be represented as an amino
acid string over a 20-letter alphabet. As illustrated in Figure 4.1, each of the 64 RNA
codons encodes its own amino acid (some codons encode the same amino acid), with
the exception of three stop codons that do not translate into amino acids and serve to
halt translation (see DETOUR: Discovery of Codons). For example, the DNA string PAGE 218
TATACGAAA transcribes into the RNA string UAUACGAAA, which in turn translates into
the amino acid string YTK.

FIGURE 4.1 The genetic code describes the translation of an RNA 3-mer (codon) into
one of 20 amino acids. The first three circles, moving from the inside out, represent
the first, second, and third nucleotides of a codon. The fourth, fifth, and sixth circles
define the translated amino acid in three ways: the amino acid’s full name, its 3-letter
abbreviation, and its single-letter abbreviation. Three of the 64 total RNA codons are
stop codons, which halt translation.

187

Transcription factor proteins cause a
feedback loop by affecting transcription

© 2024 Phillip Compeau

A transcription
factor can either
cause the cell to
increase (activate)
or decrease
(repress) the
production of
RNA/protein
corresponding to a
given gene.

ChIP-seq uses DNA sequencing to
identify protein-DNA binding

© 2024 Phillip Compeau

Figure courtesy Jkwchui, Wikimedia Commons user

Looking for Hidden Messages Again

If a collection of genes are implicated in the same
function (e.g., the circadian clock), then a single
transcription factor may bind to the same “keyword”
in many of the genes’ upstream regions, perhaps
with minor variations.

© 2024 Phillip Compeau

GenesUpstream regions
(keywords)

Looking for Hidden Messages Again

© 2024 Phillip Compeau

GenesUpstream regions
(keywords)

Key Point: we want to find these keywords for a
collection of genes without knowing anything in
advance about what the keywords are ...

Illustrating Motif Selection

Let Dna denote a collection of t strings of length n.

© 2024 Phillip Compeau

Illustrating Motif Selection

Let Dna denote a collection of t strings of length n.

If we choose a k-mer from each of the t strings in
Dna, then we obtain a collection Motifs.

© 2024 Phillip Compeau

Illustrating Motif Selection

Let Dna denote a collection of t strings of length n.

Key Point: if we choose a different collection of k-mers,
how do we know whether this collection is “better”?

© 2024 Phillip Compeau

Scoring Motifs

STOP: Given a collection of Motifs, how can we
assess how good it is?
C H A P T E R 2

Motifs

T C G G G G g T T T t t
c C G G t G A c T T a C
a C G G G G A T T T t C
T t G G G G A c T T t t
a a G G G G A c T T C C
T t G G G G A c T T C C
T C G G G G A T T c a t
T C G G G G A T T c C t
T a G G G G A a c T a C
T C G G G t A T a a C C

SCORE(Motifs) 3 + 4 + 0 + 0 + 1 + 1 + 1 + 5 + 2 + 3 + 6 + 4 = 30

COUNT(Motifs)

A: 2 2 0 0 0 0 9 1 1 1 3 0
C: 1 6 0 0 0 0 0 4 1 2 4 6
G: 0 0 10 10 9 9 1 0 0 0 0 0
T: 7 2 0 0 1 1 0 5 8 7 3 4

PROFILE(Motifs)

A: .2 .2 0 0 0 0 .9 .1 .1 .1 .3 0
C: .1 .6 0 0 0 0 0 .4 .1 .2 .4 .6
G: 0 0 1 1 .9 .9 .1 0 0 0 0 0
T: .7 .2 0 0 .1 .1 0 .5 .8 .7 .3 .4

CONSENSUS(Motifs) T C G G G G A T T T C C

weblogo.berkeley.edu

0

1

2

bi
ts

5v

1C
A
T

2T
A
C

3

G

4

G

5T
G

6T
G

7G
A

8A
C
T

9C
A
T

10

A
C
T

11

T
A
C

12

T
C

3v

FIGURE 2.2 From motif matrix to count matrix to profile matrix to consensus string to
motif logo. The NF-kB binding sites form a 10⇥ 12 motif matrix, with the most frequent
nucleotide in each column shown in upper case letters and all other nucleotides shown
in lower case letters. SCORE(Motifs) counts the total number of unpopular (lower case)
symbols in the motif matrix. The motif matrix results in a 4 ⇥ 12 count matrix holding
the nucleotide counts in every column of the motif matrix; a profile matrix holding the
frequencies of nucleotides in every column of the motif matrix; and a consensus string
formed by the most frequent nucleotide in each column of the count matrix. Finally, the
motif logo is a common way to visualize the conservation of various positions within a
motif. The total height of the letters depicts the information content of the position.

74

© 2024 Phillip Compeau

Scoring Motifs

Consensus string: The string formed by the most
frequent symbol in each column.
C H A P T E R 2

Motifs

T C G G G G g T T T t t
c C G G t G A c T T a C
a C G G G G A T T T t C
T t G G G G A c T T t t
a a G G G G A c T T C C
T t G G G G A c T T C C
T C G G G G A T T c a t
T C G G G G A T T c C t
T a G G G G A a c T a C
T C G G G t A T a a C C

SCORE(Motifs) 3 + 4 + 0 + 0 + 1 + 1 + 1 + 5 + 2 + 3 + 6 + 4 = 30

COUNT(Motifs)

A: 2 2 0 0 0 0 9 1 1 1 3 0
C: 1 6 0 0 0 0 0 4 1 2 4 6
G: 0 0 10 10 9 9 1 0 0 0 0 0
T: 7 2 0 0 1 1 0 5 8 7 3 4

PROFILE(Motifs)

A: .2 .2 0 0 0 0 .9 .1 .1 .1 .3 0
C: .1 .6 0 0 0 0 0 .4 .1 .2 .4 .6
G: 0 0 1 1 .9 .9 .1 0 0 0 0 0
T: .7 .2 0 0 .1 .1 0 .5 .8 .7 .3 .4

CONSENSUS(Motifs) T C G G G G A T T T C C

weblogo.berkeley.edu

0

1

2

bi
ts

5v

1C
A
T

2T
A
C

3

G

4

G

5T
G

6T
G

7G
A

8A
C
T

9C
A
T

10

A
C
T

11

T
A
C

12

T
C

3v

FIGURE 2.2 From motif matrix to count matrix to profile matrix to consensus string to
motif logo. The NF-kB binding sites form a 10⇥ 12 motif matrix, with the most frequent
nucleotide in each column shown in upper case letters and all other nucleotides shown
in lower case letters. SCORE(Motifs) counts the total number of unpopular (lower case)
symbols in the motif matrix. The motif matrix results in a 4 ⇥ 12 count matrix holding
the nucleotide counts in every column of the motif matrix; a profile matrix holding the
frequencies of nucleotides in every column of the motif matrix; and a consensus string
formed by the most frequent nucleotide in each column of the count matrix. Finally, the
motif logo is a common way to visualize the conservation of various positions within a
motif. The total height of the letters depicts the information content of the position.

74

C H A P T E R 2

Motifs

T C G G G G g T T T t t
c C G G t G A c T T a C
a C G G G G A T T T t C
T t G G G G A c T T t t
a a G G G G A c T T C C
T t G G G G A c T T C C
T C G G G G A T T c a t
T C G G G G A T T c C t
T a G G G G A a c T a C
T C G G G t A T a a C C

SCORE(Motifs) 3 + 4 + 0 + 0 + 1 + 1 + 1 + 5 + 2 + 3 + 6 + 4 = 30

COUNT(Motifs)

A: 2 2 0 0 0 0 9 1 1 1 3 0
C: 1 6 0 0 0 0 0 4 1 2 4 6
G: 0 0 10 10 9 9 1 0 0 0 0 0
T: 7 2 0 0 1 1 0 5 8 7 3 4

PROFILE(Motifs)

A: .2 .2 0 0 0 0 .9 .1 .1 .1 .3 0
C: .1 .6 0 0 0 0 0 .4 .1 .2 .4 .6
G: 0 0 1 1 .9 .9 .1 0 0 0 0 0
T: .7 .2 0 0 .1 .1 0 .5 .8 .7 .3 .4

CONSENSUS(Motifs) T C G G G G A T T T C C

weblogo.berkeley.edu

0

1

2

bi
ts

5v

1C
A
T

2T
A
C

3

G

4

G

5T
G

6T
G

7G
A

8A
C
T

9C
A
T

10

A
C
T

11
T
A
C

12

T
C

3v

FIGURE 2.2 From motif matrix to count matrix to profile matrix to consensus string to
motif logo. The NF-kB binding sites form a 10⇥ 12 motif matrix, with the most frequent
nucleotide in each column shown in upper case letters and all other nucleotides shown
in lower case letters. SCORE(Motifs) counts the total number of unpopular (lower case)
symbols in the motif matrix. The motif matrix results in a 4 ⇥ 12 count matrix holding
the nucleotide counts in every column of the motif matrix; a profile matrix holding the
frequencies of nucleotides in every column of the motif matrix; and a consensus string
formed by the most frequent nucleotide in each column of the count matrix. Finally, the
motif logo is a common way to visualize the conservation of various positions within a
motif. The total height of the letters depicts the information content of the position.

74

© 2024 Phillip Compeau

Scoring Motifs

C H A P T E R 2

Motifs

T C G G G G g T T T t t
c C G G t G A c T T a C
a C G G G G A T T T t C
T t G G G G A c T T t t
a a G G G G A c T T C C
T t G G G G A c T T C C
T C G G G G A T T c a t
T C G G G G A T T c C t
T a G G G G A a c T a C
T C G G G t A T a a C C

SCORE(Motifs) 3 + 4 + 0 + 0 + 1 + 1 + 1 + 5 + 2 + 3 + 6 + 4 = 30

COUNT(Motifs)

A: 2 2 0 0 0 0 9 1 1 1 3 0
C: 1 6 0 0 0 0 0 4 1 2 4 6
G: 0 0 10 10 9 9 1 0 0 0 0 0
T: 7 2 0 0 1 1 0 5 8 7 3 4

PROFILE(Motifs)

A: .2 .2 0 0 0 0 .9 .1 .1 .1 .3 0
C: .1 .6 0 0 0 0 0 .4 .1 .2 .4 .6
G: 0 0 1 1 .9 .9 .1 0 0 0 0 0
T: .7 .2 0 0 .1 .1 0 .5 .8 .7 .3 .4

CONSENSUS(Motifs) T C G G G G A T T T C C

weblogo.berkeley.edu

0

1

2

bi
ts

5v

1C
A
T

2T
A
C

3

G

4

G

5T
G

6T
G

7G
A

8A
C
T

9C
A
T

10

A
C
T

11

T
A
C

12

T
C

3v

FIGURE 2.2 From motif matrix to count matrix to profile matrix to consensus string to
motif logo. The NF-kB binding sites form a 10⇥ 12 motif matrix, with the most frequent
nucleotide in each column shown in upper case letters and all other nucleotides shown
in lower case letters. SCORE(Motifs) counts the total number of unpopular (lower case)
symbols in the motif matrix. The motif matrix results in a 4 ⇥ 12 count matrix holding
the nucleotide counts in every column of the motif matrix; a profile matrix holding the
frequencies of nucleotides in every column of the motif matrix; and a consensus string
formed by the most frequent nucleotide in each column of the count matrix. Finally, the
motif logo is a common way to visualize the conservation of various positions within a
motif. The total height of the letters depicts the information content of the position.

74

Score(Motifs): sum of the number of symbols that
disagree with the consensus symbol in each
column.

C H A P T E R 2

Motifs

T C G G G G g T T T t t
c C G G t G A c T T a C
a C G G G G A T T T t C
T t G G G G A c T T t t
a a G G G G A c T T C C
T t G G G G A c T T C C
T C G G G G A T T c a t
T C G G G G A T T c C t
T a G G G G A a c T a C
T C G G G t A T a a C C

SCORE(Motifs) 3 + 4 + 0 + 0 + 1 + 1 + 1 + 5 + 2 + 3 + 6 + 4 = 30

COUNT(Motifs)

A: 2 2 0 0 0 0 9 1 1 1 3 0
C: 1 6 0 0 0 0 0 4 1 2 4 6
G: 0 0 10 10 9 9 1 0 0 0 0 0
T: 7 2 0 0 1 1 0 5 8 7 3 4

PROFILE(Motifs)

A: .2 .2 0 0 0 0 .9 .1 .1 .1 .3 0
C: .1 .6 0 0 0 0 0 .4 .1 .2 .4 .6
G: 0 0 1 1 .9 .9 .1 0 0 0 0 0
T: .7 .2 0 0 .1 .1 0 .5 .8 .7 .3 .4

CONSENSUS(Motifs) T C G G G G A T T T C C

weblogo.berkeley.edu

0

1

2

bi
ts

5v

1C
A
T

2T
A
C

3

G

4

G

5T
G

6T
G

7G
A

8A
C
T

9C
A
T

10

A
C
T

11
T
A
C

12

T
C

3v

FIGURE 2.2 From motif matrix to count matrix to profile matrix to consensus string to
motif logo. The NF-kB binding sites form a 10⇥ 12 motif matrix, with the most frequent
nucleotide in each column shown in upper case letters and all other nucleotides shown
in lower case letters. SCORE(Motifs) counts the total number of unpopular (lower case)
symbols in the motif matrix. The motif matrix results in a 4 ⇥ 12 count matrix holding
the nucleotide counts in every column of the motif matrix; a profile matrix holding the
frequencies of nucleotides in every column of the motif matrix; and a consensus string
formed by the most frequent nucleotide in each column of the count matrix. Finally, the
motif logo is a common way to visualize the conservation of various positions within a
motif. The total height of the letters depicts the information content of the position.

74

C H A P T E R 2

Motifs

T C G G G G g T T T t t
c C G G t G A c T T a C
a C G G G G A T T T t C
T t G G G G A c T T t t
a a G G G G A c T T C C
T t G G G G A c T T C C
T C G G G G A T T c a t
T C G G G G A T T c C t
T a G G G G A a c T a C
T C G G G t A T a a C C

SCORE(Motifs) 3 + 4 + 0 + 0 + 1 + 1 + 1 + 5 + 2 + 3 + 6 + 4 = 30

COUNT(Motifs)

A: 2 2 0 0 0 0 9 1 1 1 3 0
C: 1 6 0 0 0 0 0 4 1 2 4 6
G: 0 0 10 10 9 9 1 0 0 0 0 0
T: 7 2 0 0 1 1 0 5 8 7 3 4

PROFILE(Motifs)

A: .2 .2 0 0 0 0 .9 .1 .1 .1 .3 0
C: .1 .6 0 0 0 0 0 .4 .1 .2 .4 .6
G: 0 0 1 1 .9 .9 .1 0 0 0 0 0
T: .7 .2 0 0 .1 .1 0 .5 .8 .7 .3 .4

CONSENSUS(Motifs) T C G G G G A T T T C C

weblogo.berkeley.edu

0

1

2

bi
ts

5v

1C
A
T

2T
A
C

3

G

4

G

5T
G

6T
G

7G
A

8A
C
T

9C
A
T

10

A
C
T

11

T
A
C

12

T
C

3v

FIGURE 2.2 From motif matrix to count matrix to profile matrix to consensus string to
motif logo. The NF-kB binding sites form a 10⇥ 12 motif matrix, with the most frequent
nucleotide in each column shown in upper case letters and all other nucleotides shown
in lower case letters. SCORE(Motifs) counts the total number of unpopular (lower case)
symbols in the motif matrix. The motif matrix results in a 4 ⇥ 12 count matrix holding
the nucleotide counts in every column of the motif matrix; a profile matrix holding the
frequencies of nucleotides in every column of the motif matrix; and a consensus string
formed by the most frequent nucleotide in each column of the count matrix. Finally, the
motif logo is a common way to visualize the conservation of various positions within a
motif. The total height of the letters depicts the information content of the position.

74

© 2024 Phillip Compeau

Scoring Motifs

C H A P T E R 2

Motifs

T C G G G G g T T T t t
c C G G t G A c T T a C
a C G G G G A T T T t C
T t G G G G A c T T t t
a a G G G G A c T T C C
T t G G G G A c T T C C
T C G G G G A T T c a t
T C G G G G A T T c C t
T a G G G G A a c T a C
T C G G G t A T a a C C

SCORE(Motifs) 3 + 4 + 0 + 0 + 1 + 1 + 1 + 5 + 2 + 3 + 6 + 4 = 30

COUNT(Motifs)

A: 2 2 0 0 0 0 9 1 1 1 3 0
C: 1 6 0 0 0 0 0 4 1 2 4 6
G: 0 0 10 10 9 9 1 0 0 0 0 0
T: 7 2 0 0 1 1 0 5 8 7 3 4

PROFILE(Motifs)

A: .2 .2 0 0 0 0 .9 .1 .1 .1 .3 0
C: .1 .6 0 0 0 0 0 .4 .1 .2 .4 .6
G: 0 0 1 1 .9 .9 .1 0 0 0 0 0
T: .7 .2 0 0 .1 .1 0 .5 .8 .7 .3 .4

CONSENSUS(Motifs) T C G G G G A T T T C C

weblogo.berkeley.edu

0

1

2

bi
ts

5v

1C
A
T

2T
A
C

3

G

4

G

5T
G

6T
G

7G
A

8A
C
T

9C
A
T

10

A
C
T

11

T
A
C

12

T
C

3v

FIGURE 2.2 From motif matrix to count matrix to profile matrix to consensus string to
motif logo. The NF-kB binding sites form a 10⇥ 12 motif matrix, with the most frequent
nucleotide in each column shown in upper case letters and all other nucleotides shown
in lower case letters. SCORE(Motifs) counts the total number of unpopular (lower case)
symbols in the motif matrix. The motif matrix results in a 4 ⇥ 12 count matrix holding
the nucleotide counts in every column of the motif matrix; a profile matrix holding the
frequencies of nucleotides in every column of the motif matrix; and a consensus string
formed by the most frequent nucleotide in each column of the count matrix. Finally, the
motif logo is a common way to visualize the conservation of various positions within a
motif. The total height of the letters depicts the information content of the position.

74

C H A P T E R 2

Motifs

T C G G G G g T T T t t
c C G G t G A c T T a C
a C G G G G A T T T t C
T t G G G G A c T T t t
a a G G G G A c T T C C
T t G G G G A c T T C C
T C G G G G A T T c a t
T C G G G G A T T c C t
T a G G G G A a c T a C
T C G G G t A T a a C C

SCORE(Motifs) 3 + 4 + 0 + 0 + 1 + 1 + 1 + 5 + 2 + 3 + 6 + 4 = 30

COUNT(Motifs)

A: 2 2 0 0 0 0 9 1 1 1 3 0
C: 1 6 0 0 0 0 0 4 1 2 4 6
G: 0 0 10 10 9 9 1 0 0 0 0 0
T: 7 2 0 0 1 1 0 5 8 7 3 4

PROFILE(Motifs)

A: .2 .2 0 0 0 0 .9 .1 .1 .1 .3 0
C: .1 .6 0 0 0 0 0 .4 .1 .2 .4 .6
G: 0 0 1 1 .9 .9 .1 0 0 0 0 0
T: .7 .2 0 0 .1 .1 0 .5 .8 .7 .3 .4

CONSENSUS(Motifs) T C G G G G A T T T C C

weblogo.berkeley.edu

0

1

2

bi
ts

5v

1C
A
T

2T
A
C

3

G

4

G

5T
G

6T
G

7G
A

8A
C
T

9C
A
T

10

A
C
T

11
T
A
C

12

T
C

3v

FIGURE 2.2 From motif matrix to count matrix to profile matrix to consensus string to
motif logo. The NF-kB binding sites form a 10⇥ 12 motif matrix, with the most frequent
nucleotide in each column shown in upper case letters and all other nucleotides shown
in lower case letters. SCORE(Motifs) counts the total number of unpopular (lower case)
symbols in the motif matrix. The motif matrix results in a 4 ⇥ 12 count matrix holding
the nucleotide counts in every column of the motif matrix; a profile matrix holding the
frequencies of nucleotides in every column of the motif matrix; and a consensus string
formed by the most frequent nucleotide in each column of the count matrix. Finally, the
motif logo is a common way to visualize the conservation of various positions within a
motif. The total height of the letters depicts the information content of the position.

74

C H A P T E R 2

Motifs

T C G G G G g T T T t t
c C G G t G A c T T a C
a C G G G G A T T T t C
T t G G G G A c T T t t
a a G G G G A c T T C C
T t G G G G A c T T C C
T C G G G G A T T c a t
T C G G G G A T T c C t
T a G G G G A a c T a C
T C G G G t A T a a C C

SCORE(Motifs) 3 + 4 + 0 + 0 + 1 + 1 + 1 + 5 + 2 + 3 + 6 + 4 = 30

COUNT(Motifs)

A: 2 2 0 0 0 0 9 1 1 1 3 0
C: 1 6 0 0 0 0 0 4 1 2 4 6
G: 0 0 10 10 9 9 1 0 0 0 0 0
T: 7 2 0 0 1 1 0 5 8 7 3 4

PROFILE(Motifs)

A: .2 .2 0 0 0 0 .9 .1 .1 .1 .3 0
C: .1 .6 0 0 0 0 0 .4 .1 .2 .4 .6
G: 0 0 1 1 .9 .9 .1 0 0 0 0 0
T: .7 .2 0 0 .1 .1 0 .5 .8 .7 .3 .4

CONSENSUS(Motifs) T C G G G G A T T T C C

weblogo.berkeley.edu

0

1

2

bi
ts

5v

1C
A
T

2T
A
C

3

G

4

G

5T
G

6T
G

7G
A

8A
C
T

9C
A
T

10

A
C
T

11

T
A
C

12

T
C

3v

FIGURE 2.2 From motif matrix to count matrix to profile matrix to consensus string to
motif logo. The NF-kB binding sites form a 10⇥ 12 motif matrix, with the most frequent
nucleotide in each column shown in upper case letters and all other nucleotides shown
in lower case letters. SCORE(Motifs) counts the total number of unpopular (lower case)
symbols in the motif matrix. The motif matrix results in a 4 ⇥ 12 count matrix holding
the nucleotide counts in every column of the motif matrix; a profile matrix holding the
frequencies of nucleotides in every column of the motif matrix; and a consensus string
formed by the most frequent nucleotide in each column of the count matrix. Finally, the
motif logo is a common way to visualize the conservation of various positions within a
motif. The total height of the letters depicts the information content of the position.

74

© 2024 Phillip Compeau

STOP: Any ideas on how this scoring function could
be improved?

A Computational Problem for Motif
Finding

Motif Finding Problem.
• Input: A collection of t strings Dna and an

integer k.
• Output: A collection Motifs of k-mers, one from

each string in Dna, minimizing Score(Motifs) over
all choices of Motifs.

© 2024 Phillip Compeau

A Computational Problem for Motif
Finding

Motif Finding Problem.
• Input: A collection of t strings Dna and an

integer k.
• Output: A collection Motifs of k-mers, one from

each string in Dna, minimizing Score(Motifs) over
all choices of Motifs.

Optimization Problem: A computational problem in
which we are trying to find an object from a search
space minimizing or maximizing a scoring function
that assigns a value to each object.

© 2024 Phillip Compeau

A Computational Problem for Motif
Finding

Motif Finding Problem.
• Input: A collection of t strings Dna and an

integer k.
• Output: A collection Motifs of k-mers, one from

each string in Dna, minimizing Score(Motifs) over
all choices of Motifs.

STOP: What is the search space for this problem,
and how many elements does it contain?

© 2024 Phillip Compeau

A Computational Problem for Motif
Finding

Motif Finding Problem.
• Input: A collection of t strings Dna and an

integer k.
• Output: A collection Motifs of k-mers, one from

each string in Dna, minimizing Score(Motifs) over
all choices of Motifs.

Answer: The collection of all possible choices of
Motifs. Each of t strings in Dna has n-k+1 k-mer
starting positions, and so there are (n-k+1)t
possibilities.

© 2024 Phillip Compeau

A Computational Problem for Motif
Finding

In other words, brute force won’t work, and so we
will need to explore the search space intelligently.

© 2024 Phillip Compeau

Motif Finding Problem.
• Input: A collection of t strings Dna and an

integer k.
• Output: A collection Motifs of k-mers, one from

each string in Dna, minimizing Score(Motifs) over
all choices of Motifs.

Returning to Our Analogy

© 2024 Phillip Compeau

Note: it can be helpful to
think about optimization
problems using the
analogy of a droid
exploring a planet’s
surface (search space) for
the hottest location
(optimizing some
function).

Returning to Our Analogy

© 2024 Phillip Compeau

Since our search space is
all collection of Motifs, we
ask “given a choice of
Motifs, what is the best
direction to move?” That is,
for one set of Motifs, we
need to move to some new
choice of Motifs that is
somehow “better”…

From Motifs to a Profile Matrix

C H A P T E R 2

Motifs

T C G G G G g T T T t t
c C G G t G A c T T a C
a C G G G G A T T T t C
T t G G G G A c T T t t
a a G G G G A c T T C C
T t G G G G A c T T C C
T C G G G G A T T c a t
T C G G G G A T T c C t
T a G G G G A a c T a C
T C G G G t A T a a C C

SCORE(Motifs) 3 + 4 + 0 + 0 + 1 + 1 + 1 + 5 + 2 + 3 + 6 + 4 = 30

COUNT(Motifs)

A: 2 2 0 0 0 0 9 1 1 1 3 0
C: 1 6 0 0 0 0 0 4 1 2 4 6
G: 0 0 10 10 9 9 1 0 0 0 0 0
T: 7 2 0 0 1 1 0 5 8 7 3 4

PROFILE(Motifs)

A: .2 .2 0 0 0 0 .9 .1 .1 .1 .3 0
C: .1 .6 0 0 0 0 0 .4 .1 .2 .4 .6
G: 0 0 1 1 .9 .9 .1 0 0 0 0 0
T: .7 .2 0 0 .1 .1 0 .5 .8 .7 .3 .4

CONSENSUS(Motifs) T C G G G G A T T T C C

weblogo.berkeley.edu

0

1

2

bi
ts

5v

1C
A
T

2T
A
C

3

G

4

G

5T
G

6T
G

7G
A

8A
C
T

9C
A
T

10

A
C
T

11

T
A
C

12

T
C

3v

FIGURE 2.2 From motif matrix to count matrix to profile matrix to consensus string to
motif logo. The NF-kB binding sites form a 10⇥ 12 motif matrix, with the most frequent
nucleotide in each column shown in upper case letters and all other nucleotides shown
in lower case letters. SCORE(Motifs) counts the total number of unpopular (lower case)
symbols in the motif matrix. The motif matrix results in a 4 ⇥ 12 count matrix holding
the nucleotide counts in every column of the motif matrix; a profile matrix holding the
frequencies of nucleotides in every column of the motif matrix; and a consensus string
formed by the most frequent nucleotide in each column of the count matrix. Finally, the
motif logo is a common way to visualize the conservation of various positions within a
motif. The total height of the letters depicts the information content of the position.

74

C H A P T E R 2

Motifs

T C G G G G g T T T t t
c C G G t G A c T T a C
a C G G G G A T T T t C
T t G G G G A c T T t t
a a G G G G A c T T C C
T t G G G G A c T T C C
T C G G G G A T T c a t
T C G G G G A T T c C t
T a G G G G A a c T a C
T C G G G t A T a a C C

SCORE(Motifs) 3 + 4 + 0 + 0 + 1 + 1 + 1 + 5 + 2 + 3 + 6 + 4 = 30

COUNT(Motifs)

A: 2 2 0 0 0 0 9 1 1 1 3 0
C: 1 6 0 0 0 0 0 4 1 2 4 6
G: 0 0 10 10 9 9 1 0 0 0 0 0
T: 7 2 0 0 1 1 0 5 8 7 3 4

PROFILE(Motifs)

A: .2 .2 0 0 0 0 .9 .1 .1 .1 .3 0
C: .1 .6 0 0 0 0 0 .4 .1 .2 .4 .6
G: 0 0 1 1 .9 .9 .1 0 0 0 0 0
T: .7 .2 0 0 .1 .1 0 .5 .8 .7 .3 .4

CONSENSUS(Motifs) T C G G G G A T T T C C

weblogo.berkeley.edu

0

1

2

bi
ts

5v

1C
A
T

2T
A
C

3

G

4

G

5T
G

6T
G

7G
A

8A
C
T

9C
A
T

10

A
C
T

11

T
A
C

12

T
C

3v

FIGURE 2.2 From motif matrix to count matrix to profile matrix to consensus string to
motif logo. The NF-kB binding sites form a 10⇥ 12 motif matrix, with the most frequent
nucleotide in each column shown in upper case letters and all other nucleotides shown
in lower case letters. SCORE(Motifs) counts the total number of unpopular (lower case)
symbols in the motif matrix. The motif matrix results in a 4 ⇥ 12 count matrix holding
the nucleotide counts in every column of the motif matrix; a profile matrix holding the
frequencies of nucleotides in every column of the motif matrix; and a consensus string
formed by the most frequent nucleotide in each column of the count matrix. Finally, the
motif logo is a common way to visualize the conservation of various positions within a
motif. The total height of the letters depicts the information content of the position.

74

Profile Matrix: formed by taking the frequency of
symbols in each column of Motifs.

© 2024 Phillip Compeau

From a Profile Matrix to New Motifs

The probability of a k-mer text for a given profile
matrix Profile, written Pr(text|Profile), is the product
of profile matrix values for each symbol of text.

C H A P T E R 2

Motifs

T C G G G G g T T T t t
c C G G t G A c T T a C
a C G G G G A T T T t C
T t G G G G A c T T t t
a a G G G G A c T T C C
T t G G G G A c T T C C
T C G G G G A T T c a t
T C G G G G A T T c C t
T a G G G G A a c T a C
T C G G G t A T a a C C

SCORE(Motifs) 3 + 4 + 0 + 0 + 1 + 1 + 1 + 5 + 2 + 3 + 6 + 4 = 30

COUNT(Motifs)

A: 2 2 0 0 0 0 9 1 1 1 3 0
C: 1 6 0 0 0 0 0 4 1 2 4 6
G: 0 0 10 10 9 9 1 0 0 0 0 0
T: 7 2 0 0 1 1 0 5 8 7 3 4

PROFILE(Motifs)

A: .2 .2 0 0 0 0 .9 .1 .1 .1 .3 0
C: .1 .6 0 0 0 0 0 .4 .1 .2 .4 .6
G: 0 0 1 1 .9 .9 .1 0 0 0 0 0
T: .7 .2 0 0 .1 .1 0 .5 .8 .7 .3 .4

CONSENSUS(Motifs) T C G G G G A T T T C C

weblogo.berkeley.edu

0

1

2

bi
ts

5v

1C
A
T

2T
A
C

3

G

4

G

5T
G

6T
G

7G
A

8A
C
T

9C
A
T

10

A
C
T

11

T
A
C

12

T
C

3v

FIGURE 2.2 From motif matrix to count matrix to profile matrix to consensus string to
motif logo. The NF-kB binding sites form a 10⇥ 12 motif matrix, with the most frequent
nucleotide in each column shown in upper case letters and all other nucleotides shown
in lower case letters. SCORE(Motifs) counts the total number of unpopular (lower case)
symbols in the motif matrix. The motif matrix results in a 4 ⇥ 12 count matrix holding
the nucleotide counts in every column of the motif matrix; a profile matrix holding the
frequencies of nucleotides in every column of the motif matrix; and a consensus string
formed by the most frequent nucleotide in each column of the count matrix. Finally, the
motif logo is a common way to visualize the conservation of various positions within a
motif. The total height of the letters depicts the information content of the position.

74

Pr(ACGGGGATTACC | Profile) = .2 · .6 · 1 · 1 · . 9 · .9 · .9 · .5 · .8 · .1 · .4 · .6
 = 0.000839808

© 2024 Phillip Compeau

From a Profile Matrix to New Motifs
C H A P T E R 2

Motifs

T C G G G G g T T T t t
c C G G t G A c T T a C
a C G G G G A T T T t C
T t G G G G A c T T t t
a a G G G G A c T T C C
T t G G G G A c T T C C
T C G G G G A T T c a t
T C G G G G A T T c C t
T a G G G G A a c T a C
T C G G G t A T a a C C

SCORE(Motifs) 3 + 4 + 0 + 0 + 1 + 1 + 1 + 5 + 2 + 3 + 6 + 4 = 30

COUNT(Motifs)

A: 2 2 0 0 0 0 9 1 1 1 3 0
C: 1 6 0 0 0 0 0 4 1 2 4 6
G: 0 0 10 10 9 9 1 0 0 0 0 0
T: 7 2 0 0 1 1 0 5 8 7 3 4

PROFILE(Motifs)

A: .2 .2 0 0 0 0 .9 .1 .1 .1 .3 0
C: .1 .6 0 0 0 0 0 .4 .1 .2 .4 .6
G: 0 0 1 1 .9 .9 .1 0 0 0 0 0
T: .7 .2 0 0 .1 .1 0 .5 .8 .7 .3 .4

CONSENSUS(Motifs) T C G G G G A T T T C C

weblogo.berkeley.edu

0

1

2

bi
ts

5v

1C
A
T

2T
A
C

3

G

4

G

5T
G

6T
G

7G
A

8A
C
T

9C
A
T

10

A
C
T

11

T
A
C

12

T
C

3v

FIGURE 2.2 From motif matrix to count matrix to profile matrix to consensus string to
motif logo. The NF-kB binding sites form a 10⇥ 12 motif matrix, with the most frequent
nucleotide in each column shown in upper case letters and all other nucleotides shown
in lower case letters. SCORE(Motifs) counts the total number of unpopular (lower case)
symbols in the motif matrix. The motif matrix results in a 4 ⇥ 12 count matrix holding
the nucleotide counts in every column of the motif matrix; a profile matrix holding the
frequencies of nucleotides in every column of the motif matrix; and a consensus string
formed by the most frequent nucleotide in each column of the count matrix. Finally, the
motif logo is a common way to visualize the conservation of various positions within a
motif. The total height of the letters depicts the information content of the position.

74

Pr(ACGGGGATTACC | Profile) = .2 · .6 · 1 · 1 · . 9 · .9 · .9 · .5 · .8 · .1 · .4 · .6
 = 0.000839808

STOP: What happens to Pr(text|Profile) as text
becomes more similar to the consensus of Profile?

The probability of a k-mer text for a given profile
matrix Profile, written Pr(text|Profile), is the product
of profile matrix values for each symbol of text.

© 2024 Phillip Compeau

From a Profile Matrix to New Motifs

The probability of a k-mer text for a given profile
matrix Profile, written Pr(text|Profile), is the product
of profile matrix values for each symbol of text.

C H A P T E R 2

Motifs

T C G G G G g T T T t t
c C G G t G A c T T a C
a C G G G G A T T T t C
T t G G G G A c T T t t
a a G G G G A c T T C C
T t G G G G A c T T C C
T C G G G G A T T c a t
T C G G G G A T T c C t
T a G G G G A a c T a C
T C G G G t A T a a C C

SCORE(Motifs) 3 + 4 + 0 + 0 + 1 + 1 + 1 + 5 + 2 + 3 + 6 + 4 = 30

COUNT(Motifs)

A: 2 2 0 0 0 0 9 1 1 1 3 0
C: 1 6 0 0 0 0 0 4 1 2 4 6
G: 0 0 10 10 9 9 1 0 0 0 0 0
T: 7 2 0 0 1 1 0 5 8 7 3 4

PROFILE(Motifs)

A: .2 .2 0 0 0 0 .9 .1 .1 .1 .3 0
C: .1 .6 0 0 0 0 0 .4 .1 .2 .4 .6
G: 0 0 1 1 .9 .9 .1 0 0 0 0 0
T: .7 .2 0 0 .1 .1 0 .5 .8 .7 .3 .4

CONSENSUS(Motifs) T C G G G G A T T T C C

weblogo.berkeley.edu

0

1

2

bi
ts

5v

1C
A
T

2T
A
C

3

G

4

G

5T
G

6T
G

7G
A

8A
C
T

9C
A
T

10

A
C
T

11

T
A
C

12

T
C

3v

FIGURE 2.2 From motif matrix to count matrix to profile matrix to consensus string to
motif logo. The NF-kB binding sites form a 10⇥ 12 motif matrix, with the most frequent
nucleotide in each column shown in upper case letters and all other nucleotides shown
in lower case letters. SCORE(Motifs) counts the total number of unpopular (lower case)
symbols in the motif matrix. The motif matrix results in a 4 ⇥ 12 count matrix holding
the nucleotide counts in every column of the motif matrix; a profile matrix holding the
frequencies of nucleotides in every column of the motif matrix; and a consensus string
formed by the most frequent nucleotide in each column of the count matrix. Finally, the
motif logo is a common way to visualize the conservation of various positions within a
motif. The total height of the letters depicts the information content of the position.

74

Pr(ACGGGGATTACC | Profile) = .2 · .6 · 1 · 1 · . 9 · .9 · .9 · .5 · .8 · .1 · .4 · .6
 = 0.000839808

Answer: It increases, so we should be looking for k-
mers that have large values of Pr(text|Profile).

© 2024 Phillip Compeau

From a Profile Matrix to New Motifs

Given a profile matrix of strings Dna, Motifs(Profile)
is the strings formed by taking the most probable k-
mer in each string.

© 2024 Phillip Compeau

From a Profile Matrix to New Motifs

So we can move from one collection of motifs in the
search space to the next by taking two steps:

Motifs à Profile(Motifs) à Motifs(Profile(Motifs))

© 2024 Phillip Compeau

Given a profile matrix of strings Dna, Motifs(Profile)
is the strings formed by taking the most probable k-
mer in each string.

From a Profile Matrix to New Motifs

So we can move from one collection of motifs in the
search space to the next by taking two steps:

Motifs à Profile(Motifs) à Motifs(Profile(Motifs))

© 2024 Phillip Compeau

Given a profile matrix of strings Dna, Motifs(Profile)
is the strings formed by taking the most probable k-
mer in each string.

We then repeatedly iterate these steps until
Score(Motifs) stops improving.

Let’s Take An Example

© 2024 Phillip Compeau

W H I C H D N A PAT T E R N S P L AY T H E R O L E O F M O L E C U L A R C L O C K S ?

ttACCTtaac
gATGTctgtc

Dna ccgGCGTtag
cactaACGAg
cgtcagAGGT

Below, we construct the profile matrix PROFILE(Motifs) of the chosen 4-mers.

Motifs PROFILE(Motifs)
t a a c A: 0.4 0.2 0.2 0.2
G T c t C: 0.2 0.4 0.2 0.2
c c g G G: 0.2 0.2 0.4 0.2
a c t a T: 0.2 0.2 0.2 0.4
A G G T

We can now compute the probabilities of every 4-mer in Dna based on this profile
matrix. For example, the probability of the first 4-mer in the first string of Dna is
PR(ttAC|Profile) = 0.2 · 0.2 · 0.2 · 0.2 = 0.0016. The maximum probabilities in every
row are shown in red below.

ttAC tACC ACCT CCTt CTta Ttaa taac
.0016 .0016 .0128 .0064 .0016 .0016 .0016

gATG ATGT TGTc GTct Tctg ctgt tgtc
.0016 .0128 .0016 .0032 .0032 .0032 .0016

ccgG cgGC gGCG GCGT CGTt GTta Ttag
.0064 .0036 .0016 .0128 .0032 .0016 .0016

cact acta ctaA taAC aACG ACGA CGAg
.0032 .0064 .0016 .0016 .0032 .0128 .0016

cgtc gtca tcag cagA agAG gAGG AGGT
.0016 .0016 .0016 .0032 .0032 .0032 .0128

We select the most probable 4-mer in each row above as our new collection Motifs
(shown below). Notice that this collection has captured all five implanted motifs in Dna!

95

W H I C H D N A PAT T E R N S P L AY T H E R O L E O F M O L E C U L A R C L O C K S ?

ttACCTtaac
gATGTctgtc

Dna ccgGCGTtag
cactaACGAg
cgtcagAGGT

Below, we construct the profile matrix PROFILE(Motifs) of the chosen 4-mers.

Motifs PROFILE(Motifs)
t a a c A: 0.4 0.2 0.2 0.2
G T c t C: 0.2 0.4 0.2 0.2
c c g G G: 0.2 0.2 0.4 0.2
a c t a T: 0.2 0.2 0.2 0.4
A G G T

We can now compute the probabilities of every 4-mer in Dna based on this profile
matrix. For example, the probability of the first 4-mer in the first string of Dna is
PR(ttAC|Profile) = 0.2 · 0.2 · 0.2 · 0.2 = 0.0016. The maximum probabilities in every
row are shown in red below.

ttAC tACC ACCT CCTt CTta Ttaa taac
.0016 .0016 .0128 .0064 .0016 .0016 .0016

gATG ATGT TGTc GTct Tctg ctgt tgtc
.0016 .0128 .0016 .0032 .0032 .0032 .0016

ccgG cgGC gGCG GCGT CGTt GTta Ttag
.0064 .0036 .0016 .0128 .0032 .0016 .0016

cact acta ctaA taAC aACG ACGA CGAg
.0032 .0064 .0016 .0016 .0032 .0128 .0016

cgtc gtca tcag cagA agAG gAGG AGGT
.0016 .0016 .0016 .0032 .0032 .0032 .0128

We select the most probable 4-mer in each row above as our new collection Motifs
(shown below). Notice that this collection has captured all five implanted motifs in Dna!

95

In Dna shown at right, we placed
four occurrences of “ACGT” with
one mutation, shown in all caps.
Say we pick the Motifs in red.

Let’s Take An Example

© 2024 Phillip Compeau

W H I C H D N A PAT T E R N S P L AY T H E R O L E O F M O L E C U L A R C L O C K S ?

ttACCTtaac
gATGTctgtc

Dna ccgGCGTtag
cactaACGAg
cgtcagAGGT

Below, we construct the profile matrix PROFILE(Motifs) of the chosen 4-mers.

Motifs PROFILE(Motifs)
t a a c A: 0.4 0.2 0.2 0.2
G T c t C: 0.2 0.4 0.2 0.2
c c g G G: 0.2 0.2 0.4 0.2
a c t a T: 0.2 0.2 0.2 0.4
A G G T

We can now compute the probabilities of every 4-mer in Dna based on this profile
matrix. For example, the probability of the first 4-mer in the first string of Dna is
PR(ttAC|Profile) = 0.2 · 0.2 · 0.2 · 0.2 = 0.0016. The maximum probabilities in every
row are shown in red below.

ttAC tACC ACCT CCTt CTta Ttaa taac
.0016 .0016 .0128 .0064 .0016 .0016 .0016

gATG ATGT TGTc GTct Tctg ctgt tgtc
.0016 .0128 .0016 .0032 .0032 .0032 .0016

ccgG cgGC gGCG GCGT CGTt GTta Ttag
.0064 .0036 .0016 .0128 .0032 .0016 .0016

cact acta ctaA taAC aACG ACGA CGAg
.0032 .0064 .0016 .0016 .0032 .0128 .0016

cgtc gtca tcag cagA agAG gAGG AGGT
.0016 .0016 .0016 .0032 .0032 .0032 .0128

We select the most probable 4-mer in each row above as our new collection Motifs
(shown below). Notice that this collection has captured all five implanted motifs in Dna!

95

W H I C H D N A PAT T E R N S P L AY T H E R O L E O F M O L E C U L A R C L O C K S ?

ttACCTtaac
gATGTctgtc

Dna ccgGCGTtag
cactaACGAg
cgtcagAGGT

Below, we construct the profile matrix PROFILE(Motifs) of the chosen 4-mers.

Motifs PROFILE(Motifs)
t a a c A: 0.4 0.2 0.2 0.2
G T c t C: 0.2 0.4 0.2 0.2
c c g G G: 0.2 0.2 0.4 0.2
a c t a T: 0.2 0.2 0.2 0.4
A G G T

We can now compute the probabilities of every 4-mer in Dna based on this profile
matrix. For example, the probability of the first 4-mer in the first string of Dna is
PR(ttAC|Profile) = 0.2 · 0.2 · 0.2 · 0.2 = 0.0016. The maximum probabilities in every
row are shown in red below.

ttAC tACC ACCT CCTt CTta Ttaa taac
.0016 .0016 .0128 .0064 .0016 .0016 .0016

gATG ATGT TGTc GTct Tctg ctgt tgtc
.0016 .0128 .0016 .0032 .0032 .0032 .0016

ccgG cgGC gGCG GCGT CGTt GTta Ttag
.0064 .0036 .0016 .0128 .0032 .0016 .0016

cact acta ctaA taAC aACG ACGA CGAg
.0032 .0064 .0016 .0016 .0032 .0128 .0016

cgtc gtca tcag cagA agAG gAGG AGGT
.0016 .0016 .0016 .0032 .0032 .0032 .0128

We select the most probable 4-mer in each row above as our new collection Motifs
(shown below). Notice that this collection has captured all five implanted motifs in Dna!

95

First, we form the profile matrix of
these motifs.

Let’s Take An Example

© 2024 Phillip Compeau

W H I C H D N A PAT T E R N S P L AY T H E R O L E O F M O L E C U L A R C L O C K S ?

ttACCTtaac
gATGTctgtc

Dna ccgGCGTtag
cactaACGAg
cgtcagAGGT

Below, we construct the profile matrix PROFILE(Motifs) of the chosen 4-mers.

Motifs PROFILE(Motifs)
t a a c A: 0.4 0.2 0.2 0.2
G T c t C: 0.2 0.4 0.2 0.2
c c g G G: 0.2 0.2 0.4 0.2
a c t a T: 0.2 0.2 0.2 0.4
A G G T

We can now compute the probabilities of every 4-mer in Dna based on this profile
matrix. For example, the probability of the first 4-mer in the first string of Dna is
PR(ttAC|Profile) = 0.2 · 0.2 · 0.2 · 0.2 = 0.0016. The maximum probabilities in every
row are shown in red below.

ttAC tACC ACCT CCTt CTta Ttaa taac
.0016 .0016 .0128 .0064 .0016 .0016 .0016

gATG ATGT TGTc GTct Tctg ctgt tgtc
.0016 .0128 .0016 .0032 .0032 .0032 .0016

ccgG cgGC gGCG GCGT CGTt GTta Ttag
.0064 .0036 .0016 .0128 .0032 .0016 .0016

cact acta ctaA taAC aACG ACGA CGAg
.0032 .0064 .0016 .0016 .0032 .0128 .0016

cgtc gtca tcag cagA agAG gAGG AGGT
.0016 .0016 .0016 .0032 .0032 .0032 .0128

We select the most probable 4-mer in each row above as our new collection Motifs
(shown below). Notice that this collection has captured all five implanted motifs in Dna!

95

We then use this profile to compute
the probabilities of each substring
in Dna and take the most likely one
in each.

W H I C H D N A PAT T E R N S P L AY T H E R O L E O F M O L E C U L A R C L O C K S ?

ttACCTtaac
gATGTctgtc

Dna ccgGCGTtag
cactaACGAg
cgtcagAGGT

Below, we construct the profile matrix PROFILE(Motifs) of the chosen 4-mers.

Motifs PROFILE(Motifs)
t a a c A: 0.4 0.2 0.2 0.2
G T c t C: 0.2 0.4 0.2 0.2
c c g G G: 0.2 0.2 0.4 0.2
a c t a T: 0.2 0.2 0.2 0.4
A G G T

We can now compute the probabilities of every 4-mer in Dna based on this profile
matrix. For example, the probability of the first 4-mer in the first string of Dna is
PR(ttAC|Profile) = 0.2 · 0.2 · 0.2 · 0.2 = 0.0016. The maximum probabilities in every
row are shown in red below.

ttAC tACC ACCT CCTt CTta Ttaa taac
.0016 .0016 .0128 .0064 .0016 .0016 .0016

gATG ATGT TGTc GTct Tctg ctgt tgtc
.0016 .0128 .0016 .0032 .0032 .0032 .0016

ccgG cgGC gGCG GCGT CGTt GTta Ttag
.0064 .0036 .0016 .0128 .0032 .0016 .0016

cact acta ctaA taAC aACG ACGA CGAg
.0032 .0064 .0016 .0016 .0032 .0128 .0016

cgtc gtca tcag cagA agAG gAGG AGGT
.0016 .0016 .0016 .0032 .0032 .0032 .0128

We select the most probable 4-mer in each row above as our new collection Motifs
(shown below). Notice that this collection has captured all five implanted motifs in Dna!

95

Let’s Take An Example

© 2024 Phillip Compeau

Updating these motifs shows that
we have found the ”correct” motifs
in just a single step!

W H I C H D N A PAT T E R N S P L AY T H E R O L E O F M O L E C U L A R C L O C K S ?

ttACCTtaac
gATGTctgtc

Dna ccgGCGTtag
cactaACGAg
cgtcagAGGT

Below, we construct the profile matrix PROFILE(Motifs) of the chosen 4-mers.

Motifs PROFILE(Motifs)
t a a c A: 0.4 0.2 0.2 0.2
G T c t C: 0.2 0.4 0.2 0.2
c c g G G: 0.2 0.2 0.4 0.2
a c t a T: 0.2 0.2 0.2 0.4
A G G T

We can now compute the probabilities of every 4-mer in Dna based on this profile
matrix. For example, the probability of the first 4-mer in the first string of Dna is
PR(ttAC|Profile) = 0.2 · 0.2 · 0.2 · 0.2 = 0.0016. The maximum probabilities in every
row are shown in red below.

ttAC tACC ACCT CCTt CTta Ttaa taac
.0016 .0016 .0128 .0064 .0016 .0016 .0016

gATG ATGT TGTc GTct Tctg ctgt tgtc
.0016 .0128 .0016 .0032 .0032 .0032 .0016

ccgG cgGC gGCG GCGT CGTt GTta Ttag
.0064 .0036 .0016 .0128 .0032 .0016 .0016

cact acta ctaA taAC aACG ACGA CGAg
.0032 .0064 .0016 .0016 .0032 .0128 .0016

cgtc gtca tcag cagA agAG gAGG AGGT
.0016 .0016 .0016 .0032 .0032 .0032 .0128

We select the most probable 4-mer in each row above as our new collection Motifs
(shown below). Notice that this collection has captured all five implanted motifs in Dna!

95

C H A P T E R 2

ttACCTtaac
gATGTctgtc

Dna ccgGCGTtag
cactaACGAg
cgtcagAGGT

STOP and Think: How is it possible that randomly chosenHow is it possible that randomly chosen kk-mers have led us to-mers have led us to
the correct implantedthe correct implanted kk-mer? If you think we manufactured this example, select-mer? If you think we manufactured this example, select
your own initial 4-mers and see what happens.your own initial 4-mers and see what happens.

For the Subtle Motif Problem with implanted 15-mer AAAAAAAAGGGGGGG, when we
run RANDOMIZEDMOTIFSEARCH 100,000 times (each time with new randomly se-
lected k-mers), it returns the 15-mers shown in Figure 2.7 as the lowest scoring collection
Motifs across all iterations, resulting in the consensus string AAAAAAAAacaGGGG with
score 43. These strings are only slightly less conserved than the collection of im-
planted (15, 4)-motifs with score 40 (or the motif returned by GREEDYMOTIFSEARCH

with score 41), and it largely captures the implanted motif. Furthermore, unlike
GREEDYMOTIFSEARCH, RANDOMIZEDMOTIFSEARCH can be run for a larger num-
ber of iterations to discover better and better motifs.

Score

Motifs

AAAtAcAgACAGcGt 5
AAAAAAtAgCAGGGt 3
tAAAAtAAACAGcGG 3
AcAgAAAAAaAGGGG 3
AAAAtAAAACtGcGa 4
AtAgAcgAACAcGGt 6
cAAAAAgAgaAGGGG 4
AtAgAAAAggAaGGG 5
AAgAAAAAAgAGaGG 3
cAtAAtgAACtGtGa 7

CONSENSUS(Motifs) AAAAAAAAACAGGGG 43

FIGURE 2.7 The lowest scoring collection of strings Motifs produced by 100,000 runs
of RANDOMIZEDMOTIFSEARCH, along with their consensus string and score for the
Subtle Motif Problem.

96

But Where Do We Start?

© 2024 Phillip Compeau

STOP: What motifs should we
choose at the start of our
algorithm?

But Where Do We Start?

© 2024 Phillip Compeau

STOP: What motifs should we
choose at the start of our
algorithm?

Answer: Dna is in many
regards an “unexplored
planet”, and so let’s pick a
random set of Motifs.

But Where Do We Start?

© 2024 Phillip Compeau

STOP: What motifs should we
choose at the start of our
algorithm?

Answer: Dna is in many
regards an “unexplored
planet”, and so let’s pick a
random set of Motifs.

Note: we run our algorithm multiple times for many
starting Motifs, taking the best scoring ones.

Pseudocode for “Randomized Motif
Search”

RandomizedMotifSearch(Dna, k, t)
 Motifs ← randomly chosen k-mer from each string in Dna
 BestMotifs ← Motifs
 while forever
 Profile ← Profile(Motifs)
 Motifs ← Motifs(Profile, Dna)
 if Score(Motifs) < Score(BestMotifs)
 BestMotifs ← Motifs
 else
 return BestMotifs

© 2024 Phillip Compeau

Note: we run our algorithm multiple times for many
starting Motifs, taking the best scoring ones.

How Can a Randomized Algorithm
Perform Well?

If the strings in Dna were truly random, then we
would expect a uniform profile matrix, which is
useless for motif finding...

W H I C H D N A PAT T E R N S P L AY T H E R O L E O F M O L E C U L A R C L O C K S ?

STOP and Think: Does your run of RANDOMIZEDMOTIFSEARCH re-
turn a similar consensus string? How many times do you need to run
RANDOMIZEDMOTIFSEARCH to obtain the implanted (15, 4)-motif with dis-
tance 40?

Although the motifs returned by RANDOMIZEDMOTIFSEARCH are slightly less con-
served than the motifs returned by MEDIANSTRING, RANDOMIZEDMOTIFSEARCH

has the advantage of being able to find longer motifs (since MEDIANSTRING becomes
too slow for longer motifs). In the epilogue, we will see that this feature is important in
practice.

How Can a Randomized Algorithm Perform So Well?

In the previous section, we began with a collection of implanted motifs (with consensus
ACGT) that resulted in the following profile matrix.

A: 0.8 0.0 0.0 0.2
C: 0.0 0.6 0.2 0.0
G: 0.2 0.2 0.8 0.0
T: 0.0 0.2 0.0 0.8

If the strings in Dna were truly random, then we would expect that all nucleotides
in the selected k-mers would be equally likely, resulting in an expected Profile in which
every entry is approximately 0.25:

A: 0.25 0.25 0.25 0.25
C: 0.25 0.25 0.25 0.25
G: 0.25 0.25 0.25 0.25
T: 0.25 0.25 0.25 0.25

Such a uniform profile is essentially useless for motif finding because no string is more
probable than any other according to this profile and because it does not provide any
clues on what an implanted motif looks like.

At the opposite end of the spectrum, if we were incredibly lucky, we would choose
the implanted k-mers Motifs from the very beginning, resulting in the first of the two
profile matrices above. In practice, we are likely to obtain a profile somewhere in
between these two extremes, such as the following:

97

© 2024 Phillip Compeau

How Can a Randomized Algorithm
Perform Well?

If we were very lucky, then we might get a profile
matrix that is much less uniform. (Say that the true
motif is “ACGT”.)

W H I C H D N A PAT T E R N S P L AY T H E R O L E O F M O L E C U L A R C L O C K S ?

STOP and Think: Does your run of RANDOMIZEDMOTIFSEARCH re-
turn a similar consensus string? How many times do you need to run
RANDOMIZEDMOTIFSEARCH to obtain the implanted (15, 4)-motif with dis-
tance 40?

Although the motifs returned by RANDOMIZEDMOTIFSEARCH are slightly less con-
served than the motifs returned by MEDIANSTRING, RANDOMIZEDMOTIFSEARCH

has the advantage of being able to find longer motifs (since MEDIANSTRING becomes
too slow for longer motifs). In the epilogue, we will see that this feature is important in
practice.

How Can a Randomized Algorithm Perform So Well?

In the previous section, we began with a collection of implanted motifs (with consensus
ACGT) that resulted in the following profile matrix.

A: 0.8 0.0 0.0 0.2
C: 0.0 0.6 0.2 0.0
G: 0.2 0.2 0.8 0.0
T: 0.0 0.2 0.0 0.8

If the strings in Dna were truly random, then we would expect that all nucleotides
in the selected k-mers would be equally likely, resulting in an expected Profile in which
every entry is approximately 0.25:

A: 0.25 0.25 0.25 0.25
C: 0.25 0.25 0.25 0.25
G: 0.25 0.25 0.25 0.25
T: 0.25 0.25 0.25 0.25

Such a uniform profile is essentially useless for motif finding because no string is more
probable than any other according to this profile and because it does not provide any
clues on what an implanted motif looks like.

At the opposite end of the spectrum, if we were incredibly lucky, we would choose
the implanted k-mers Motifs from the very beginning, resulting in the first of the two
profile matrices above. In practice, we are likely to obtain a profile somewhere in
between these two extremes, such as the following:

97

© 2024 Phillip Compeau

How Can a Randomized Algorithm
Perform Well?

In practice, we are hoping that some of our
randomized initial motifs find a little bit of signal
and start to point us toward the correct motifs.C H A P T E R 2

A: 0.4 0.2 0.2 0.2
C: 0.2 0.4 0.2 0.2
G: 0.2 0.2 0.4 0.2
T: 0.2 0.2 0.2 0.4

This profile matrix has already started to point us toward the implanted motif ACGT,
i.e., ACGT is the most likely 4-mer that can be generated by this profile. Fortunately,
RANDOMIZEDMOTIFSEARCH is designed so that subsequent steps have a good chance
of leading us toward this implanted motif (although it is not certain).

If you still doubt the efficacy of randomized algorithms, consider the following
argument. We have already noticed that if the strings in Dna were random, then
RANDOMIZEDMOTIFSEARCH would start from a nearly uniform profile, and there
would be nothing to work with. However, the key observation is that the strings in Dna
are not random because they include the implanted motif! These multiple occurrences
of the same motif may direct the profile matrix away from the uniform profile and
toward the implanted motif. For example, consider again the original randomly selected
k-mers Motifs (shown in red):

ttACCTtaac
gATGTctgtc

Dna ccgGCGTtag
cactaACGAg
cgtcagAGGT

You will see that the 4-mer AGGT in the last string happened to capture the implanted
motif simply by chance. In fact, the profile formed from the remaining 4-mers (taac,
GTct, ccgG, and acta) is uniform. Note that only completely captured motifs (like
AGGT) rather than partially captured motifs (like GTct or ccgG) contribute to the sta-
tistical bias in the profile matrix.

Exercise Break: Compute the probability that ten randomly selected 15-mers
from ten 600-nucleotide long strings (such as in the Subtle Motif Problem) capture
at least one implanted 15-mer.

Although the probability that randomly selected k-mers match all implanted motifs is
negligible, the probability that they capture at least one implanted motif is significant.
Even in the case of difficult motif finding problems for which this probability is small,
we can run RANDOMIZEDMOTIFSEARCH many times, so that it will almost certainly

98

© 2024 Phillip Compeau

How Can a Randomized Algorithm
Perform Well?

C H A P T E R 2

A: 0.4 0.2 0.2 0.2
C: 0.2 0.4 0.2 0.2
G: 0.2 0.2 0.4 0.2
T: 0.2 0.2 0.2 0.4

This profile matrix has already started to point us toward the implanted motif ACGT,
i.e., ACGT is the most likely 4-mer that can be generated by this profile. Fortunately,
RANDOMIZEDMOTIFSEARCH is designed so that subsequent steps have a good chance
of leading us toward this implanted motif (although it is not certain).

If you still doubt the efficacy of randomized algorithms, consider the following
argument. We have already noticed that if the strings in Dna were random, then
RANDOMIZEDMOTIFSEARCH would start from a nearly uniform profile, and there
would be nothing to work with. However, the key observation is that the strings in Dna
are not random because they include the implanted motif! These multiple occurrences
of the same motif may direct the profile matrix away from the uniform profile and
toward the implanted motif. For example, consider again the original randomly selected
k-mers Motifs (shown in red):

ttACCTtaac
gATGTctgtc

Dna ccgGCGTtag
cactaACGAg
cgtcagAGGT

You will see that the 4-mer AGGT in the last string happened to capture the implanted
motif simply by chance. In fact, the profile formed from the remaining 4-mers (taac,
GTct, ccgG, and acta) is uniform. Note that only completely captured motifs (like
AGGT) rather than partially captured motifs (like GTct or ccgG) contribute to the sta-
tistical bias in the profile matrix.

Exercise Break: Compute the probability that ten randomly selected 15-mers
from ten 600-nucleotide long strings (such as in the Subtle Motif Problem) capture
at least one implanted 15-mer.

Although the probability that randomly selected k-mers match all implanted motifs is
negligible, the probability that they capture at least one implanted motif is significant.
Even in the case of difficult motif finding problems for which this probability is small,
we can run RANDOMIZEDMOTIFSEARCH many times, so that it will almost certainly

98

By taking the Profile-most probable k-mer in each
string, we have a greater chance of moving toward
“ACGT” (although this is not certain).

© 2024 Phillip Compeau

In practice, we are hoping that some of our
randomized initial motifs find a little bit of signal
and start to point us toward the correct motifs.

Before We Continue …

For a profile matrix Profile and string Dnai , the
Profile-most probable k-mer of Dnai is the k-mer
substring text of Dnai that maximizes Pr(text|Profile).

C H A P T E R 2

Motifs

T C G G G G g T T T t t
c C G G t G A c T T a C
a C G G G G A T T T t C
T t G G G G A c T T t t
a a G G G G A c T T C C
T t G G G G A c T T C C
T C G G G G A T T c a t
T C G G G G A T T c C t
T a G G G G A a c T a C
T C G G G t A T a a C C

SCORE(Motifs) 3 + 4 + 0 + 0 + 1 + 1 + 1 + 5 + 2 + 3 + 6 + 4 = 30

COUNT(Motifs)

A: 2 2 0 0 0 0 9 1 1 1 3 0
C: 1 6 0 0 0 0 0 4 1 2 4 6
G: 0 0 10 10 9 9 1 0 0 0 0 0
T: 7 2 0 0 1 1 0 5 8 7 3 4

PROFILE(Motifs)

A: .2 .2 0 0 0 0 .9 .1 .1 .1 .3 0
C: .1 .6 0 0 0 0 0 .4 .1 .2 .4 .6
G: 0 0 1 1 .9 .9 .1 0 0 0 0 0
T: .7 .2 0 0 .1 .1 0 .5 .8 .7 .3 .4

CONSENSUS(Motifs) T C G G G G A T T T C C

weblogo.berkeley.edu

0

1

2

bi
ts

5v

1C
A
T

2T
A
C

3

G

4

G

5T
G

6T
G

7G
A

8A
C
T

9C
A
T

10

A
C
T

11

T
A
C

12

T
C

3v

FIGURE 2.2 From motif matrix to count matrix to profile matrix to consensus string to
motif logo. The NF-kB binding sites form a 10⇥ 12 motif matrix, with the most frequent
nucleotide in each column shown in upper case letters and all other nucleotides shown
in lower case letters. SCORE(Motifs) counts the total number of unpopular (lower case)
symbols in the motif matrix. The motif matrix results in a 4 ⇥ 12 count matrix holding
the nucleotide counts in every column of the motif matrix; a profile matrix holding the
frequencies of nucleotides in every column of the motif matrix; and a consensus string
formed by the most frequent nucleotide in each column of the count matrix. Finally, the
motif logo is a common way to visualize the conservation of various positions within a
motif. The total height of the letters depicts the information content of the position.

74

Exercise: What is the Profile-most probable 12-mer
of GTCGTGGATTTCCTA using the profile matrix
below?

© 2024 Phillip Compeau

Before We Continue …

For a profile matrix Profile and string Dnai , the
Profile-most probable k-mer of Dnai is the k-mer
substring text of Dnai that maximizes Pr(text|Profile).

C H A P T E R 2

Motifs

T C G G G G g T T T t t
c C G G t G A c T T a C
a C G G G G A T T T t C
T t G G G G A c T T t t
a a G G G G A c T T C C
T t G G G G A c T T C C
T C G G G G A T T c a t
T C G G G G A T T c C t
T a G G G G A a c T a C
T C G G G t A T a a C C

SCORE(Motifs) 3 + 4 + 0 + 0 + 1 + 1 + 1 + 5 + 2 + 3 + 6 + 4 = 30

COUNT(Motifs)

A: 2 2 0 0 0 0 9 1 1 1 3 0
C: 1 6 0 0 0 0 0 4 1 2 4 6
G: 0 0 10 10 9 9 1 0 0 0 0 0
T: 7 2 0 0 1 1 0 5 8 7 3 4

PROFILE(Motifs)

A: .2 .2 0 0 0 0 .9 .1 .1 .1 .3 0
C: .1 .6 0 0 0 0 0 .4 .1 .2 .4 .6
G: 0 0 1 1 .9 .9 .1 0 0 0 0 0
T: .7 .2 0 0 .1 .1 0 .5 .8 .7 .3 .4

CONSENSUS(Motifs) T C G G G G A T T T C C

weblogo.berkeley.edu

0

1

2

bi
ts

5v

1C
A
T

2T
A
C

3

G

4

G

5T
G

6T
G

7G
A

8A
C
T

9C
A
T

10

A
C
T

11

T
A
C

12

T
C

3v

FIGURE 2.2 From motif matrix to count matrix to profile matrix to consensus string to
motif logo. The NF-kB binding sites form a 10⇥ 12 motif matrix, with the most frequent
nucleotide in each column shown in upper case letters and all other nucleotides shown
in lower case letters. SCORE(Motifs) counts the total number of unpopular (lower case)
symbols in the motif matrix. The motif matrix results in a 4 ⇥ 12 count matrix holding
the nucleotide counts in every column of the motif matrix; a profile matrix holding the
frequencies of nucleotides in every column of the motif matrix; and a consensus string
formed by the most frequent nucleotide in each column of the count matrix. Finally, the
motif logo is a common way to visualize the conservation of various positions within a
motif. The total height of the letters depicts the information content of the position.

74

Answer: They all have probability zero, even
TCGTGGATTTCC, which matches well against the
profile. Bad! How can we fix this?

© 2024 Phillip Compeau

Historical Aside: The Sunrise Problem

© 2024 Phillip Compeau

What are the chances that the sun will not rise
tomorrow?

Historical Aside: The Sunrise Problem

© 2024 Phillip Compeau

What are the chances that the sun will not rise
tomorrow?

Pierre-Simon Laplace
1 in 1,826,200, of course!

Historical Aside: The Sunrise Problem

© 2024 Phillip Compeau

What are the chances that the sun will not rise
tomorrow?

Pierre-Simon Laplace
1 in 1,826,200, of course!

The Rule of Succession

© 2024 Phillip Compeau

Key Point: just because we have not observed an
event does not mean that we should assign its future
probability to be zero.

The Rule of Succession

© 2024 Phillip Compeau

Key Point: just because we have not observed an
event does not mean that we should assign its future
probability to be zero.

We address this by adding a pseudocount value to
the counts of each type of event before normalizing.

Applying Pseudocounts to Motif Finding

C H A P T E R 2

event equal to zero represents an inaccurate oversimplification that may cause problems.
By artificially adjusting the probability of rare events, these problems can be mitigated.

Laplace’s Rule of Succession

Cromwell’s rule is relevant to the calculation of the probability of a string based on a
profile matrix. For example, consider the following Profile:

Profile

A: .2 .2 .0 .0 .0 .0 .9 .1 .1 .1 .3 .0
C: .1 .6 .0 .0 .0 .0 .0 .4 .1 .2 .4 .6
G: .0 .0 1 1 .9 .9 .1 .0 .0 .0 .0 .0
T: .7 .2 .0 .0 .1 .1 .0 .5 .8 .7 .3 .4

Pr(TCGTGGATTTCC|Profile) = .7 · .6 · 1 · .0 · .9 · .9 · .9 · .5 · .8 · .7 · .4 · .6 = 0

The fourth symbol of TCGTGGATTTCC causes Pr(TCGTGGATTTCC|Profile) to equal zero.
As a result, the entire string is assigned a zero probability, even though TCGTGGATTTCC
differs from the consensus string at only one position. For that matter, TCGTGGATTTCC
has the same low probability as AAATCTTGGAA, which differs from the consensus string
at every position.

To improve this unfair scoring, bioinformaticians often substitute zeroes with small
numbers called pseudocounts. The simplest approach to introducing pseudocounts,
called Laplace’s Rule of Succession, is similar to the principle that Laplace used to
calculate the probability that the sun will not rise tomorrow. In the case of motifs,
pseudocounts often amount to adding 1 (or some other small number) to each element
of COUNT(Motifs). Say that we have the following motif, count, and profile matrices:

Motifs

T A A C
G T C T
A C T A
A G G T

COUNT(Motifs)

A: 2 1 1 1

PROFILE(Motifs)

2/4 1/4 1/4 1/4
C: 0 1 1 1 0 1/4 1/4 1/4
G: 1 1 1 0 1/4 1/4 1/4 0
T: 1 1 1 2 1/4 1/4 1/4 2/4

88

Say that we have the following Motifs and its profile
matrix.

C H A P T E R 2

event equal to zero represents an inaccurate oversimplification that may cause problems.
By artificially adjusting the probability of rare events, these problems can be mitigated.

Laplace’s Rule of Succession

Cromwell’s rule is relevant to the calculation of the probability of a string based on a
profile matrix. For example, consider the following Profile:

Profile

A: .2 .2 .0 .0 .0 .0 .9 .1 .1 .1 .3 .0
C: .1 .6 .0 .0 .0 .0 .0 .4 .1 .2 .4 .6
G: .0 .0 1 1 .9 .9 .1 .0 .0 .0 .0 .0
T: .7 .2 .0 .0 .1 .1 .0 .5 .8 .7 .3 .4

Pr(TCGTGGATTTCC|Profile) = .7 · .6 · 1 · .0 · .9 · .9 · .9 · .5 · .8 · .7 · .4 · .6 = 0

The fourth symbol of TCGTGGATTTCC causes Pr(TCGTGGATTTCC|Profile) to equal zero.
As a result, the entire string is assigned a zero probability, even though TCGTGGATTTCC
differs from the consensus string at only one position. For that matter, TCGTGGATTTCC
has the same low probability as AAATCTTGGAA, which differs from the consensus string
at every position.

To improve this unfair scoring, bioinformaticians often substitute zeroes with small
numbers called pseudocounts. The simplest approach to introducing pseudocounts,
called Laplace’s Rule of Succession, is similar to the principle that Laplace used to
calculate the probability that the sun will not rise tomorrow. In the case of motifs,
pseudocounts often amount to adding 1 (or some other small number) to each element
of COUNT(Motifs). Say that we have the following motif, count, and profile matrices:

Motifs

T A A C
G T C T
A C T A
A G G T

COUNT(Motifs)

A: 2 1 1 1

PROFILE(Motifs)

2/4 1/4 1/4 1/4
C: 0 1 1 1 0 1/4 1/4 1/4
G: 1 1 1 0 1/4 1/4 1/4 0
T: 1 1 1 2 1/4 1/4 1/4 2/4

88

© 2024 Phillip Compeau

Applying Pseudocounts to Motif Finding

C H A P T E R 2

event equal to zero represents an inaccurate oversimplification that may cause problems.
By artificially adjusting the probability of rare events, these problems can be mitigated.

Laplace’s Rule of Succession

Cromwell’s rule is relevant to the calculation of the probability of a string based on a
profile matrix. For example, consider the following Profile:

Profile

A: .2 .2 .0 .0 .0 .0 .9 .1 .1 .1 .3 .0
C: .1 .6 .0 .0 .0 .0 .0 .4 .1 .2 .4 .6
G: .0 .0 1 1 .9 .9 .1 .0 .0 .0 .0 .0
T: .7 .2 .0 .0 .1 .1 .0 .5 .8 .7 .3 .4

Pr(TCGTGGATTTCC|Profile) = .7 · .6 · 1 · .0 · .9 · .9 · .9 · .5 · .8 · .7 · .4 · .6 = 0

The fourth symbol of TCGTGGATTTCC causes Pr(TCGTGGATTTCC|Profile) to equal zero.
As a result, the entire string is assigned a zero probability, even though TCGTGGATTTCC
differs from the consensus string at only one position. For that matter, TCGTGGATTTCC
has the same low probability as AAATCTTGGAA, which differs from the consensus string
at every position.

To improve this unfair scoring, bioinformaticians often substitute zeroes with small
numbers called pseudocounts. The simplest approach to introducing pseudocounts,
called Laplace’s Rule of Succession, is similar to the principle that Laplace used to
calculate the probability that the sun will not rise tomorrow. In the case of motifs,
pseudocounts often amount to adding 1 (or some other small number) to each element
of COUNT(Motifs). Say that we have the following motif, count, and profile matrices:

Motifs

T A A C
G T C T
A C T A
A G G T

COUNT(Motifs)

A: 2 1 1 1

PROFILE(Motifs)

2/4 1/4 1/4 1/4
C: 0 1 1 1 0 1/4 1/4 1/4
G: 1 1 1 0 1/4 1/4 1/4 0
T: 1 1 1 2 1/4 1/4 1/4 2/4

88

Say that we have the following Motifs and its profile
matrix.

C H A P T E R 2

event equal to zero represents an inaccurate oversimplification that may cause problems.
By artificially adjusting the probability of rare events, these problems can be mitigated.

Laplace’s Rule of Succession

Cromwell’s rule is relevant to the calculation of the probability of a string based on a
profile matrix. For example, consider the following Profile:

Profile

A: .2 .2 .0 .0 .0 .0 .9 .1 .1 .1 .3 .0
C: .1 .6 .0 .0 .0 .0 .0 .4 .1 .2 .4 .6
G: .0 .0 1 1 .9 .9 .1 .0 .0 .0 .0 .0
T: .7 .2 .0 .0 .1 .1 .0 .5 .8 .7 .3 .4

Pr(TCGTGGATTTCC|Profile) = .7 · .6 · 1 · .0 · .9 · .9 · .9 · .5 · .8 · .7 · .4 · .6 = 0

The fourth symbol of TCGTGGATTTCC causes Pr(TCGTGGATTTCC|Profile) to equal zero.
As a result, the entire string is assigned a zero probability, even though TCGTGGATTTCC
differs from the consensus string at only one position. For that matter, TCGTGGATTTCC
has the same low probability as AAATCTTGGAA, which differs from the consensus string
at every position.

To improve this unfair scoring, bioinformaticians often substitute zeroes with small
numbers called pseudocounts. The simplest approach to introducing pseudocounts,
called Laplace’s Rule of Succession, is similar to the principle that Laplace used to
calculate the probability that the sun will not rise tomorrow. In the case of motifs,
pseudocounts often amount to adding 1 (or some other small number) to each element
of COUNT(Motifs). Say that we have the following motif, count, and profile matrices:

Motifs

T A A C
G T C T
A C T A
A G G T

COUNT(Motifs)

A: 2 1 1 1

PROFILE(Motifs)

2/4 1/4 1/4 1/4
C: 0 1 1 1 0 1/4 1/4 1/4
G: 1 1 1 0 1/4 1/4 1/4 0
T: 1 1 1 2 1/4 1/4 1/4 2/4

88

Adding a pseudocount of 1 produces following
count and profile matrix.

W H I C H D N A PAT T E R N S P L AY T H E R O L E O F M O L E C U L A R C L O C K S ?

Laplace’s Rule of Succession adds 1 to each element of COUNT(Motifs), updating the
two matrices to the following:

COUNT(Motifs)

A: 2+1 1+1 1+1 1+1

PROFILE(Motifs)

3/8 2/8 2/8 2/8
C: 0+1 1+1 1+1 1+1 1/8 2/8 2/8 2/8
G: 1+1 1+1 1+1 0+1 2/8 2/8 2/8 1/8
T: 1+1 1+1 1+1 2+1 2/8 2/8 2/8 3/8

STOP and Think: How would you use Laplace’s Rule of Succession to address
the shortcomings of GREEDYMOTIFSEARCH?

An improved greedy motif search

The only change we need to introduce to GREEDYMOTIFSEARCH in order to eliminate
zeroes from the profile matrices that it constructs is to replace line 6 of the pseudocode
for GREEDYMOTIFSEARCH:

form Profile from motifs Motif1, ... Motifi�1

with the following line:

apply Laplace’s Rule of Succession to form Profile from motifs Motif1, ... Motifi�1

We now will apply Laplace’s Rule of Succession to search for the (4, 1)-motif ACGT
implanted in the following strings Dna:

ttACCTtaac
gATGTctgtc

Dna acgGCGTtag
ccctaACGAg
cgtcagAGGT

Again, let’s assume that the algorithm has already chosen the implanted 4-mer ACCT
from the first sequence. We can construct the corresponding count and profile matrices
using Laplace’s Rule of Succession:

89

© 2024 Phillip Compeau

Another Issue with Randomized Motif
Search

By taking only the most probable k-mer at each
step, RandomizedMotifSearch is very ”rigid”, as it
can move only in one direction. (In fact, its only
randomization is in the initial choice of k-mers.)

© 2024 Phillip Compeau

Another Issue with Randomized Motif
Search

By taking only the most probable k-mer at each
step, RandomizedMotifSearch is very ”rigid”, as it
can move only in one direction. (In fact, its only
randomization is in the initial choice of k-mers.)

Idea: Perhaps we could allow moving from one
collection of motifs to another based on
randomization.

© 2024 Phillip Compeau

Overview of Gibbs Sampling

W H I C H D N A PAT T E R N S P L AY T H E R O L E O F M O L E C U L A R C L O C K S ?

catch at least one implanted motif, thus creating a statistical bias pointing toward the
correct motif.

Unfortunately, capturing a single implanted motif is often insufficient to steer
RANDOMIZEDMOTIFSEARCH to an optimal solution. Therefore, since the number
of starting positions of k-mers is huge, the strategy of randomly selecting motifs is
often not as successful as in the simple example above. The chance that these randomly
selected k-mers will be able to guide us to the optimal solution is relatively small.

Exercise Break: Compute the probability that ten randomly selected 15-mers
from the ten 600-nucleotide long strings in the Subtle Motif Problem capture at
least two implanted 15-mers.

Gibbs Sampling

Note that RANDOMIZEDMOTIFSEARCH may change all t strings in Motifs in a single
iteration. This strategy may prove reckless, since some correct motifs (captured in
Motifs) may potentially be discarded at the next iteration. GIBBSSAMPLER is a more
cautious iterative algorithm that discards a single k-mer from the current set of motifs at
each iteration and decides to either keep it or replace it with a new one. This algorithm
thus moves with more caution in the space of all motifs, as illustrated below.

ttaccttaac ttaccttaac ttaccttaac ttaccttaac
gatatctgtc gatatctgtc gatatctgtc gatatctgtc
acggcgttcg ! acggcgttcg acggcgttcg ! acggcgttcg
ccctaaagag ccctaaagag ccctaaagag ccctaaagag
cgtcagaggt cgtcagaggt cgtcagaggt cgtcagaggt

RANDOMIZEDMOTIFSEARCH GIBBSSAMPLER

(may change all k-mers in one step) (changes one k-mer in one step)

Like RANDOMIZEDMOTIFSEARCH, GIBBSSAMPLER starts with randomly chosen
k-mers in each of t DNA sequences, but it makes a random rather than a deterministic
choice at each iteration. It uses randomly selected k-mers Motifs = (Motif1, . . . , Motift)
to come up with another (hopefully better scoring) set of k-mers. In contrast with
RANDOMIZEDMOTIFSEARCH, which deterministically defines new motifs as

MOTIFS(PROFILE(Motifs), Dna) ,

99

Unlike RandomizedMotifSearch, Gibbs sampling
will change only a single k-mer in each step, as well
as changing this k-mer more liberally.

© 2024 Phillip Compeau

Gibbs Sampling in Action

W H I C H D N A PAT T E R N S P L AY T H E R O L E O F M O L E C U L A R C L O C K S ?

GIBBSSAMPLER(Dna, k, t, N)
randomly select k-mers Motifs = (Motif1, ..., Motift) in each string from Dna
BestMotifs Motifs
for j 1 to N

i RANDOM(t)
Profile profile matrix formed from all strings in Motifs except for Motifi
Motifi Profile-randomly generated k-mer in the i-th sequence
if SCORE(Motifs) < SCORE(BestMotifs)

BestMotifs Motifs
return BestMotifs

2G

STOP and Think: Note that in contrast to RANDOMIZEDMOTIFSEARCH, which
always moves from higher to lower scoring Motifs, GIBBSSAMPLER may move
from lower to higher scoring Motifs. Why is this reasonable?

Gibbs Sampling in Action

We illustrate how GIBBSSAMPLER works on the same strings Dna that we considered
before. Imagine that, at the initial step, the algorithm has chosen the following 4-mers
(shown in red) and has randomly selected the third string for removal. To be more
precise, GIBBSSAMPLER does not really remove the third string; it ignores it at this
particular step and may analyze it again in subsequent steps.

ttACCTtaac ttACCTtaac
gATGTctgtc gATGTctgtc

Dna ccgGCGTtag �! ----------
cactaACGAg cactaACGAg
cgtcagAGGT cgtcagAGGT

This results in the following motif, count, and profile matrices.

101

Say that we pick the red strings as our Motifs of
length k = 4. Gibbs sampling randomly selects one
of the strings to be replaced.

© 2024 Phillip Compeau

Gibbs Sampling in Action

W H I C H D N A PAT T E R N S P L AY T H E R O L E O F M O L E C U L A R C L O C K S ?

GIBBSSAMPLER(Dna, k, t, N)
randomly select k-mers Motifs = (Motif1, ..., Motift) in each string from Dna
BestMotifs Motifs
for j 1 to N

i RANDOM(t)
Profile profile matrix formed from all strings in Motifs except for Motifi
Motifi Profile-randomly generated k-mer in the i-th sequence
if SCORE(Motifs) < SCORE(BestMotifs)

BestMotifs Motifs
return BestMotifs

2G

STOP and Think: Note that in contrast to RANDOMIZEDMOTIFSEARCH, which
always moves from higher to lower scoring Motifs, GIBBSSAMPLER may move
from lower to higher scoring Motifs. Why is this reasonable?

Gibbs Sampling in Action

We illustrate how GIBBSSAMPLER works on the same strings Dna that we considered
before. Imagine that, at the initial step, the algorithm has chosen the following 4-mers
(shown in red) and has randomly selected the third string for removal. To be more
precise, GIBBSSAMPLER does not really remove the third string; it ignores it at this
particular step and may analyze it again in subsequent steps.

ttACCTtaac ttACCTtaac
gATGTctgtc gATGTctgtc

Dna ccgGCGTtag �! ----------
cactaACGAg cactaACGAg
cgtcagAGGT cgtcagAGGT

This results in the following motif, count, and profile matrices.

101

Adding pseudocounts allows us to compute a new
profile matrix using just the t – 1 strings that are
remaining.

C H A P T E R 2

t a a c
Motifs G T c t

a c t a
A G G T

COUNT(Motifs)

A: 2 1 1 1

PROFILE(Motifs)

A: 2/4 1/4 1/4 1/4
C: 0 1 1 1 C: 0 1/4 1/4 1/4
G: 1 1 1 0 G: 1/4 1/4 1/4 0
T: 1 1 1 2 T: 1/4 1/4 1/4 2/4

Note that the profile matrix is only slightly more conserved than the uniform profile,
making us wonder whether we have any chance to be steered toward the implanted
motif. We now use this profile matrix to compute the probabilities of all 4-mers in the
deleted string ccgGCGTtag:

ccgG cgGC gGCG GCGT CGTt GTta Ttag
0 0 0 1/128 0 1/256 0

Note that all but two of these probabilities are zero. This situation is similar to the one
we encountered with GREEDYMOTIFSEARCH, and as before, we need to augment zero
probabilities with small pseudocounts to avoid disastrous results.

Application of Laplace’s Rule of Succession to the count matrix above yields the
following updated count and profile matrices:

COUNT(Motifs)

A: 3 2 2 2

PROFILE(Motifs)

A: 3/8 2/8 2/8 2/8
C: 1 2 2 2 C: 1/8 2/8 2/8 2/8
G: 2 2 2 1 G: 2/8 2/8 2/8 1/8
T: 2 2 2 3 T: 2/8 2/8 2/8 3/8

After adding pseudocounts, the 4-mer probabilities in the deleted string ccgGCGTtag
are recomputed as follows:

ccgG cgGC gGCG GCGT CGTt GTta Ttag
4/84 8/84 8/84 24/84 12/84 16/84 8/84

Since these probabilities sum to C = 80/84, our hypothetical seven-sided die is repre-
sented by the random number generator

RANDOM

✓
4/84

80/84 ,
8/84

80/84 ,
8/84

80/84 ,
24/84

80/84 ,
12/84

80/84 ,
16/84

80/84 ,
8/84

80/84

◆

= RANDOM

✓
4

80
,

8
80

,
8

80
,

24
80

,
12
80

,
16
80

,
8
80

◆
.

102

© 2024 Phillip Compeau

Gibbs Sampling in Action

We then find Pr(text|Profile) for every 4-mer in the
removed string CCGGCGTTAG.

C H A P T E R 2

t a a c
Motifs G T c t

a c t a
A G G T

COUNT(Motifs)

A: 2 1 1 1

PROFILE(Motifs)

A: 2/4 1/4 1/4 1/4
C: 0 1 1 1 C: 0 1/4 1/4 1/4
G: 1 1 1 0 G: 1/4 1/4 1/4 0
T: 1 1 1 2 T: 1/4 1/4 1/4 2/4

Note that the profile matrix is only slightly more conserved than the uniform profile,
making us wonder whether we have any chance to be steered toward the implanted
motif. We now use this profile matrix to compute the probabilities of all 4-mers in the
deleted string ccgGCGTtag:

ccgG cgGC gGCG GCGT CGTt GTta Ttag
0 0 0 1/128 0 1/256 0

Note that all but two of these probabilities are zero. This situation is similar to the one
we encountered with GREEDYMOTIFSEARCH, and as before, we need to augment zero
probabilities with small pseudocounts to avoid disastrous results.

Application of Laplace’s Rule of Succession to the count matrix above yields the
following updated count and profile matrices:

COUNT(Motifs)

A: 3 2 2 2

PROFILE(Motifs)

A: 3/8 2/8 2/8 2/8
C: 1 2 2 2 C: 1/8 2/8 2/8 2/8
G: 2 2 2 1 G: 2/8 2/8 2/8 1/8
T: 2 2 2 3 T: 2/8 2/8 2/8 3/8

After adding pseudocounts, the 4-mer probabilities in the deleted string ccgGCGTtag
are recomputed as follows:

ccgG cgGC gGCG GCGT CGTt GTta Ttag
4/84 8/84 8/84 24/84 12/84 16/84 8/84

Since these probabilities sum to C = 80/84, our hypothetical seven-sided die is repre-
sented by the random number generator

RANDOM

✓
4/84

80/84 ,
8/84

80/84 ,
8/84

80/84 ,
24/84

80/84 ,
12/84

80/84 ,
16/84

80/84 ,
8/84

80/84

◆

= RANDOM

✓
4

80
,

8
80

,
8

80
,

24
80

,
12
80

,
16
80

,
8
80

◆
.

102

C H A P T E R 2

t a a c
Motifs G T c t

a c t a
A G G T

COUNT(Motifs)

A: 2 1 1 1

PROFILE(Motifs)

A: 2/4 1/4 1/4 1/4
C: 0 1 1 1 C: 0 1/4 1/4 1/4
G: 1 1 1 0 G: 1/4 1/4 1/4 0
T: 1 1 1 2 T: 1/4 1/4 1/4 2/4

Note that the profile matrix is only slightly more conserved than the uniform profile,
making us wonder whether we have any chance to be steered toward the implanted
motif. We now use this profile matrix to compute the probabilities of all 4-mers in the
deleted string ccgGCGTtag:

ccgG cgGC gGCG GCGT CGTt GTta Ttag
0 0 0 1/128 0 1/256 0

Note that all but two of these probabilities are zero. This situation is similar to the one
we encountered with GREEDYMOTIFSEARCH, and as before, we need to augment zero
probabilities with small pseudocounts to avoid disastrous results.

Application of Laplace’s Rule of Succession to the count matrix above yields the
following updated count and profile matrices:

COUNT(Motifs)

A: 3 2 2 2

PROFILE(Motifs)

A: 3/8 2/8 2/8 2/8
C: 1 2 2 2 C: 1/8 2/8 2/8 2/8
G: 2 2 2 1 G: 2/8 2/8 2/8 1/8
T: 2 2 2 3 T: 2/8 2/8 2/8 3/8

After adding pseudocounts, the 4-mer probabilities in the deleted string ccgGCGTtag
are recomputed as follows:

ccgG cgGC gGCG GCGT CGTt GTta Ttag
4/84 8/84 8/84 24/84 12/84 16/84 8/84

Since these probabilities sum to C = 80/84, our hypothetical seven-sided die is repre-
sented by the random number generator

RANDOM

✓
4/84

80/84 ,
8/84

80/84 ,
8/84

80/84 ,
24/84

80/84 ,
12/84

80/84 ,
16/84

80/84 ,
8/84

80/84

◆

= RANDOM

✓
4

80
,

8
80

,
8

80
,

24
80

,
12
80

,
16
80

,
8
80

◆
.

102

© 2024 Phillip Compeau

Gibbs Sampling in Action

Rather than take the most probable 4-mer, we
choose one randomly weighted by the probabilities
after normalizing them so that they sum to 1.

C H A P T E R 2

t a a c
Motifs G T c t

a c t a
A G G T

COUNT(Motifs)

A: 2 1 1 1

PROFILE(Motifs)

A: 2/4 1/4 1/4 1/4
C: 0 1 1 1 C: 0 1/4 1/4 1/4
G: 1 1 1 0 G: 1/4 1/4 1/4 0
T: 1 1 1 2 T: 1/4 1/4 1/4 2/4

Note that the profile matrix is only slightly more conserved than the uniform profile,
making us wonder whether we have any chance to be steered toward the implanted
motif. We now use this profile matrix to compute the probabilities of all 4-mers in the
deleted string ccgGCGTtag:

ccgG cgGC gGCG GCGT CGTt GTta Ttag
0 0 0 1/128 0 1/256 0

Note that all but two of these probabilities are zero. This situation is similar to the one
we encountered with GREEDYMOTIFSEARCH, and as before, we need to augment zero
probabilities with small pseudocounts to avoid disastrous results.

Application of Laplace’s Rule of Succession to the count matrix above yields the
following updated count and profile matrices:

COUNT(Motifs)

A: 3 2 2 2

PROFILE(Motifs)

A: 3/8 2/8 2/8 2/8
C: 1 2 2 2 C: 1/8 2/8 2/8 2/8
G: 2 2 2 1 G: 2/8 2/8 2/8 1/8
T: 2 2 2 3 T: 2/8 2/8 2/8 3/8

After adding pseudocounts, the 4-mer probabilities in the deleted string ccgGCGTtag
are recomputed as follows:

ccgG cgGC gGCG GCGT CGTt GTta Ttag
4/84 8/84 8/84 24/84 12/84 16/84 8/84

Since these probabilities sum to C = 80/84, our hypothetical seven-sided die is repre-
sented by the random number generator

RANDOM

✓
4/84

80/84 ,
8/84

80/84 ,
8/84

80/84 ,
24/84

80/84 ,
12/84

80/84 ,
16/84

80/84 ,
8/84

80/84

◆

= RANDOM

✓
4

80
,

8
80

,
8

80
,

24
80

,
12
80

,
16
80

,
8
80

◆
.

102

4/80 8/80 8/80 8/8012/80 16/8024/80

© 2024 Phillip Compeau

Gibbs Sampling in Action

We now have a new collection of Motifs after
choosing one based on this “weighted die roll” to
replace the one we had removed.

W H I C H D N A PAT T E R N S P L AY T H E R O L E O F M O L E C U L A R C L O C K S ?

GIBBSSAMPLER(Dna, k, t, N)
randomly select k-mers Motifs = (Motif1, ..., Motift) in each string from Dna
BestMotifs Motifs
for j 1 to N

i RANDOM(t)
Profile profile matrix formed from all strings in Motifs except for Motifi
Motifi Profile-randomly generated k-mer in the i-th sequence
if SCORE(Motifs) < SCORE(BestMotifs)

BestMotifs Motifs
return BestMotifs

2G

STOP and Think: Note that in contrast to RANDOMIZEDMOTIFSEARCH, which
always moves from higher to lower scoring Motifs, GIBBSSAMPLER may move
from lower to higher scoring Motifs. Why is this reasonable?

Gibbs Sampling in Action

We illustrate how GIBBSSAMPLER works on the same strings Dna that we considered
before. Imagine that, at the initial step, the algorithm has chosen the following 4-mers
(shown in red) and has randomly selected the third string for removal. To be more
precise, GIBBSSAMPLER does not really remove the third string; it ignores it at this
particular step and may analyze it again in subsequent steps.

ttACCTtaac ttACCTtaac
gATGTctgtc gATGTctgtc

Dna ccgGCGTtag �! ----------
cactaACGAg cactaACGAg
cgtcagAGGT cgtcagAGGT

This results in the following motif, count, and profile matrices.

101

© 2024 Phillip Compeau

Gibbs Sampling in Action

We now have a new collection of Motifs after
choosing one based on this “weighted die roll” to
replace the one we had removed.

W H I C H D N A PAT T E R N S P L AY T H E R O L E O F M O L E C U L A R C L O C K S ?

GIBBSSAMPLER(Dna, k, t, N)
randomly select k-mers Motifs = (Motif1, ..., Motift) in each string from Dna
BestMotifs Motifs
for j 1 to N

i RANDOM(t)
Profile profile matrix formed from all strings in Motifs except for Motifi
Motifi Profile-randomly generated k-mer in the i-th sequence
if SCORE(Motifs) < SCORE(BestMotifs)

BestMotifs Motifs
return BestMotifs

2G

STOP and Think: Note that in contrast to RANDOMIZEDMOTIFSEARCH, which
always moves from higher to lower scoring Motifs, GIBBSSAMPLER may move
from lower to higher scoring Motifs. Why is this reasonable?

Gibbs Sampling in Action

We illustrate how GIBBSSAMPLER works on the same strings Dna that we considered
before. Imagine that, at the initial step, the algorithm has chosen the following 4-mers
(shown in red) and has randomly selected the third string for removal. To be more
precise, GIBBSSAMPLER does not really remove the third string; it ignores it at this
particular step and may analyze it again in subsequent steps.

ttACCTtaac ttACCTtaac
gATGTctgtc gATGTctgtc

Dna ccgGCGTtag �! ----------
cactaACGAg cactaACGAg
cgtcagAGGT cgtcagAGGT

This results in the following motif, count, and profile matrices.

101

W H I C H D N A PAT T E R N S P L AY T H E R O L E O F M O L E C U L A R C L O C K S ?

Let’s assume that after rolling this seven-sided die, we arrive at the Profile-randomly
generated 4-mer GCGT (the fourth 4-mer in the deleted sequence). The deleted string
ccgGCGTtag is now added back to the collection of motifs, and GCGT substitutes the
previously chosen ccgG in the third string in Dna, as shown below. We then roll a fair
five-sided die and randomly select the first string from Dna for removal.

ttACCTtaac ----------
gATGTctgtc gATGTctgtc

Dna ccgGCGTtag �! ccgGCGTtag
cactaACGAg cactaACGAg
cgtcagAGGT cgtcagAGGT

After constructing the motif and profile matrices, we obtain the following:

Motifs

G T c t

PROFILE(Motifs)

A: 2/4 0 0 1/4
G C G T C: 0 2/4 1/4 0
a c t a G: 2/4 1/4 2/4 0
A G G T T: 0 1/4 1/4 3/4

Note that the profile matrix looks more biased toward the implanted motif than the
previous profile matrix did. We update the count and profile matrices with pseudo-
counts:

COUNT(Motifs)

A: 3 1 1 2

PROFILE(Motifs)

A: 3/8 1/8 1/8 2/8
C: 1 3 2 1 C: 1/8 3/8 2/8 1/8
G: 3 2 3 1 G: 3/8 2/8 3/8 1/8
T: 1 2 2 4 T: 1/8 2/8 2/8 4/8

Then, we compute the probabilities of all 4-mers in the deleted string ttACCTtaac:

ttAC tACC ACCT CCTt CTta Ttaa taac
2/84 2/84 72/84 24/84 8/84 4/84 1/84

When we roll a seven-sided die, we arrive at the Profile-randomly generated k-mer
ACCT, which we add to the collection Motifs. After rolling the five-sided die once again,
we randomly select the fourth string for removal.

ttACCTtaac ttACCTtaac
gATGTctgtc gATGTctgtc

Dna ccgGCGTtag �! ccgGCGTtag
cactaACGAg ----------
cgtcagAGGT cgtcagAGGT

103

© 2024 Phillip Compeau

Gibbs Sampling in Action

Running these steps N times for some parameter N
yields the Gibbs sampler algorithm.

© 2024 Phillip Compeau

Gibbs Sampling Pseudocode

GibbsSampler(Dna, k, t, N)
 randomly select k-mers Motifs = (Motif1, ..., Motift) from Dna
 BestMotifs ← Motifs
 for j ← 1 to N
 i ← randomly generated integer between 1 and t
 Profile ← profile formed from all Motifs other than Motifi
 Motifi ← Profile-randomly generated k-mer in Dnai
 if Score(Motifs) < Score(BestMotifs)
 BestMotifs ← Motifs
 return BestMotifs

© 2024 Phillip Compeau

Gibbs Sampling Weakness

C H A P T E R 2

t a a c
Motifs G T c t

a c t a
A G G T

COUNT(Motifs)

A: 2 1 1 1

PROFILE(Motifs)

A: 2/4 1/4 1/4 1/4
C: 0 1 1 1 C: 0 1/4 1/4 1/4
G: 1 1 1 0 G: 1/4 1/4 1/4 0
T: 1 1 1 2 T: 1/4 1/4 1/4 2/4

Note that the profile matrix is only slightly more conserved than the uniform profile,
making us wonder whether we have any chance to be steered toward the implanted
motif. We now use this profile matrix to compute the probabilities of all 4-mers in the
deleted string ccgGCGTtag:

ccgG cgGC gGCG GCGT CGTt GTta Ttag
0 0 0 1/128 0 1/256 0

Note that all but two of these probabilities are zero. This situation is similar to the one
we encountered with GREEDYMOTIFSEARCH, and as before, we need to augment zero
probabilities with small pseudocounts to avoid disastrous results.

Application of Laplace’s Rule of Succession to the count matrix above yields the
following updated count and profile matrices:

COUNT(Motifs)

A: 3 2 2 2

PROFILE(Motifs)

A: 3/8 2/8 2/8 2/8
C: 1 2 2 2 C: 1/8 2/8 2/8 2/8
G: 2 2 2 1 G: 2/8 2/8 2/8 1/8
T: 2 2 2 3 T: 2/8 2/8 2/8 3/8

After adding pseudocounts, the 4-mer probabilities in the deleted string ccgGCGTtag
are recomputed as follows:

ccgG cgGC gGCG GCGT CGTt GTta Ttag
4/84 8/84 8/84 24/84 12/84 16/84 8/84

Since these probabilities sum to C = 80/84, our hypothetical seven-sided die is repre-
sented by the random number generator

RANDOM

✓
4/84

80/84 ,
8/84

80/84 ,
8/84

80/84 ,
24/84

80/84 ,
12/84

80/84 ,
16/84

80/84 ,
8/84

80/84

◆

= RANDOM

✓
4

80
,

8
80

,
8

80
,

24
80

,
12
80

,
16
80

,
8
80

◆
.

102

C H A P T E R 2

t a a c
Motifs G T c t

a c t a
A G G T

COUNT(Motifs)

A: 2 1 1 1

PROFILE(Motifs)

A: 2/4 1/4 1/4 1/4
C: 0 1 1 1 C: 0 1/4 1/4 1/4
G: 1 1 1 0 G: 1/4 1/4 1/4 0
T: 1 1 1 2 T: 1/4 1/4 1/4 2/4

Note that the profile matrix is only slightly more conserved than the uniform profile,
making us wonder whether we have any chance to be steered toward the implanted
motif. We now use this profile matrix to compute the probabilities of all 4-mers in the
deleted string ccgGCGTtag:

ccgG cgGC gGCG GCGT CGTt GTta Ttag
0 0 0 1/128 0 1/256 0

Note that all but two of these probabilities are zero. This situation is similar to the one
we encountered with GREEDYMOTIFSEARCH, and as before, we need to augment zero
probabilities with small pseudocounts to avoid disastrous results.

Application of Laplace’s Rule of Succession to the count matrix above yields the
following updated count and profile matrices:

COUNT(Motifs)

A: 3 2 2 2

PROFILE(Motifs)

A: 3/8 2/8 2/8 2/8
C: 1 2 2 2 C: 1/8 2/8 2/8 2/8
G: 2 2 2 1 G: 2/8 2/8 2/8 1/8
T: 2 2 2 3 T: 2/8 2/8 2/8 3/8

After adding pseudocounts, the 4-mer probabilities in the deleted string ccgGCGTtag
are recomputed as follows:

ccgG cgGC gGCG GCGT CGTt GTta Ttag
4/84 8/84 8/84 24/84 12/84 16/84 8/84

Since these probabilities sum to C = 80/84, our hypothetical seven-sided die is repre-
sented by the random number generator

RANDOM

✓
4/84

80/84 ,
8/84

80/84 ,
8/84

80/84 ,
24/84

80/84 ,
12/84

80/84 ,
16/84

80/84 ,
8/84

80/84

◆

= RANDOM

✓
4

80
,

8
80

,
8

80
,

24
80

,
12
80

,
16
80

,
8
80

◆
.

102

By making a random choice, Gibbs sampling may
miss “direction” of true motifs because of bad luck.

© 2024 Phillip Compeau

Gibbs Sampling Weakness

C H A P T E R 2

t a a c
Motifs G T c t

a c t a
A G G T

COUNT(Motifs)

A: 2 1 1 1

PROFILE(Motifs)

A: 2/4 1/4 1/4 1/4
C: 0 1 1 1 C: 0 1/4 1/4 1/4
G: 1 1 1 0 G: 1/4 1/4 1/4 0
T: 1 1 1 2 T: 1/4 1/4 1/4 2/4

Note that the profile matrix is only slightly more conserved than the uniform profile,
making us wonder whether we have any chance to be steered toward the implanted
motif. We now use this profile matrix to compute the probabilities of all 4-mers in the
deleted string ccgGCGTtag:

ccgG cgGC gGCG GCGT CGTt GTta Ttag
0 0 0 1/128 0 1/256 0

Note that all but two of these probabilities are zero. This situation is similar to the one
we encountered with GREEDYMOTIFSEARCH, and as before, we need to augment zero
probabilities with small pseudocounts to avoid disastrous results.

Application of Laplace’s Rule of Succession to the count matrix above yields the
following updated count and profile matrices:

COUNT(Motifs)

A: 3 2 2 2

PROFILE(Motifs)

A: 3/8 2/8 2/8 2/8
C: 1 2 2 2 C: 1/8 2/8 2/8 2/8
G: 2 2 2 1 G: 2/8 2/8 2/8 1/8
T: 2 2 2 3 T: 2/8 2/8 2/8 3/8

After adding pseudocounts, the 4-mer probabilities in the deleted string ccgGCGTtag
are recomputed as follows:

ccgG cgGC gGCG GCGT CGTt GTta Ttag
4/84 8/84 8/84 24/84 12/84 16/84 8/84

Since these probabilities sum to C = 80/84, our hypothetical seven-sided die is repre-
sented by the random number generator

RANDOM

✓
4/84

80/84 ,
8/84

80/84 ,
8/84

80/84 ,
24/84

80/84 ,
12/84

80/84 ,
16/84

80/84 ,
8/84

80/84

◆

= RANDOM

✓
4

80
,

8
80

,
8

80
,

24
80

,
12
80

,
16
80

,
8
80

◆
.

102

C H A P T E R 2

t a a c
Motifs G T c t

a c t a
A G G T

COUNT(Motifs)

A: 2 1 1 1

PROFILE(Motifs)

A: 2/4 1/4 1/4 1/4
C: 0 1 1 1 C: 0 1/4 1/4 1/4
G: 1 1 1 0 G: 1/4 1/4 1/4 0
T: 1 1 1 2 T: 1/4 1/4 1/4 2/4

Note that the profile matrix is only slightly more conserved than the uniform profile,
making us wonder whether we have any chance to be steered toward the implanted
motif. We now use this profile matrix to compute the probabilities of all 4-mers in the
deleted string ccgGCGTtag:

ccgG cgGC gGCG GCGT CGTt GTta Ttag
0 0 0 1/128 0 1/256 0

Note that all but two of these probabilities are zero. This situation is similar to the one
we encountered with GREEDYMOTIFSEARCH, and as before, we need to augment zero
probabilities with small pseudocounts to avoid disastrous results.

Application of Laplace’s Rule of Succession to the count matrix above yields the
following updated count and profile matrices:

COUNT(Motifs)

A: 3 2 2 2

PROFILE(Motifs)

A: 3/8 2/8 2/8 2/8
C: 1 2 2 2 C: 1/8 2/8 2/8 2/8
G: 2 2 2 1 G: 2/8 2/8 2/8 1/8
T: 2 2 2 3 T: 2/8 2/8 2/8 3/8

After adding pseudocounts, the 4-mer probabilities in the deleted string ccgGCGTtag
are recomputed as follows:

ccgG cgGC gGCG GCGT CGTt GTta Ttag
4/84 8/84 8/84 24/84 12/84 16/84 8/84

Since these probabilities sum to C = 80/84, our hypothetical seven-sided die is repre-
sented by the random number generator

RANDOM

✓
4/84

80/84 ,
8/84

80/84 ,
8/84

80/84 ,
24/84

80/84 ,
12/84

80/84 ,
16/84

80/84 ,
8/84

80/84

◆

= RANDOM

✓
4

80
,

8
80

,
8

80
,

24
80

,
12
80

,
16
80

,
8
80

◆
.

102

By making a random choice, Gibbs sampling may
miss “direction” of true motifs because of bad luck.

Goal: Design an algorithm that can take “multiple
directions” into account.

© 2024 Phillip Compeau

Toward a New Algorithm

4/84 8/84 8/84 8/8412/84 16/8424/84

In RandomizedMotifSearch, we formed
Motifs(Profile) by taking the most probable k-mer in
each string (after pseudocounts).

CCGG CGGC GGCG GCGT CGTT GTTA TTAG

© 2024 Phillip Compeau

Toward a New Algorithm

4/80 8/80 8/80 8/8012/80 16/8024/80

In GibbsSampling, we normalized these
probabilities, but then we chose only one randomly.

CCGG CGGC GGCG GCGT CGTT GTTA TTAG

© 2024 Phillip Compeau

Expectation Maximization for Motif
Finding

4/80 8/80 8/80 8/8012/80 16/8024/80

The expectation maximization (EM) algorithm says,
“Keep them all!” These form a matrix HiddenMatrix.

CCGG CGGC GGCG GCGT CGTT GTTA TTAG

© 2024 Phillip Compeau

We have already seen HiddenMatrix!

© 2024 Phillip Compeau

W H I C H D N A PAT T E R N S P L AY T H E R O L E O F M O L E C U L A R C L O C K S ?

ttACCTtaac
gATGTctgtc

Dna ccgGCGTtag
cactaACGAg
cgtcagAGGT

Below, we construct the profile matrix PROFILE(Motifs) of the chosen 4-mers.

Motifs PROFILE(Motifs)
t a a c A: 0.4 0.2 0.2 0.2
G T c t C: 0.2 0.4 0.2 0.2
c c g G G: 0.2 0.2 0.4 0.2
a c t a T: 0.2 0.2 0.2 0.4
A G G T

We can now compute the probabilities of every 4-mer in Dna based on this profile
matrix. For example, the probability of the first 4-mer in the first string of Dna is
PR(ttAC|Profile) = 0.2 · 0.2 · 0.2 · 0.2 = 0.0016. The maximum probabilities in every
row are shown in red below.

ttAC tACC ACCT CCTt CTta Ttaa taac
.0016 .0016 .0128 .0064 .0016 .0016 .0016

gATG ATGT TGTc GTct Tctg ctgt tgtc
.0016 .0128 .0016 .0032 .0032 .0032 .0016

ccgG cgGC gGCG GCGT CGTt GTta Ttag
.0064 .0036 .0016 .0128 .0032 .0016 .0016

cact acta ctaA taAC aACG ACGA CGAg
.0032 .0064 .0016 .0016 .0032 .0128 .0016

cgtc gtca tcag cagA agAG gAGG AGGT
.0016 .0016 .0016 .0032 .0032 .0032 .0128

We select the most probable 4-mer in each row above as our new collection Motifs
(shown below). Notice that this collection has captured all five implanted motifs in Dna!

95

C H A P T E R 2

ttACCTtaac
gATGTctgtc

Dna ccgGCGTtag
cactaACGAg
cgtcagAGGT

STOP and Think: How is it possible that randomly chosenHow is it possible that randomly chosen kk-mers have led us to-mers have led us to
the correct implantedthe correct implanted kk-mer? If you think we manufactured this example, select-mer? If you think we manufactured this example, select
your own initial 4-mers and see what happens.your own initial 4-mers and see what happens.

For the Subtle Motif Problem with implanted 15-mer AAAAAAAAGGGGGGG, when we
run RANDOMIZEDMOTIFSEARCH 100,000 times (each time with new randomly se-
lected k-mers), it returns the 15-mers shown in Figure 2.7 as the lowest scoring collection
Motifs across all iterations, resulting in the consensus string AAAAAAAAacaGGGG with
score 43. These strings are only slightly less conserved than the collection of im-
planted (15, 4)-motifs with score 40 (or the motif returned by GREEDYMOTIFSEARCH

with score 41), and it largely captures the implanted motif. Furthermore, unlike
GREEDYMOTIFSEARCH, RANDOMIZEDMOTIFSEARCH can be run for a larger num-
ber of iterations to discover better and better motifs.

Score

Motifs

AAAtAcAgACAGcGt 5
AAAAAAtAgCAGGGt 3
tAAAAtAAACAGcGG 3
AcAgAAAAAaAGGGG 3
AAAAtAAAACtGcGa 4
AtAgAcgAACAcGGt 6
cAAAAAgAgaAGGGG 4
AtAgAAAAggAaGGG 5
AAgAAAAAAgAGaGG 3
cAtAAtgAACtGtGa 7

CONSENSUS(Motifs) AAAAAAAAACAGGGG 43

FIGURE 2.7 The lowest scoring collection of strings Motifs produced by 100,000 runs
of RANDOMIZEDMOTIFSEARCH, along with their consensus string and score for the
Subtle Motif Problem.

96

YOU, PROBABLY

W H I C H D N A PAT T E R N S P L AY T H E R O L E O F M O L E C U L A R C L O C K S ?

ttACCTtaac
gATGTctgtc

Dna ccgGCGTtag
cactaACGAg
cgtcagAGGT

Below, we construct the profile matrix PROFILE(Motifs) of the chosen 4-mers.

Motifs PROFILE(Motifs)
t a a c A: 0.4 0.2 0.2 0.2
G T c t C: 0.2 0.4 0.2 0.2
c c g G G: 0.2 0.2 0.4 0.2
a c t a T: 0.2 0.2 0.2 0.4
A G G T

We can now compute the probabilities of every 4-mer in Dna based on this profile
matrix. For example, the probability of the first 4-mer in the first string of Dna is
PR(ttAC|Profile) = 0.2 · 0.2 · 0.2 · 0.2 = 0.0016. The maximum probabilities in every
row are shown in red below.

ttAC tACC ACCT CCTt CTta Ttaa taac
.0016 .0016 .0128 .0064 .0016 .0016 .0016

gATG ATGT TGTc GTct Tctg ctgt tgtc
.0016 .0128 .0016 .0032 .0032 .0032 .0016

ccgG cgGC gGCG GCGT CGTt GTta Ttag
.0064 .0036 .0016 .0128 .0032 .0016 .0016

cact acta ctaA taAC aACG ACGA CGAg
.0032 .0064 .0016 .0016 .0032 .0128 .0016

cgtc gtca tcag cagA agAG gAGG AGGT
.0016 .0016 .0016 .0032 .0032 .0032 .0128

We select the most probable 4-mer in each row above as our new collection Motifs
(shown below). Notice that this collection has captured all five implanted motifs in Dna!

95

HiddenMatrix

Dna

We have already seen HiddenMatrix!

© 2024 Phillip Compeau

W H I C H D N A PAT T E R N S P L AY T H E R O L E O F M O L E C U L A R C L O C K S ?

ttACCTtaac
gATGTctgtc

Dna ccgGCGTtag
cactaACGAg
cgtcagAGGT

Below, we construct the profile matrix PROFILE(Motifs) of the chosen 4-mers.

Motifs PROFILE(Motifs)
t a a c A: 0.4 0.2 0.2 0.2
G T c t C: 0.2 0.4 0.2 0.2
c c g G G: 0.2 0.2 0.4 0.2
a c t a T: 0.2 0.2 0.2 0.4
A G G T

We can now compute the probabilities of every 4-mer in Dna based on this profile
matrix. For example, the probability of the first 4-mer in the first string of Dna is
PR(ttAC|Profile) = 0.2 · 0.2 · 0.2 · 0.2 = 0.0016. The maximum probabilities in every
row are shown in red below.

ttAC tACC ACCT CCTt CTta Ttaa taac
.0016 .0016 .0128 .0064 .0016 .0016 .0016

gATG ATGT TGTc GTct Tctg ctgt tgtc
.0016 .0128 .0016 .0032 .0032 .0032 .0016

ccgG cgGC gGCG GCGT CGTt GTta Ttag
.0064 .0036 .0016 .0128 .0032 .0016 .0016

cact acta ctaA taAC aACG ACGA CGAg
.0032 .0064 .0016 .0016 .0032 .0128 .0016

cgtc gtca tcag cagA agAG gAGG AGGT
.0016 .0016 .0016 .0032 .0032 .0032 .0128

We select the most probable 4-mer in each row above as our new collection Motifs
(shown below). Notice that this collection has captured all five implanted motifs in Dna!

95

C H A P T E R 2

ttACCTtaac
gATGTctgtc

Dna ccgGCGTtag
cactaACGAg
cgtcagAGGT

STOP and Think: How is it possible that randomly chosenHow is it possible that randomly chosen kk-mers have led us to-mers have led us to
the correct implantedthe correct implanted kk-mer? If you think we manufactured this example, select-mer? If you think we manufactured this example, select
your own initial 4-mers and see what happens.your own initial 4-mers and see what happens.

For the Subtle Motif Problem with implanted 15-mer AAAAAAAAGGGGGGG, when we
run RANDOMIZEDMOTIFSEARCH 100,000 times (each time with new randomly se-
lected k-mers), it returns the 15-mers shown in Figure 2.7 as the lowest scoring collection
Motifs across all iterations, resulting in the consensus string AAAAAAAAacaGGGG with
score 43. These strings are only slightly less conserved than the collection of im-
planted (15, 4)-motifs with score 40 (or the motif returned by GREEDYMOTIFSEARCH

with score 41), and it largely captures the implanted motif. Furthermore, unlike
GREEDYMOTIFSEARCH, RANDOMIZEDMOTIFSEARCH can be run for a larger num-
ber of iterations to discover better and better motifs.

Score

Motifs

AAAtAcAgACAGcGt 5
AAAAAAtAgCAGGGt 3
tAAAAtAAACAGcGG 3
AcAgAAAAAaAGGGG 3
AAAAtAAAACtGcGa 4
AtAgAcgAACAcGGt 6
cAAAAAgAgaAGGGG 4
AtAgAAAAggAaGGG 5
AAgAAAAAAgAGaGG 3
cAtAAtgAACtGtGa 7

CONSENSUS(Motifs) AAAAAAAAACAGGGG 43

FIGURE 2.7 The lowest scoring collection of strings Motifs produced by 100,000 runs
of RANDOMIZEDMOTIFSEARCH, along with their consensus string and score for the
Subtle Motif Problem.

96

W H I C H D N A PAT T E R N S P L AY T H E R O L E O F M O L E C U L A R C L O C K S ?

ttACCTtaac
gATGTctgtc

Dna ccgGCGTtag
cactaACGAg
cgtcagAGGT

Below, we construct the profile matrix PROFILE(Motifs) of the chosen 4-mers.

Motifs PROFILE(Motifs)
t a a c A: 0.4 0.2 0.2 0.2
G T c t C: 0.2 0.4 0.2 0.2
c c g G G: 0.2 0.2 0.4 0.2
a c t a T: 0.2 0.2 0.2 0.4
A G G T

We can now compute the probabilities of every 4-mer in Dna based on this profile
matrix. For example, the probability of the first 4-mer in the first string of Dna is
PR(ttAC|Profile) = 0.2 · 0.2 · 0.2 · 0.2 = 0.0016. The maximum probabilities in every
row are shown in red below.

ttAC tACC ACCT CCTt CTta Ttaa taac
.0016 .0016 .0128 .0064 .0016 .0016 .0016

gATG ATGT TGTc GTct Tctg ctgt tgtc
.0016 .0128 .0016 .0032 .0032 .0032 .0016

ccgG cgGC gGCG GCGT CGTt GTta Ttag
.0064 .0036 .0016 .0128 .0032 .0016 .0016

cact acta ctaA taAC aACG ACGA CGAg
.0032 .0064 .0016 .0016 .0032 .0128 .0016

cgtc gtca tcag cagA agAG gAGG AGGT
.0016 .0016 .0016 .0032 .0032 .0032 .0128

We select the most probable 4-mer in each row above as our new collection Motifs
(shown below). Notice that this collection has captured all five implanted motifs in Dna!

95

HiddenMatrix

Dna

STOP: How many
rows and columns
does HiddenMatrix
have?

We have already seen HiddenMatrix!

© 2024 Phillip Compeau

W H I C H D N A PAT T E R N S P L AY T H E R O L E O F M O L E C U L A R C L O C K S ?

ttACCTtaac
gATGTctgtc

Dna ccgGCGTtag
cactaACGAg
cgtcagAGGT

Below, we construct the profile matrix PROFILE(Motifs) of the chosen 4-mers.

Motifs PROFILE(Motifs)
t a a c A: 0.4 0.2 0.2 0.2
G T c t C: 0.2 0.4 0.2 0.2
c c g G G: 0.2 0.2 0.4 0.2
a c t a T: 0.2 0.2 0.2 0.4
A G G T

We can now compute the probabilities of every 4-mer in Dna based on this profile
matrix. For example, the probability of the first 4-mer in the first string of Dna is
PR(ttAC|Profile) = 0.2 · 0.2 · 0.2 · 0.2 = 0.0016. The maximum probabilities in every
row are shown in red below.

ttAC tACC ACCT CCTt CTta Ttaa taac
.0016 .0016 .0128 .0064 .0016 .0016 .0016

gATG ATGT TGTc GTct Tctg ctgt tgtc
.0016 .0128 .0016 .0032 .0032 .0032 .0016

ccgG cgGC gGCG GCGT CGTt GTta Ttag
.0064 .0036 .0016 .0128 .0032 .0016 .0016

cact acta ctaA taAC aACG ACGA CGAg
.0032 .0064 .0016 .0016 .0032 .0128 .0016

cgtc gtca tcag cagA agAG gAGG AGGT
.0016 .0016 .0016 .0032 .0032 .0032 .0128

We select the most probable 4-mer in each row above as our new collection Motifs
(shown below). Notice that this collection has captured all five implanted motifs in Dna!

95

C H A P T E R 2

ttACCTtaac
gATGTctgtc

Dna ccgGCGTtag
cactaACGAg
cgtcagAGGT

STOP and Think: How is it possible that randomly chosenHow is it possible that randomly chosen kk-mers have led us to-mers have led us to
the correct implantedthe correct implanted kk-mer? If you think we manufactured this example, select-mer? If you think we manufactured this example, select
your own initial 4-mers and see what happens.your own initial 4-mers and see what happens.

For the Subtle Motif Problem with implanted 15-mer AAAAAAAAGGGGGGG, when we
run RANDOMIZEDMOTIFSEARCH 100,000 times (each time with new randomly se-
lected k-mers), it returns the 15-mers shown in Figure 2.7 as the lowest scoring collection
Motifs across all iterations, resulting in the consensus string AAAAAAAAacaGGGG with
score 43. These strings are only slightly less conserved than the collection of im-
planted (15, 4)-motifs with score 40 (or the motif returned by GREEDYMOTIFSEARCH

with score 41), and it largely captures the implanted motif. Furthermore, unlike
GREEDYMOTIFSEARCH, RANDOMIZEDMOTIFSEARCH can be run for a larger num-
ber of iterations to discover better and better motifs.

Score

Motifs

AAAtAcAgACAGcGt 5
AAAAAAtAgCAGGGt 3
tAAAAtAAACAGcGG 3
AcAgAAAAAaAGGGG 3
AAAAtAAAACtGcGa 4
AtAgAcgAACAcGGt 6
cAAAAAgAgaAGGGG 4
AtAgAAAAggAaGGG 5
AAgAAAAAAgAGaGG 3
cAtAAtgAACtGtGa 7

CONSENSUS(Motifs) AAAAAAAAACAGGGG 43

FIGURE 2.7 The lowest scoring collection of strings Motifs produced by 100,000 runs
of RANDOMIZEDMOTIFSEARCH, along with their consensus string and score for the
Subtle Motif Problem.

96

W H I C H D N A PAT T E R N S P L AY T H E R O L E O F M O L E C U L A R C L O C K S ?

ttACCTtaac
gATGTctgtc

Dna ccgGCGTtag
cactaACGAg
cgtcagAGGT

Below, we construct the profile matrix PROFILE(Motifs) of the chosen 4-mers.

Motifs PROFILE(Motifs)
t a a c A: 0.4 0.2 0.2 0.2
G T c t C: 0.2 0.4 0.2 0.2
c c g G G: 0.2 0.2 0.4 0.2
a c t a T: 0.2 0.2 0.2 0.4
A G G T

We can now compute the probabilities of every 4-mer in Dna based on this profile
matrix. For example, the probability of the first 4-mer in the first string of Dna is
PR(ttAC|Profile) = 0.2 · 0.2 · 0.2 · 0.2 = 0.0016. The maximum probabilities in every
row are shown in red below.

ttAC tACC ACCT CCTt CTta Ttaa taac
.0016 .0016 .0128 .0064 .0016 .0016 .0016

gATG ATGT TGTc GTct Tctg ctgt tgtc
.0016 .0128 .0016 .0032 .0032 .0032 .0016

ccgG cgGC gGCG GCGT CGTt GTta Ttag
.0064 .0036 .0016 .0128 .0032 .0016 .0016

cact acta ctaA taAC aACG ACGA CGAg
.0032 .0064 .0016 .0016 .0032 .0128 .0016

cgtc gtca tcag cagA agAG gAGG AGGT
.0016 .0016 .0016 .0032 .0032 .0032 .0128

We select the most probable 4-mer in each row above as our new collection Motifs
(shown below). Notice that this collection has captured all five implanted motifs in Dna!

95

HiddenMatrix

Dna

STOP: How many
rows and columns
does HiddenMatrix
have?

Answer:
#rows = #strings = t

cols = # k-mers in
each string = n-k+1

From HiddenMatrix to a New Profile

We can form a hidden matrix from a profile matrix,
but how do we recompute the profile matrix?

© 2024 Phillip Compeau

4/80 8/80 8/80 8/8012/80 16/8024/80
CCGG CGGC GGCG GCGT CGTT GTTA TTAG

Profile à HiddenMatrix(Profile) 😀

HiddenMatrix(Profile) à Profile(HiddenMatrix(Profile)) 🤷

From HiddenMatrix to a New Profile

To form a profile matrix from a hidden matrix,
weight a profile over every value in matrix.

0.1 0.2 0.1 0.4 0.2

0.5 0.1 0.1 0.2 0.1

0.1 0.3 0.3 0.1 0.2

of strings

of starting positions Dna

TACAGAC
ACCCAGT
CAGCATT

© 2024 Phillip Compeau

HiddenMatrix

From HiddenMatrix to a New Profile

To form a profile matrix from a hidden matrix,
weight a profile over every value in matrix.

of strings

of starting positions Dna

TACAGAC
ACCCAGT
CAGCATT

A: 0 0.1 0
C: 0 0 0.1
G: 0 0 0
T: 0.1 0 0

Profile

0.1 0.2 0.1 0.4 0.2

0.5 0.1 0.1 0.2 0.1

0.1 0.3 0.3 0.1 0.2

© 2024 Phillip Compeau

HiddenMatrix

From HiddenMatrix to a New Profile

To form a profile matrix from a hidden matrix,
weight a profile over every value in matrix.

of strings

of starting positions Dna

TACAGAC
ACCCAGT
CAGCATT

Profile

0.1 0.2 0.1 0.4 0.2

0.5 0.1 0.1 0.2 0.1

0.1 0.3 0.3 0.1 0.2

A: 0.2 0.1 0.2
C: 0 0.2 0.1
G: 0 0 0
T: 0.1 0 0

© 2024 Phillip Compeau

HiddenMatrix

From HiddenMatrix to a New Profile

To form a profile matrix from a hidden matrix,
weight a profile over every value in matrix.

of strings

of starting positions Dna

TACAGAC
ACCCAGT
CAGCATT

Profile

A: 0.2 0.2 0.2
C: 0.1 0.2 0.1
G: 0 0 0.1
T: 0.1 0 0

0.1 0.2 0.1 0.4 0.2

0.5 0.1 0.1 0.2 0.1

0.1 0.3 0.3 0.1 0.2

© 2024 Phillip Compeau

HiddenMatrix

From HiddenMatrix to a New Profile

To form a profile matrix from a hidden matrix,
weight a profile over every value in matrix.

of strings

of starting positions Dna

TACAGAC
ACCCAGT
CAGCATT

Profile

A: 0.6 0.2 0.6
C: 0.1 0.2 0.1
G: 0 0.4 0.1
T: 0.1 0 0

0.1 0.2 0.1 0.4 0.2

0.5 0.1 0.1 0.2 0.1

0.1 0.3 0.3 0.1 0.2

© 2024 Phillip Compeau

HiddenMatrix

From HiddenMatrix to a New Profile

To form a profile matrix from a hidden matrix,
weight a profile over every value in matrix.

of strings

of starting positions Dna

TACAGAC
ACCCAGT
CAGCATT

Profile

A: 0.6 0.4 0.6
C: 0.1 0.2 0.3
G: 0.2 0.4 0.1
T: 0.1 0 0

0.1 0.2 0.1 0.4 0.2

0.5 0.1 0.1 0.2 0.1

0.1 0.3 0.3 0.1 0.2

© 2024 Phillip Compeau

HiddenMatrix

From HiddenMatrix to a New Profile

To form a profile matrix from a hidden matrix,
weight a profile over every value in matrix.

of strings

of starting positions Dna

TACAGAC
ACCCAGT
CAGCATT

Profile

A: 1.1 0.4 0.6
C: 0.1 0.7 0.8
G: 0.2 0.4 0.1
T: 0.1 0 0

0.1 0.2 0.1 0.4 0.2

0.5 0.1 0.1 0.2 0.1

0.1 0.3 0.3 0.1 0.2

© 2024 Phillip Compeau

HiddenMatrix

From HiddenMatrix to a New Profile

To form a profile matrix from a hidden matrix,
weight a profile over every value in matrix.

of strings

of starting positions Dna

TACAGAC
ACCCAGT
CAGCATT

Profile

A: 1.1 0.4 0.6
C: 0.2 0.8 0.9
G: 0.2 0.4 0.1
T: 0.1 0 0

0.1 0.2 0.1 0.4 0.2

0.5 0.1 0.1 0.2 0.1

0.1 0.3 0.3 0.1 0.2

© 2024 Phillip Compeau

HiddenMatrix

From HiddenMatrix to a New Profile

To form a profile matrix from a hidden matrix,
weight a profile over every value in matrix.

of strings

of starting positions Dna

TACAGAC
ACCCAGT
CAGCATT

Profile

A: 1.1 0.4 0.6
C: 0.3 0.9 1.0
G: 0.2 0.4 0.1
T: 0.1 0 0

0.1 0.2 0.1 0.4 0.2

0.5 0.1 0.1 0.2 0.1

0.1 0.3 0.3 0.1 0.2

© 2024 Phillip Compeau

HiddenMatrix

From HiddenMatrix to a New Profile

To form a profile matrix from a hidden matrix,
weight a profile over every value in matrix.

of strings

of starting positions Dna

TACAGAC
ACCCAGT
CAGCATT

Profile

A: 1.1 0.6 0.6
C: 0.5 0.9 1.0
G: 0.2 0.4 0.3
T: 0.1 0 0

0.1 0.2 0.1 0.4 0.2

0.5 0.1 0.1 0.2 0.1

0.1 0.3 0.3 0.1 0.2

© 2024 Phillip Compeau

HiddenMatrix

From HiddenMatrix to a New Profile

To form a profile matrix from a hidden matrix,
weight a profile over every value in matrix.

of strings

of starting positions Dna

TACAGAC
ACCCAGT
CAGCATT

Profile

A: 1.2 0.6 0.6
C: 0.5 0.9 1.0
G: 0.2 0.5 0.3
T: 0.1 0 0.1

0.1 0.2 0.1 0.4 0.2

0.5 0.1 0.1 0.2 0.1

0.1 0.3 0.3 0.1 0.2

© 2024 Phillip Compeau

HiddenMatrix

From HiddenMatrix to a New Profile

To form a profile matrix from a hidden matrix,
weight a profile over every value in matrix.

of strings

of starting positions Dna

TACAGAC
ACCCAGT
CAGCAGT

Profile

A: 1.2 0.7 0.6
C: 0.6 0.9 1.0
G: 0.2 0.5 0.4
T: 0.1 0 0.1

0.1 0.2 0.1 0.4 0.2

0.5 0.1 0.1 0.2 0.1

0.1 0.3 0.3 0.1 0.2

© 2024 Phillip Compeau

HiddenMatrix

From HiddenMatrix to a New Profile

To form a profile matrix from a hidden matrix,
weight a profile over every value in matrix.

of strings

of starting positions Dna

TACAGAC
ACCCAGT
CAGCAGT

Profile

A: 1.5 0.7 0.6
C: 0.6 0.9 1.3
G: 0.2 0.8 0.4
T: 0.1 0 0.1

0.1 0.2 0.1 0.4 0.2

0.5 0.1 0.1 0.2 0.1

0.1 0.3 0.3 0.1 0.2

© 2024 Phillip Compeau

HiddenMatrix

From HiddenMatrix to a New Profile

To form a profile matrix from a hidden matrix,
weight a profile over every value in matrix.

of strings

of starting positions Dna

TACAGAC
ACCCAGT
CAGCAGT

Profile

A: 1.5 0.7 0.9
C: 0.6 1.2 1.3
G: 0.5 0.8 0.4
T: 0.1 0 0.1

0.1 0.2 0.1 0.4 0.2

0.5 0.1 0.1 0.2 0.1

0.1 0.3 0.3 0.1 0.2

© 2024 Phillip Compeau

HiddenMatrix

From HiddenMatrix to a New Profile

To form a profile matrix from a hidden matrix,
weight a profile over every value in matrix.

of strings

of starting positions Dna

TACAGAC
ACCCAGT
CAGCATT

Profile

A: 1.5 0.8 0.9
C: 0.7 1.2 1.3
G: 0.5 0.8 0.4
T: 0.1 0 0.2

0.1 0.2 0.1 0.4 0.2

0.5 0.1 0.1 0.2 0.1

0.1 0.3 0.3 0.1 0.2

© 2024 Phillip Compeau

HiddenMatrix

From HiddenMatrix to a New Profile

To form a profile matrix from a hidden matrix,
weight a profile over every value in matrix.

of strings

of starting positions Dna

TACAGAC
ACCCAGT
CAGCATT

Profile

A: 1.7 0.8 0.9
C: 0.7 1.2 1.3
G: 0.5 0.8 0.4
T: 0.1 0.2 0.4

0.1 0.2 0.1 0.4 0.2

0.5 0.1 0.1 0.2 0.1

0.1 0.3 0.3 0.1 0.2

© 2024 Phillip Compeau

HiddenMatrix

From HiddenMatrix to a New Profile

Finally, each column currently sums to t (=3) and
should sum to 1, so divide each column by t.

of strings

of starting positions Dna

TACAGAC
ACCCAGT
CAGCATT

Profile

0.1 0.2 0.1 0.4 0.2

0.5 0.1 0.1 0.2 0.1

0.1 0.3 0.3 0.1 0.2

A: 1.7/3 0.8/3 0.9/3
C: 0.7/3 1.2/3 1.3/3
G: 0.5/3 0.8/3 0.4/3
T: 0.1/3 0.2/3 0.4/3

© 2024 Phillip Compeau

HiddenMatrix

From HiddenMatrix to a New Profile

of strings

of starting positions Dna

TACAGAC
ACCCAGT
CAGCATT

Profile

0.1 0.2 0.1 0.4 0.2

0.5 0.1 0.1 0.2 0.1

0.1 0.3 0.3 0.1 0.2

A: 1.7/3 0.8/3 0.9/3
C: 0.7/3 1.2/3 1.3/3
G: 0.5/3 0.8/3 0.4/3
T: 0.1/3 0.2/3 0.4/3

© 2024 Phillip Compeau

HiddenMatrix

STOP: We should probably get
some pseudocounts in there,
shouldn’t we? How?

From HiddenMatrix to a New Profile

of strings

of starting positions Dna

TACAGAC
ACCCAGT
CAGCATT

Profile

0.1 0.2 0.1 0.4 0.2

0.5 0.1 0.1 0.2 0.1

0.1 0.3 0.3 0.1 0.2

A: (1.7+σ)/(3+4σ) (0.8+σ)/(3+4σ) (0.9 +σ)/(3+4σ)
C: (0.7+σ)/(3+4σ) (1.2 +σ)/(3+4σ) (1.3 +σ)/(3+4σ)
G: (0.5+σ)/(3+4σ) (0.8 +σ)/(3+4σ) (0.4 +σ)/(3+4σ)
T: (0.1+σ)/(3+4σ) (0.2 +σ)/(3+4σ) (0.4 +σ)/(3+4σ)

© 2024 Phillip Compeau

HiddenMatrix

Answer: Add some small value σ
to each numerator and normalize
by dividing by (# of strings) · σ.

Expectation Maximization (EM) for Motif
Finding

© 2024 Phillip Compeau

The expectation maximization algorithm chooses a
random collection of k-mers Motifs, forms the
profile matrix, and then repeats two steps:

Profile à HiddenMatrix(Profile)

HiddenMatrix(Profile) à Profile(HiddenMatrix(Profile))

Expectation Maximization (EM) for Motif
Finding

© 2024 Phillip Compeau

The expectation maximization algorithm chooses a
random collection of k-mers Motifs, forms the
profile matrix, and then repeats two steps:

Profile à HiddenMatrix(Profile)

HiddenMatrix(Profile) à Profile(HiddenMatrix(Profile))

The first step is called the ”E-step”, and the second
step is called the “M-step”. (We will say more soon.)

Expectation Maximization (EM) for Motif
Finding

© 2024 Phillip Compeau

The expectation maximization algorithm chooses a
random collection of k-mers Motifs, forms the
profile matrix, and then repeats two steps:

Profile à HiddenMatrix(Profile)

HiddenMatrix(Profile) à Profile(HiddenMatrix(Profile))

STOP: When should we stop the algorithm?

Expectation Maximization (EM) for Motif
Finding

© 2024 Phillip Compeau

The expectation maximization algorithm chooses a
random collection of k-mers Motifs, forms the
profile matrix, and then repeats two steps:

Profile à HiddenMatrix(Profile)

HiddenMatrix(Profile) à Profile(HiddenMatrix(Profile))

Answer: When the profile matrix stops changing
much between steps.

Visualizing HiddenMatrix for Motif
FindingEM for motif finding:  

skip the sampling step

 26

ttgccacaaaataatccgccttcgcaaattgacctacc

gtaagtacctgaaagttacggtctgcgaacgcta

ccatacccggaaagagttactccttatttgccgtgtgg

S1

S2

S3

sij = score of motif starting at j in sequence i

M[c,0] =
∑ {sij ∣ Si[j] = c}

∑ sij

M[c, m] =
∑ {sij ∣ Si[j + m] = c}

∑ sij

First column of new matrix:

mth column of new matrix:

• Doesn’t “commit” to a sampled choice of motif instances

• Instead uses each possible sequence weighted by score

(Borrowing visual from Carl Kingsford)

© 2024 Phillip Compeau

RandomizedMotifSearch
takes the tallest peak in
each string.

Visualizing HiddenMatrix for Motif
FindingEM for motif finding:  

skip the sampling step

 26

ttgccacaaaataatccgccttcgcaaattgacctacc

gtaagtacctgaaagttacggtctgcgaacgcta

ccatacccggaaagagttactccttatttgccgtgtgg

S1

S2

S3

sij = score of motif starting at j in sequence i

M[c,0] =
∑ {sij ∣ Si[j] = c}

∑ sij

M[c, m] =
∑ {sij ∣ Si[j + m] = c}

∑ sij

First column of new matrix:

mth column of new matrix:

• Doesn’t “commit” to a sampled choice of motif instances

• Instead uses each possible sequence weighted by score

(Borrowing visual from Carl Kingsford)

© 2024 Phillip Compeau

RandomizedMotifSearch
takes the tallest peak in
each string.

GibbsSampling chooses
a peak in one string
randomly, with tall peaks
more likely.

Visualizing HiddenMatrix for Motif
FindingEM for motif finding:  

skip the sampling step

 26

ttgccacaaaataatccgccttcgcaaattgacctacc

gtaagtacctgaaagttacggtctgcgaacgcta

ccatacccggaaagagttactccttatttgccgtgtgg

S1

S2

S3

sij = score of motif starting at j in sequence i

M[c,0] =
∑ {sij ∣ Si[j] = c}

∑ sij

M[c, m] =
∑ {sij ∣ Si[j + m] = c}

∑ sij

First column of new matrix:

mth column of new matrix:

• Doesn’t “commit” to a sampled choice of motif instances

• Instead uses each possible sequence weighted by score

(Borrowing visual from Carl Kingsford)

© 2024 Phillip Compeau

RandomizedMotifSearch
takes the tallest peak in
each string.

GibbsSampling chooses
a peak in one string
randomly, with tall peaks
more likely.

EM keeps all peaks
around.

Moral: Great Ideas Are Not Necessarily
Complicated or Old

© 2024 Phillip Compeau

