
>NC_045512.2 Severe acute respiratory syndrome coronavirus 2 isolate Wuhan-Hu-1, complete genome
ATTAAAGGTTTATACCTTCCCAGGTAACAAACCAACCAACTTTCGATCTCTTGTAGATCTGTTCTCTAAACGAACTTTAAAATCTGTGTGGCTGTCACTCGGCTGCATGCTTAGTGCACTCACGCAGTATAATTAATAACTAATTACTGTCGTTGACAGGACACGAGTAACTCGTCTATCTTCTGCAGGCTGCTTACGGTTTCGTCCGTGTTGCAGCCGATCATCAGCACATCTAGGTTTCGTCCGGGTGTGACCGAAAGGTAAGATGGAGAGCCTTGTCCCTGGTTTCAACGAGAA
AACACACGTCCAACTCAGTTTGCCTGTTTTACAGGTTCGCGACGTGCTCGTACGTGGCTTTGGAGACTCCGTGGAGGAGGTCTTATCAGAGGCACGTCAACATCTTAAAGATGGCACTTGTGGCTTAGTAGAAGTTGAAAAAGGCGTTTTGCCTCAACTTGAACAGCCCTATGTGTTCATCAAACGTTCGGATGCTCGAACTGCACCTCATGGTCATGTTATGGTTGAGCTGGTAGCAGAACTCGAAGGCATTCAGTACGGTCGTAGTGGTGAGACACTTGGTGTCCTTGTCCCTCA
TGTGGGCGAAATACCAGTGGCTTACCGCAAGGTTCTTCTTCGTAAGAACGGTAATAAAGGAGCTGGTGGCCATAGTTACGGCGCCGATCTAAAGTCATTTGACTTAGGCGACGAGCTTGGCACTGATCCTTATGAAGATTTTCAAGAAAACTGGAACACTAAACATAGCAGTGGTGTTACCCGTGAACTCATGCGTGAGCTTAACGGAGGGGCATACACTCGCTATGTCGATAACAACTTCTGTGGCCCTGATGGCTACCCTCTTGAGTGCATTAAAGACCTTCTAGCACGTGCTGG
TAAAGCTTCATGCACTTTGTCCGAACAACTGGACTTTATTGACACTAAGAGGGGTGTATACTGCTGCCGTGAACATGAGCATGAAATTGCTTGGTACACGGAACGTTCTGAAAAGAGCTATGAATTGCAGACACCTTTTGAAATTAAATTGGCAAAGAAATTTGACACCTTCAATGGGGAATGTCCAAATTTTGTATTTCCCTTAAATTCCATAATCAAGACTATTCAACCAAGGGTTGAAAAGAAAAAGCTTGATGGCTTTATGGGTAGAATTCGATCTGTCTATCCAGTTGCGTC
ACCAAATGAATGCAACCAAATGTGCCTTTCAACTCTCATGAAGTGTGATCATTGTGGTGAAACTTCATGGCAGACGGGCGATTTTGTTAAAGCCACTTGCGAATTTTGTGGCACTGAGAATTTGACTAAAGAAGGTGCCACTACTTGTGGTTACTTACCCCAAAATGCTGTTGTTAAAATTTATTGTCCAGCATGTCACAATTCAGAAGTAGGACCTGAGCATAGTCTTGCCGAATACCATAATGAATCTGGCTTGAAAACCATTCTTCGTAAGGGTGGTCGCACTATTGCCTTTGG
AGGCTGTGTGTTCTCTTATGTTGGTTGCCATAACAAGTGTGCCTATTGGGTTCCACGTGCTAGCGCTAACATAGGTTGTAACCATACAGGTGTTGTTGGAGAAGGTTCCGAAGGTCTTAATGACAACCTTCTTGAAATACTCCAAAAAGAGAAAGTCAACATCAATATTGTTGGTGACTTTAAACTTAATGAAGAGATCGCCATTATTTTGGCATCTTTTTCTGCTTCCACAAGTGCTTTTGTGGAAACTGTGAAAGGTTTGGATTATAAAGCATTCAAACAAATTGTTGAATCCTG
TGGTAATTTTAAAGTTACAAAAGGAAAAGCTAAAAAAGGTGCCTGGAATATTGGTGAACAGAAATCAATACTGAGTCCTCTTTATGCATTTGCATCAGAGGCTGCTCGTGTTGTACGATCAATTTTCTCCCGCACTCTTGAAACTGCTCAAAATTCTGTGCGTGTTTTACAGAAGGCCGCTATAACAATACTAGATGGAATTTCACAGTATTCACTGAGACTCATTGATGCTATGATGTTCACATCTGATTTGGCTACTAACAATCTAGTTGTAATGGCCTACATTACAGGTGGTGT
TGTTCAGTTGACTTCGCAGTGGCTAACTAACATCTTTGGCACTGTTTATGAAAAACTCAAACCCGTCCTTGATTGGCTTGAAGAGAAGTTTAAGGAAGGTGTAGAGTTTCTTAGAGACGGTTGGGAAATTGTTAAATTTATCTCAACCTGTGCTTGTGAAATTGTCGGTGGACAAATTGTCACCTGTGCAAAGGAAATTAAGGAGAGTGTTCAGACATTCTTTAAGCTTGTAAATAAATTTTTGGCTTTGTGTGCTGACTCTATCATTATTGGTGGAGCTAAACTTAAAGCCTTGAA
TTTAGGTGAAACATTTGTCACGCACTCAAAGGGATTGTACAGAAAGTGTGTTAAATCCAGAGAAGAAACTGGCCTACTCATGCCTCTAAAAGCCCCAAAAGAAATTATCTTCTTAGAGGGAGAAACACTTCCCACAGAAGTGTTAACAGAGGAAGTTGTCTTGAAAACTGGTGATTTACAACCATTAGAACAACCTACTAGTGAAGCTGTTGAAGCTCCATTGGTTGGTACACCAGTTTGTATTAACGGGCTTATGTTGCTCGAAATCAAAGACACAGAAAAGTACTGTGCCCTTGC
ACCTAATATGATGGTAACAAACAATACCTTCACACTCAAAGGCGGTGCACCAACAAAGGTTACTTTTGGTGATGACACTGTGATAGAAGTGCAAGGTTACAAGAGTGTGAATATCACTTTTGAACTTGATGAAAGGATTGATAAAGTACTTAATGAGAAGTGCTCTGCCTATACAGTTGAACTCGGTACAGAAGTAAATGAGTTCGCCTGTGTTGTGGCAGATGCTGTCATAAAAACTTTGCAACCAGTATCTGAATTACTTACACCACTGGGCATTGATTTAGATGAGTGGAGTAT
GGCTACATACTACTTATTTGATGAGTCTGGTGAGTTTAAATTGGCTTCACATATGTATTGTTCTTTCTACCCTCCAGATGAGGATGAAGAAGAAGGTGATTGTGAAGAAGAAGAGTTTGAGCCATCAACTCAATATGAGTATGGTACTGAAGATGATTACCAAGGTAAACCTTTGGAATTTGGTGCCACTTCTGCTGCTCTTCAACCTGAAGAAGAGCAAGAAGAAGATTGGTTAGATGATGATAGTCAACAAACTGTTGGTCAACAAGACGGCAGTGAGGACAATCAGACAACTAC
TATTCAAACAATTGTTGAGGTTCAACCTCAATTAGAGATGGAACTTACACCAGTTGTTCAGACTATTGAAGTGAATAGTTTTAGTGGTTATTTAAAACTTACTGACAATGTATACATTAAAAATGCAGACATTGTGGAAGAAGCTAAAAAGGTAAAACCAACAGTGGTTGTTAATGCAGCCAATGTTTACCTTAAACATGGAGGAGGTGTTGCAGGAGCCTTAAATAAGGCTACTAACAATGCCATGCAAGTTGAATCTGATGATTACATAGCTACTAATGGACCACTTAAAGTGGG
TGGTAGTTGTGTTTTAAGCGGACACAATCTTGCTAAACACTGTCTTCATGTTGTCGGCCCAAATGTTAACAAAGGTGAAGACATTCAACTTCTTAAGAGTGCTTATGAAAATTTTAATCAGCACGAAGTTCTACTTGCACCATTATTATCAGCTGGTATTTTTGGTGCTGACCCTATACATTCTTTAAGAGTTTGTGTAGATACTGTTCGCACAAATGTCTACTTAGCTGTCTTTGATAAAAATCTCTATGACAAACTTGTTTCAAGCTTTTTGGAAATGAAGAGTGAAAAGCAAGT
TGAACAAAAGATCGCTGAGATTCCTAAAGAGGAAGTTAAGCCATTTATAACTGAAAGTAAACCTTCAGTTGAACAGAGAAAACAAGATGATAAGAAAATCAAAGCTTGTGTTGAAGAAGTTACAACAACTCTGGAAGAAACTAAGTTCCTCACAGAAAACTTGTTACTTTATATTGACATTAATGGCAATCTTCATCCAGATTCTGCCACTCTTGTTAGTGACATTGACATCACTTTCTTAAAGAAAGATGCTCCATATATAGTGGGTGATGTTGTTCAAGAGGGTGTTTTAACTGC
TGTGGTTATACCTACTAAAAAGGCTGGTGGCACTACTGAAATGCTAGCGAAAGCTTTGAGAAAAGTGCCAACAGACAATTATATAACCACTTACCCGGGTCAGGGTTTAAATGGTTACACTGTAGAGGAGGCAAAGACAGTGCTTAAAAAGTGTAAAAGTGCCTTTTACATTCTACCATCTATTATCTCTAATGAGAAGCAAGAAATTCTTGGAACTGTTTCTTGGAATTTGCGAGAAATGCTTGCACATGCAGAAGAAACACGCAAATTAATGCCTGTCTGTGTGGAAACTAAAGC
CATAGTTTCAACTATACAGCGTAAATATAAGGGTATTAAAATACAAGAGGGTGTGGTTGATTATGGTGCTAGATTTTACTTTTACACCAGTAAAACAACTGTAGCGTCACTTATCAACACACTTAACGATCTAAATGAAACTCTTGTTACAATGCCACTTGGCTATGTAACACATGGCTTAAATTTGGAAGAAGCTGCTCGGTATATGAGATCTCTCAAAGTGCCAGCTACAGTTTCTGTTTCTTCACCTGATGCTGTTACAGCGTATAATGGTTATCTTACTTCTTCTTCTAAAAC
ACCTGAAGAACATTTTATTGAAACCATCTCACTTGCTGGTTCCTATAAAGATTGGTCCTATTCTGGACAATCTACACAACTAGGTATAGAATTTCTTAAGAGAGGTGATAAAAGTGTATATTACACTAGTAATCCTACCACATTCCACCTAGATGGTGAAGTTATCACCTTTGACAATCTTAAGACACTTCTTTCTTTGAGAGAAGTGAGGACTATTAAGGTGTTTACAACAGTAGACAACATTAACCTCCACACGCAAGTTGTGGACATGTCAATGACATATGGACAACAGTTTGG
TCCAACTTATTTGGATGGAGCTGATGTTACTAAAATAAAACCTCATAATTCACATGAAGGTAAAACATTTTATGTTTTACCTAATGATGACACTCTACGTGTTGAGGCTTTTGAGTACTACCACACAACTGATCCTAGTTTTCTGGGTAGGTACATGTCAGCATTAAATCACACTAAAAAGTGGAAATACCCACAAGTTAATGGTTTAACTTCTATTAAATGGGCAGATAACAACTGTTATCTTGCCACTGCATTGTTAACACTCCAACAAATAGAGTTGAAGTTTAATCCACCTGC
TCTACAAGATGCTTATTACAGAGCAAGGGCTGGTGAAGCTGCTAACTTTTGTGCACTTATCTTAGCCTACTGTAATAAGACAGTAGGTGAGTTAGGTGATGTTAGAGAAACAATGAGTTACTTGTTTCAACATGCCAATTTAGATTCTTGCAAAAGAGTCTTGAACGTGGTGTGTAAAACTTGTGGACAACAGCAGACAACCCTTAAGGGTGTAGAAGCTGTTATGTACATGGGCACACTTTCTTATGAACAATTTAAGAAAGGTGTTCAGATACCTTGTACGTGTGGTAAACAAGC
TACAAAATATCTAGTACAACAGGAGTCACCTTTTGTTATGATGTCAGCACCACCTGCTCAGTATGAACTTAAGCATGGTACATTTACTTGTGCTAGTGAGTACACTGGTAATTACCAGTGTGGTCACTATAAACATATAACTTCTAAAGAAACTTTGTATTGCATAGACGGTGCTTTACTTACAAAGTCCTCAGAATACAAAGGTCCTATTACGGATGTTTTCTACAAAGAAAACAGTTACACAACAACCATAAAACCAGTTACTTATAAATTGGATGGTGTTGTTTGTACAGAAAT
TGACCCTAAGTTGGACAATTATTATAAGAAAGACAATTCTTATTTCACAGAGCAACCAATTGATCTTGTACCAAACCAACCATATCCAAACGCAAGCTTCGATAATTTTAAGTTTGTATGTGATAATATCAAATTTGCTGATGATTTAAACCAGTTAACTGGTTATAAGAAACCTGCTTCAAGAGAGCTTAAAGTTACATTTTTCCCTGACTTAAATGGTGATGTGGTGGCTATTGATTATAAACACTACACACCCTCTTTTAAGAAAGGAGCTAAATTGTTACATAAACCTATTGT
TTGGCATGTTAACAATGCAACTAATAAAGCCACGTATAAACCAAATACCTGGTGTATACGTTGTCTTTGGAGCACAAAACCAGTTGAAACATCAAATTCGTTTGATGTACTGAAGTCAGAGGACGCGCAGGGAATGGATAATCTTGCCTGCGAAGATCTAAAACCAGTCTCTGAAGAAGTAGTGGAAAATCCTACCATACAGAAAGACGTTCTTGAGTGTAATGTGAAAACTACCGAAGTTGTAGGAGACATTATACTTAAACCAGCAAATAATAGTTTAAAAATTACAGAAGAGGT
TGGCCACACAGATCTAATGGCTGCTTATGTAGACAATTCTAGTCTTACTATTAAGAAACCTAATGAATTATCTAGAGTATTAGGTTTGAAAACCCTTGCTACTCATGGTTTAGCTGCTGTTAATAGTGTCCCTTGGGATACTATAGCTAATTATGCTAAGCCTTTTCTTAACAAAGTTGTTAGTACAACTACTAACATAGTTACACGGTGTTTAAACCGTGTTTGTACTAATTATATGCCTTATTTCTTTACTTTATTGCTACAATTGTGTACTTTTACTAGAAGTACAAATTCTAG
AATTAAAGCATCTATGCCGACTACTATAGCAAAGAATACTGTTAAGAGTGTCGGTAAATTTTGTCTAGAGGCTTCATTTAATTATTTGAAGTCACCTAATTTTTCTAAACTGATAAATATTATAATTTGGTTTTTACTATTAAGTGTTTGCCTAGGTTCTTTAATCTACTCAACCGCTGCTTTAGGTGTTTTAATGTCTAATTTAGGCATGCCTTCTTACTGTACTGGTTACAGAGAAGGCTATTTGAACTCTACTAATGTCACTATTGCAACCTACTGTACTGGTTCTATACCTTG
TAGTGTTTGTCTTAGTGGTTTAGATTCTTTAGACACCTATCCTTCTTTAGAAACTATACAAATTACCATTTCATCTTTTAAATGGGATTTAACTGCTTTTGGCTTAGTTGCAGAGTGGTTTTTGGCATATATTCTTTTCACTAGGTTTTTCTATGTACTTGGATTGGCTGCAATCATGCAATTGTTTTTCAGCTATTTTGCAGTACATTTTATTAGTAATTCTTGGCTTATGTGGTTAATAATTAATCTTGTACAAATGGCCCCGATTTCAGCTATGGTTAGAATGTACATCTTCTT
TGCATCATTTTATTATGTATGGAAAAGTTATGTGCATGTTGTAGACGGTTGTAATTCATCAACTTGTATGATGTGTTACAAACGTAATAGAGCAACAAGAGTCGAATGTACAACTATTGTTAATGGTGTTAGAAGGTCCTTTTATGTCTATGCTAATGGAGGTAAAGGCTTTTGCAAACTACACAATTGGAATTGTGTTAATTGTGATACATTCTGTGCTGGTAGTACATTTATTAGTGATGAAGTTGCGAGAGACTTGTCACTACAGTTTAAAAGACCAATAAATCCTACTGACCA
GTCTTCTTACATCGTTGATAGTGTTACAGTGAAGAATGGTTCCATCCATCTTTACTTTGATAAAGCTGGTCAAAAGACTTATGAAAGACATTCTCTCTCTCATTTTGTTAACTTAGACAACCTGAGAGCTAATAACACTAAAGGTTCATTGCCTATTAATGTTATAGTTTTTGATGGTAAATCAAAATGTGAAGAATCATCTGCAAAATCAGCGTCTGTTTACTACAGTCAGCTTATGTGTCAACCTATACTGTTACTAGATCAGGCATTAGTGTCTGATGTTGGTGATAGTGCGGA
AGTTGCAGTTAAAATGTTTGATGCTTACGTTAATACGTTTTCATCAACTTTTAACGTACCAATGGAAAAACTCAAAACACTAGTTGCAACTGCAGAAGCTGAACTTGCAAAGAATGTGTCCTTAGACAATGTCTTATCTACTTTTATTTCAGCAGCTCGGCAAGGGTTTGTTGATTCAGATGTAGAAACTAAAGATGTTGTTGAATGTCTTAAATTGTCACATCAATCTGACATAGAAGTTACTGGCGATAGTTGTAATAACTATATGCTCACCTATAACAAAGTTGAAAACATGAC
ACCCCGTGACCTTGGTGCTTGTATTGACTGTAGTGCGCGTCATATTAATGCGCAGGTAGCAAAAAGTCACAACATTGCTTTGATATGGAACGTTAAAGATTTCATGTCATTGTCTGAACAACTACGAAAACAAATACGTAGTGCTGCTAAAAAGAATAACTTACCTTTTAAGTTGACATGTGCAACTACTAGACAAGTTGTTAATGTTGTAACAACAAAGATAGCACTTAAGGGTGGTAAAATTGTTAATAATTGGTTGAAGCAGTTAATTAAAGTTACACTTGTGTTCCTTTTTGT
TGCTGCTATTTTCTATTTAATAACACCTGTTCATGTCATGTCTAAACATACTGACTTTTCAAGTGAAATCATAGGATACAAGGCTATTGATGGTGGTGTCACTCGTGACATAGCATCTACAGATACTTGTTTTGCTAACAAACATGCTGATTTTGACACATGGTTTAGCCAGCGTGGTGGTAGTTATACTAATGACAAAGCTTGCCCATTGATTGCTGCAGTCATAACAAGAGAAGTGGGTTTTGTCGTGCCTGGTTTGCCTGGCACGATATTACGCACAACTAATGGTGACTTTTT
GCATTTCTTACCTAGAGTTTTTAGTGCAGTTGGTAACATCTGTTACACACCATCAAAACTTATAGAGTACACTGACTTTGCAACATCAGCTTGTGTTTTGGCTGCTGAATGTACAATTTTTAAAGATGCTTCTGGTAAGCCAGTACCATATTGTTATGATACCAATGTACTAGAAGGTTCTGTTGCTTATGAAAGTTTACGCCCTGACACACGTTATGTGCTCATGGATGGCTCTATTATTCAATTTCCTAACACCTACCTTGAAGGTTCTGTTAGAGTGGTAACAACTTTTGATTC
TGAGTACTGTAGGCACGGCACTTGTGAAAGATCAGAAGCTGGTGTTTGTGTATCTACTAGTGGTAGATGGGTACTTAACAATGATTATTACAGATCTTTACCAGGAGTTTTCTGTGGTGTAGATGCTGTAAATTTACTTACTAATATGTTTACACCACTAATTCAACCTATTGGTGCTTTGGACATATCAGCATCTATAGTAGCTGGTGGTATTGTAGCTATCGTAGTAACATGCCTTGCCTACTATTTTATGAGGTTTAGAAGAGCTTTTGGTGAATACAGTCATGTAGTTGCCTT
TAATACTTTACTATTCCTTATGTCATTCACTGTACTCTGTTTAACACCAGTTTACTCATTCTTACCTGGTGTTTATTCTGTTATTTACTTGTACTTGACATTTTATCTTACTAATGATGTTTCTTTTTTAGCACATATTCAGTGGATGGTTATGTTCACACCTTTAGTACCTTTCTGGATAACAATTGCTTATATCATTTGTATTTCCACAAAGCATTTCTATTGGTTCTTTAGTAATTACCTAAAGAGACGTGTAGTCTTTAATGGTGTTTCCTTTAGTACTTTTGAAGAAGCTGC
GCTGTGCACCTTTTTGTTAAATAAAGAAATGTATCTAAAGTTGCGTAGTGATGTGCTATTACCTCTTACGCAATATAATAGATACTTAGCTCTTTATAATAAGTACAAGTATTTTAGTGGAGCAATGGATACAACTAGCTACAGAGAAGCTGCTTGTTGTCATCTCGCAAAGGCTCTCAATGACTTCAGTAACTCAGGTTCTGATGTTCTTTACCAACCACCACAAACCTCTATCACCTCAGCTGTTTTGCAGAGTGGTTTTAGAAAAATGGCATTCCCATCTGGTAAAGTTGAGGG
TTGTATGGTACAAGTAACTTGTGGTACAACTACACTTAACGGTCTTTGGCTTGATGACGTAGTTTACTGTCCAAGACATGTGATCTGCACCTCTGAAGACATGCTTAACCCTAATTATGAAGATTTACTCATTCGTAAGTCTAATCATAATTTCTTGGTACAGGCTGGTAATGTTCAACTCAGGGTTATTGGACATTCTATGCAAAATTGTGTACTTAAGCTTAAGGTTGATACAGCCAATCCTAAGACACCTAAGTATAAGTTTGTTCGCATTCAACCAGGACAGACTTTTTCAGT
GTTAGCTTGTTACAATGGTTCACCATCTGGTGTTTACCAATGTGCTATGAGGCCCAATTTCACTATTAAGGGTTCATTCCTTAATGGTTCATGTGGTAGTGTTGGTTTTAACATAGATTATGACTGTGTCTCTTTTTGTTACATGCACCATATGGAATTACCAACTGGAGTTCATGCTGGCACAGACTTAGAAGGTAACTTTTATGGACCTTTTGTTGACAGGCAAACAGCACAAGCAGCTGGTACGGACACAACTATTACAGTTAATGTTTTAGCTTGGTTGTACGCTGCTGTTAT
AAATGGAGACAGGTGGTTTCTCAATCGATTTACCACAACTCTTAATGACTTTAACCTTGTGGCTATGAAGTACAATTATGAACCTCTAACACAAGACCATGTTGACATACTAGGACCTCTTTCTGCTCAAACTGGAATTGCCGTTTTAGATATGTGTGCTTCATTAAAAGAATTACTGCAAAATGGTATGAATGGACGTACCATATTGGGTAGTGCTTTATTAGAAGATGAATTTACACCTTTTGATGTTGTTAGACAATGCTCAGGTGTTACTTTCCAAAGTGCAGTGAAAAGAAC
AATCAAGGGTACACACCACTGGTTGTTACTCACAATTTTGACTTCACTTTTAGTTTTAGTCCAGAGTACTCAATGGTCTTTGTTCTTTTTTTTGTATGAAAATGCCTTTTTACCTTTTGCTATGGGTATTATTGCTATGTCTGCTTTTGCAATGATGTTTGTCAAACATAAGCATGCATTTCTCTGTTTGTTTTTGTTACCTTCTCTTGCCACTGTAGCTTATTTTAATATGGTCTATATGCCTGCTAGTTGGGTGATGCGTATTATGACATGGTTGGATATGGTTGATACTAGTTT
GTCTGGTTTTAAGCTAAAAGACTGTGTTATGTATGCATCAGCTGTAGTGTTACTAATCCTTATGACAGCAAGAACTGTGTATGATGATGGTGCTAGGAGAGTGTGGACACTTATGAATGTCTTGACACTCGTTTATAAAGTTTATTATGGTAATGCTTTAGATCAAGCCATTTCCATGTGGGCTCTTATAATCTCTGTTACTTCTAACTACTCAGGTGTAGTTACAACTGTCATGTTTTTGGCCAGAGGTATTGTTTTTATGTGTGTTGAGTATTGCCCTATTTTCTTCATAACTGG
TAATACACTTCAGTGTATAATGCTAGTTTATTGTTTCTTAGGCTATTTTTGTACTTGTTACTTTGGCCTCTTTTGTTTACTCAACCGCTACTTTAGACTGACTCTTGGTGTTTATGATTACTTAGTTTCTACACAGGAGTTTAGATATATGAATTCACAGGGACTACTCCCACCCAAGAATAGCATAGATGCCTTCAAACTCAACATTAAATTGTTGGGTGTTGGTGGCAAACCTTGTATCAAAGTAGCCACTGTACAGTCTAAAATGTCAGATGTAAAGTGCACATCAGTAGTCTT
ACTCTCAGTTTTGCAACAACTCAGAGTAGAATCATCATCTAAATTGTGGGCTCAATGTGTCCAGTTACACAATGACATTCTCTTAGCTAAAGATACTACTGAAGCCTTTGAAAAAATGGTTTCACTACTTTCTGTTTTGCTTTCCATGCAGGGTGCTGTAGACATAAACAAGCTTTGTGAAGAAATGCTGGACAACAGGGCAACCTTACAAGCTATAGCCTCAGAGTTTAGTTCCCTTCCATCATATGCAGCTTTTGCTACTGCTCAAGAAGCTTATGAGCAGGCTGTTGCTAATGG
TGATTCTGAAGTTGTTCTTAAAAAGTTGAAGAAGTCTTTGAATGTGGCTAAATCTGAATTTGACCGTGATGCAGCCATGCAACGTAAGTTGGAAAAGATGGCTGATCAAGCTATGACCCAAATGTATAAACAGGCTAGATCTGAGGACAAGAGGGCAAAAGTTACTAGTGCTATGCAGACAATGCTTTTCACTATGCTTAGAAAGTTGGATAATGATGCACTCAACAACATTATCAACAATGCAAGAGATGGTTGTGTTCCCTTGAACATAATACCTCTTACAACAGCAGCCAAACT
AATGGTTGTCATACCAGACTATAACACATATAAAAATACGTGTGATGGTACAACATTTACTTATGCATCAGCATTGTGGGAAATCCAACAGGTTGTAGATGCAGATAGTAAAATTGTTCAACTTAGTGAAATTAGTATGGACAATTCACCTAATTTAGCATGGCCTCTTATTGTAACAGCTTTAAGGGCCAATTCTGCTGTCAAATTACAGAATAATGAGCTTAGTCCTGTTGCACTACGACAGATGTCTTGTGCTGCCGGTACTACACAAACTGCTTGCACTGATGACAATGCGTT
AGCTTACTACAACACAACAAAGGGAGGTAGGTTTGTACTTGCACTGTTATCCGATTTACAGGATTTGAAATGGGCTAGATTCCCTAAGAGTGATGGAACTGGTACTATCTATACAGAACTGGAACCACCTTGTAGGTTTGTTACAGACACACCTAAAGGTCCTAAAGTGAAGTATTTATACTTTATTAAAGGATTAAACAACCTAAATAGAGGTATGGTACTTGGTAGTTTAGCTGCCACAGTACGTCTACAAGCTGGTAATGCAACAGAAGTGCCTGCCAATTCAACTGTATTATC
TTTCTGTGCTTTTGCTGTAGATGCTGCTAAAGCTTACAAAGATTATCTAGCTAGTGGGGGACAACCAATCACTAATTGTGTTAAGATGTTGTGTACACACACTGGTACTGGTCAGGCAATAACAGTTACACCGGAAGCCAATATGGATCAAGAATCCTTTGGTGGTGCATCGTGTTGTCTGTACTGCCGTTGCCACATAGATCATCCAAATCCTAAAGGATTTTGTGACTTAAAAGGTAAGTATGTACAAATACCTACAACTTGTGCTAATGACCCTGTGGGTTTTACACTTAAAAA
CACAGTCTGTACCGTCTGCGGTATGTGGAAAGGTTATGGCTGTAGTTGTGATCAACTCCGCGAACCCATGCTTCAGTCAGCTGATGCACAATCGTTTTTAAACGGGTTTGCGGTGTAAGTGCAGCCCGTCTTACACCGTGCGGCACAGGCACTAGTACTGATGTCGTATACAGGGCTTTTGACATCTACAATGATAAAGTAGCTGGTTTTGCTAAATTCCTAAAAACTAATTGTTGTCGCTTCCAAGAAAAGGACGAAGATGACAATTTAATTGATTCTTACTTTGTAGTTAAGAGA
CACACTTTCTCTAACTACCAACATGAAGAAACAATTTATAATTTACTTAAGGATTGTCCAGCTGTTGCTAAACATGACTTCTTTAAGTTTAGAATAGACGGTGACATGGTACCACATATATCACGTCAACGTCTTACTAAATACACAATGGCAGACCTCGTCTATGCTTTAAGGCATTTTGATGAAGGTAATTGTGACACATTAAAAGAAATACTTGTCACATACAATTGTTGTGATGATGATTATTTCAATAAAAAGGACTGGTATGATTTTGTAGAAAACCCAGATATATTACGC
GTATACGCCAACTTAGGTGAACGTGTACGCCAAGCTTTGTTAAAAACAGTACAATTCTGTGATGCCATGCGAAATGCTGGTATTGTTGGTGTACTGACATTAGATAATCAAGATCTCAATGGTAACTGGTATGATTTCGGTGATTTCATACAAACCACGCCAGGTAGTGGAGTTCCTGTTGTAGATTCTTATTATTCATTGTTAATGCCTATATTAACCTTGACCAGGGCTTTAACTGCAGAGTCACATGTTGACACTGACTTAACAAAGCCTTACATTAAGTGGGATTTGTTAAAA
TATGACTTCACGGAAGAGAGGTTAAAACTCTTTGACCGTTATTTTAAATATTGGGATCAGACATACCACCCAAATTGTGTTAACTGTTTGGATGACAGATGCATTCTGCATTGTGCAAACTTTAATGTTTTATTCTCTACAGTGTTCCCACCTACAAGTTTTGGACCACTAGTGAGAAAAATATTTGTTGATGGTGTTCCATTTGTAGTTTCAACTGGATACCACTTCAGAGAGCTAGGTGTTGTACATAATCAGGATGTAAACTTACATAGCTCTAGACTTAGTTTTAAGGAATTA
CTTGTGTATGCTGCTGACCCTGCTATGCACGCTGCTTCTGGTAATCTATTACTAGATAAACGCACTACGTGCTTTTCAGTAGCTGCACTTACTAACAATGTTGCTTTTCAAACTGTCAAACCCGGTAATTTTAACAAAGACTTCTATGACTTTGCTGTGTCTAAGGGTTTCTTTAAGGAAGGAAGTTCTGTTGAATTAAAACACTTCTTCTTTGCTCAGGATGGTAATGCTGCTATCAGCGATTATGACTACTATCGTTATAATCTACCAACAATGTGTGATATCAGACAACTACTA
TTTGTAGTTGAAGTTGTTGATAAGTACTTTGATTGTTACGATGGTGGCTGTATTAATGCTAACCAAGTCATCGTCAACAACCTAGACAAATCAGCTGGTTTTCCATTTAATAAATGGGGTAAGGCTAGACTTTATTATGATTCAATGAGTTATGAGGATCAAGATGCACTTTTCGCATATACAAAACGTAATGTCATCCCTACTATAACTCAAATGAATCTTAAGTATGCCATTAGTGCAAAGAATAGAGCTCGCACCGTAGCTGGTGTCTCTATCTGTAGTACTATGACCAATAGA
CAGTTTCATCAAAAATTATTGAAATCAATAGCCGCCACTAGAGGAGCTACTGTAGTAATTGGAACAAGCAAATTCTATGGTGGTTGGCACAACATGTTAAAAACTGTTTATAGTGATGTAGAAAACCCTCACCTTATGGGTTGGGATTATCCTAAATGTGATAGAGCCATGCCTAACATGCTTAGAATTATGGCCTCACTTGTTCTTGCTCGCAAACATACAACGTGTTGTAGCTTGTCACACCGTTTCTATAGATTAGCTAATGAGTGTGCTCAAGTATTGAGTGAAATGGTCATG
TGTGGCGGTTCACTATATGTTAAACCAGGTGGAACCTCATCAGGAGATGCCACAACTGCTTATGCTAATAGTGTTTTTAACATTTGTCAAGCTGTCACGGCCAATGTTAATGCACTTTTATCTACTGATGGTAACAAAATTGCCGATAAGTATGTCCGCAATTTACAACACAGACTTTATGAGTGTCTCTATAGAAATAGAGATGTTGACACAGACTTTGTGAATGAGTTTTACGCATATTTGCGTAAACATTTCTCAATGATGATACTCTCTGACGATGCTGTTGTGTGTTTCAAT
AGCACTTATGCATCTCAAGGTCTAGTGGCTAGCATAAAGAACTTTAAGTCAGTTCTTTATTATCAAAACAATGTTTTTATGTCTGAAGCAAAATGTTGGACTGAGACTGACCTTACTAAAGGACCTCATGAATTTTGCTCTCAACATACAATGCTAGTTAAACAGGGTGATGATTATGTGTACCTTCCTTACCCAGATCCATCAAGAATCCTAGGGGCCGGCTGTTTTGTAGATGATATCGTAAAAACAGATGGTACACTTATGATTGAACGGTTCGTGTCTTTAGCTATAGATGCT
TACCCACTTACTAAACATCCTAATCAGGAGTATGCTGATGTCTTTCATTTGTACTTACAATACATAAGAAAGCTACATGATGAGTTAACAGGACACATGTTAGACATGTATTCTGTTATGCTTACTAATGATAACACTTCAAGGTATTGGGAACCTGAGTTTTATGAGGCTATGTACACACCGCATACAGTCTTACAGGCTGTTGGGGCTTGTGTTCTTTGCAATTCACAGACTTCATTAAGATGTGGTGCTTGCATACGTAGACCATTCTTATGTTGTAAATGCTGTTACGACCAT
GTCATATCAACATCACATAAATTAGTCTTGTCTGTTAATCCGTATGTTTGCAATGCTCCAGGTTGTGATGTCACAGATGTGACTCAACTTTACTTAGGAGGTATGAGCTATTATTGTAAATCACATAAACCACCCATTAGTTTTCCATTGTGTGCTAATGGACAAGTTTTTGGTTTATATAAAAATACATGTGTTGGTAGCGATAATGTTACTGACTTTAATGCAATTGCAACATGTGACTGGACAAATGCTGGTGATTACATTTTAGCTAACACCTGTACTGAAAGACTCAAGCTT
TTTGCAGCAGAAACGCTCAAAGCTACTGAGGAGACATTTAAACTGTCTTATGGTATTGCTACTGTACGTGAAGTGCTGTCTGACAGAGAATTACATCTTTCATGGGAAGTTGGTAAACCTAGACCACCACTTAACCGAAATTATGTCTTTACTGGTTATCGTGTAACTAAAAACAGTAAAGTACAAATAGGAGAGTACACCTTTGAAAAAGGTGACTATGGTGATGCTGTTGTTTACCGAGGTACAACAACTTACAAATTAAATGTTGGTGATTATTTTGTGCTGACATCACATACA
GTAATGCCATTAAGTGCACCTACACTAGTGCCACAAGAGCACTATGTTAGAATTACTGGCTTATACCCAACACTCAATATCTCAGATGAGTTTTCTAGCAATGTTGCAAATTATCAAAAGGTTGGTATGCAAAAGTATTCTACACTCCAGGGACCACCTGGTACTGGTAAGAGTCATTTTGCTATTGGCCTAGCTCTCTACTACCCTTCTGCTCGCATAGTGTATACAGCTTGCTCTCATGCCGCTGTTGATGCACTATGTGAGAAGGCATTAAAATATTTGCCTATAGATAAATGT
AGTAGAATTATACCTGCACGTGCTCGTGTAGAGTGTTTTGATAAATTCAAAGTGAATTCAACATTAGAACAGTATGTCTTTTGTACTGTAAATGCATTGCCTGAGACGACAGCAGATATAGTTGTCTTTGATGAAATTTCAATGGCCACAAATTATGATTTGAGTGTTGTCAATGCCAGATTACGTGCTAAGCACTATGTGTACATTGGCGACCCTGCTCAATTACCTGCACCACGCACATTGCTAACTAAGGGCACACTAGAACCAGAATATTTCAATTCAGTGTGTAGACTTATG
AAAACTATAGGTCCAGACATGTTCCTCGGAACTTGTCGGCGTTGTCCTGCTGAAATTGTTGACACTGTGAGTGCTTTGGTTTATGATAATAAGCTTAAAGCACATAAAGACAAATCAGCTCAATGCTTTAAAATGTTTTATAAGGGTGTTATCACGCATGATGTTTCATCTGCAATTAACAGGCCACAAATAGGCGTGGTAAGAGAATTCCTTACACGTAACCCTGCTTGGAGAAAAGCTGTCTTTATTTCACCTTATAATTCACAGAATGCTGTAGCCTCAAAGATTTTGGGACTA
CCAACTCAAACTGTTGATTCATCACAGGGCTCAGAATATGACTATGTCATATTCACTCAAACCACTGAAACAGCTCACTCTTGTAATGTAAACAGATTTAATGTTGCTATTACCAGAGCAAAAGTAGGCATACTTTGCATAATGTCTGATAGAGACCTTTATGACAAGTTGCAATTTACAAGTCTTGAAATTCCACGTAGGAATGTGGCAACTTTACAAGCTGAAAATGTAACAGGACTCTTTAAAGATTGTAGTAAGGTAATCACTGGGTTACATCCTACACAGGCACCTACACAC
CTCAGTGTTGACACTAAATTCAAAACTGAAGGTTTATGTGTTGACATACCTGGCATACCTAAGGACATGACCTATAGAAGACTCATCTCTATGATGGGTTTTAAAATGAATTATCAAGTTAATGGTTACCCTAACATGTTTATCACCCGCGAAGAAGCTATAAGACATGTACGTGCATGGATTGGCTTCGATGTCGAGGGGTGTCATGCTACTAGAGAAGCTGTTGGTACCAATTTACCTTTACAGCTAGGTTTTTCTACAGGTGTTAACCTAGTTGCTGTACCTACAGGTTATGTT
GATACACCTAATAATACAGATTTTTCCAGAGTTAGTGCTAAACCACCGCCTGGAGATCAATTTAAACACCTCATACCACTTATGTACAAAGGACTTCCTTGGAATGTAGTGCGTATAAAGATTGTACAAATGTTAAGTGACACACTTAAAAATCTCTCTGACAGAGTCGTATTTGTCTTATGGGCACATGGCTTTGAGTTGACATCTATGAAGTATTTTGTGAAAATAGGACCTGAGCGCACCTGTTGTCTATGTGATAGACGTGCCACATGCTTTTCCACTGCTTCAGACACTTAT
GCCTGTTGGCATCATTCTATTGGATTTGATTACGTCTATAATCCGTTTATGATTGATGTTCAACAATGGGGTTTTACAGGTAACCTACAAAGCAACCATGATCTGTATTGTCAAGTCCATGGTAATGCACATGTAGCTAGTTGTGATGCAATCATGACTAGGTGTCTAGCTGTCCACGAGTGCTTTGTTAAGCGTGTTGACTGGACTATTGAATATCCTATAATTGGTGATGAACTGAAGATTAATGCGGCTTGTAGAAAGGTTCAACACATGGTTGTTAAAGCTGCATTATTAGCA
GACAAATTCCCAGTTCTTCACGACATTGGTAACCCTAAAGCTATTAAGTGTGTACCTCAAGCTGATGTAGAATGGAAGTTCTATGATGCACAGCCTTGTAGTGACAAAGCTTATAAAATAGAAGAATTATTCTATTCTTATGCCACACATTCTGACAAATTCACAGATGGTGTATGCCTATTTTGGAATTGCAATGTCGATAGATATCCTGCTAATTCCATTGTTTGTAGATTTGACACTAGAGTGCTATCTAACCTTAACTTGCCTGGTTGTGATGGTGGCAGTTTGTATGTAAAT
AAACATGCATTCCACACACCAGCTTTTGATAAAAGTGCTTTTGTTAATTTAAAACAATTACCATTTTTCTATTACTCTGACAGTCCATGTGAGTCTCATGGAAAACAAGTAGTGTCAGATATAGATTATGTACCACTAAAGTCTGCTACGTGTATAACACGTTGCAATTTAGGTGGTGCTGTCTGTAGACATCATGCTAATGAGTACAGATTGTATCTCGATGCTTATAACATGATGATCTCAGCTGGCTTTAGCTTGTGGGTTTACAAACAATTTGATACTTATAACCTCTGGAAC
ACTTTTACAAGACTTCAGAGTTTAGAAAATGTGGCTTTTAATGTTGTAAATAAGGGACACTTTGATGGACAACAGGGTGAAGTACCAGTTTCTATCATTAATAACACTGTTTACACAAAAGTTGATGGTGTTGATGTAGAATTGTTTGAAAATAAAACAACATTACCTGTTAATGTAGCATTTGAGCTTTGGGCTAAGCGCAACATTAAACCAGTACCAGAGGTGAAAATACTCAATAATTTGGGTGTGGACATTGCTGCTAATACTGTGATCTGGGACTACAAAAGAGATGCTCCA
GCACATATATCTACTATTGGTGTTTGTTCTATGACTGACATAGCCAAGAAACCAACTGAAACGATTTGTGCACCACTCACTGTCTTTTTTGATGGTAGAGTTGATGGTCAAGTAGACTTATTTAGAAATGCCCGTAATGGTGTTCTTATTACAGAAGGTAGTGTTAAAGGTTTACAACCATCTGTAGGTCCCAAACAAGCTAGTCTTAATGGAGTCACATTAATTGGAGAAGCCGTAAAAACACAGTTCAATTATTATAAGAAAGTTGATGGTGTTGTCCAACAATTACCTGAAACT
TACTTTACTCAGAGTAGAAATTTACAAGAATTTAAACCCAGGAGTCAAATGGAAATTGATTTCTTAGAATTAGCTATGGATGAATTCATTGAACGGTATAAATTAGAAGGCTATGCCTTCGAACATATCGTTTATGGAGATTTTAGTCATAGTCAGTTAGGTGGTTTACATCTACTGATTGGACTAGCTAAACGTTTTAAGGAATCACCTTTTGAATTAGAAGATTTTATTCCTATGGACAGTACAGTTAAAAACTATTTCATAACAGATGCGCAAACAGGTTCATCTAAGTGTGTG
TGTTCTGTTATTGATTTATTACTTGATGATTTTGTTGAAATAATAAAATCCCAAGATTTATCTGTAGTTTCTAAGGTTGTCAAAGTGACTATTGACTATACAGAAATTTCATTTATGCTTTGGTGTAAAGATGGCCATGTAGAAACATTTTACCCAAAATTACAATCTAGTCAAGCGTGGCAACCGGGTGTTGCTATGCCTAATCTTTACAAAATGCAAAGAATGCTATTAGAAAAGTGTGACCTTCAAAATTATGGTGATAGTGCAACATTACCTAAAGGCATAATGATGAATGTC
GCAAAATATACTCAACTGTGTCAATATTTAAACACATTAACATTAGCTGTACCCTATAATATGAGAGTTATACATTTTGGTGCTGGTTCTGATAAAGGAGTTGCACCAGGTACAGCTGTTTTAAGACAGTGGTTGCCTACGGGTACGCTGCTTGTCGATTCAGATCTTAATGACTTTGTCTCTGATGCAGATTCAACTTTGATTGGTGATTGTGCAACTGTACATACAGCTAATAAATGGGATCTCATTATTAGTGATATGTACGACCCTAAGACTAAAAATGTTACAAAAGAAAAT
GACTCTAAAGAGGGTTTTTTCACTTACATTTGTGGGTTTATACAACAAAAGCTAGCTCTTGGAGGTTCCGTGGCTATAAAGATAACAGAACATTCTTGGAATGCTGATCTTTATAAGCTCATGGGACACTTCGCATGGTGGACAGCCTTTGTTACTAATGTGAATGCGTCATCATCTGAAGCATTTTTAATTGGATGTAATTATCTTGGCAAACCACGCGAACAAATAGATGGTTATGTCATGCATGCAAATTACATATTTTGGAGGAATACAAATCCAATTCAGTTGTCTTCCTAT
TCTTTATTTGACATGAGTAAATTTCCCCTTAAATTAAGGGGTACTGCTGTTATGTCTTTAAAAGAAGGTCAAATCAATGATATGATTTTATCTCTTCTTAGTAAAGGTAGACTTATAATTAGAGAAAACAACAGAGTTGTTATTTCTAGTGATGTTCTTGTTAACAACTAAACGAACAATGTTTGTTTTTCTTGTTTTATTGCCACTAGTCTCTAGTCAGTGTGTTAATCTTACAACCAGAACTCAATTACCCCCTGCATACACTAATTCTTTCACACGTGGTGTTTATTACCCTGA
CAAAGTTTTCAGATCCTCAGTTTTACATTCAACTCAGGACTTGTTCTTACCTTTCTTTTCCAATGTTACTTGGTTCCATGCTATACATGTCTCTGGGACCAATGGTACTAAGAGGTTTGATAACCCTGTCCTACCATTTAATGATGGTGTTTATTTTGCTTCCACTGAGAAGTCTAACATAATAAGAGGCTGGATTTTTGGTACTACTTTAGATTCGAAGACCCAGTCCCTACTTATTGTTAATAACGCTACTAATGTTGTTATTAAAGTCTGTGAATTTCAATTTTGTAATGATCC
ATTTTTGGGTGTTTATTACCACAAAAACAACAAAAGTTGGATGGAAAGTGAGTTCAGAGTTTATTCTAGTGCGAATAATTGCACTTTTGAATATGTCTCTCAGCCTTTTCTTATGGACCTTGAAGGAAAACAGGGTAATTTCAAAAATCTTAGGGAATTTGTGTTTAAGAATATTGATGGTTATTTTAAAATATATTCTAAGCACACGCCTATTAATTTAGTGCGTGATCTCCCTCAGGGTTTTTCGGCTTTAGAACCATTGGTAGATTTGCCAATAGGTATTAACATCACTAGGTT
TCAAACTTTACTTGCTTTACATAGAAGTTATTTGACTCCTGGTGATTCTTCTTCAGGTTGGACAGCTGGTGCTGCAGCTTATTATGTGGGTTATCTTCAACCTAGGACTTTTCTATTAAAATATAATGAAAATGGAACCATTACAGATGCTGTAGACTGTGCACTTGACCCTCTCTCAGAAACAAAGTGTACGTTGAAATCCTTCACTGTAGAAAAAGGAATCTATCAAACTTCTAACTTTAGAGTCCAACCAACAGAATCTATTGTTAGATTTCCTAATATTACAAACTTGTGCCC
TTTTGGTGAAGTTTTTAACGCCACCAGATTTGCATCTGTTTATGCTTGGAACAGGAAGAGAATCAGCAACTGTGTTGCTGATTATTCTGTCCTATATAATTCCGCATCATTTTCCACTTTTAAGTGTTATGGAGTGTCTCCTACTAAATTAAATGATCTCTGCTTTACTAATGTCTATGCAGATTCATTTGTAATTAGAGGTGATGAAGTCAGACAAATCGCTCCAGGGCAAACTGGAAAGATTGCTGATTATAATTATAAATTACCAGATGATTTTACAGGCTGCGTTATAGCTTG
GAATTCTAACAATCTTGATTCTAAGGTTGGTGGTAATTATAATTACCTGTATAGATTGTTTAGGAAGTCTAATCTCAAACCTTTTGAGAGAGATATTTCAACTGAAATCTATCAGGCCGGTAGCACACCTTGTAATGGTGTTGAAGGTTTTAATTGTTACTTTCCTTTACAATCATATGGTTTCCAACCCACTAATGGTGTTGGTTACCAACCATACAGAGTAGTAGTACTTTCTTTTGAACTTCTACATGCACCAGCAACTGTTTGTGGACCTAAAAAGTCTACTAATTTGGTTAA
AAACAAATGTGTCAATTTCAACTTCAATGGTTTAACAGGCACAGGTGTTCTTACTGAGTCTAACAAAAAGTTTCTGCCTTTCCAACAATTTGGCAGAGACATTGCTGACACTACTGATGCTGTCCGTGATCCACAGACACTTGAGATTCTTGACATTACACCATGTTCTTTTGGTGGTGTCAGTGTTATAACACCAGGAACAAATACTTCTAACCAGGTTGCTGTTCTTTATCAGGATGTTAACTGCACAGAAGTCCCTGTTGCTATTCATGCAGATCAACTTACTCCTACTTGGCG
TGTTTATTCTACAGGTTCTAATGTTTTTCAAACACGTGCAGGCTGTTTAATAGGGGCTGAACATGTCAACAACTCATATGAGTGTGACATACCCATTGGTGCAGGTATATGCGCTAGTTATCAGACTCAGACTAATTCTCCTCGGCGGGCACGTAGTGTAGCTAGTCAATCCATCATTGCCTACACTATGTCACTTGGTGCAGAAAATTCAGTTGCTTACTCTAATAACTCTATTGCCATACCCACAAATTTTACTATTAGTGTTACCACAGAAATTCTACCAGTGTCTATGACCAA
GACATCAGTAGATTGTACAATGTACATTTGTGGTGATTCAACTGAATGCAGCAATCTTTTGTTGCAATATGGCAGTTTTTGTACACAATTAAACCGTGCTTTAACTGGAATAGCTGTTGAACAAGACAAAAACACCCAAGAAGTTTTTGCACAAGTCAAACAAATTTACAAAACACCACCAATTAAAGATTTTGGTGGTTTTAATTTTTCACAAATATTACCAGATCCATCAAAACCAAGCAAGAGGTCATTTATTGAAGATCTACTTTTCAACAAAGTGACACTTGCAGATGCTGG
CTTCATCAAACAATATGGTGATTGCCTTGGTGATATTGCTGCTAGAGACCTCATTTGTGCACAAAAGTTTAACGGCCTTACTGTTTTGCCACCTTTGCTCACAGATGAAATGATTGCTCAATACACTTCTGCACTGTTAGCGGGTACAATCACTTCTGGTTGGACCTTTGGTGCAGGTGCTGCATTACAAATACCATTTGCTATGCAAATGGCTTATAGGTTTAATGGTATTGGAGTTACACAGAATGTTCTCTATGAGAACCAAAAATTGATTGCCAACCAATTTAATAGTGCTAT
TGGCAAAATTCAAGACTCACTTTCTTCCACAGCAAGTGCACTTGGAAAACTTCAAGATGTGGTCAACCAAAATGCACAAGCTTTAAACACGCTTGTTAAACAACTTAGCTCCAATTTTGGTGCAATTTCAAGTGTTTTAAATGATATCCTTTCACGTCTTGACAAAGTTGAGGCTGAAGTGCAAATTGATAGGTTGATCACAGGCAGACTTCAAAGTTTGCAGACATATGTGACTCAACAATTAATTAGAGCTGCAGAAATCAGAGCTTCTGCTAATCTTGCTGCTACTAAAATGTC
AGAGTGTGTACTTGGACAATCAAAAAGAGTTGATTTTTGTGGAAAGGGCTATCATCTTATGTCCTTCCCTCAGTCAGCACCTCATGGTGTAGTCTTCTTGCATGTGACTTATGTCCCTGCACAAGAAAAGAACTTCACAACTGCTCCTGCCATTTGTCATGATGGAAAAGCACACTTTCCTCGTGAAGGTGTCTTTGTTTCAAATGGCACACACTGGTTTGTAACACAAAGGAATTTTTATGAACCACAAATCATTACTACAGACAACACATTTGTGTCTGGTAACTGTGATGTTGT
AATAGGAATTGTCAACAACACAGTTTATGATCCTTTGCAACCTGAATTAGACTCATTCAAGGAGGAGTTAGATAAATATTTTAAGAATCATACATCACCAGATGTTGATTTAGGTGACATCTCTGGCATTAATGCTTCAGTTGTAAACATTCAAAAAGAAATTGACCGCCTCAATGAGGTTGCCAAGAATTTAAATGAATCTCTCATCGATCTCCAAGAACTTGGAAAGTATGAGCAGTATATAAAATGGCCATGGTACATTTGGCTAGGTTTTATAGCTGGCTTGATTGCCATAGT
AATGGTGACAATTATGCTTTGCTGTATGACCAGTTGCTGTAGTTGTCTCAAGGGCTGTTGTTCTTGTGGATCCTGCTGCAAATTTGATGAAGACGACTCTGAGCCAGTGCTCAAAGGAGTCAAATTACATTACACATAAACGAACTTATGGATTTGTTTATGAGAATCTTCACAATTGGAACTGTAACTTTGAAGCAAGGTGAAATCAAGGATGCTACTCCTTCAGATTTTGTTCGCGCTACTGCAACGATACCGATACAAGCCTCACTCCCTTTCGGATGGCTTATTGTTGGCGTT
GCACTTCTTGCTGTTTTTCAGAGCGCTTCCAAAATCATAACCCTCAAAAAGAGATGGCAACTAGCACTCTCCAAGGGTGTTCACTTTGTTTGCAACTTGCTGTTGTTGTTTGTAACAGTTTACTCACACCTTTTGCTCGTTGCTGCTGGCCTTGAAGCCCCTTTTCTCTATCTTTATGCTTTAGTCTACTTCTTGCAGAGTATAAACTTTGTAAGAATAATAATGAGGCTTTGGCTTTGCTGGAAATGCCGTTCCAAAAACCCATTACTTTATGATGCCAACTATTTTCTTTGCTGG
CATACTAATTGTTACGACTATTGTATACCTTACAATAGTGTAACTTCTTCAATTGTCATTACTTCAGGTGATGGCACAACAAGTCCTATTTCTGAACATGACTACCAGATTGGTGGTTATACTGAAAAATGGGAATCTGGAGTAAAAGACTGTGTTGTATTACACAGTTACTTCACTTCAGACTATTACCAGCTGTACTCAACTCAATTGAGTACAGACACTGGTGTTGAACATGTTACCTTCTTCATCTACAATAAAATTGTTGATGAGCCTGAAGAACATGTCCAAATTCACACA
ATCGACGGTTCATCCGGAGTTGTTAATCCAGTAATGGAACCAATTTATGATGAACCGACGACGACTACTAGCGTGCCTTTGTAAGCACAAGCTGATGAGTACGAACTTATGTACTCATTCGTTTCGGAAGAGACAGGTACGTTAATAGTTAATAGCGTACTTCTTTTTCTTGCTTTCGTGGTATTCTTGCTAGTTACACTAGCCATCCTTACTGCGCTTCGATTGTGTGCGTACTGCTGCAATATTGTTAACGTGAGTCTTGTAAAACCTTCTTTTTACGTTTACTCTCGTGTTAAA
AATCTGAATTCTTCTAGAGTTCCTGATCTTCTGGTCTAAACGAACTAAATATTATATTAGTTTTTCTGTTTGGAACTTTAATTTTAGCCATGGCAGATTCCAACGGTACTATTACCGTTGAAGAGCTTAAAAAGCTCCTTGAACAATGGAACCTAGTAATAGGTTTCCTATTCCTTACATGGATTTGTCTTCTACAATTTGCCTATGCCAACAGGAATAGGTTTTTGTATATAATTAAGTTAATTTTCCTCTGGCTGTTATGGCCAGTAACTTTAGCTTGTTTTGTGCTTGCTGCTG
TTTACAGAATAAATTGGATCACCGGTGGAATTGCTATCGCAATGGCTTGTCTTGTAGGCTTGATGTGGCTCAGCTACTTCATTGCTTCTTTCAGACTGTTTGCGCGTACGCGTTCCATGTGGTCATTCAATCCAGAAACTAACATTCTTCTCAACGTGCCACTCCATGGCACTATTCTGACCAGACCGCTTCTAGAAAGTGAACTCGTAATCGGAGCTGTGATCCTTCGTGGACATCTTCGTATTGCTGGACACCATCTAGGACGCTGTGACATCAAGGACCTGCCTAAAGAAATCA
CTGTTGCTACATCACGAACGCTTTCTTATTACAAATTGGGAGCTTCGCAGCGTGTAGCAGGTGACTCAGGTTTTGCTGCATACAGTCGCTACAGGATTGGCAACTATAAATTAAACACAGACCATTCCAGTAGCAGTGACAATATTGCTTTGCTTGTACAGTAAGTGACAACAGATGTTTCATCTCGTTGACTTTCAGGTTACTATAGCAGAGATATTACTAATTATTATGAGGACTTTTAAAGTTTCCATTTGGAATCTTGATTACATCATAAACCTCATAATTAAAAATTTATCT
AAGTCACTAACTGAGAATAAATATTCTCAATTAGATGAAGAGCAACCAATGGAGATTGATTAAACGAACATGAAAATTATTCTTTTCTTGGCACTGATAACACTCGCTACTTGTGAGCTTTATCACTACCAAGAGTGTGTTAGAGGTACAACAGTACTTTTAAAAGAACCTTGCTCTTCTGGAACATACGAGGGCAATTCACCATTTCATCCTCTAGCTGATAACAAATTTGCACTGACTTGCTTTAGCACTCAATTTGCTTTTGCTTGTCCTGACGGCGTAAAACACGTCTATCAG
TTACGTGCCAGATCAGTTTCACCTAAACTGTTCATCAGACAAGAGGAAGTTCAAGAACTTTACTCTCCAATTTTTCTTATTGTTGCGGCAATAGTGTTTATAACACTTTGCTTCACACTCAAAAGAAAGACAGAATGATTGAACTTTCATTAATTGACTTCTATTTGTGCTTTTTAGCCTTTCTGCTATTCCTTGTTTTAATTATGCTTATTATCTTTTGGTTCTCACTTGAACTGCAAGATCATAATGAAACTTGTCACGCCTAAACGAACATGAAATTTCTTGTTTTCTTAGGAA
TCATCACAACTGTAGCTGCATTTCACCAAGAATGTAGTTTACAGTCATGTACTCAACATCAACCATATGTAGTTGATGACCCGTGTCCTATTCACTTCTATTCTAAATGGTATATTAGAGTAGGAGCTAGAAAATCAGCACCTTTAATTGAATTGTGCGTGGATGAGGCTGGTTCTAAATCACCCATTCAGTACATCGATATCGGTAATTATACAGTTTCCTGTTTACCTTTTACAATTAATTGCCAGGAACCTAAATTGGGTAGTCTTGTAGTGCGTTGTTCGTTCTATGAAGACT
TTTTAGAGTATCATGACGTTCGTGTTGTTTTAGATTTCATCTAAACGAACAAACTAAAATGTCTGATAATGGACCCCAAAATCAGCGAAATGCACCCCGCATTACGTTTGGTGGACCCTCAGATTCAACTGGCAGTAACCAGAATGGAGAACGCAGTGGGGCGCGATCAAAACAACGTCGGCCCCAAGGTTTACCCAATAATACTGCGTCTTGGTTCACCGCTCTCACTCAACATGGCAAGGAAGACCTTAAATTCCCTCGAGGACAAGGCGTTCCAATTAACACCAATAGCAGTCC
AGATGACCAAATTGGCTACTACCGAAGAGCTACCAGACGAATTCGTGGTGGTGACGGTAAAATGAAAGATCTCAGTCCAAGATGGTATTTCTACTACCTAGGAACTGGGCCAGAAGCTGGACTTCCCTATGGTGCTAACAAAGACGGCATCATATGGGTTGCAACTGAGGGAGCCTTGAATACACCAAAAGATCACATTGGCACCCGCAATCCTGCTAACAATGCTGCAATCGTGCTACAACTTCCTCAAGGAACAACATTGCCAAAAGGCTTCTACGCAGAAGGGAGCAGAGGCGG
CAGTCAAGCCTCTTCTCGTTCCTCATCACGTAGTCGCAACAGTTCAAGAAATTCAACTCCAGGCAGCAGTAGGGGAACTTCTCCTGCTAGAATGGCTGGCAATGGCGGTGATGCTGCTCTTGCTTTGCTGCTGCTTGACAGATTGAACCAGCTTGAGAGCAAAATGTCTGGTAAAGGCCAACAACAACAAGGCCAAACTGTCACTAAGAAATCTGCTGCTGAGGCTTCTAAGAAGCCTCGGCAAAAACGTACTGCCACTAAAGCATACAATGTAACACAAGCTTTCGGCAGACGTGG
TCCAGAACAAACCCAAGGAAATTTTGGGGACCAGGAACTAATCAGACAAGGAACTGATTACAAACATTGGCCGCAAATTGCACAATTTGCCCCCAGCGCTTCAGCGTTCTTCGGAATGTCGCGCATTGGCATGGAAGTCACACCTTCGGGAACGTGGTTGACCTACACAGGTGCCATCAAATTGGATGACAAAGATCCAAATTTCAAAGATCAAGTCATTTTGCTGAATAAGCATATTGACGCATACAAAACATTCCCACCAACAGAGCCTAAAAAGGACAAAAAGAAGAAGGCTGA
TGAAACTCAAGCCTTACCGCAGAGACAGAAGAAACAGCAAACTGTGACTCTTCTTCCTGCTGCAGATTTGGATGATTTCTCCAAACAATTGCAACAATCCATGAGCAGTGCTGACTCAACTCAGGCCTAAACTCATGCAGACCACACAAGGCAGATGGGCTATATAAACGTTTTCGCTTTTCCGTTTACGATATATAGTCTACTCTTGTGCAGAATGAATTCTCGTAACTACATAGCACAAGTAGATGTAGTTAACTTTAATCTCACATAGCAATCTTTAATCAGTGTGTAACATTA
GGGAGGACTTGAAAGAGCCACCACATTTTCACCGAGGCCACGCGGAGTACGATCGAGTGTACAGTGAACAATGCTAGGGAGAGCTGCCTATATGGAAGAGCCCTAATGTGTAAAATTAATTTTAGTAGTGCTATCCCCATGTGATTTTAATAGCTTCTTAGGAGAATGACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Finding Hidden Messages in DNA



PART 1: HIDDEN MESSAGES IN 
THE REPLICATION ORIGIN
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A Prophetic One-Liner (1953)

"It has not escaped 
our notice that the 
specific pairing we 
have postulated 
immediately suggests 
a possible copying 
mechanism for the 
genetic material."

Francis
Crick

James
Watson
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The “Copying Mechanism”
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The “Copying Mechanism”
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The “Copying Mechanism”
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What a Biologist Sees...
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What a Computer Scientist Sees...

...ACTGATAACCCAGTATCAGACCAGTATCGAGGACGATACGTA...

Complicated Biological Process

...ACTGATAACCCAGTATCAGACCAGTATCGAGGACGATACGTA...

...ACTGATAACCCAGTATCAGACCAGTATCGAGGACGATACGTA...

DNA String

Copy 1

Copy 2
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Origin of Replication

Replication begins in a region called the replication 
origin (denoted ori).

© 2024 Phillip Compeau



Looking for ori

Verified ori of Vibrio cholerae, the bacterium 
that causes cholera (~500 nucleotides):

© 2024 Phillip Compeau

atcaatgatcaacgtaagcttctaagcatgatcaaggtgctcacacagtttatccacaac
ctgagtggatgacatcaagataggtcgttgtatctccttcctctcgtactctcatgacca
cggaaagatgatcaagagaggatgatttcttggccatatcgcaatgaatacttgtgactt
gtgcttccaattgacatcttcagcgccatattgcgctggccaaggtgacggagcgggatt
acgaaagcatgatcatggctgttgttctgtttatcttgttttgactgagacttgttagga
tagacggtttttcatcactgactagccaaagccttactctgcctgacatcgaccgtaaat
tgataatgaatttacatgcttccgcgacgatttacctcttgatcatcgatccgattgaag
atcttcaattgttaattctcttgcctcgactcatagccatgatgagctcttgatcatgtt
tccttaaccctctattttttacggaagaatgatcaagctgctgctcttgatcatcgtttc



Looking for ori

Verified ori of Vibrio cholerae, the bacterium 
that causes cholera (~500 nucleotides):

There must be a hidden message telling the cell 
to start replication here.

atcaatgatcaacgtaagcttctaagcatgatcaaggtgctcacacagtttatccacaac
ctgagtggatgacatcaagataggtcgttgtatctccttcctctcgtactctcatgacca
cggaaagatgatcaagagaggatgatttcttggccatatcgcaatgaatacttgtgactt
gtgcttccaattgacatcttcagcgccatattgcgctggccaaggtgacggagcgggatt
acgaaagcatgatcatggctgttgttctgtttatcttgttttgactgagacttgttagga
tagacggtttttcatcactgactagccaaagccttactctgcctgacatcgaccgtaaat
tgataatgaatttacatgcttccgcgacgatttacctcttgatcatcgatccgattgaag
atcttcaattgttaattctcttgcctcgactcatagccatgatgagctcttgatcatgtt
tccttaaccctctattttttacggaagaatgatcaagctgctgctcttgatcatcgtttc
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We Have Two Scientific Problems

2. Given a bacterial genome (~5 Mbp), where is ori?

1. Given ori (~500 bp), what is the “hidden 
message” saying that replication should start here?

© 2024 Phillip Compeau



Let’s Start with Question #1

This is not a well-defined problem, since we don’t 
know what is meant by “hidden message”.

Hidden Message Problem
• Input: A string text (representing ori). 
• Output: A hidden message in text.
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Hidden Message Problem Revisited 

Hidden Message Problem
• Input: A string text (representing ori). 
• Output: A hidden message in text.

Replication initiation is mediated by a protein called 
DnaA.
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Hidden Message Problem Revisited 

Replication initiation is mediated by a protein called 
DnaA.

DnaA binds to a short segment in ori known as a 
DnaA box, a hidden message saying: “bind here!”

Hidden Message Problem
• Input: A string text (representing ori). 
• Output: A hidden message in text.
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Hidden Message Problem Revisited 

STOP: Would it make sense for an organism to have 
multiple DnaA boxes, or just one?

© 2024 Phillip Compeau

Replication initiation is mediated by a protein called 
DnaA.

DnaA binds to a short segment in ori known as a 
DnaA box, a hidden message saying: “bind here!”



Hidden Message Problem Revisited 

Answer: Multiple DnaA boxes à higher chance of 
binding à higher “fitness”

Theodosius Dobzhansky

“Nothing in biology 
makes sense except in 
the light of ________.”
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Hidden Message Problem Revisited 

Answer: Multiple DnaA boxes à higher chance of 
binding à higher “fitness”

© 2024 Phillip Compeau

Theodosius Dobzhansky

“Nothing in biology 
makes sense except in 
the light of evolution.”



The Frequent Words Problem

A k-mer pattern is a most frequent k-mer in a string 
if no other k-mer is more frequent than pattern.
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The Frequent Words Problem

A k-mer pattern is a most frequent k-mer in a string 
if no other k-mer is more frequent than pattern.

Frequent Words Problem
• Input: A string text and an integer k.
• Output: All most frequent k-mers in text.
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The Frequent Words Problem

STOP: Now is this problem clearly stated?

A k-mer pattern is a most frequent k-mer in a string 
if no other k-mer is more frequent than pattern.

Frequent Words Problem
• Input: A string text and an integer k.
• Output: All most frequent k-mers in text.
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atcaatgatcaacgtaagcttctaagcatgatcaaggtgctcacacagtttatccacaacctgagtgg
atgacatcaagataggtcgttgtatctccttcctctcgtactctcatgaccacggaaagatgatcaag
agaggatgatttcttggccatatcgcaatgaatacttgtgacttgtgcttccaattgacatcttcagc
gccatattgcgctggccaaggtgacggagcgggattacgaaagcatgatcatggctgttgttctgttt
atcttgttttgactgagacttgttaggatagacggtttttcatcactgactagccaaagccttactct
gcctgacatcgaccgtaaattgataatgaatttacatgcttccgcgacgatttacctcttgatcatcg
atccgattgaagatcttcaattgttaattctcttgcctcgactcatagccatgatgagctcttgatca
tgtttccttaaccctctattttttacggaagaatgatcaagctgctgctcttgatcatcgtttc

W H E R E I N T H E G E N O M E D O E S D N A R E P L I C AT I O N B E G I N ?

Frequent words in Vibrio cholerae

Figure 1.3 reveals the most frequent k-mers in the oriC region from Vibrio cholerae.

k 3 4 5 6 7 8 9
count 25 12 8 8 5 4 3
k-mers tga atga gatca tgatca atgatca atgatcaa atgatcaag

tgatc cttgatcat
tcttgatca
ctcttgatc

FIGURE 1.3 The most frequent k-mers in the oriC region of Vibrio cholerae for k from
3 to 9, along with the number of times that each k-mer occurs.

STOP and Think: Do any of the counts in Figure 1.3 seem surprisingly large?

For example, the 9-mer ATGATCAAG appears three times in the oriC region of Vibrio

cholerae — is it surprising?

atcaatgatcaacgtaagcttctaagcATGATCAAGgtgctcacacagtttatccacaac
ctgagtggatgacatcaagataggtcgttgtatctccttcctctcgtactctcatgacca
cggaaagATGATCAAGagaggatgatttcttggccatatcgcaatgaatacttgtgactt
gtgcttccaattgacatcttcagcgccatattgcgctggccaaggtgacggagcgggatt
acgaaagcatgatcatggctgttgttctgtttatcttgttttgactgagacttgttagga
tagacggtttttcatcactgactagccaaagccttactctgcctgacatcgaccgtaaat
tgataatgaatttacatgcttccgcgacgatttacctcttgatcatcgatccgattgaag
atcttcaattgttaattctcttgcctcgactcatagccatgatgagctcttgatcatgtt
tccttaaccctctattttttacggaagaATGATCAAGctgctgctcttgatcatcgtttc

We highlight a most frequent 9-mer instead of using some other value of k because
experiments have revealed that bacterial DnaA boxes are usually nine nucleotides long.
The probability that there exists a 9-mer appearing three or more times in a randomly
generated DNA string of length 500 is approximately 1/1300 (see DETOUR: Probabili- PAGE 52
ties of Patterns in a String). In fact, there are four different 9-mers repeated three or
more times in this region: ATGATCAAG, CTTGATCAT, TCTTGATCA, and CTCTTGATC.

The low likelihood of witnessing even one repeated 9-mer in the oriC region of Vibrio

cholerae leads us to the working hypothesis that one of these four 9-mers may represent
a potential DnaA box that, when appearing multiple times in a short region, jump-starts
replication. But which one?

10

Returning to ori of Vibrio cholerae
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atcaatgatcaacgtaagcttctaagcATGATCAAGgtgctcacacagtttatccacaacctgagtgg
atgacatcaagataggtcgttgtatctccttcctctcgtactctcatgaccacggaaagATGATCAAG
agaggatgatttcttggccatatcgcaatgaatacttgtgacttgtgcttccaattgacatcttcagc
gccatattgcgctggccaaggtgacggagcgggattacgaaagcatgatcatggctgttgttctgttt
atcttgttttgactgagacttgttaggatagacggtttttcatcactgactagccaaagccttactct
gcctgacatcgaccgtaaattgataatgaatttacatgcttccgcgacgatttacCTCTTGATCATcg
atccgattgaagatcttcaattgttaattctcttgcctcgactcatagccatgatgagCTCTTGATCA
TgtttccttaaccctctattttttacggaagaATGATCAAGctgctgCTCTTGATCATcgtttc

Returning to ori of Vibrio cholerae
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Most frequent 9-mers in this ori (all appear 3 times): 
ATGATCAAG, CTTGATCAT, TCTTGATCA, CTCTTGATC



Most frequent 9-mers in this ori (all appear 3 times): 
ATGATCAAG, CTTGATCAT, TCTTGATCA, CTCTTGATC

atcaatgatcaacgtaagcttctaagcATGATCAAGgtgctcacacagtttatccacaacctgagtgg
atgacatcaagataggtcgttgtatctccttcctctcgtactctcatgaccacggaaagATGATCAAG
agaggatgatttcttggccatatcgcaatgaatacttgtgacttgtgcttccaattgacatcttcagc
gccatattgcgctggccaaggtgacggagcgggattacgaaagcatgatcatggctgttgttctgttt
atcttgttttgactgagacttgttaggatagacggtttttcatcactgactagccaaagccttactct
gcctgacatcgaccgtaaattgataatgaatttacatgcttccgcgacgatttacCTCTTGATCATcg
atccgattgaagatcttcaattgttaattctcttgcctcgactcatagccatgatgagCTCTTGATCA
TgtttccttaaccctctattttttacggaagaATGATCAAGctgctgCTCTTGATCATcgtttc

STOP: Now what do you see?

Returning to ori of Vibrio cholerae
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Complementarity of DNA

W H E R E I N T H E G E N O M E D O E S D N A R E P L I C AT I O N B E G I N ?

STOP and Think: Is any one of the four most frequent 9-mers in the oriC of Vibrio

cholerae “more surprising” than the others?

Some Hidden Messages are More Surprising than Others

Recall that nucleotides A and T are complements of each other, as are C and G. Having
one strand of DNA and a supply of “free floating” nucleotides as shown in Figure 1.1,
one can imagine the synthesis of a complementary strand on a template strand. This
model of replication was confirmed by Meselson and Stahl in 1958 (see DETOUR: PAGE 57
The Most Beautiful Experiment in Biology). Figure 1.4 shows a template strand
AGTCGCATAGT and its complementary strand ACTATGCGACT.

At this point, you may think that we have made a mistake, since the comple-
mentary strand in Figure 1.4 reads out TCAGCGTATCA from left to right rather than
ACTATGCGACT. We have not: each DNA strand has a direction, and the complementary
strand runs in the opposite direction to the template strand, as shown by the arrows in
Figure 1.4. Each strand is read in the 5’ ! 3’ direction (see DETOUR: Directionality PAGE 59
of DNA Strands to learn why biologists refer to the beginning and end of a strand of
DNA using the terms 5’ and 3’).

T C A G C G T A T C A 

A G T C G C A T A G T 

3  

3  

5  

5  

FIGURE 1.4 Complementary strands run in opposite directions.

Given a nucleotide p, we denote its complementary nucleotide as p. The reverse
complement of a string Pattern = p1 · · · pn is the string Pattern = pn · · · p1 formed by
taking the complement of each nucleotide in Pattern, then reversing the resulting string.
We will need the solution to the following problem throughout this chapter.

11

DNA is double-stranded, and the two strands are 
reverse complements of each other.
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Complementarity of DNA

W H E R E I N T H E G E N O M E D O E S D N A R E P L I C AT I O N B E G I N ?

STOP and Think: Is any one of the four most frequent 9-mers in the oriC of Vibrio

cholerae “more surprising” than the others?

Some Hidden Messages are More Surprising than Others

Recall that nucleotides A and T are complements of each other, as are C and G. Having
one strand of DNA and a supply of “free floating” nucleotides as shown in Figure 1.1,
one can imagine the synthesis of a complementary strand on a template strand. This
model of replication was confirmed by Meselson and Stahl in 1958 (see DETOUR: PAGE 57
The Most Beautiful Experiment in Biology). Figure 1.4 shows a template strand
AGTCGCATAGT and its complementary strand ACTATGCGACT.

At this point, you may think that we have made a mistake, since the comple-
mentary strand in Figure 1.4 reads out TCAGCGTATCA from left to right rather than
ACTATGCGACT. We have not: each DNA strand has a direction, and the complementary
strand runs in the opposite direction to the template strand, as shown by the arrows in
Figure 1.4. Each strand is read in the 5’ ! 3’ direction (see DETOUR: Directionality PAGE 59
of DNA Strands to learn why biologists refer to the beginning and end of a strand of
DNA using the terms 5’ and 3’).

T C A G C G T A T C A 

A G T C G C A T A G T 

3  

3  

5  

5  

FIGURE 1.4 Complementary strands run in opposite directions.

Given a nucleotide p, we denote its complementary nucleotide as p. The reverse
complement of a string Pattern = p1 · · · pn is the string Pattern = pn · · · p1 formed by
taking the complement of each nucleotide in Pattern, then reversing the resulting string.
We will need the solution to the following problem throughout this chapter.

11

The reverse complement of AGTCGCATAGT is 
ACTATGCGACT. 
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Hidden Message Found!

atcaatgatcaacgtaagcttctaagcATGATCAAGgtgctcacacagtttatccacaacctgagtgg
atgacatcaagataggtcgttgtatctccttcctctcgtactctcatgaccacggaaagATGATCAAG
agaggatgatttcttggccatatcgcaatgaatacttgtgacttgtgcttccaattgacatcttcagc
gccatattgcgctggccaaggtgacggagcgggattacgaaagcatgatcatggctgttgttctgttt
atcttgttttgactgagacttgttaggatagacggtttttcatcactgactagccaaagccttactct
gcctgacatcgaccgtaaattgataatgaatttacatgcttccgcgacgatttacctCTTGATCATcg
atccgattgaagatcttcaattgttaattctcttgcctcgactcatagccatgatgagctCTTGATCA
TgtttccttaaccctctattttttacggaagaATGATCAAGctgctgctCTTGATCATcgtttc

© 2024 Phillip Compeau

ATGATCAAG
||||||||| 
TACTAGTTC

are reverse complements and likely 
DnaA boxes (DnaA does not know 
which strand it binds to).



Hidden Message Found!

ATGATCAAG
||||||||| 
TACTAGTTC

It is VERY SURPRISING to find a 9-mer appearing 6 or more 
times (with reverse complements) within ≈ 500 nucleotides. 

atcaatgatcaacgtaagcttctaagcATGATCAAGgtgctcacacagtttatccacaacctgagtgg
atgacatcaagataggtcgttgtatctccttcctctcgtactctcatgaccacggaaagATGATCAAG
agaggatgatttcttggccatatcgcaatgaatacttgtgacttgtgcttccaattgacatcttcagc
gccatattgcgctggccaaggtgacggagcgggattacgaaagcatgatcatggctgttgttctgttt
atcttgttttgactgagacttgttaggatagacggtttttcatcactgactagccaaagccttactct
gcctgacatcgaccgtaaattgataatgaatttacatgcttccgcgacgatttacctCTTGATCATcg
atccgattgaagatcttcaattgttaattctcttgcctcgactcatagccatgatgagctCTTGATCA
TgtttccttaaccctctattttttacggaagaATGATCAAGctgctgctCTTGATCATcgtttc

are reverse complements and likely 
DnaA boxes (DnaA does not know 
which strand it binds to).
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Looking for other Hidden Messages?

STOP: Now that we know the “hidden message” in 
Vibrio cholerae, how would we look for a hidden 
message starting replication in other bacteria?

© 2024 Phillip Compeau



Looking for other Hidden Messages?

STOP: Now that we know the “hidden message” in 
Vibrio cholerae, how would we look for a hidden 
message starting replication in other bacteria?

© 2024 Phillip Compeau

Answer: Perhaps we could look for the same k-mers in 
other bacteria’s replication origins…



Not one occurrence of ATGATCAAG or CTTGATCAT!

aactctatacctcctttttgtcgaatttgtgtgatttatagagaaaatcttattaactgaaactaa
aatggtaggtttggtggtaggttttgtgtacattttgtagtatctgatttttaattacataccgta
tattgtattaaattgacgaacaattgcatggaattgaatatatgcaaaacaaacctaccaccaaac
tctgtattgaccattttaggacaacttcagggtggtaggtttctgaagctctcatcaatagactat
tttagtctttacaaacaatattaccgttcagattcaagattctacaacgctgttttaatgggcgtt
gcagaaaacttaccacctaaaatccagtatccaagccgatttcagagaaacctaccacttacctac
cacttacctaccacccgggtggtaagttgcagacattattaaaaacctcatcagaagcttgttcaa
aaatttcaatactcgaaacctaccacctgcgtcccctattatttactactactaataatagcagta
taattgatctgaaaagaggtggtaaaaaa

Hidden Messages in T. petrophila?
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Not one occurrence of ATGATCAAG or CTTGATCAT!

aactctatacctcctttttgtcgaatttgtgtgatttatagagaaaatcttattaactgaaactaa
aatggtaggtttggtggtaggttttgtgtacattttgtagtatctgatttttaattacataccgta
tattgtattaaattgacgaacaattgcatggaattgaatatatgcaaaacaaacctaccaccaaac
tctgtattgaccattttaggacaacttcagggtggtaggtttctgaagctctcatcaatagactat
tttagtctttacaaacaatattaccgttcagattcaagattctacaacgctgttttaatgggcgtt
gcagaaaacttaccacctaaaatccagtatccaagccgatttcagagaaacctaccacttacctac
cacttacctaccacccgggtggtaagttgcagacattattaaaaacctcatcagaagcttgttcaa
aaatttcaatactcgaaacctaccacctgcgtcccctattatttactactactaataatagcagta
taattgatctgaaaagaggtggtaaaaaa

Hidden Messages in T. petrophila?

Applying Frequent Words Problem to this ori: 
AACCTACCA, ACCTACCAC, GGTAGGTTT 
TGGTAGGTT, AAACCTACC, CCTACCACC 
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aactctatacctcctttttgtcgaatttgtgtgatttatagagaaaatcttattaactgaaactaa
aatggtaggtttggtggtaggttttgtgtacattttgtagtatctgatttttaattacataccgta
tattgtattaaattgacgaacaattgcatggaattgaatatatgcaaaacaaacctaccaccaaac
tctgtattgaccattttaggacaacttcagggtggtaggtttctgaagctctcatcaatagactat
tttagtctttacaaacaatattaccgttcagattcaagattctacaacgctgttttaatgggcgtt
gcagaaaacttaccacctaaaatccagtatccaagccgatttcagagaaacctaccacttacctac
cacttacctaccacccgggtggtaagttgcagacattattaaaaacctcatcagaagcttgttcaa
aaatttcaatactcgaaacctaccacctgcgtcccctattatttactactactaataatagcagta
taattgatctgaaaagaggtggtaaaaaa

Hidden Messages in T. petrophila?

Applying Frequent Words Problem to this ori: 
AACCTACCA, ACCTACCAC, GGTAGGTTT 
TGGTAGGTT, AAACCTACC, CCTACCACC 

© 2024 Phillip Compeau

Different genomes à different hidden messages



CCTACCACC 
|||||||||  are candidate hidden messages.  
GGATGGTGG 

Hidden Messages in Thermotoga petrophila

aactctatacctcctttttgtcgaatttgtgtgatttatagagaaaatcttattaactgaaactaa
aatggtaggtttGGTGGTAGGttttgtgtacattttgtagtatctgatttttaattacataccgta
tattgtattaaattgacgaacaattgcatggaattgaatatatgcaaaacaaaCCTACCACCaaac
tctgtattgaccattttaggacaacttcagGGTGGTAGGtttctgaagctctcatcaatagactat
tttagtctttacaaacaatattaccgttcagattcaagattctacaacgctgttttaatgggcgtt
gcagaaaacttaccacctaaaatccagtatccaagccgatttcagagaaacctaccacttacctac
cacttaCCTACCACCcgggtggtaagttgcagacattattaaaaacctcatcagaagcttgttcaa
aaatttcaatactcgaaaCCTACCACCtgcgtcccctattatttactactactaataatagcagta
taattgatctgaaaagaggtggtaaaaaa
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Returning to “Question #2”

We can find hidden messages if ori is given. But we 
still don’t know how to find ori in a (long) genome.
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Bacteria with Unknown ori

STOP: Now that we know that “hidden messages” 
may differ, how could we look for ori in a newly 
sequenced bacterial genome?
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Finding ori Computationally

OLD strategy: given a previously known ori (500 nucleotide 
window), find frequent words (clumps) in ori as candidate 
DnaA boxes.

replication origin → frequent words
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Finding ori Computationally

NEW strategy: find frequent words in ALL windows within a 
(3 million nucleotide) genome. Windows with clumps of 
frequent words are candidate replication origins.

frequent words → replication origin 

OLD strategy: given a previously known ori (500 nucleotide 
window), find frequent words (clumps) in ori as candidate 
DnaA boxes.

replication origin → frequent words
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Finding ori Computationally

Exercise: Formulate a computational problem 
modeling our new strategy.

NEW strategy: find frequent words in ALL windows within a 
(3 million nucleotide) genome. Windows with clumps of 
frequent words are candidate replication origins.

frequent words → replication origin 
© 2024 Phillip Compeau



Defining and Hunting for “Clumps”

Intui&ve: A k-mer forms a clump inside Genome if there is a 
short interval of Genome in which it appears many 5mes.

A k-mer forms an (L, t)-clump inside Genome if 
there is a short (length L) interval of Genome in 
which it appears many (at least t) times.
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Defining and Hunting for “Clumps”

Clump Finding Problem
• Input: A string Genome and integers k (length of 

a pattern), L (window length), and t (number of 
patterns in a clump). 

• Output: All k-mers forming (L, t)-clumps in 
Genome.

A k-mer forms an (L, t)-clump inside Genome if 
there is a short (length L) interval of Genome in 
which it appears many (at least t) times.
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Defining and Hunting for “Clumps”

Clump Finding Problem
• Input: A string Genome and integers k (length of 

a pattern), L (window length), and t (number of 
patterns in a clump). 

• Output: All k-mers forming (L, t)-clumps in 
Genome.

© 2024 Phillip Compeau

STOP: Why is looking for clumps in bacterial 
genomes as a source of hidden messages destined to 
fail?



What’s the Issue?

© 2024 Phillip Compeau

Recall from our work in genome assembly that 
genomes have many repeats.



What’s the Issue?

In E. coli, over 1900 different 9-mers form (500,3)-
clumps. It is unclear which ones point to ori …

© 2024 Phillip Compeau

Recall from our work in genome assembly that 
genomes have many repeats.



A Surprising Pattern in Nucleotide Counts
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Let’s run a very simple 
computational analysis: 
take frequency of each 
nucleotide in 100,000 
nucleotide windows of E. 
coli (verified ori).

Why would there be 
more C on half the 
genome?

ori ter
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A Surprising Pattern in Nucleotide Counts

Let’s run a very simple 
computational analysis: 
take frequency of each 
nucleotide in 100,000 
nucleotide windows of E. 
coli (verified ori).

And why would the 
story be opposite when 
we count G’s?

ori ter
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A Surprising Pattern in Nucleotide Counts

The pattern is even more 
stark if we take the 
difference between the 
frequency of G and the 
frequency of C ...

ori ter
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A Surprising Pattern in Nucleotide Counts

And the pattern is still 
there even if we didn’t 
know where ori was and 
start counting at some 
arbitrary spot.
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A Surprising Pattern in Nucleotide Counts

And the pattern is still 
there even if we didn’t 
know where ori was and 
start counting at some 
arbitrary spot.
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Let’s learn more 
about replication in 
the hope of finding 
an answer...



3’

3’ 5’

5’ ori

terC

ori

terC

The two strands run in opposite directions
(from 5’ to 3’).

Blue Strand: Clockwise, 
Green Strand: Counter-Clockwise 

DNA Strands Have Directions
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Four DNA Polymerases Can Do the Job

3’

3’ 5’

5’

ori

ori

terC

terC
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Continue as Replication Fork Enlarges

Simple, but wrong: DNA polymerases 
are unidirectional: they can only 
traverse a parent strand in the 3’ à 5’ 
direction.

3’

3’ 5’

5’
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3’

3’ 5’

5’

If you Were a UNIDIRECTIONAL DNA 
Polymerase, how Would you Replicate a 

Genome?

No problem replicating leading half-strands (thick lines).

Leading 
half-strand

Leading 
half-strand

Lagging 
half-strand    

Lagging 
half-strand

Big problem replicating lagging half-strands (thin lines).



3’

3’ 5’

5’

If you Were a UNIDIRECTIONAL DNA 
Polymerase, how Would you Replicate a 

Genome?

No problem replicating reverse half-strands (thick lines).

Leading 
half-strand

Leading 
half-strand

Lagging 
half-strand    

Lagging 
half-strand

Note: Leading/lagging half-strands are complementary.



3’

3’ 5’

5’

Wait until the Fork Opens and ...
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Wait until the Fork Opens and Replicate

3’

3’ 5’

5’
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Okazaki 
fragments

Iterate this Process
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Many Okazaki 
fragments are 

replicated.

Iterate this Process

Okazaki 
fragments

Okazaki 
fragments
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DNA Ligase Ties Together Fragments

The genome has been 
replicated! 
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Different Lifestyles of Half-strands

The leading half-strand 
lives a double-stranded life 
most of the time.

waiting

waiting

The lagging half-strand 
spends a large portion of its 
life single-stranded, waiting 
to be replicated.
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Different Lifestyles of Half-strands

The leading half-strand 
lives a double-stranded life 
most of the time.

But why would a 
computer scientist care? 

waiting

waiting

The lagging half-strand 
spends a large portion of its 
life single-stranded, waiting 
to be replicated.
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Asymmetry of Replication Affects 
Nucleotide Frequencies

Single-stranded DNA has 
a much higher mutation 
rate than double-
stranded DNA.

waiting

waiting
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Asymmetry of Replication Affects 
Nucleotide Frequencies

Single-stranded DNA has 
a much higher mutation 
rate than double-
stranded DNA.

Thus, if one nucleotide has a greater mutation rate, 
then we should observe its shortage on the lagging 
half-strand, since it is more often single-stranded!

wai'ng

waiting
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Deamination is the Answer

Cytosine (C) rapidly mutates into thymine (T) through 
deamination; deamination rates rise 100-fold when 
DNA is single-stranded! 
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Deamination is the Answer

Cytosine (C) rapidly mutates into thymine (T) through 
deamination; deamination rates rise 100-fold when 
DNA is single-stranded! 

...C...

...G...
leading

lagging
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Deamination is the Answer

Cytosine (C) rapidly mutates into thymine (T) through 
deamination; deamination rates rise 100-fold when 
DNA is single-stranded! 

...C...

...G...

...C...

...G...

...C...
leading

lagging

lagging
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Deamination is the Answer

Cytosine (C) rapidly mutates into thymine (T) through 
deamination; deamination rates rise 100-fold when 
DNA is single-stranded! 

...C...

...G...

...C...

...G...

...C...

...T...

...G...

...C...
leading

lagging

lagging lagging

© 2024 Phillip Compeau



Deamination is the Answer

Cytosine (C) rapidly mutates into thymine (T) through 
deamination; deamination rates rise 100-fold when 
DNA is single-stranded! 

...C...

...G...

...C...

...G...

...C...

...T...

...G...

...C...

...T...

...G...

...C...

...A...

leading

lagging

lagging lagging lagging

leading
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3’

3’ 5’

5’

ori

terC

Take a Walk Along the Genome

C high
G low 

C low
G high
 

C high/G low → #G - #C is DECREASING as 
we walk along the LEADING half-strand 

C low/G high → #G - #C is INCREASING  
as we walk  along the LAGGING half-strand

#G - #C is DECREASING #G - #C is INCREASING 

You walk along the genome and see that  #G - #C has 
been decreasing and then suddenly starts increasing. 

Where are you in the genome?
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Skew Array/Diagram 

Skew array: Skew[k] = #G - #C for the first k 
nucleotides of Genome.  

Skew diagram: Plot Skew[k] against k. 

C A T G G G C A T C G G C C A T A C G C C  

C H A P T E R 1

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Skew[i] 0 -1 -1 -1 0 1 2 1 1 1 0 1 2 1 0 0 0 0 -1 0 -1 -2

Text C A T G G G C A T C G G C C A T A C G C C

sk
ew

 

position 
0 5 10 15 20 -2 

-1 

0 

1 

2 

FIGURE 1.16 (Top) The array Skew for Genome = CATGGGCATCGGCCATACGCC. Ev-
ery time we encounter a G, Skew[i] is equal to Skew[i-1]+1; every time we encounter
a C, Skew[i] is equal to Skew[i-1]-1; otherwise, Skew[i] is equal to Skew[i-1].
(Bottom) The skew diagram corresponding to Genome. The skew increases when we
encounter G and decreases when we encounter C.
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FIGURE 1.17 The skew diagram for E. coli achieves a maximum and minimum at
positions 1550413 and 3923620, respectively.

Let’s follow the 50 ! 30 direction of DNA and walk along the chromosome from terC to
oriC (along a reverse half-strand), then continue on from oriC to terC (along a forward
half-strand). In Figure 1.15, we saw that the skew is decreasing along the reverse half-
strand and increasing along the forward half-strand. Thus, the skew should achieve a
minimum at the position where the reverse half-strand ends and the forward half-strand
begins, which is exactly the location of oriC!
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Skew Array/Diagram 

3’

3’ 5’

5’

ori

terC

C high
G low 

C low
G high
 

#G - #C is DECREASING #G - #C is INCREASING 

STOP: What will the skew array 
of a bacterial genome look like?
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Skew Diagram of E. Coli

ori

You walk along the genome and see that #G - #C have been decreasing and 
then suddenly starts increasing. Where are you in the genome?



We Have Now “Solved” Question 1!

Given a bacterial genome (~3 Mbp), where is ori?
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PART 2: FINDING SEQUENCE 
MOTIFS
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Today’s Seemingly Random Analogy

© 2024 Phillip Compeau

You are orbiting a newly 
discovered planet that you 
know nothing about, apart 
from the fact that it has a 
smooth, solid surface. A droid 
that can roll around the 
planet’s surface and take 
measurements. How might you 
“program” the droid to look for 
the hottest part of the planet?



Central Dogma of Molecular Biology

H O W D O W E S E Q U E N C E A N T I B I O T I C S ?

positions of the string. These different ways of dividing a DNA string into codons are
called reading frames. Since DNA is double-stranded, a genome has six reading frames
(three on each strand), as shown in Figure 4.3.

GTGAAACTTTTTCCTTGGTTTAATCAATAT
CACTTTGAAAAAGGAACCAAATTAGTTATADNA

Translated peptides

CACUUUGAAAAAGGAACCAAAUUAGUUAUA

GUGAAACUUUUUCCUUGGUUUAAUCAAUAU

HisPheLysLysArgProLysIleLeuIle
 SerValLysGluLysThrSTPAspIle
  PheSerLysGlyGlnAsnLeuSTPTyr

Transcribed RNA

  GluThrPheSerLeuValSTPSerIle
 STPAsnPhePheLeuGlyLeuIleAsn
ValLysLeuPheProTrpPheAsnGlnTyr

5'
5'3'
3'

Transcribed RNA

Translated peptides

FIGURE 4.3 Six different reading frames give six different ways for the same fragment
of DNA to be transcribed and translated (three from each strand). The top three amino
acid strings are read from left to right, whereas the bottom three strings are read from
right to left. The highlighted amino acid string spells out the sequence of Tyrocidine B1.
Stop codons are represented by STP.

We say that a DNA string Pattern encodes an amino acid string Peptide if the RNA
string transcribed from either Pattern or its reverse complement Pattern translates into
Peptide. For example, the DNA string GAAACT is transcribed into GAAACU and trans-
lated into ET. The reverse complement of this DNA string, AGTTTC, is transcribed into
AGUUUC and translated into SF. Thus, GAAACT encodes both ET and SF.

Peptide Encoding Problem:
Find substrings of a genome encoding a given amino acid sequence.

Input: A DNA string Text and an amino acid string Peptide.
Output: All substrings of Text encoding Peptide (if any such substrings exist).

4B
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Central Dogma: DNA is transcribed into RNA, 
which is then translated into proteins.

© 2024 Phillip Compeau

H O W D O W E S E Q U E N C E A N T I B I O T I C S ?

all occurrences of T with U. The resulting strand of RNA is translated into an amino
acid sequence as follows. During translation, the RNA strand is partitioned into non-
overlapping 3-mers called codons. Then, each codon is converted into one of 20 amino
acids via the genetic code; the resulting sequence can be represented as an amino
acid string over a 20-letter alphabet. As illustrated in Figure 4.1, each of the 64 RNA
codons encodes its own amino acid (some codons encode the same amino acid), with
the exception of three stop codons that do not translate into amino acids and serve to
halt translation (see DETOUR: Discovery of Codons). For example, the DNA string PAGE 218
TATACGAAA transcribes into the RNA string UAUACGAAA, which in turn translates into
the amino acid string YTK.

FIGURE 4.1 The genetic code describes the translation of an RNA 3-mer (codon) into
one of 20 amino acids. The first three circles, moving from the inside out, represent
the first, second, and third nucleotides of a codon. The fourth, fifth, and sixth circles
define the translated amino acid in three ways: the amino acid’s full name, its 3-letter
abbreviation, and its single-letter abbreviation. Three of the 64 total RNA codons are
stop codons, which halt translation.
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Transcription factor proteins cause a 
feedback loop by affecting transcription
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A transcription 
factor can either  
cause the cell to 
increase (activate) 
or decrease 
(repress) the 
production of 
RNA/protein 
corresponding to a 
given gene.



ChIP-seq uses DNA sequencing to 
identify protein-DNA binding
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Figure courtesy Jkwchui, Wikimedia Commons user



Looking for Hidden Messages Again

If a collection of genes are implicated in the same 
function (e.g., the circadian clock), then a single 
transcription factor may bind to the same “keyword” 
in many of the genes’ upstream regions, perhaps 
with minor variations.
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GenesUpstream regions
(keywords)



Looking for Hidden Messages Again
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GenesUpstream regions
(keywords)

Key Point: we want to find these keywords for a 
collection of genes without knowing anything in 
advance about what the keywords are ...



Illustrating Motif Selection

Let Dna denote a collection of t strings of length n.
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Illustrating Motif Selection

Let Dna denote a collection of t strings of length n.

If we choose a k-mer from each of the t strings in 
Dna, then we obtain a collection Motifs.
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Illustrating Motif Selection

Let Dna denote a collection of t strings of length n.

Key Point: if we choose a different collection of k-mers, 
how do we know whether this collection is “better”?
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Scoring Motifs

STOP: Given a collection of Motifs, how can we 
assess how good it is?
C H A P T E R 2

Motifs

T C G G G G g T T T t t
c C G G t G A c T T a C
a C G G G G A T T T t C
T t G G G G A c T T t t
a a G G G G A c T T C C
T t G G G G A c T T C C
T C G G G G A T T c a t
T C G G G G A T T c C t
T a G G G G A a c T a C
T C G G G t A T a a C C

SCORE(Motifs) 3 + 4 + 0 + 0 + 1 + 1 + 1 + 5 + 2 + 3 + 6 + 4 = 30

COUNT(Motifs)

A: 2 2 0 0 0 0 9 1 1 1 3 0
C: 1 6 0 0 0 0 0 4 1 2 4 6
G: 0 0 10 10 9 9 1 0 0 0 0 0
T: 7 2 0 0 1 1 0 5 8 7 3 4

PROFILE(Motifs)

A: .2 .2 0 0 0 0 .9 .1 .1 .1 .3 0
C: .1 .6 0 0 0 0 0 .4 .1 .2 .4 .6
G: 0 0 1 1 .9 .9 .1 0 0 0 0 0
T: .7 .2 0 0 .1 .1 0 .5 .8 .7 .3 .4

CONSENSUS(Motifs) T C G G G G A T T T C C
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FIGURE 2.2 From motif matrix to count matrix to profile matrix to consensus string to
motif logo. The NF-kB binding sites form a 10⇥ 12 motif matrix, with the most frequent
nucleotide in each column shown in upper case letters and all other nucleotides shown
in lower case letters. SCORE(Motifs) counts the total number of unpopular (lower case)
symbols in the motif matrix. The motif matrix results in a 4 ⇥ 12 count matrix holding
the nucleotide counts in every column of the motif matrix; a profile matrix holding the
frequencies of nucleotides in every column of the motif matrix; and a consensus string
formed by the most frequent nucleotide in each column of the count matrix. Finally, the
motif logo is a common way to visualize the conservation of various positions within a
motif. The total height of the letters depicts the information content of the position.
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Scoring Motifs

Consensus string: The string formed by the most 
frequent symbol in each column.
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FIGURE 2.2 From motif matrix to count matrix to profile matrix to consensus string to
motif logo. The NF-kB binding sites form a 10⇥ 12 motif matrix, with the most frequent
nucleotide in each column shown in upper case letters and all other nucleotides shown
in lower case letters. SCORE(Motifs) counts the total number of unpopular (lower case)
symbols in the motif matrix. The motif matrix results in a 4 ⇥ 12 count matrix holding
the nucleotide counts in every column of the motif matrix; a profile matrix holding the
frequencies of nucleotides in every column of the motif matrix; and a consensus string
formed by the most frequent nucleotide in each column of the count matrix. Finally, the
motif logo is a common way to visualize the conservation of various positions within a
motif. The total height of the letters depicts the information content of the position.
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Scoring Motifs
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motif logo. The NF-kB binding sites form a 10⇥ 12 motif matrix, with the most frequent
nucleotide in each column shown in upper case letters and all other nucleotides shown
in lower case letters. SCORE(Motifs) counts the total number of unpopular (lower case)
symbols in the motif matrix. The motif matrix results in a 4 ⇥ 12 count matrix holding
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Score(Motifs): sum of the number of symbols that 
disagree with the consensus symbol in each 
column.

C H A P T E R 2

Motifs

T C G G G G g T T T t t
c C G G t G A c T T a C
a C G G G G A T T T t C
T t G G G G A c T T t t
a a G G G G A c T T C C
T t G G G G A c T T C C
T C G G G G A T T c a t
T C G G G G A T T c C t
T a G G G G A a c T a C
T C G G G t A T a a C C

SCORE(Motifs) 3 + 4 + 0 + 0 + 1 + 1 + 1 + 5 + 2 + 3 + 6 + 4 = 30

COUNT(Motifs)

A: 2 2 0 0 0 0 9 1 1 1 3 0
C: 1 6 0 0 0 0 0 4 1 2 4 6
G: 0 0 10 10 9 9 1 0 0 0 0 0
T: 7 2 0 0 1 1 0 5 8 7 3 4

PROFILE(Motifs)

A: .2 .2 0 0 0 0 .9 .1 .1 .1 .3 0
C: .1 .6 0 0 0 0 0 .4 .1 .2 .4 .6
G: 0 0 1 1 .9 .9 .1 0 0 0 0 0
T: .7 .2 0 0 .1 .1 0 .5 .8 .7 .3 .4

CONSENSUS(Motifs) T C G G G G A T T T C C

weblogo.berkeley.edu

0

1

2

bi
ts

5v

1C
A
T

2T
A
C

3

G

4

G

5T
G

6T
G

7G
A

8A
C
T

9C
A
T

10

A
C
T

11
T
A
C

12

T
C

3v

FIGURE 2.2 From motif matrix to count matrix to profile matrix to consensus string to
motif logo. The NF-kB binding sites form a 10⇥ 12 motif matrix, with the most frequent
nucleotide in each column shown in upper case letters and all other nucleotides shown
in lower case letters. SCORE(Motifs) counts the total number of unpopular (lower case)
symbols in the motif matrix. The motif matrix results in a 4 ⇥ 12 count matrix holding
the nucleotide counts in every column of the motif matrix; a profile matrix holding the
frequencies of nucleotides in every column of the motif matrix; and a consensus string
formed by the most frequent nucleotide in each column of the count matrix. Finally, the
motif logo is a common way to visualize the conservation of various positions within a
motif. The total height of the letters depicts the information content of the position.

74

C H A P T E R 2

Motifs

T C G G G G g T T T t t
c C G G t G A c T T a C
a C G G G G A T T T t C
T t G G G G A c T T t t
a a G G G G A c T T C C
T t G G G G A c T T C C
T C G G G G A T T c a t
T C G G G G A T T c C t
T a G G G G A a c T a C
T C G G G t A T a a C C

SCORE(Motifs) 3 + 4 + 0 + 0 + 1 + 1 + 1 + 5 + 2 + 3 + 6 + 4 = 30

COUNT(Motifs)

A: 2 2 0 0 0 0 9 1 1 1 3 0
C: 1 6 0 0 0 0 0 4 1 2 4 6
G: 0 0 10 10 9 9 1 0 0 0 0 0
T: 7 2 0 0 1 1 0 5 8 7 3 4

PROFILE(Motifs)

A: .2 .2 0 0 0 0 .9 .1 .1 .1 .3 0
C: .1 .6 0 0 0 0 0 .4 .1 .2 .4 .6
G: 0 0 1 1 .9 .9 .1 0 0 0 0 0
T: .7 .2 0 0 .1 .1 0 .5 .8 .7 .3 .4

CONSENSUS(Motifs) T C G G G G A T T T C C

weblogo.berkeley.edu

0

1

2

bi
ts

5v

1C
A
T

2T
A
C

3

G

4

G

5T
G

6T
G

7G
A

8A
C
T

9C
A
T

10

A
C
T

11

T
A
C

12

T
C

3v

FIGURE 2.2 From motif matrix to count matrix to profile matrix to consensus string to
motif logo. The NF-kB binding sites form a 10⇥ 12 motif matrix, with the most frequent
nucleotide in each column shown in upper case letters and all other nucleotides shown
in lower case letters. SCORE(Motifs) counts the total number of unpopular (lower case)
symbols in the motif matrix. The motif matrix results in a 4 ⇥ 12 count matrix holding
the nucleotide counts in every column of the motif matrix; a profile matrix holding the
frequencies of nucleotides in every column of the motif matrix; and a consensus string
formed by the most frequent nucleotide in each column of the count matrix. Finally, the
motif logo is a common way to visualize the conservation of various positions within a
motif. The total height of the letters depicts the information content of the position.

74

© 2024 Phillip Compeau



Scoring Motifs
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motif logo. The NF-kB binding sites form a 10⇥ 12 motif matrix, with the most frequent
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in lower case letters. SCORE(Motifs) counts the total number of unpopular (lower case)
symbols in the motif matrix. The motif matrix results in a 4 ⇥ 12 count matrix holding
the nucleotide counts in every column of the motif matrix; a profile matrix holding the
frequencies of nucleotides in every column of the motif matrix; and a consensus string
formed by the most frequent nucleotide in each column of the count matrix. Finally, the
motif logo is a common way to visualize the conservation of various positions within a
motif. The total height of the letters depicts the information content of the position.
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STOP: Any ideas on how this scoring function could 
be improved?



A Computational Problem for Motif 
Finding

Motif Finding Problem.
• Input: A collection of t strings Dna and an 

integer k.
• Output: A collection Motifs of k-mers, one from 

each string in Dna, minimizing Score(Motifs) over 
all choices of Motifs.
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A Computational Problem for Motif 
Finding

Motif Finding Problem.
• Input: A collection of t strings Dna and an 

integer k.
• Output: A collection Motifs of k-mers, one from 

each string in Dna, minimizing Score(Motifs) over 
all choices of Motifs.

Optimization Problem: A computational problem in 
which we are trying to find an object from a search 
space minimizing or maximizing a scoring function 
that assigns a value to each object.
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A Computational Problem for Motif 
Finding

Motif Finding Problem.
• Input: A collection of t strings Dna and an 

integer k.
• Output: A collection Motifs of k-mers, one from 

each string in Dna, minimizing Score(Motifs) over 
all choices of Motifs.

STOP: What is the search space for this problem, 
and how many elements does it contain?

© 2024 Phillip Compeau



A Computational Problem for Motif 
Finding

Motif Finding Problem.
• Input: A collection of t strings Dna and an 

integer k.
• Output: A collection Motifs of k-mers, one from 

each string in Dna, minimizing Score(Motifs) over 
all choices of Motifs.

Answer: The collection of all possible choices of 
Motifs. Each of t strings in Dna has n-k+1 k-mer 
starting positions, and so there are (n-k+1)t 
possibilities. 
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A Computational Problem for Motif 
Finding

In other words, brute force won’t work, and so we 
will need to explore the search space intelligently.
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Motif Finding Problem.
• Input: A collection of t strings Dna and an 

integer k.
• Output: A collection Motifs of k-mers, one from 

each string in Dna, minimizing Score(Motifs) over 
all choices of Motifs.



Returning to Our Analogy
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Note: it can be helpful to 
think about optimization 
problems using the 
analogy of a droid 
exploring a planet’s 
surface (search space) for 
the hottest location 
(optimizing some 
function).



Returning to Our Analogy
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Since our search space is 
all collection of Motifs, we 
ask “given a choice of 
Motifs, what is the best 
direction to move?” That is, 
for one set of Motifs, we 
need to move to some new 
choice of Motifs that is 
somehow “better”…
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FIGURE 2.2 From motif matrix to count matrix to profile matrix to consensus string to
motif logo. The NF-kB binding sites form a 10⇥ 12 motif matrix, with the most frequent
nucleotide in each column shown in upper case letters and all other nucleotides shown
in lower case letters. SCORE(Motifs) counts the total number of unpopular (lower case)
symbols in the motif matrix. The motif matrix results in a 4 ⇥ 12 count matrix holding
the nucleotide counts in every column of the motif matrix; a profile matrix holding the
frequencies of nucleotides in every column of the motif matrix; and a consensus string
formed by the most frequent nucleotide in each column of the count matrix. Finally, the
motif logo is a common way to visualize the conservation of various positions within a
motif. The total height of the letters depicts the information content of the position.
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FIGURE 2.2 From motif matrix to count matrix to profile matrix to consensus string to
motif logo. The NF-kB binding sites form a 10⇥ 12 motif matrix, with the most frequent
nucleotide in each column shown in upper case letters and all other nucleotides shown
in lower case letters. SCORE(Motifs) counts the total number of unpopular (lower case)
symbols in the motif matrix. The motif matrix results in a 4 ⇥ 12 count matrix holding
the nucleotide counts in every column of the motif matrix; a profile matrix holding the
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formed by the most frequent nucleotide in each column of the count matrix. Finally, the
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motif. The total height of the letters depicts the information content of the position.
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Profile Matrix: formed by taking the frequency of 
symbols in each column of Motifs.
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From a Profile Matrix to New Motifs

The probability of a k-mer text for a given profile 
matrix Profile, written Pr(text|Profile), is the product 
of profile matrix values for each symbol of text.
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FIGURE 2.2 From motif matrix to count matrix to profile matrix to consensus string to
motif logo. The NF-kB binding sites form a 10⇥ 12 motif matrix, with the most frequent
nucleotide in each column shown in upper case letters and all other nucleotides shown
in lower case letters. SCORE(Motifs) counts the total number of unpopular (lower case)
symbols in the motif matrix. The motif matrix results in a 4 ⇥ 12 count matrix holding
the nucleotide counts in every column of the motif matrix; a profile matrix holding the
frequencies of nucleotides in every column of the motif matrix; and a consensus string
formed by the most frequent nucleotide in each column of the count matrix. Finally, the
motif logo is a common way to visualize the conservation of various positions within a
motif. The total height of the letters depicts the information content of the position.
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Pr(ACGGGGATTACC | Profile) = .2  · .6  · 1   ·  1   · . 9  · .9  · .9   · .5  · .8  · .1 ·  .4  ·  .6
 = 0.000839808                                                               
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FIGURE 2.2 From motif matrix to count matrix to profile matrix to consensus string to
motif logo. The NF-kB binding sites form a 10⇥ 12 motif matrix, with the most frequent
nucleotide in each column shown in upper case letters and all other nucleotides shown
in lower case letters. SCORE(Motifs) counts the total number of unpopular (lower case)
symbols in the motif matrix. The motif matrix results in a 4 ⇥ 12 count matrix holding
the nucleotide counts in every column of the motif matrix; a profile matrix holding the
frequencies of nucleotides in every column of the motif matrix; and a consensus string
formed by the most frequent nucleotide in each column of the count matrix. Finally, the
motif logo is a common way to visualize the conservation of various positions within a
motif. The total height of the letters depicts the information content of the position.

74

Pr(ACGGGGATTACC | Profile) = .2  · .6  · 1   ·  1   · . 9  · .9  · .9   · .5  · .8  · .1 ·  .4  ·  .6
 = 0.000839808                                                               

STOP: What happens to Pr(text|Profile) as text 
becomes more similar to the consensus of Profile?

The probability of a k-mer text for a given profile 
matrix Profile, written Pr(text|Profile), is the product 
of profile matrix values for each symbol of text.

© 2024 Phillip Compeau



From a Profile Matrix to New Motifs

The probability of a k-mer text for a given profile 
matrix Profile, written Pr(text|Profile), is the product 
of profile matrix values for each symbol of text.

C H A P T E R 2

Motifs

T C G G G G g T T T t t
c C G G t G A c T T a C
a C G G G G A T T T t C
T t G G G G A c T T t t
a a G G G G A c T T C C
T t G G G G A c T T C C
T C G G G G A T T c a t
T C G G G G A T T c C t
T a G G G G A a c T a C
T C G G G t A T a a C C

SCORE(Motifs) 3 + 4 + 0 + 0 + 1 + 1 + 1 + 5 + 2 + 3 + 6 + 4 = 30

COUNT(Motifs)

A: 2 2 0 0 0 0 9 1 1 1 3 0
C: 1 6 0 0 0 0 0 4 1 2 4 6
G: 0 0 10 10 9 9 1 0 0 0 0 0
T: 7 2 0 0 1 1 0 5 8 7 3 4

PROFILE(Motifs)

A: .2 .2 0 0 0 0 .9 .1 .1 .1 .3 0
C: .1 .6 0 0 0 0 0 .4 .1 .2 .4 .6
G: 0 0 1 1 .9 .9 .1 0 0 0 0 0
T: .7 .2 0 0 .1 .1 0 .5 .8 .7 .3 .4

CONSENSUS(Motifs) T C G G G G A T T T C C

weblogo.berkeley.edu

0

1

2

bi
ts

5v

1C
A
T

2T
A
C

3

G

4

G

5T
G

6T
G

7G
A

8A
C
T

9C
A
T

10

A
C
T

11

T
A
C

12

T
C

3v

FIGURE 2.2 From motif matrix to count matrix to profile matrix to consensus string to
motif logo. The NF-kB binding sites form a 10⇥ 12 motif matrix, with the most frequent
nucleotide in each column shown in upper case letters and all other nucleotides shown
in lower case letters. SCORE(Motifs) counts the total number of unpopular (lower case)
symbols in the motif matrix. The motif matrix results in a 4 ⇥ 12 count matrix holding
the nucleotide counts in every column of the motif matrix; a profile matrix holding the
frequencies of nucleotides in every column of the motif matrix; and a consensus string
formed by the most frequent nucleotide in each column of the count matrix. Finally, the
motif logo is a common way to visualize the conservation of various positions within a
motif. The total height of the letters depicts the information content of the position.

74

Pr(ACGGGGATTACC | Profile) = .2  · .6  · 1   ·  1   · . 9  · .9  · .9   · .5  · .8  · .1 ·  .4  ·  .6
 = 0.000839808                                                               

Answer: It increases, so we should be looking for k-
mers that have large values of Pr(text|Profile).
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From a Profile Matrix to New Motifs

Given a profile matrix of strings Dna, Motifs(Profile) 
is the strings formed by taking the most probable k-
mer in each string.
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From a Profile Matrix to New Motifs

So we can move from one collection of motifs in the 
search space to the next by taking two steps:

Motifs à Profile(Motifs) à Motifs(Profile(Motifs))
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Given a profile matrix of strings Dna, Motifs(Profile) 
is the strings formed by taking the most probable k-
mer in each string.



From a Profile Matrix to New Motifs

So we can move from one collection of motifs in the 
search space to the next by taking two steps:

Motifs à Profile(Motifs) à Motifs(Profile(Motifs))
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Given a profile matrix of strings Dna, Motifs(Profile) 
is the strings formed by taking the most probable k-
mer in each string.

We then repeatedly iterate these steps until 
Score(Motifs) stops improving.



Let’s Take An Example
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W H I C H D N A PAT T E R N S P L AY T H E R O L E O F M O L E C U L A R C L O C K S ?

ttACCTtaac
gATGTctgtc

Dna ccgGCGTtag
cactaACGAg
cgtcagAGGT

Below, we construct the profile matrix PROFILE(Motifs) of the chosen 4-mers.

Motifs PROFILE(Motifs)
t a a c A: 0.4 0.2 0.2 0.2
G T c t C: 0.2 0.4 0.2 0.2
c c g G G: 0.2 0.2 0.4 0.2
a c t a T: 0.2 0.2 0.2 0.4
A G G T

We can now compute the probabilities of every 4-mer in Dna based on this profile
matrix. For example, the probability of the first 4-mer in the first string of Dna is
PR(ttAC|Profile) = 0.2 · 0.2 · 0.2 · 0.2 = 0.0016. The maximum probabilities in every
row are shown in red below.

ttAC tACC ACCT CCTt CTta Ttaa taac
.0016 .0016 .0128 .0064 .0016 .0016 .0016

gATG ATGT TGTc GTct Tctg ctgt tgtc
.0016 .0128 .0016 .0032 .0032 .0032 .0016

ccgG cgGC gGCG GCGT CGTt GTta Ttag
.0064 .0036 .0016 .0128 .0032 .0016 .0016

cact acta ctaA taAC aACG ACGA CGAg
.0032 .0064 .0016 .0016 .0032 .0128 .0016

cgtc gtca tcag cagA agAG gAGG AGGT
.0016 .0016 .0016 .0032 .0032 .0032 .0128

We select the most probable 4-mer in each row above as our new collection Motifs
(shown below). Notice that this collection has captured all five implanted motifs in Dna!
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In Dna shown at right, we placed 
four occurrences of “ACGT” with 
one mutation, shown in all caps. 
Say we pick the Motifs in red.
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First, we form the profile matrix of 
these motifs.
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We then use this profile to compute 
the probabilities of each substring 
in Dna and take the most likely one 
in each.
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G T c t C: 0.2 0.4 0.2 0.2
c c g G G: 0.2 0.2 0.4 0.2
a c t a T: 0.2 0.2 0.2 0.4
A G G T

We can now compute the probabilities of every 4-mer in Dna based on this profile
matrix. For example, the probability of the first 4-mer in the first string of Dna is
PR(ttAC|Profile) = 0.2 · 0.2 · 0.2 · 0.2 = 0.0016. The maximum probabilities in every
row are shown in red below.

ttAC tACC ACCT CCTt CTta Ttaa taac
.0016 .0016 .0128 .0064 .0016 .0016 .0016

gATG ATGT TGTc GTct Tctg ctgt tgtc
.0016 .0128 .0016 .0032 .0032 .0032 .0016

ccgG cgGC gGCG GCGT CGTt GTta Ttag
.0064 .0036 .0016 .0128 .0032 .0016 .0016

cact acta ctaA taAC aACG ACGA CGAg
.0032 .0064 .0016 .0016 .0032 .0128 .0016

cgtc gtca tcag cagA agAG gAGG AGGT
.0016 .0016 .0016 .0032 .0032 .0032 .0128

We select the most probable 4-mer in each row above as our new collection Motifs
(shown below). Notice that this collection has captured all five implanted motifs in Dna!
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ttACCTtaac
gATGTctgtc

Dna ccgGCGTtag
cactaACGAg
cgtcagAGGT

STOP and Think: How is it possible that randomly chosenHow is it possible that randomly chosen kk-mers have led us to-mers have led us to
the correct implantedthe correct implanted kk-mer? If you think we manufactured this example, select-mer? If you think we manufactured this example, select
your own initial 4-mers and see what happens.your own initial 4-mers and see what happens.

For the Subtle Motif Problem with implanted 15-mer AAAAAAAAGGGGGGG, when we
run RANDOMIZEDMOTIFSEARCH 100,000 times (each time with new randomly se-
lected k-mers), it returns the 15-mers shown in Figure 2.7 as the lowest scoring collection
Motifs across all iterations, resulting in the consensus string AAAAAAAAacaGGGG with
score 43. These strings are only slightly less conserved than the collection of im-
planted (15, 4)-motifs with score 40 (or the motif returned by GREEDYMOTIFSEARCH

with score 41), and it largely captures the implanted motif. Furthermore, unlike
GREEDYMOTIFSEARCH, RANDOMIZEDMOTIFSEARCH can be run for a larger num-
ber of iterations to discover better and better motifs.

Score

Motifs

AAAtAcAgACAGcGt 5
AAAAAAtAgCAGGGt 3
tAAAAtAAACAGcGG 3
AcAgAAAAAaAGGGG 3
AAAAtAAAACtGcGa 4
AtAgAcgAACAcGGt 6
cAAAAAgAgaAGGGG 4
AtAgAAAAggAaGGG 5
AAgAAAAAAgAGaGG 3
cAtAAtgAACtGtGa 7

CONSENSUS(Motifs) AAAAAAAAACAGGGG 43

FIGURE 2.7 The lowest scoring collection of strings Motifs produced by 100,000 runs
of RANDOMIZEDMOTIFSEARCH, along with their consensus string and score for the
Subtle Motif Problem.
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STOP: What motifs should we 
choose at the start of our 
algorithm?

Answer: Dna is in many 
regards an “unexplored 
planet”, and so let’s pick a 
random set of Motifs.

Note: we run our algorithm multiple times for many 
starting Motifs, taking the best scoring ones. 



Pseudocode for “Randomized Motif 
Search”

RandomizedMotifSearch(Dna, k, t)
    Motifs ← randomly chosen k-mer from each string in Dna
    BestMotifs ← Motifs
    while forever
        Profile ← Profile(Motifs)
        Motifs ← Motifs(Profile, Dna)
        if Score(Motifs) < Score(BestMotifs) 
            BestMotifs ← Motifs
        else 
            return BestMotifs 

© 2024 Phillip Compeau

Note: we run our algorithm multiple times for many 
starting Motifs, taking the best scoring ones. 



How Can a Randomized Algorithm 
Perform Well?

If the strings in Dna were truly random, then we 
would expect a uniform profile matrix, which is 
useless for motif finding...

W H I C H D N A PAT T E R N S P L AY T H E R O L E O F M O L E C U L A R C L O C K S ?

STOP and Think: Does your run of RANDOMIZEDMOTIFSEARCH re-
turn a similar consensus string? How many times do you need to run
RANDOMIZEDMOTIFSEARCH to obtain the implanted (15, 4)-motif with dis-
tance 40?

Although the motifs returned by RANDOMIZEDMOTIFSEARCH are slightly less con-
served than the motifs returned by MEDIANSTRING, RANDOMIZEDMOTIFSEARCH

has the advantage of being able to find longer motifs (since MEDIANSTRING becomes
too slow for longer motifs). In the epilogue, we will see that this feature is important in
practice.

How Can a Randomized Algorithm Perform So Well?

In the previous section, we began with a collection of implanted motifs (with consensus
ACGT) that resulted in the following profile matrix.

A: 0.8 0.0 0.0 0.2
C: 0.0 0.6 0.2 0.0
G: 0.2 0.2 0.8 0.0
T: 0.0 0.2 0.0 0.8

If the strings in Dna were truly random, then we would expect that all nucleotides
in the selected k-mers would be equally likely, resulting in an expected Profile in which
every entry is approximately 0.25:

A: 0.25 0.25 0.25 0.25
C: 0.25 0.25 0.25 0.25
G: 0.25 0.25 0.25 0.25
T: 0.25 0.25 0.25 0.25

Such a uniform profile is essentially useless for motif finding because no string is more
probable than any other according to this profile and because it does not provide any
clues on what an implanted motif looks like.

At the opposite end of the spectrum, if we were incredibly lucky, we would choose
the implanted k-mers Motifs from the very beginning, resulting in the first of the two
profile matrices above. In practice, we are likely to obtain a profile somewhere in
between these two extremes, such as the following:
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How Can a Randomized Algorithm 
Perform Well?

In practice, we are hoping that some of our 
randomized initial motifs find a little bit of signal 
and start to point us toward the correct motifs.C H A P T E R 2

A: 0.4 0.2 0.2 0.2
C: 0.2 0.4 0.2 0.2
G: 0.2 0.2 0.4 0.2
T: 0.2 0.2 0.2 0.4

This profile matrix has already started to point us toward the implanted motif ACGT,
i.e., ACGT is the most likely 4-mer that can be generated by this profile. Fortunately,
RANDOMIZEDMOTIFSEARCH is designed so that subsequent steps have a good chance
of leading us toward this implanted motif (although it is not certain).

If you still doubt the efficacy of randomized algorithms, consider the following
argument. We have already noticed that if the strings in Dna were random, then
RANDOMIZEDMOTIFSEARCH would start from a nearly uniform profile, and there
would be nothing to work with. However, the key observation is that the strings in Dna
are not random because they include the implanted motif! These multiple occurrences
of the same motif may direct the profile matrix away from the uniform profile and
toward the implanted motif. For example, consider again the original randomly selected
k-mers Motifs (shown in red):

ttACCTtaac
gATGTctgtc

Dna ccgGCGTtag
cactaACGAg
cgtcagAGGT

You will see that the 4-mer AGGT in the last string happened to capture the implanted
motif simply by chance. In fact, the profile formed from the remaining 4-mers (taac,
GTct, ccgG, and acta) is uniform. Note that only completely captured motifs (like
AGGT) rather than partially captured motifs (like GTct or ccgG) contribute to the sta-
tistical bias in the profile matrix.

Exercise Break: Compute the probability that ten randomly selected 15-mers
from ten 600-nucleotide long strings (such as in the Subtle Motif Problem) capture
at least one implanted 15-mer.

Although the probability that randomly selected k-mers match all implanted motifs is
negligible, the probability that they capture at least one implanted motif is significant.
Even in the case of difficult motif finding problems for which this probability is small,
we can run RANDOMIZEDMOTIFSEARCH many times, so that it will almost certainly
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By taking the Profile-most probable k-mer in each 
string, we have a greater chance of moving toward 
“ACGT” (although this is not certain).
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Before We Continue …

For a profile matrix Profile and string Dnai , the 
Profile-most probable k-mer of Dnai is the k-mer 
substring text of Dnai that maximizes Pr(text|Profile). 

C H A P T E R 2

Motifs

T C G G G G g T T T t t
c C G G t G A c T T a C
a C G G G G A T T T t C
T t G G G G A c T T t t
a a G G G G A c T T C C
T t G G G G A c T T C C
T C G G G G A T T c a t
T C G G G G A T T c C t
T a G G G G A a c T a C
T C G G G t A T a a C C

SCORE(Motifs) 3 + 4 + 0 + 0 + 1 + 1 + 1 + 5 + 2 + 3 + 6 + 4 = 30

COUNT(Motifs)

A: 2 2 0 0 0 0 9 1 1 1 3 0
C: 1 6 0 0 0 0 0 4 1 2 4 6
G: 0 0 10 10 9 9 1 0 0 0 0 0
T: 7 2 0 0 1 1 0 5 8 7 3 4

PROFILE(Motifs)

A: .2 .2 0 0 0 0 .9 .1 .1 .1 .3 0
C: .1 .6 0 0 0 0 0 .4 .1 .2 .4 .6
G: 0 0 1 1 .9 .9 .1 0 0 0 0 0
T: .7 .2 0 0 .1 .1 0 .5 .8 .7 .3 .4

CONSENSUS(Motifs) T C G G G G A T T T C C
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FIGURE 2.2 From motif matrix to count matrix to profile matrix to consensus string to
motif logo. The NF-kB binding sites form a 10⇥ 12 motif matrix, with the most frequent
nucleotide in each column shown in upper case letters and all other nucleotides shown
in lower case letters. SCORE(Motifs) counts the total number of unpopular (lower case)
symbols in the motif matrix. The motif matrix results in a 4 ⇥ 12 count matrix holding
the nucleotide counts in every column of the motif matrix; a profile matrix holding the
frequencies of nucleotides in every column of the motif matrix; and a consensus string
formed by the most frequent nucleotide in each column of the count matrix. Finally, the
motif logo is a common way to visualize the conservation of various positions within a
motif. The total height of the letters depicts the information content of the position.
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Exercise: What is the Profile-most probable 12-mer 
of GTCGTGGATTTCCTA using the profile matrix 
below?
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frequencies of nucleotides in every column of the motif matrix; and a consensus string
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motif logo is a common way to visualize the conservation of various positions within a
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Answer: They all have probability zero, even 
TCGTGGATTTCC, which matches well against the 
profile. Bad! How can we fix this?
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Key Point: just because we have not observed an 
event does not mean that we should assign its future 
probability to be zero. 

We address this by adding a pseudocount value to 
the counts of each type of event before normalizing.



Applying Pseudocounts to Motif Finding

C H A P T E R 2

event equal to zero represents an inaccurate oversimplification that may cause problems.
By artificially adjusting the probability of rare events, these problems can be mitigated.

Laplace’s Rule of Succession

Cromwell’s rule is relevant to the calculation of the probability of a string based on a
profile matrix. For example, consider the following Profile:

Profile

A: .2 .2 .0 .0 .0 .0 .9 .1 .1 .1 .3 .0
C: .1 .6 .0 .0 .0 .0 .0 .4 .1 .2 .4 .6
G: .0 .0 1 1 .9 .9 .1 .0 .0 .0 .0 .0
T: .7 .2 .0 .0 .1 .1 .0 .5 .8 .7 .3 .4

Pr(TCGTGGATTTCC|Profile) = .7 · .6 · 1 · .0 · .9 · .9 · .9 · .5 · .8 · .7 · .4 · .6 = 0

The fourth symbol of TCGTGGATTTCC causes Pr(TCGTGGATTTCC|Profile) to equal zero.
As a result, the entire string is assigned a zero probability, even though TCGTGGATTTCC
differs from the consensus string at only one position. For that matter, TCGTGGATTTCC
has the same low probability as AAATCTTGGAA, which differs from the consensus string
at every position.

To improve this unfair scoring, bioinformaticians often substitute zeroes with small
numbers called pseudocounts. The simplest approach to introducing pseudocounts,
called Laplace’s Rule of Succession, is similar to the principle that Laplace used to
calculate the probability that the sun will not rise tomorrow. In the case of motifs,
pseudocounts often amount to adding 1 (or some other small number) to each element
of COUNT(Motifs). Say that we have the following motif, count, and profile matrices:

Motifs

T A A C
G T C T
A C T A
A G G T

COUNT(Motifs)

A: 2 1 1 1

PROFILE(Motifs)

2/4 1/4 1/4 1/4
C: 0 1 1 1 0 1/4 1/4 1/4
G: 1 1 1 0 1/4 1/4 1/4 0
T: 1 1 1 2 1/4 1/4 1/4 2/4
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Say that we have the following Motifs and its profile 
matrix.
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profile matrix. For example, consider the following Profile:

Profile

A: .2 .2 .0 .0 .0 .0 .9 .1 .1 .1 .3 .0
C: .1 .6 .0 .0 .0 .0 .0 .4 .1 .2 .4 .6
G: .0 .0 1 1 .9 .9 .1 .0 .0 .0 .0 .0
T: .7 .2 .0 .0 .1 .1 .0 .5 .8 .7 .3 .4

Pr(TCGTGGATTTCC|Profile) = .7 · .6 · 1 · .0 · .9 · .9 · .9 · .5 · .8 · .7 · .4 · .6 = 0

The fourth symbol of TCGTGGATTTCC causes Pr(TCGTGGATTTCC|Profile) to equal zero.
As a result, the entire string is assigned a zero probability, even though TCGTGGATTTCC
differs from the consensus string at only one position. For that matter, TCGTGGATTTCC
has the same low probability as AAATCTTGGAA, which differs from the consensus string
at every position.

To improve this unfair scoring, bioinformaticians often substitute zeroes with small
numbers called pseudocounts. The simplest approach to introducing pseudocounts,
called Laplace’s Rule of Succession, is similar to the principle that Laplace used to
calculate the probability that the sun will not rise tomorrow. In the case of motifs,
pseudocounts often amount to adding 1 (or some other small number) to each element
of COUNT(Motifs). Say that we have the following motif, count, and profile matrices:

Motifs

T A A C
G T C T
A C T A
A G G T

COUNT(Motifs)

A: 2 1 1 1

PROFILE(Motifs)

2/4 1/4 1/4 1/4
C: 0 1 1 1 0 1/4 1/4 1/4
G: 1 1 1 0 1/4 1/4 1/4 0
T: 1 1 1 2 1/4 1/4 1/4 2/4
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Adding a pseudocount of 1 produces following 
count and profile matrix.
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Laplace’s Rule of Succession adds 1 to each element of COUNT(Motifs), updating the
two matrices to the following:

COUNT(Motifs)

A: 2+1 1+1 1+1 1+1

PROFILE(Motifs)

3/8 2/8 2/8 2/8
C: 0+1 1+1 1+1 1+1 1/8 2/8 2/8 2/8
G: 1+1 1+1 1+1 0+1 2/8 2/8 2/8 1/8
T: 1+1 1+1 1+1 2+1 2/8 2/8 2/8 3/8

STOP and Think: How would you use Laplace’s Rule of Succession to address
the shortcomings of GREEDYMOTIFSEARCH?

An improved greedy motif search

The only change we need to introduce to GREEDYMOTIFSEARCH in order to eliminate
zeroes from the profile matrices that it constructs is to replace line 6 of the pseudocode
for GREEDYMOTIFSEARCH:

form Profile from motifs Motif1, ... Motifi�1

with the following line:

apply Laplace’s Rule of Succession to form Profile from motifs Motif1, ... Motifi�1

We now will apply Laplace’s Rule of Succession to search for the (4, 1)-motif ACGT
implanted in the following strings Dna:

ttACCTtaac
gATGTctgtc

Dna acgGCGTtag
ccctaACGAg
cgtcagAGGT

Again, let’s assume that the algorithm has already chosen the implanted 4-mer ACCT
from the first sequence. We can construct the corresponding count and profile matrices
using Laplace’s Rule of Succession:

89

© 2024 Phillip Compeau



Another Issue with Randomized Motif 
Search

By taking only the most probable k-mer at each 
step, RandomizedMotifSearch is very ”rigid”, as it 
can move only in one direction. (In fact, its only 
randomization is in the initial choice of k-mers.)
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Another Issue with Randomized Motif 
Search

By taking only the most probable k-mer at each 
step, RandomizedMotifSearch is very ”rigid”, as it 
can move only in one direction. (In fact, its only 
randomization is in the initial choice of k-mers.)

Idea: Perhaps we could allow moving from one 
collection of motifs to another based on 
randomization.
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Overview of Gibbs Sampling

W H I C H D N A PAT T E R N S P L AY T H E R O L E O F M O L E C U L A R C L O C K S ?

catch at least one implanted motif, thus creating a statistical bias pointing toward the
correct motif.

Unfortunately, capturing a single implanted motif is often insufficient to steer
RANDOMIZEDMOTIFSEARCH to an optimal solution. Therefore, since the number
of starting positions of k-mers is huge, the strategy of randomly selecting motifs is
often not as successful as in the simple example above. The chance that these randomly
selected k-mers will be able to guide us to the optimal solution is relatively small.

Exercise Break: Compute the probability that ten randomly selected 15-mers
from the ten 600-nucleotide long strings in the Subtle Motif Problem capture at
least two implanted 15-mers.

Gibbs Sampling

Note that RANDOMIZEDMOTIFSEARCH may change all t strings in Motifs in a single
iteration. This strategy may prove reckless, since some correct motifs (captured in
Motifs) may potentially be discarded at the next iteration. GIBBSSAMPLER is a more
cautious iterative algorithm that discards a single k-mer from the current set of motifs at
each iteration and decides to either keep it or replace it with a new one. This algorithm
thus moves with more caution in the space of all motifs, as illustrated below.

ttaccttaac ttaccttaac ttaccttaac ttaccttaac
gatatctgtc gatatctgtc gatatctgtc gatatctgtc
acggcgttcg ! acggcgttcg acggcgttcg ! acggcgttcg
ccctaaagag ccctaaagag ccctaaagag ccctaaagag
cgtcagaggt cgtcagaggt cgtcagaggt cgtcagaggt

RANDOMIZEDMOTIFSEARCH GIBBSSAMPLER

(may change all k-mers in one step) (changes one k-mer in one step)

Like RANDOMIZEDMOTIFSEARCH, GIBBSSAMPLER starts with randomly chosen
k-mers in each of t DNA sequences, but it makes a random rather than a deterministic
choice at each iteration. It uses randomly selected k-mers Motifs = (Motif1, . . . , Motift)
to come up with another (hopefully better scoring) set of k-mers. In contrast with
RANDOMIZEDMOTIFSEARCH, which deterministically defines new motifs as

MOTIFS(PROFILE(Motifs), Dna) ,
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Unlike RandomizedMotifSearch, Gibbs sampling 
will change only a single k-mer in each step, as well 
as changing this k-mer more liberally.
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Gibbs Sampling in Action
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GIBBSSAMPLER(Dna, k, t, N)
randomly select k-mers Motifs = (Motif1, ..., Motift) in each string from Dna
BestMotifs Motifs
for j 1 to N

i RANDOM(t)
Profile profile matrix formed from all strings in Motifs except for Motifi
Motifi  Profile-randomly generated k-mer in the i-th sequence
if SCORE(Motifs) < SCORE(BestMotifs)

BestMotifs Motifs
return BestMotifs

2G

STOP and Think: Note that in contrast to RANDOMIZEDMOTIFSEARCH, which
always moves from higher to lower scoring Motifs, GIBBSSAMPLER may move
from lower to higher scoring Motifs. Why is this reasonable?

Gibbs Sampling in Action

We illustrate how GIBBSSAMPLER works on the same strings Dna that we considered
before. Imagine that, at the initial step, the algorithm has chosen the following 4-mers
(shown in red) and has randomly selected the third string for removal. To be more
precise, GIBBSSAMPLER does not really remove the third string; it ignores it at this
particular step and may analyze it again in subsequent steps.

ttACCTtaac ttACCTtaac
gATGTctgtc gATGTctgtc

Dna ccgGCGTtag �! ----------
cactaACGAg cactaACGAg
cgtcagAGGT cgtcagAGGT

This results in the following motif, count, and profile matrices.
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Say that we pick the red strings as our Motifs of 
length k = 4. Gibbs sampling randomly selects one 
of the strings to be replaced. 
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Gibbs Sampling in Action

W H I C H D N A PAT T E R N S P L AY T H E R O L E O F M O L E C U L A R C L O C K S ?

GIBBSSAMPLER(Dna, k, t, N)
randomly select k-mers Motifs = (Motif1, ..., Motift) in each string from Dna
BestMotifs Motifs
for j 1 to N

i RANDOM(t)
Profile profile matrix formed from all strings in Motifs except for Motifi
Motifi  Profile-randomly generated k-mer in the i-th sequence
if SCORE(Motifs) < SCORE(BestMotifs)

BestMotifs Motifs
return BestMotifs

2G

STOP and Think: Note that in contrast to RANDOMIZEDMOTIFSEARCH, which
always moves from higher to lower scoring Motifs, GIBBSSAMPLER may move
from lower to higher scoring Motifs. Why is this reasonable?

Gibbs Sampling in Action

We illustrate how GIBBSSAMPLER works on the same strings Dna that we considered
before. Imagine that, at the initial step, the algorithm has chosen the following 4-mers
(shown in red) and has randomly selected the third string for removal. To be more
precise, GIBBSSAMPLER does not really remove the third string; it ignores it at this
particular step and may analyze it again in subsequent steps.

ttACCTtaac ttACCTtaac
gATGTctgtc gATGTctgtc

Dna ccgGCGTtag �! ----------
cactaACGAg cactaACGAg
cgtcagAGGT cgtcagAGGT

This results in the following motif, count, and profile matrices.
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Adding pseudocounts allows us to compute a new 
profile matrix using just the t – 1 strings that are 
remaining.

C H A P T E R 2

t a a c
Motifs G T c t

a c t a
A G G T

COUNT(Motifs)

A: 2 1 1 1

PROFILE(Motifs)

A: 2/4 1/4 1/4 1/4
C: 0 1 1 1 C: 0 1/4 1/4 1/4
G: 1 1 1 0 G: 1/4 1/4 1/4 0
T: 1 1 1 2 T: 1/4 1/4 1/4 2/4

Note that the profile matrix is only slightly more conserved than the uniform profile,
making us wonder whether we have any chance to be steered toward the implanted
motif. We now use this profile matrix to compute the probabilities of all 4-mers in the
deleted string ccgGCGTtag:

ccgG cgGC gGCG GCGT CGTt GTta Ttag
0 0 0 1/128 0 1/256 0

Note that all but two of these probabilities are zero. This situation is similar to the one
we encountered with GREEDYMOTIFSEARCH, and as before, we need to augment zero
probabilities with small pseudocounts to avoid disastrous results.

Application of Laplace’s Rule of Succession to the count matrix above yields the
following updated count and profile matrices:

COUNT(Motifs)

A: 3 2 2 2

PROFILE(Motifs)

A: 3/8 2/8 2/8 2/8
C: 1 2 2 2 C: 1/8 2/8 2/8 2/8
G: 2 2 2 1 G: 2/8 2/8 2/8 1/8
T: 2 2 2 3 T: 2/8 2/8 2/8 3/8

After adding pseudocounts, the 4-mer probabilities in the deleted string ccgGCGTtag
are recomputed as follows:

ccgG cgGC gGCG GCGT CGTt GTta Ttag
4/84 8/84 8/84 24/84 12/84 16/84 8/84

Since these probabilities sum to C = 80/84, our hypothetical seven-sided die is repre-
sented by the random number generator

RANDOM

✓
4/84

80/84 ,
8/84

80/84 ,
8/84

80/84 ,
24/84

80/84 ,
12/84

80/84 ,
16/84

80/84 ,
8/84

80/84

◆

= RANDOM

✓
4

80
,

8
80

,
8

80
,

24
80

,
12
80

,
16
80

,
8
80

◆
.
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Gibbs Sampling in Action

We then find Pr(text|Profile) for every 4-mer in the 
removed string CCGGCGTTAG.

C H A P T E R 2

t a a c
Motifs G T c t

a c t a
A G G T

COUNT(Motifs)

A: 2 1 1 1

PROFILE(Motifs)

A: 2/4 1/4 1/4 1/4
C: 0 1 1 1 C: 0 1/4 1/4 1/4
G: 1 1 1 0 G: 1/4 1/4 1/4 0
T: 1 1 1 2 T: 1/4 1/4 1/4 2/4

Note that the profile matrix is only slightly more conserved than the uniform profile,
making us wonder whether we have any chance to be steered toward the implanted
motif. We now use this profile matrix to compute the probabilities of all 4-mers in the
deleted string ccgGCGTtag:

ccgG cgGC gGCG GCGT CGTt GTta Ttag
0 0 0 1/128 0 1/256 0

Note that all but two of these probabilities are zero. This situation is similar to the one
we encountered with GREEDYMOTIFSEARCH, and as before, we need to augment zero
probabilities with small pseudocounts to avoid disastrous results.

Application of Laplace’s Rule of Succession to the count matrix above yields the
following updated count and profile matrices:

COUNT(Motifs)

A: 3 2 2 2

PROFILE(Motifs)

A: 3/8 2/8 2/8 2/8
C: 1 2 2 2 C: 1/8 2/8 2/8 2/8
G: 2 2 2 1 G: 2/8 2/8 2/8 1/8
T: 2 2 2 3 T: 2/8 2/8 2/8 3/8

After adding pseudocounts, the 4-mer probabilities in the deleted string ccgGCGTtag
are recomputed as follows:

ccgG cgGC gGCG GCGT CGTt GTta Ttag
4/84 8/84 8/84 24/84 12/84 16/84 8/84

Since these probabilities sum to C = 80/84, our hypothetical seven-sided die is repre-
sented by the random number generator

RANDOM

✓
4/84

80/84 ,
8/84

80/84 ,
8/84

80/84 ,
24/84

80/84 ,
12/84

80/84 ,
16/84

80/84 ,
8/84

80/84

◆

= RANDOM

✓
4

80
,

8
80

,
8

80
,

24
80

,
12
80

,
16
80

,
8
80

◆
.
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C H A P T E R 2

t a a c
Motifs G T c t

a c t a
A G G T

COUNT(Motifs)

A: 2 1 1 1

PROFILE(Motifs)

A: 2/4 1/4 1/4 1/4
C: 0 1 1 1 C: 0 1/4 1/4 1/4
G: 1 1 1 0 G: 1/4 1/4 1/4 0
T: 1 1 1 2 T: 1/4 1/4 1/4 2/4

Note that the profile matrix is only slightly more conserved than the uniform profile,
making us wonder whether we have any chance to be steered toward the implanted
motif. We now use this profile matrix to compute the probabilities of all 4-mers in the
deleted string ccgGCGTtag:

ccgG cgGC gGCG GCGT CGTt GTta Ttag
0 0 0 1/128 0 1/256 0

Note that all but two of these probabilities are zero. This situation is similar to the one
we encountered with GREEDYMOTIFSEARCH, and as before, we need to augment zero
probabilities with small pseudocounts to avoid disastrous results.

Application of Laplace’s Rule of Succession to the count matrix above yields the
following updated count and profile matrices:

COUNT(Motifs)

A: 3 2 2 2

PROFILE(Motifs)

A: 3/8 2/8 2/8 2/8
C: 1 2 2 2 C: 1/8 2/8 2/8 2/8
G: 2 2 2 1 G: 2/8 2/8 2/8 1/8
T: 2 2 2 3 T: 2/8 2/8 2/8 3/8

After adding pseudocounts, the 4-mer probabilities in the deleted string ccgGCGTtag
are recomputed as follows:

ccgG cgGC gGCG GCGT CGTt GTta Ttag
4/84 8/84 8/84 24/84 12/84 16/84 8/84

Since these probabilities sum to C = 80/84, our hypothetical seven-sided die is repre-
sented by the random number generator

RANDOM

✓
4/84

80/84 ,
8/84

80/84 ,
8/84

80/84 ,
24/84

80/84 ,
12/84

80/84 ,
16/84
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8/84
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Gibbs Sampling in Action

Rather than take the most probable 4-mer, we 
choose one randomly weighted by the probabilities 
after normalizing them so that they sum to 1.

C H A P T E R 2

t a a c
Motifs G T c t

a c t a
A G G T

COUNT(Motifs)

A: 2 1 1 1

PROFILE(Motifs)

A: 2/4 1/4 1/4 1/4
C: 0 1 1 1 C: 0 1/4 1/4 1/4
G: 1 1 1 0 G: 1/4 1/4 1/4 0
T: 1 1 1 2 T: 1/4 1/4 1/4 2/4

Note that the profile matrix is only slightly more conserved than the uniform profile,
making us wonder whether we have any chance to be steered toward the implanted
motif. We now use this profile matrix to compute the probabilities of all 4-mers in the
deleted string ccgGCGTtag:

ccgG cgGC gGCG GCGT CGTt GTta Ttag
0 0 0 1/128 0 1/256 0

Note that all but two of these probabilities are zero. This situation is similar to the one
we encountered with GREEDYMOTIFSEARCH, and as before, we need to augment zero
probabilities with small pseudocounts to avoid disastrous results.

Application of Laplace’s Rule of Succession to the count matrix above yields the
following updated count and profile matrices:

COUNT(Motifs)

A: 3 2 2 2

PROFILE(Motifs)

A: 3/8 2/8 2/8 2/8
C: 1 2 2 2 C: 1/8 2/8 2/8 2/8
G: 2 2 2 1 G: 2/8 2/8 2/8 1/8
T: 2 2 2 3 T: 2/8 2/8 2/8 3/8

After adding pseudocounts, the 4-mer probabilities in the deleted string ccgGCGTtag
are recomputed as follows:

ccgG cgGC gGCG GCGT CGTt GTta Ttag
4/84 8/84 8/84 24/84 12/84 16/84 8/84

Since these probabilities sum to C = 80/84, our hypothetical seven-sided die is repre-
sented by the random number generator

RANDOM

✓
4/84

80/84 ,
8/84

80/84 ,
8/84

80/84 ,
24/84

80/84 ,
12/84

80/84 ,
16/84

80/84 ,
8/84

80/84
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Gibbs Sampling in Action

We now have a new collection of Motifs after 
choosing one based on this “weighted die roll” to 
replace the one we had removed.

W H I C H D N A PAT T E R N S P L AY T H E R O L E O F M O L E C U L A R C L O C K S ?

GIBBSSAMPLER(Dna, k, t, N)
randomly select k-mers Motifs = (Motif1, ..., Motift) in each string from Dna
BestMotifs Motifs
for j 1 to N

i RANDOM(t)
Profile profile matrix formed from all strings in Motifs except for Motifi
Motifi  Profile-randomly generated k-mer in the i-th sequence
if SCORE(Motifs) < SCORE(BestMotifs)

BestMotifs Motifs
return BestMotifs

2G

STOP and Think: Note that in contrast to RANDOMIZEDMOTIFSEARCH, which
always moves from higher to lower scoring Motifs, GIBBSSAMPLER may move
from lower to higher scoring Motifs. Why is this reasonable?

Gibbs Sampling in Action

We illustrate how GIBBSSAMPLER works on the same strings Dna that we considered
before. Imagine that, at the initial step, the algorithm has chosen the following 4-mers
(shown in red) and has randomly selected the third string for removal. To be more
precise, GIBBSSAMPLER does not really remove the third string; it ignores it at this
particular step and may analyze it again in subsequent steps.

ttACCTtaac ttACCTtaac
gATGTctgtc gATGTctgtc

Dna ccgGCGTtag �! ----------
cactaACGAg cactaACGAg
cgtcagAGGT cgtcagAGGT

This results in the following motif, count, and profile matrices.
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Gibbs Sampling in Action

We now have a new collection of Motifs after 
choosing one based on this “weighted die roll” to 
replace the one we had removed.

W H I C H D N A PAT T E R N S P L AY T H E R O L E O F M O L E C U L A R C L O C K S ?

GIBBSSAMPLER(Dna, k, t, N)
randomly select k-mers Motifs = (Motif1, ..., Motift) in each string from Dna
BestMotifs Motifs
for j 1 to N

i RANDOM(t)
Profile profile matrix formed from all strings in Motifs except for Motifi
Motifi  Profile-randomly generated k-mer in the i-th sequence
if SCORE(Motifs) < SCORE(BestMotifs)

BestMotifs Motifs
return BestMotifs

2G

STOP and Think: Note that in contrast to RANDOMIZEDMOTIFSEARCH, which
always moves from higher to lower scoring Motifs, GIBBSSAMPLER may move
from lower to higher scoring Motifs. Why is this reasonable?

Gibbs Sampling in Action

We illustrate how GIBBSSAMPLER works on the same strings Dna that we considered
before. Imagine that, at the initial step, the algorithm has chosen the following 4-mers
(shown in red) and has randomly selected the third string for removal. To be more
precise, GIBBSSAMPLER does not really remove the third string; it ignores it at this
particular step and may analyze it again in subsequent steps.

ttACCTtaac ttACCTtaac
gATGTctgtc gATGTctgtc

Dna ccgGCGTtag �! ----------
cactaACGAg cactaACGAg
cgtcagAGGT cgtcagAGGT

This results in the following motif, count, and profile matrices.
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Let’s assume that after rolling this seven-sided die, we arrive at the Profile-randomly
generated 4-mer GCGT (the fourth 4-mer in the deleted sequence). The deleted string
ccgGCGTtag is now added back to the collection of motifs, and GCGT substitutes the
previously chosen ccgG in the third string in Dna, as shown below. We then roll a fair
five-sided die and randomly select the first string from Dna for removal.

ttACCTtaac ----------
gATGTctgtc gATGTctgtc

Dna ccgGCGTtag �! ccgGCGTtag
cactaACGAg cactaACGAg
cgtcagAGGT cgtcagAGGT

After constructing the motif and profile matrices, we obtain the following:

Motifs

G T c t

PROFILE(Motifs)

A: 2/4 0 0 1/4
G C G T C: 0 2/4 1/4 0
a c t a G: 2/4 1/4 2/4 0
A G G T T: 0 1/4 1/4 3/4

Note that the profile matrix looks more biased toward the implanted motif than the
previous profile matrix did. We update the count and profile matrices with pseudo-
counts:

COUNT(Motifs)

A: 3 1 1 2

PROFILE(Motifs)

A: 3/8 1/8 1/8 2/8
C: 1 3 2 1 C: 1/8 3/8 2/8 1/8
G: 3 2 3 1 G: 3/8 2/8 3/8 1/8
T: 1 2 2 4 T: 1/8 2/8 2/8 4/8

Then, we compute the probabilities of all 4-mers in the deleted string ttACCTtaac:

ttAC tACC ACCT CCTt CTta Ttaa taac
2/84 2/84 72/84 24/84 8/84 4/84 1/84

When we roll a seven-sided die, we arrive at the Profile-randomly generated k-mer
ACCT, which we add to the collection Motifs. After rolling the five-sided die once again,
we randomly select the fourth string for removal.

ttACCTtaac ttACCTtaac
gATGTctgtc gATGTctgtc

Dna ccgGCGTtag �! ccgGCGTtag
cactaACGAg ----------
cgtcagAGGT cgtcagAGGT
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Gibbs Sampling in Action

Running these steps N times for some parameter N 
yields the Gibbs sampler algorithm.
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Gibbs Sampling Pseudocode

GibbsSampler(Dna, k, t, N)
    randomly select k-mers Motifs = (Motif1, ..., Motift ) from Dna
    BestMotifs ← Motifs
    for j ← 1 to N 
        i ← randomly generated integer between 1 and t
        Profile ← profile formed from all Motifs other than Motifi
        Motifi ← Profile-randomly generated k-mer in Dnai
        if Score(Motifs) < Score(BestMotifs)
            BestMotifs ← Motifs
    return BestMotifs 
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Gibbs Sampling Weakness

C H A P T E R 2

t a a c
Motifs G T c t

a c t a
A G G T

COUNT(Motifs)

A: 2 1 1 1

PROFILE(Motifs)

A: 2/4 1/4 1/4 1/4
C: 0 1 1 1 C: 0 1/4 1/4 1/4
G: 1 1 1 0 G: 1/4 1/4 1/4 0
T: 1 1 1 2 T: 1/4 1/4 1/4 2/4

Note that the profile matrix is only slightly more conserved than the uniform profile,
making us wonder whether we have any chance to be steered toward the implanted
motif. We now use this profile matrix to compute the probabilities of all 4-mers in the
deleted string ccgGCGTtag:

ccgG cgGC gGCG GCGT CGTt GTta Ttag
0 0 0 1/128 0 1/256 0

Note that all but two of these probabilities are zero. This situation is similar to the one
we encountered with GREEDYMOTIFSEARCH, and as before, we need to augment zero
probabilities with small pseudocounts to avoid disastrous results.

Application of Laplace’s Rule of Succession to the count matrix above yields the
following updated count and profile matrices:

COUNT(Motifs)

A: 3 2 2 2

PROFILE(Motifs)

A: 3/8 2/8 2/8 2/8
C: 1 2 2 2 C: 1/8 2/8 2/8 2/8
G: 2 2 2 1 G: 2/8 2/8 2/8 1/8
T: 2 2 2 3 T: 2/8 2/8 2/8 3/8

After adding pseudocounts, the 4-mer probabilities in the deleted string ccgGCGTtag
are recomputed as follows:

ccgG cgGC gGCG GCGT CGTt GTta Ttag
4/84 8/84 8/84 24/84 12/84 16/84 8/84

Since these probabilities sum to C = 80/84, our hypothetical seven-sided die is repre-
sented by the random number generator

RANDOM
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4/84

80/84 ,
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8/84
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80/84 ,
12/84
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= RANDOM

✓
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C H A P T E R 2
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By making a random choice, Gibbs sampling may 
miss “direction” of true motifs because of bad luck.
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By making a random choice, Gibbs sampling may 
miss “direction” of true motifs because of bad luck.

Goal: Design an algorithm that can take “multiple 
directions” into account.
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Toward a New Algorithm

4/84 8/84 8/84 8/8412/84 16/8424/84

In RandomizedMotifSearch, we formed 
Motifs(Profile) by taking the most probable k-mer in 
each string (after pseudocounts).

CCGG CGGC GGCG GCGT CGTT GTTA TTAG
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Toward a New Algorithm

4/80 8/80 8/80 8/8012/80 16/8024/80

In GibbsSampling, we normalized these 
probabilities, but then we chose only one randomly.

CCGG CGGC GGCG GCGT CGTT GTTA TTAG
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Expectation Maximization for Motif 
Finding

4/80 8/80 8/80 8/8012/80 16/8024/80

The expectation maximization (EM) algorithm says,  
“Keep them all!” These form a matrix HiddenMatrix.

CCGG CGGC GGCG GCGT CGTT GTTA TTAG
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We have already seen HiddenMatrix!
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W H I C H D N A PAT T E R N S P L AY T H E R O L E O F M O L E C U L A R C L O C K S ?

ttACCTtaac
gATGTctgtc

Dna ccgGCGTtag
cactaACGAg
cgtcagAGGT

Below, we construct the profile matrix PROFILE(Motifs) of the chosen 4-mers.

Motifs PROFILE(Motifs)
t a a c A: 0.4 0.2 0.2 0.2
G T c t C: 0.2 0.4 0.2 0.2
c c g G G: 0.2 0.2 0.4 0.2
a c t a T: 0.2 0.2 0.2 0.4
A G G T

We can now compute the probabilities of every 4-mer in Dna based on this profile
matrix. For example, the probability of the first 4-mer in the first string of Dna is
PR(ttAC|Profile) = 0.2 · 0.2 · 0.2 · 0.2 = 0.0016. The maximum probabilities in every
row are shown in red below.

ttAC tACC ACCT CCTt CTta Ttaa taac
.0016 .0016 .0128 .0064 .0016 .0016 .0016

gATG ATGT TGTc GTct Tctg ctgt tgtc
.0016 .0128 .0016 .0032 .0032 .0032 .0016

ccgG cgGC gGCG GCGT CGTt GTta Ttag
.0064 .0036 .0016 .0128 .0032 .0016 .0016

cact acta ctaA taAC aACG ACGA CGAg
.0032 .0064 .0016 .0016 .0032 .0128 .0016

cgtc gtca tcag cagA agAG gAGG AGGT
.0016 .0016 .0016 .0032 .0032 .0032 .0128

We select the most probable 4-mer in each row above as our new collection Motifs
(shown below). Notice that this collection has captured all five implanted motifs in Dna!

95

C H A P T E R 2

ttACCTtaac
gATGTctgtc

Dna ccgGCGTtag
cactaACGAg
cgtcagAGGT

STOP and Think: How is it possible that randomly chosenHow is it possible that randomly chosen kk-mers have led us to-mers have led us to
the correct implantedthe correct implanted kk-mer? If you think we manufactured this example, select-mer? If you think we manufactured this example, select
your own initial 4-mers and see what happens.your own initial 4-mers and see what happens.

For the Subtle Motif Problem with implanted 15-mer AAAAAAAAGGGGGGG, when we
run RANDOMIZEDMOTIFSEARCH 100,000 times (each time with new randomly se-
lected k-mers), it returns the 15-mers shown in Figure 2.7 as the lowest scoring collection
Motifs across all iterations, resulting in the consensus string AAAAAAAAacaGGGG with
score 43. These strings are only slightly less conserved than the collection of im-
planted (15, 4)-motifs with score 40 (or the motif returned by GREEDYMOTIFSEARCH

with score 41), and it largely captures the implanted motif. Furthermore, unlike
GREEDYMOTIFSEARCH, RANDOMIZEDMOTIFSEARCH can be run for a larger num-
ber of iterations to discover better and better motifs.

Score

Motifs

AAAtAcAgACAGcGt 5
AAAAAAtAgCAGGGt 3
tAAAAtAAACAGcGG 3
AcAgAAAAAaAGGGG 3
AAAAtAAAACtGcGa 4
AtAgAcgAACAcGGt 6
cAAAAAgAgaAGGGG 4
AtAgAAAAggAaGGG 5
AAgAAAAAAgAGaGG 3
cAtAAtgAACtGtGa 7

CONSENSUS(Motifs) AAAAAAAAACAGGGG 43

FIGURE 2.7 The lowest scoring collection of strings Motifs produced by 100,000 runs
of RANDOMIZEDMOTIFSEARCH, along with their consensus string and score for the
Subtle Motif Problem.
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W H I C H D N A PAT T E R N S P L AY T H E R O L E O F M O L E C U L A R C L O C K S ?
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Below, we construct the profile matrix PROFILE(Motifs) of the chosen 4-mers.
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t a a c A: 0.4 0.2 0.2 0.2
G T c t C: 0.2 0.4 0.2 0.2
c c g G G: 0.2 0.2 0.4 0.2
a c t a T: 0.2 0.2 0.2 0.4
A G G T

We can now compute the probabilities of every 4-mer in Dna based on this profile
matrix. For example, the probability of the first 4-mer in the first string of Dna is
PR(ttAC|Profile) = 0.2 · 0.2 · 0.2 · 0.2 = 0.0016. The maximum probabilities in every
row are shown in red below.
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.0032 .0064 .0016 .0016 .0032 .0128 .0016

cgtc gtca tcag cagA agAG gAGG AGGT
.0016 .0016 .0016 .0032 .0032 .0032 .0128

We select the most probable 4-mer in each row above as our new collection Motifs
(shown below). Notice that this collection has captured all five implanted motifs in Dna!
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We have already seen HiddenMatrix!
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STOP: How many 
rows and columns 
does HiddenMatrix 
have? 



We have already seen HiddenMatrix!
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HiddenMatrix

Dna

STOP: How many 
rows and columns 
does HiddenMatrix 
have? 

Answer:
#rows = #strings = t
 
# cols = # k-mers in 
each string = n-k+1



From HiddenMatrix to a New Profile

We can form a hidden matrix from a profile matrix, 
but how do we recompute the profile matrix?

© 2024 Phillip Compeau

4/80 8/80 8/80 8/8012/80 16/8024/80
CCGG CGGC GGCG GCGT CGTT GTTA TTAG

Profile à HiddenMatrix(Profile) 😀

HiddenMatrix(Profile) à Profile(HiddenMatrix(Profile)) 🤷 



From HiddenMatrix to a New Profile

To form a profile matrix from a hidden matrix, 
weight a profile over every value in matrix.

0.1 0.2 0.1 0.4 0.2

0.5 0.1 0.1 0.2 0.1

0.1 0.3 0.3 0.1 0.2

# of strings

# of starting positions Dna

TACAGAC
ACCCAGT
CAGCATT
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From HiddenMatrix to a New Profile

To form a profile matrix from a hidden matrix, 
weight a profile over every value in matrix.

# of strings

# of starting positions Dna

TACAGAC
ACCCAGT
CAGCATT

A:   0 0.1  0
C:  0  0 0.1
G:  0  0  0
T: 0.1  0  0

Profile

0.1 0.2 0.1 0.4 0.2

0.5 0.1 0.1 0.2 0.1

0.1 0.3 0.3 0.1 0.2
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From HiddenMatrix to a New Profile

To form a profile matrix from a hidden matrix, 
weight a profile over every value in matrix.

# of strings

# of starting positions Dna

TACAGAC
ACCCAGT
CAGCATT

Profile

0.1 0.2 0.1 0.4 0.2

0.5 0.1 0.1 0.2 0.1

0.1 0.3 0.3 0.1 0.2

A: 0.2 0.1 0.2
C:  0 0.2 0.1
G:  0  0  0
T: 0.1  0  0
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From HiddenMatrix to a New Profile

To form a profile matrix from a hidden matrix, 
weight a profile over every value in matrix.

# of strings

# of starting positions Dna

TACAGAC
ACCCAGT
CAGCATT

Profile

A: 0.2 0.2 0.2
C: 0.1 0.2 0.1
G:  0  0 0.1
T: 0.1  0  0

0.1 0.2 0.1 0.4 0.2

0.5 0.1 0.1 0.2 0.1

0.1 0.3 0.3 0.1 0.2
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From HiddenMatrix to a New Profile

To form a profile matrix from a hidden matrix, 
weight a profile over every value in matrix.

# of strings

# of starting positions Dna

TACAGAC
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From HiddenMatrix to a New Profile

To form a profile matrix from a hidden matrix, 
weight a profile over every value in matrix.

# of strings

# of starting positions Dna

TACAGAC
ACCCAGT
CAGCATT

Profile

A: 0.6 0.4 0.6
C: 0.1 0.2 0.3
G: 0.2 0.4 0.1
T: 0.1  0  0

0.1 0.2 0.1 0.4 0.2

0.5 0.1 0.1 0.2 0.1

0.1 0.3 0.3 0.1 0.2
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From HiddenMatrix to a New Profile

To form a profile matrix from a hidden matrix, 
weight a profile over every value in matrix.

# of strings

# of starting positions Dna

TACAGAC
ACCCAGT
CAGCATT

Profile

A: 1.1 0.4 0.6
C: 0.1 0.7 0.8
G: 0.2 0.4 0.1
T: 0.1  0  0

0.1 0.2 0.1 0.4 0.2

0.5 0.1 0.1 0.2 0.1

0.1 0.3 0.3 0.1 0.2
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From HiddenMatrix to a New Profile

To form a profile matrix from a hidden matrix, 
weight a profile over every value in matrix.

# of strings

# of starting positions Dna

TACAGAC
ACCCAGT
CAGCATT

Profile

A: 1.1 0.4 0.6
C: 0.2 0.8 0.9
G: 0.2 0.4 0.1
T: 0.1  0  0

0.1 0.2 0.1 0.4 0.2

0.5 0.1 0.1 0.2 0.1

0.1 0.3 0.3 0.1 0.2

© 2024 Phillip Compeau

HiddenMatrix



From HiddenMatrix to a New Profile

To form a profile matrix from a hidden matrix, 
weight a profile over every value in matrix.

# of strings

# of starting positions Dna

TACAGAC
ACCCAGT
CAGCATT

Profile

A: 1.1 0.4 0.6
C: 0.3 0.9 1.0
G: 0.2 0.4 0.1
T: 0.1  0  0

0.1 0.2 0.1 0.4 0.2

0.5 0.1 0.1 0.2 0.1

0.1 0.3 0.3 0.1 0.2
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From HiddenMatrix to a New Profile

To form a profile matrix from a hidden matrix, 
weight a profile over every value in matrix.

# of strings

# of starting positions Dna

TACAGAC
ACCCAGT
CAGCATT

Profile

A: 1.1 0.6 0.6
C: 0.5 0.9 1.0
G: 0.2 0.4 0.3
T: 0.1  0  0

0.1 0.2 0.1 0.4 0.2

0.5 0.1 0.1 0.2 0.1

0.1 0.3 0.3 0.1 0.2
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From HiddenMatrix to a New Profile

To form a profile matrix from a hidden matrix, 
weight a profile over every value in matrix.

# of strings

# of starting positions Dna

TACAGAC
ACCCAGT
CAGCATT

Profile

A: 1.2 0.6 0.6
C: 0.5 0.9 1.0
G: 0.2 0.5 0.3
T: 0.1  0 0.1

0.1 0.2 0.1 0.4 0.2

0.5 0.1 0.1 0.2 0.1

0.1 0.3 0.3 0.1 0.2
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From HiddenMatrix to a New Profile

To form a profile matrix from a hidden matrix, 
weight a profile over every value in matrix.

# of strings

# of starting positions Dna

TACAGAC
ACCCAGT
CAGCAGT

Profile

A: 1.2 0.7 0.6
C: 0.6 0.9 1.0
G: 0.2 0.5 0.4
T: 0.1  0 0.1

0.1 0.2 0.1 0.4 0.2

0.5 0.1 0.1 0.2 0.1

0.1 0.3 0.3 0.1 0.2
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From HiddenMatrix to a New Profile

To form a profile matrix from a hidden matrix, 
weight a profile over every value in matrix.

# of strings

# of starting positions Dna

TACAGAC
ACCCAGT
CAGCAGT

Profile

A: 1.5 0.7 0.6
C: 0.6 0.9 1.3
G: 0.2 0.8 0.4
T: 0.1  0 0.1

0.1 0.2 0.1 0.4 0.2

0.5 0.1 0.1 0.2 0.1

0.1 0.3 0.3 0.1 0.2
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From HiddenMatrix to a New Profile

To form a profile matrix from a hidden matrix, 
weight a profile over every value in matrix.

# of strings

# of starting positions Dna

TACAGAC
ACCCAGT
CAGCAGT

Profile

A: 1.5 0.7 0.9
C: 0.6 1.2 1.3
G: 0.5 0.8 0.4
T: 0.1  0 0.1

0.1 0.2 0.1 0.4 0.2

0.5 0.1 0.1 0.2 0.1

0.1 0.3 0.3 0.1 0.2
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From HiddenMatrix to a New Profile

To form a profile matrix from a hidden matrix, 
weight a profile over every value in matrix.

# of strings

# of starting positions Dna

TACAGAC
ACCCAGT
CAGCATT

Profile

A: 1.5 0.8 0.9
C: 0.7 1.2 1.3
G: 0.5 0.8 0.4
T: 0.1  0 0.2

0.1 0.2 0.1 0.4 0.2

0.5 0.1 0.1 0.2 0.1

0.1 0.3 0.3 0.1 0.2
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From HiddenMatrix to a New Profile

To form a profile matrix from a hidden matrix, 
weight a profile over every value in matrix.

# of strings

# of starting positions Dna

TACAGAC
ACCCAGT
CAGCATT

Profile

A: 1.7 0.8 0.9
C: 0.7 1.2 1.3
G: 0.5 0.8 0.4
T: 0.1 0.2 0.4

0.1 0.2 0.1 0.4 0.2

0.5 0.1 0.1 0.2 0.1

0.1 0.3 0.3 0.1 0.2
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From HiddenMatrix to a New Profile

Finally, each column currently sums to t (=3) and 
should sum to 1, so divide each column by t.

# of strings

# of starting positions Dna

TACAGAC
ACCCAGT
CAGCATT

Profile

0.1 0.2 0.1 0.4 0.2

0.5 0.1 0.1 0.2 0.1

0.1 0.3 0.3 0.1 0.2

A: 1.7/3 0.8/3 0.9/3
C: 0.7/3 1.2/3 1.3/3
G: 0.5/3 0.8/3 0.4/3
T: 0.1/3 0.2/3 0.4/3
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From HiddenMatrix to a New Profile

# of strings

# of starting positions Dna

TACAGAC
ACCCAGT
CAGCATT

Profile

0.1 0.2 0.1 0.4 0.2

0.5 0.1 0.1 0.2 0.1

0.1 0.3 0.3 0.1 0.2

A: 1.7/3 0.8/3 0.9/3
C: 0.7/3 1.2/3 1.3/3
G: 0.5/3 0.8/3 0.4/3
T: 0.1/3 0.2/3 0.4/3

© 2024 Phillip Compeau

HiddenMatrix

STOP: We should probably get 
some pseudocounts in there, 
shouldn’t we? How?



From HiddenMatrix to a New Profile

# of strings

# of starting positions Dna

TACAGAC
ACCCAGT
CAGCATT

Profile

0.1 0.2 0.1 0.4 0.2

0.5 0.1 0.1 0.2 0.1

0.1 0.3 0.3 0.1 0.2

A: (1.7+σ)/(3+4σ)      (0.8+σ)/(3+4σ)      (0.9 +σ)/(3+4σ)
C: (0.7+σ)/(3+4σ) (1.2 +σ)/(3+4σ) (1.3 +σ)/(3+4σ) 
G: (0.5+σ)/(3+4σ) (0.8 +σ)/(3+4σ) (0.4 +σ)/(3+4σ) 
T: (0.1+σ)/(3+4σ) (0.2 +σ)/(3+4σ) (0.4 +σ)/(3+4σ) 
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Answer: Add some small value σ 
to each numerator and normalize 
by dividing by (# of strings) · σ.



Expectation Maximization (EM) for Motif 
Finding
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The expectation maximization algorithm chooses a 
random collection of k-mers Motifs, forms the 
profile matrix, and then repeats two steps:

Profile à HiddenMatrix(Profile) 

HiddenMatrix(Profile) à Profile(HiddenMatrix(Profile))  



Expectation Maximization (EM) for Motif 
Finding

© 2024 Phillip Compeau

The expectation maximization algorithm chooses a 
random collection of k-mers Motifs, forms the 
profile matrix, and then repeats two steps:

Profile à HiddenMatrix(Profile) 

HiddenMatrix(Profile) à Profile(HiddenMatrix(Profile))  

The first step is called the ”E-step”, and the second 
step is called the “M-step”. (We will say more soon.)



Expectation Maximization (EM) for Motif 
Finding

© 2024 Phillip Compeau

The expectation maximization algorithm chooses a 
random collection of k-mers Motifs, forms the 
profile matrix, and then repeats two steps:

Profile à HiddenMatrix(Profile) 

HiddenMatrix(Profile) à Profile(HiddenMatrix(Profile))  

STOP: When should we stop the algorithm?



Expectation Maximization (EM) for Motif 
Finding

© 2024 Phillip Compeau

The expectation maximization algorithm chooses a 
random collection of k-mers Motifs, forms the 
profile matrix, and then repeats two steps:

Profile à HiddenMatrix(Profile) 

HiddenMatrix(Profile) à Profile(HiddenMatrix(Profile))  

Answer: When the profile matrix stops changing 
much between steps.



Visualizing HiddenMatrix for Motif 
FindingEM for motif finding:  

skip the sampling step

 26

ttgccacaaaataatccgccttcgcaaattgacctacc

gtaagtacctgaaagttacggtctgcgaacgcta

ccatacccggaaagagttactccttatttgccgtgtgg

S1

S2

S3

sij = score of motif starting at j in sequence i

M[c,0] =
∑ {sij ∣ Si[ j] = c}

∑ sij

M[c, m] =
∑ {sij ∣ Si[ j + m] = c}

∑ sij

First column of new matrix:

mth column of new matrix:

• Doesn’t “commit” to a sampled choice of motif instances 

• Instead uses each possible sequence weighted by score

(Borrowing visual from Carl Kingsford)

© 2024 Phillip Compeau

RandomizedMotifSearch 
takes the tallest peak in 
each string.
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∑ sij

M[c, m] =
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RandomizedMotifSearch 
takes the tallest peak in 
each string.

GibbsSampling chooses 
a peak in one string 
randomly, with tall peaks 
more likely.



Visualizing HiddenMatrix for Motif 
FindingEM for motif finding:  

skip the sampling step

 26

ttgccacaaaataatccgccttcgcaaattgacctacc

gtaagtacctgaaagttacggtctgcgaacgcta

ccatacccggaaagagttactccttatttgccgtgtgg

S1

S2

S3

sij = score of motif starting at j in sequence i

M[c,0] =
∑ {sij ∣ Si[ j] = c}

∑ sij

M[c, m] =
∑ {sij ∣ Si[ j + m] = c}

∑ sij

First column of new matrix:

mth column of new matrix:

• Doesn’t “commit” to a sampled choice of motif instances 

• Instead uses each possible sequence weighted by score

(Borrowing visual from Carl Kingsford)
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RandomizedMotifSearch 
takes the tallest peak in 
each string.

GibbsSampling chooses 
a peak in one string 
randomly, with tall peaks 
more likely.

EM keeps all peaks 
around.



Moral: Great Ideas Are Not Necessarily 
Complicated or Old
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