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How Do We Compare Biological 
Sequences?

Dynamic Programming

Assembling Genomes
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Eternity II: The Highest-
Stakes Puzzle in History

Courtesy: Matej Bat’ha



AN INTRODUCTION TO 
GENOME SEQUENCING
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The Newspaper Problem
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STOP: How would you reconstruct the news?



The Newspaper Problem

The Newspaper Problem is an overlap puzzle.
© 2024 Phillip Compeau



The Newspaper Problem
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But what does this have to do with biology?



DNA is a Double Helix of Nucleotide 
Strands
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DNA’s Double Helix (1953) DNA’s Molecular Structure
Courtesy: Madprime, Wikimedia Commons



The Order of Nucleotides Determines 
Genetics
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DNA’s Molecular Structure

Nucleotide: Half of one 
“rung” of DNA.

Four choices for the nucleic 
acid of a nucleotide:

1.  Adenine (A)
2.  Cytosine (C)
3.  Guanine (G)—bonds to C
4. Thymine (T)—bonds to A

Courtesy: Madprime, Wikimedia Commons



The Order of Nucleotides Determines 
Genetics

© 2024 Phillip Compeau

DNA’s Molecular Structure

Nucleotide: Half of one 
“rung” of DNA.

Key point: if we know one 
strand of DNA, we get the 
other strand for free 
because of this 
“complementarity”.

Courtesy: Madprime, Wikimedia Commons



Genome “Sequencing” Means 
“Reading” the Genome

© 2024 Phillip Compeau

…CCGTAGTCGCATGGAACAGTATACGAGACAGTACAGATACGATACGATACGATCATTAACCGAGAGTACCAGATTCCAGATCATACG
TTACGCTTAGCTACGGACGTACGATACCCAGATTACGATCCATATAGATATAACCGGTGTGTCTTGCTAATACGTAACGGGGTGCCT
TCGATAGGTCAGAATACCAGATCTCTCGATCTTCTTACAGATACTACGATCCCCAGATACTACCCCTACTGACCCATCGTACGGGTA
CTACTACGGATATGATACCGATGTAGAGGGATCCATATATCCCGAGACGTCTCGCGCATAAGATCATCGTCTAGATACACGTACGTA
CTAGACTAGCGTATGCCTCTTATGATCGTCCCGATCGAGTCGCGTGCTCAGAAAAGCTACGATACGATACCCGATACTAGACCATAG…

Genome: The nucleotide sequence read down one 
side of an organism’s chromosomal DNA. A human 
genome has about 3 billion letters.



Genome “Sequencing” Means 
“Reading” the Genome
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…CCGTAGTCGCATGGAACAGTATACGAGACAGTACAGATACGATACGATACGATCATTAACCGAGAGTACCAGATTCCAGATCATACG
TTACGCTTAGCTACGGACGTACGATACCCAGATTACGATCCATATAGATATAACCGGTGTGTCTTGCTAATACGTAACGGGGTGCCT
TCGATAGGTCAGAATACCAGATCTCTCGATCTTCTTACAGATACTACGATCCCCAGATACTACCCCTACTGACCCATCGTACGGGTA
CTACTACGGATATGATACCGATGTAGAGGGATCCATATATCCCGAGACGTCTCGCGCATAAGATCATCGTCTAGATACACGTACGTA
CTAGACTAGCGTATGCCTCTTATGATCGTCCCGATCGAGTCGCGTGCTCAGAAAAGCTACGATACGATACCCGATACTAGACCATAG…

Genome: The nucleotide sequence read down one 
side of an organism’s chromosomal DNA. A human 
genome has about 3 billion letters.

Polychaos dubium (an amoeba) has one of the 
longest known genomes: 670 billion nucleotides. 



Genome “Sequencing” Means 
“Reading” the Genome
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…CCGTAGTCGCATGGAACAGTATACGAGACAGTACAGATACGATACGATACGATCATTAACCGAGAGTACCAGATTCCAGATCATACG
TTACGCTTAGCTACGGACGTACGATACCCAGATTACGATCCATATAGATATAACCGGTGTGTCTTGCTAATACGTAACGGGGTGCCT
TCGATAGGTCAGAATACCAGATCTCTCGATCTTCTTACAGATACTACGATCCCCAGATACTACCCCTACTGACCCATCGTACGGGTA
CTACTACGGATATGATACCGATGTAGAGGGATCCATATATCCCGAGACGTCTCGCGCATAAGATCATCGTCTAGATACACGTACGTA
CTAGACTAGCGTATGCCTCTTATGATCGTCCCGATCGAGTCGCGTGCTCAGAAAAGCTACGATACGATACCCGATACTAGACCATAG…

Genome: The nucleotide sequence read down one 
side of an organism’s chromosomal DNA. A human 
genome has about 3 billion letters.

Key Point: DNA is submicroscopic!  How do we 
read something that we cannot see?



We Sequence a Species’s Genome 
to Unlock its Genetic Identity

© 2024 Phillip Compeau

Hug et al., 2016
Nature Biotechnology, Discovery Magazine

Darwin’s notebook c. 1837



We Sequence an Individual’s Genome to 
Find What Makes them Unique
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One in a Billion 
Foundation

2011: First person 
whose life was saved 
because of genome 
sequencing.



Ten years later, genome sequencing 
saves a life in 13 hours

© 2024 Phillip Compeau

Source: Owen et al. 2021



History of Genome Sequencing
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Walter Gilbert

Frederick Sanger

Late 1970s: Walter Gilbert and 
Frederick Sanger develop independent 
sequencing methods.
GAGTTTTATCGCTTCCATGACGCAGAAGTTAACACTTTCGGATATTTCTGATGAGTCGAAAAATTATCTTGATAAAGCAGGAATTACTACTGCTTGTTTACGAATTAAATCGAAGTGGACTGCTGGCGGAAAATGAGAAAATTCGACCTATCCTTGCGCAGCT
CGAGAAGCTCTTACTTTGCGACCTTTCGCCATCAACTAACGATTCTGTCAAAAACTGACGCGTTGGATGAGGAGAAGTGGCTTAATATGCTTGGCACGTTCGTCAAGGACTGGTTTAGATATGAGTCACATTTTGTTCATGGTAGAGATTCTCTTGTTGACAT
TTTAAAAGAGCGTGGATTACTATCTGAGTCCGATGCTGTTCAACCACTAATAGGTAAGAAATCATGAGTCAAGTTACTGAACAATCCGTACGTTCCAGACCGCTTTGGCCTCTATTAAGCTCATTCAGGCTTCTGCCGTTTTGGATTTAACCGAAGATGATTT
CGATTTTCTGACGAGTAACAAAGTTTGGATTGCTACTGACCGCTCTCGTGCTCGTCGCTGCGTTGAGGCTTGCGTTTATGGTACGCTGGACTTTGTGGGATACCCTCGCTTTCCTGCTCCTGTTGAGTTTATTGCTGCCGTCATTGCTTATTATGTTCATCCC
GTCAACATTCAAACGGCCTGTCTCATCATGGAAGGCGCTGAATTTACGGAAAACATTATTAATGGCGTCGAGCGTCCGGTTAAAGCCGCTGAATTGTTCGCGTTTACCTTGCGTGTACGCGCAGGAAACACTGACGTTCTTACTGACGCAGAAGAAAACGTGC
GTCAAAAATTACGTGCGGAAGGAGTGATGTAATGTCTAAAGGTAAAAAACGTTCTGGCGCTCGCCCTGGTCGTCCGCAGCCGTTGCGAGGTACTAAAGGCAAGCGTAAAGGCGCTCGTCTTTGGTATGTAGGTGGTCAACAATTTTAATTGCAGGGGCTTCGG
CCCCTTACTTGAGGATAAATTATGTCTAATATTCAAACTGGCGCCGAGCGTATGCCGCATGACCTTTCCCATCTTGGCTTCCTTGCTGGTCAGATTGGTCGTCTTATTACCATTTCAACTACTCCGGTTATCGCTGGCGACTCCTTCGAGATGGACGCCGTTG
GCGCTCTCCGTCTTTCTCCATTGCGTCGTGGCCTTGCTATTGACTCTACTGTAGACATTTTTACTTTTTATGTCCCTCATCGTCACGTTTATGGTGAACAGTGGATTAAGTTCATGAAGGATGGTGTTAATGCCACTCCTCTCCCGACTGTTAACACTACTGG
TTATATTGACCATGCCGCTTTTCTTGGCACGATTAACCCTGATACCAATAAAATCCCTAAGCATTTGTTTCAGGGTTATTTGAATATCTATAACAACTATTTTAAAGCGCCGTGGATGCCTGACCGTACCGAGGCTAACCCTAATGAGCTTAATCAAGATGAT
GCTCGTTATGGTTTCCGTTGCTGCCATCTCAAAAACATTTGGACTGCTCCGCTTCCTCCTGAGACTGAGCTTTCTCGCCAAATGACGACTTCTACCACATCTATTGACATTATGGGTCTGCAAGCTGCTTATGCTAATTTGCATACTGACCAAGAACGTGATT
ACTTCATGCAGCGTTACCATGATGTTATTTCTTCATTTGGAGGTAAAACCTCTTATGACGCTGACAACCGTCCTTTACTTGTCATGCGCTCTAATCTCTGGGCATCTGGCTATGATGTTGATGGAACTGACCAAACGTCGTTAGGCCAGTTTTCTGGTCGTGT
TCAACAGACCTATAAACATTCTGTGCCGCGTTTCTTTGTTCCTGAGCATGGCACTATGTTTACTCTTGCGCTTGTTCGTTTTCCGCCTACTGCGACTAAAGAGATTCAGTACCTTAACGCTAAAGGTGCTTTGACTTATACCGATATTGCTGGCGACCCTGTT
TTGTATGGCAACTTGCCGCCGCGTGAAATTTCTATGAAGGATGTTTTCCGTTCTGGTGATTCGTCTAAGAAGTTTAAGATTGCTGAGGGTCAGTGGTATCGTTATGCGCCTTCGTATGTTTCTCCTGCTTATCACCTTCTTGAAGGCTTCCCATTCATTCAGG
AACCGCCTTCTGGTGATTTGCAAGAACGCGTACTTATTCGCCACCATGATTATGACCAGTGTTTCCAGTCCGTTCAGTTGTTGCAGTGGAATAGTCAGGTTAAATTTAATGTGACCGTTTATCGCAATCTGCCGACCACTCGCGATTCAATCATGACTTCGTG
ATAAAAGATTGAGTGTGAGGTTATAACGCCGAAGCGGTAAAAATTTTAATTTTTGCCGCTGAGGGGTTGACCAAGCGAAGCGCGGTAGGTTTTCTGCTTAGGAGTTTAATCATGTTTCAGACTTTTATTTCTCGCCATAATTCAAACTTTTTTTCTGATAAGC
TGGTTCTCACTTCTGTTACTCCAGCTTCTTCGGCACCTGTTTTACAGACACCTAAAGCTACATCGTCAACGTTATATTTTGATAGTTTGACGGTTAATGCTGGTAATGGTGGTTTTCTTCATTGCATTCAGATGGATACATCTGTCAACGCCGCTAATCAGGT
TGTTTCTGTTGGTGCTGATATTGCTTTTGATGCCGACCCTAAATTTTTTGCCTGTTTGGTTCGCTTTGAGTCTTCTTCGGTTCCGACTACCCTCCCGACTGCCTATGATGTTTATCCTTTGAATGGTCGCCATGATGGTGGTTATTATACCGTCAAGGACTGT
GTGACTATTGACGTCCTTCCCCGTACGCCGGGCAATAACGTTTATGTTGGTTTCATGGTTTGGTCTAACTTTACCGCTACTAAATGCCGCGGATTGGTTTCGCTGAATCAGGTTATTAAAGAGATTATTTGTCTCCAGCCACTTAAGTGAGGTGATTTATGTT
TGGTGCTATTGCTGGCGGTATTGCTTCTGCTCTTGCTGGTGGCGCCATGTCTAAATTGTTTGGAGGCGGTCAAAAAGCCGCCTCCGGTGGCATTCAAGGTGATGTGCTTGCTACCGATAACAATACTGTAGGCATGGGTGATGCTGGTATTAAATCTGCCATT
CAAGGCTCTAATGTTCCTAACCCTGATGAGGCCGCCCCTAGTTTTGTTTCTGGTGCTATGGCTAAAGCTGGTAAAGGACTTCTTGAAGGTACGTTGCAGGCTGGCACTTCTGCCGTTTCTGATAAGTTGCTTGATTTGGTTGGACTTGGTGGCAAGTCTGCCG
CTGATAAAGGAAAGGATACTCGTGATTATCTTGCTGCTGCATTTCCTGAGCTTAATGCTTGGGAGCGTGCTGGTGCTGATGCTTCCTCTGCTGGTATGGTTGACGCCGGATTTGAGAATCAAAAAGAGCTTACTAAAATGCAACTGGACAATCAGAAAGAGAT
TGCCGAGATGCAAAATGAGACTCAAAAAGAGATTGCTGGCATTCAGTCGGCGACTTCACGCCAGAATACGAAAGACCAGGTATATGCACAAAATGAGATGCTTGCTTATCAACAGAAGGAGTCTACTGCTCGCGTTGCGTCTATTATGGAAAACACCAATCTT
TCCAAGCAACAGCAGGTTTCCGAGATTATGCGCCAAATGCTTACTCAAGCTCAAACGGCTGGTCAGTATTTTACCAATGACCAAATCAAAGAAATGACTCGCAAGGTTAGTGCTGAGGTTGACTTAGTTCATCAGCAAACGCAGAATCAGCGGTATGGCTCTT
CTCATATTGGCGCTACTGCAAAGGATATTTCTAATGTCGTCACTGATGCTGCTTCTGGTGTGGTTGATATTTTTCATGGTATTGATAAAGCTGTTGCCGATACTTGGAACAATTTCTGGAAAGACGGTAAAGCTGATGGTATTGGCTCTAATTTGTCTAGGAA
ATAACCGTCAGGATTGACACCCTCCCAATTGTATGTTTTCATGCCTCCAAATCTTGGAGGCTTTTTTATGGTTCGTTCTTATTACCCTTCTGAATGTCACGCTGATTATTTTGACTTTGAGCGTATCGAGGCTCTTAAACCTGCTATTGAGGCTTGTGGCATT
TCTACTCTTTCTCAATCCCCAATGCTTGGCTTCCATAAGCAGATGGATAACCGCATCAAGCTCTTGGAAGAGATTCTGTCTTTTCGTATGCAGGGCGTTGAGTTCGATAATGGTGATATGTATGTTGACGGCCATAAGGCTGCTTCTGACGTTCGTGATGAGT
TTGTATCTGTTACTGAGAAGTTAATGGATGAATTGGCACAATGCTACAATGTGCTCCCCCAACTTGATATTAATAACACTATAGACCACCGCCCCGAAGGGGACGAAAAATGGTTTTTAGAGAACGAGAAGACGGTTACGCAGTTTTGCCGCAAGCTGGCTGC
TGAACGCCCTCTTAAGGATATTCGCGATGAGTATAATTACCCCAAAAAGAAAGGTATTAAGGATGAGTGTTCAAGATTGCTGGAGGCCTCCACTATGAAATCGCGTAGAGGCTTTGCTATTCAGCGTTTGATGAATGCAATGCGACAGGCTCATGCTGATGGT
TGGTTTATCGTTTTTGACACTCTCACGTTGGCTGACGACCGATTAGAGGCGTTTTATGATAATCCCAATGCTTTGCGTGACTATTTTCGTGATATTGGTCGTATGGTTCTTGCTGCCGAGGGTCGCAAGGCTAATGATTCACACGCCGACTGCTATCAGTATT
TTTGTGTGCCTGAGTATGGTACAGCTAATGGCCGTCTTCATTTCCATGCGGTGCACTTTATGCGGACACTTCCTACAGGTAGCGTTGACCCTAATTTTGGTCGTCGGGTACGCAATCGCCGCCAGTTAAATAGCTTGCAAAATACGTGGCCTTATGGTTACAG
TATGCCCATCGCAGTTCGCTACACGCAGGACGCTTTTTCACGTTCTGGTTGGTTGTGGCCTGTTGATGCTAAAGGTGAGCCGCTTAAAGCTACCAGTTATATGGCTGTTGGTTTCTATGTGGCTAAATACGTTAACAAAAAGTCAGATATGGACCTTGCTGCT
AAAGGTCTAGGAGCTAAAGAATGGAACAACTCACTAAAAACCAAGCTGTCGCTACTTCCCAAGAAGCTGTTCAGAATCAGAATGAGCCGCAACTTCGGGATGAAAATGCTCACAATGACAAATCTGTCCACGGAGTGCTTAATCCAACTTACCAAGCTGGGTT
ACGACGCGACGCCGTTCAACCAGATATTGAAGCAGAACGCAAAAAGAGAGATGAGATTGAGGCTGGGAAAAGTTACTGTAGCCGACGTTTTGGCGGCGCAACCTGTGACGACAAATCTGCTCAAATTTATGCGCGCTTCGATAAAAATGATTGGCGTATCCAA
CCTGCA

Bacterial phage PhiX174 genome (5,386 nucleotides)



History of Genome Sequencing
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Walter Gilbert

Frederick Sanger

Late 1970s: Walter Gilbert and 
Frederick Sanger develop independent 
sequencing methods.

1980: They share the Nobel Prize in 
Chemistry.



History of Genome Sequencing
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Walter Gilbert

Frederick Sanger

Late 1970s: Walter Gilbert and 
Frederick Sanger develop independent 
sequencing methods.

1980: They share the Nobel Prize in 
Chemistry.

However, their approaches cost about 
$1 per nucleotide.



The Race to Sequence the Human 
Genome

© 2024 Phillip Compeau

1990: Human Genome Project 
given $3 billion to sequence human 
genome.

James Watson



The Race to Sequence the Human 
Genome
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Francis Collins
1992: James Watson resigns, 
replaced by Francis Collins.

1990: Human Genome Project 
given $3 billion to sequence human 
genome.



The Race to Sequence the Human 
Genome
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Francis Collins

Craig Venter

1997: Craig Venter founds Celera 
Genomics with same goal.

1992: James Watson resigns, 
replaced by Francis Collins.

1990: Human Genome Project 
given $3 billion to sequence human 
genome.



The Race to Sequence the Human 
Genome
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2000: First draft of human 
genome published.



From One Mammal Genome to Many

© 2024 Phillip Compeau

Early 2000s: Many more mammalian genomes are 
sequenced using Sanger’s approach.



From One Mammal Genome to Many
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Problem: This approach was just too expensive to 
scale to thousands of species.



Sequencing Cost Has Fallen Faster than 
Moore’s Law

© 2024 Phillip Compeau



GISAID collects 400k 2 Million SARS-
CoV-2 Genomes in One Year Two Years

© 2024 Phillip Compeau



Scientists aim to sequence 1.5M 
eukaryotes before 2030

© 2024 Phillip Compeau



Dark Secret: The First Full Human 
Genome Wasn’t Sequenced Until 2020!

© 2024 Phillip Compeau



We Now Have Over 2 Million Human 
Genomes

© 2024 Phillip Compeau

100,000 Genomes: Sequenced 
100,000 UK resident genomes 
(2012-2018).



Overview of Genome Sequencing
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Multiple identical 
copies of a genome

AGAATATCASequence the reads

Shatter the genome 
into reads

Assemble the 
genome using 
overlapping reads

...TGAGAATATCA...

  AGAATATCA
 GAGAATATC
TGAGAATAT

GAGAATATCTGAGAATAT
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Multiple identical 
copies of a genome

AGAATATCASequence the reads

Shatter the genome 
into reads

Assemble the 
genome using 
overlapping reads

...TGAGAATATCA...

  AGAATATCA
 GAGAATATC
TGAGAATAT

GAGAATATCTGAGAATAT



Overview of Genome Sequencing
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Multiple identical 
copies of a genome

AGAATATCASequence the reads

Shatter the genome 
into reads

Assemble the 
genome using 
overlapping reads

...TGAGAATATCA...

  AGAATATCA
 GAGAATATC
TGAGAATAT

GAGAATATCTGAGAATAT
(Lab)



Overview of Genome Sequencing
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Multiple identical 
copies of a genome

AGAATATCASequence the reads

Shatter the genome 
into reads

Assemble the 
genome using 
overlapping reads

...TGAGAATATCA...

  AGAATATCA
 GAGAATATC
TGAGAATAT

GAGAATATCTGAGAATAT
(Lab)

(Computational)



Overview of Genome Sequencing

© 2024 Phillip Compeau

Multiple identical 
copies of a genome

AGAATATCASequence the reads

Shatter the genome 
into reads

Assemble the 
genome using 
overlapping reads

...TGAGAATATCA...

  AGAATATCA
 GAGAATATC
TGAGAATAT

GAGAATATCTGAGAATAT
(Lab)

(Computational)

What does genome sequencing remind you of?



Genome Assembly = Overlap Puzzle
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Interlude: How Are Reads Sequenced?

© 2024 Phillip Compeau

https://www.youtube.com/watch?v=fCd6B5HRaZ8

https://www.youtube.com/watch?v=fCd6B5HRaZ8


A COMPUTATIONAL PROBLEM 
FOR GENOME ASSEMBLY
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Practical Sequencing Complications

1. DNA may be divided over multiple 
chromosomes.

2. Reads have imperfect “coverage” of the 
underlying genome – there may be some regions 
that are not covered by any reads.

3. Sequencing machines are error-prone.

4. DNA is double-stranded.

© 2024 Phillip Compeau



Making Some Assumptions is OK!

1. A genome consists of a single chromosome.

2. Reads have perfect “coverage” of the 
underlying genome –every possible starting 
position gets sampled by the sequencer.

3. Sequencing machines are error-free.

4. DNA is single-stranded.
© 2024 Phillip Compeau



Formulating a Computational Problem 
for Genome Assembly

© 2024 Phillip Compeau

Genome Assembly Problem
• Input: A collection of strings Reads. 
• Output: A string Genome reconstructed from 

Reads. 



Formulating a Computational Problem 
for Genome Assembly

© 2024 Phillip Compeau

STOP: Is this a well-defined problem?

Genome Assembly Problem
• Input: A collection of strings Reads. 
• Output: A string Genome reconstructed from 

Reads. 



Formulating a Computational Problem 
for Genome Assembly

© 2024 Phillip Compeau

STOP: Is this a well-defined problem?

Answer: No! We have no sense of what it means to 
“reconstruct” a genome.

Genome Assembly Problem
• Input: A collection of strings Reads. 
• Output: A string Genome reconstructed from 

Reads. 



Formulating a Computational Problem 
for Genome Assembly

© 2024 Phillip Compeau

The k-mer composition of a string Text, denoted 
Compositionk(Text), is the collection of all k-mer 
substrings of Text (including repeats).

3-mer composition
NANABANANA
NAN
 ANA
  NAB
   ABA
    BAN
     ANA
      NAN
       ANA



Toward a Computational Problem

We want to solve the reverse problem: given a 
collection of strings, find a string having this 
collection as its k-mer composition.

String Reconstruction Problem
• Input: A collection of strings patterns and an 

integer k.
• Output: A string Text whose k-mer composition 

is equal to Patterns.

© 2024 Phillip Compeau



Toward a Computational Problem

String Reconstruction Problem
• Input: A collection of strings patterns and an 

integer k.
• Output: A string Text whose k-mer composition 

is equal to Patterns.

© 2024 Phillip Compeau

STOP: Now is this a well-defined computational 
problem?



Toward a Computational Problem

Answer: Not quite ... what if Patterns = {AAA, ZZZ}?

© 2024 Phillip Compeau

STOP: Now is this a well-defined computational 
problem?



Toward a Computational Problem

String Reconstruction Problem
• Input: A collection of strings patterns and an 

integer k.
• Output: A string Text whose k-mer composition 

is equal to Patterns (if such a string exists).

Answer: Not quite ... what if Patterns = {AAA, ZZZ}?

© 2024 Phillip Compeau

STOP: Now is this a well-defined computational 
problem?



SOLVING THE STRING 
RECONSTRUCTION PROBLEM?
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Toward an Algorithm for Genome 
Assembly

© 2024 Phillip Compeau

Exercise: Reconstruct the string corresponding to the 
following 3-mer composition.

AAT  ATG  GTT  TAA  TGT



Toward an Algorithm for Genome 
Assembly

© 2024 Phillip Compeau

Exercise: Reconstruct the string corresponding to the 
following 3-mer composition.

AAT  ATG  GTT  TAA  TGT

TAA
 AAT
  ATG
   TGT
    GTT
TAATGTT



Toward an Algorithm for Genome 
Assembly

© 2024 Phillip Compeau

TAA
 AAT
  ATG
   TGT
    GTT
TAATGTT

”Greedy” algorithm: for each k-mer, look 
for the k-mer of maximum overlap in each 
direction.



Toward an Algorithm for Genome 
Assembly

© 2024 Phillip Compeau

”Greedy” algorithm: for each k-mer, look 
for the k-mer of maximum overlap in each 
direction.

Genome assembly is trivial! We can pack 
up and go home.



Toward an Algorithm for Genome 
Assembly

© 2024 Phillip Compeau

Exercise: Apply this algorithm to the 3-mer 
composition at right.

”Greedy” algorithm: for each k-mer, look 
for the k-mer of maximum overlap in each 
direction.

Genome assembly is trivial! We can pack 
up and go home.

AAT
ATG
ATG
ATG
CAT
CCA
GAT
GCC
GGA
GGG
GTT
TAA
TGC
TGG
TGT



Toward an Algorithm for Genome 
Assembly
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AAT
ATG
ATG
ATG
CAT
CCA
GAT
GCC
GGA
GGG
GTT
TAA
TGC
TGG
TGT



Toward an Algorithm for Genome 
Assembly

© 2024 Phillip Compeau

TAA
 
  
   
    
     
      
       
        
         
          
           
            
             
TAA

AAT
ATG
ATG
ATG
CAT
CCA
GAT
GCC
GGA
GGG
GTT
TAA
TGC
TGG
TGT



Toward an Algorithm for Genome 
Assembly

© 2024 Phillip Compeau

TAA
 AAT
  
   
    
     
      
       
        
         
          
           
            
             
TAAT

AAT
ATG
ATG
ATG
CAT
CCA
GAT
GCC
GGA
GGG
GTT
TAA
TGC
TGG
TGT



Toward an Algorithm for Genome 
Assembly

© 2024 Phillip Compeau

TAA
 AAT
  ATG
   
    
     
      
       
        
         
          
           
            
             
TAATG

AAT
ATG
ATG
ATG
CAT
CCA
GAT
GCC
GGA
GGG
GTT
TAA
TGC
TGG
TGT

STOP: Which one 
should we choose?



Toward an Algorithm for Genome 
Assembly

© 2024 Phillip Compeau

TAA
 AAT
  ATG
   TGC
    
     
      
       
        
         
          
           
            
             
TAATGC

AAT
ATG
ATG
ATG
CAT
CCA
GAT
GCC
GGA
GGG
GTT
TAA
TGC
TGG
TGT



Toward an Algorithm for Genome 
Assembly

© 2024 Phillip Compeau

TAA
 AAT
  ATG
   TGC
    GCC
     
      
       
        
         
          
           
            
             
TAATGCC

AAT
ATG
ATG
ATG
CAT
CCA
GAT
GCC
GGA
GGG
GTT
TAA
TGC
TGG
TGT



Toward an Algorithm for Genome 
Assembly

© 2024 Phillip Compeau

TAA
 AAT
  ATG
   TGC
    GCC
     CCA
      
       
        
         
          
           
            
             
TAATGCCA

AAT
ATG
ATG
ATG
CAT
CCA
GAT
GCC
GGA
GGG
GTT
TAA
TGC
TGG
TGT



Toward an Algorithm for Genome 
Assembly

© 2024 Phillip Compeau

TAA
 AAT
  ATG
   TGC
    GCC
     CCA
      CAT
       
        
         
          
           
            
             
TAATGCCAT

AAT
ATG
ATG
ATG
CAT
CCA
GAT
GCC
GGA
GGG
GTT
TAA
TGC
TGG
TGT



Toward an Algorithm for Genome 
Assembly

© 2024 Phillip Compeau

TAA
 AAT
  ATG
   TGC
    GCC
     CCA
      CAT
       ATG
        
         
          
           
            
             
TAATGCCATG

AAT
ATG
ATG
ATG
CAT
CCA
GAT
GCC
GGA
GGG
GTT
TAA
TGC
TGG
TGT



Toward an Algorithm for Genome 
Assembly

© 2024 Phillip Compeau

TAA
 AAT
  ATG
   TGC
    GCC
     CCA
      CAT
       ATG
        TGG
         
          
           
            
             
TAATGCCATGG

AAT
ATG
ATG
ATG
CAT
CCA
GAT
GCC
GGA
GGG
GTT
TAA
TGC
TGG
TGT



Toward an Algorithm for Genome 
Assembly

© 2024 Phillip Compeau

TAA
 AAT
  ATG
   TGC
    GCC
     CCA
      CAT
       ATG
        TGG
         GGA
          
           
            
             
TAATGCCATGGA

AAT
ATG
ATG
ATG
CAT
CCA
GAT
GCC
GGA
GGG
GTT
TAA
TGC
TGG
TGT



Toward an Algorithm for Genome 
Assembly

© 2024 Phillip Compeau

TAA
 AAT
  ATG
   TGC
    GCC
     CCA
      CAT
       ATG
        TGG
         GGA
          GAT
           
            
             
TAATGCCATGGAT

AAT
ATG
ATG
ATG
CAT
CCA
GAT
GCC
GGA
GGG
GTT
TAA
TGC
TGG
TGT



Toward an Algorithm for Genome 
Assembly

© 2024 Phillip Compeau

TAA
 AAT
  ATG
   TGC
    GCC
     CCA
      CAT
       ATG
        TGG
         GGA
          GAT
           ATG
            
             
TAATGCCATGGATG

AAT
ATG
ATG
ATG
CAT
CCA
GAT
GCC
GGA
GGG
GTT
TAA
TGC
TGG
TGT



Toward an Algorithm for Genome 
Assembly
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TAA
 AAT
  ATG
   TGC
    GCC
     CCA
      CAT
       ATG
        TGG
         GGA
          GAT
           ATG
            TGT
             
TAATGCCATGGATGT

AAT
ATG
ATG
ATG
CAT
CCA
GAT
GCC
GGA
GGG
GTT
TAA
TGC
TGG
TGT



Toward an Algorithm for Genome 
Assembly

© 2024 Phillip Compeau

TAA
 AAT
  ATG
   TGC
    GCC
     CCA
      CAT
       ATG
        TGG
         GGA
          GAT
           ATG
            TGT
             GTT
TAATGCCATGGATGTT

AAT
ATG
ATG
ATG
CAT
CCA
GAT
GCC
GGA
GGG
GTT
TAA
TGC
TGG
TGT

???



Toward an Algorithm for Genome 
Assembly

© 2024 Phillip Compeau

TAA
 AAT
  ATG
   TGC
    GCC
     CCA
      CAT
       ATG
        TGG
         GGA
          GAT
           ATG
            TGT
             GTT
TAATGCCATGGATGTT

AAT
ATG
ATG
ATG
CAT
CCA
GAT
GCC
GGA
GGG
GTT
TAA
TGC
TGG
TGT

STOP: Why did our 
algorithm fail?

???



Toward an Algorithm for Genome 
Assembly
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TAA
 AAT
  ATG
   TGC
    GCC
     CCA
      CAT
       ATG
        TGG
         GGA
          GAT
           ATG
            TGT
             GTT
TAATGCCATGGATGTT

AAT
ATG
ATG
ATG
CAT
CCA
GAT
GCC
GGA
GGG
GTT
TAA
TGC
TGG
TGT

???

Answer: Repeated 
substrings!



Repeats Make Eternity II 
Unsolvable ...

Courtesy: Matej Bat’ha© 2024 Phillip Compeau



… Even a 16-piece “Triazzle” Can Take 
a Human Hours to Solve...
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Courtesy: Dan Gilbert



… and Repeats Complicate Genome 
Assembly Too L
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Repeats are very common in genomes; the 300-
nucleotide Alu repeat occurs over a million times 
(with minor changes) in every human genome. 



… and Repeats Complicate Genome 
Assembly Too L

© 2024 Phillip Compeau

So what hope do we have of assembling a genome?

Repeats are very common in genomes; the 300-
nucleotide Alu repeat occurs over a million times 
(with minor changes) in every human genome. 



GENOME ASSEMBLY AS A 
HAMILTONIAN PATH PROBLEM

© 2024 Phillip Compeau



Solution to Previous Exercise
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AAT
ATG
ATG
ATG
CAT
CCA
GAT
GCC
GGA
GGG
GTT
TAA
TGC
TGG
TGT

TAA
 AAT
  ATG
   TGC
    GCC
     CCA
      CAT
       ATG
        TGG
         GGG
          GGA
           GAT
            ATG
            TGT
              GTT
TAATGCCATGGGATGTT

STOP: Is this the 
only solution?



We Can View a Genome as a “Path” in a 
Graph

© 2024 Phillip Compeau

Genome path: assign each read to a node, connect 
adjacent reads with edges.

TAA ATG TGC GCC CCA CAT ATG TGG GGG GGA GAT ATG TGT GTTAAT



We Can View a Genome as a “Path” in a 
Graph

© 2024 Phillip Compeau

Genome path: assign each read to a node, connect 
adjacent reads with edges.

STOP: Can you still see the genome?

TAA ATG TGC GCC CCA CAT ATG TGG GGG GGA GAT ATG TGT GTTAAT



We Can View a Genome as a “Path” in a 
Graph

© 2024 Phillip Compeau

Genome path: assign each read to a node, connect 
adjacent reads with edges.

STOP: Can you still see the genome?

STOP: Could you construct the genome path if you 
only knew the 3-mer composition?

TAA ATG TGC GCC CCA CAT ATG TGG GGG GGA GAT ATG TGT GTTAAT



We Can View a Genome as a “Path” in a 
Graph

© 2024 Phillip Compeau

Genome path: assign each read to a node, connect 
adjacent reads with edges.

STOP: Can you still see the genome?

Answer: No ... we need to know the order of the k-
mers.

TAA ATG TGC GCC CCA CAT ATG TGG GGG GGA GAT ATG TGT GTTAAT



A Graph Can Represent All Overlapping 
Strings 

© 2024 Phillip Compeau

• Prefix: First k – 1 letters in a k-mer.
• Suffix: Last k – 1 letters in a k-mer.

TAA ATG TGC GCC CCA CAT ATG TGG GGG GGA GAT ATG TGT GTTAAT



A Graph Can Represent All Overlapping 
Strings 

© 2024 Phillip Compeau

• Prefix: First k – 1 letters in a k-mer.
• Suffix: Last k – 1 letters in a k-mer.

TAA ATG TGC GCC CCA CAT ATG TGG GGG GGA GAT ATG TGT GTTAAT

Overlap Graph: Form a node for each read in 
Patterns, then connect x to y if Suffix(x) = Prefix(y).
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• Prefix: First k – 1 letters in a k-mer.
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A Graph Can Represent All Overlapping 
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• Prefix: First k – 1 letters in a k-mer.
• Suffix: Last k – 1 letters in a k-mer.

TAA ATG TGC GCC CCA CAT ATG TGG GGG GGA GAT ATG TGT GTTAAT

Overlap Graph: Form a node for each read in 
Patterns, then connect x to y if Suffix(x) = Prefix(y).



A Graph Can Represent All Overlapping 
Strings 

© 2024 Phillip Compeau

• Prefix: First k – 1 letters in a k-mer.
• Suffix: Last k – 1 letters in a k-mer.

TAA ATG TGC GCC CCA CAT ATG TGG GGG GGA GAT ATG TGT GTTAAT

Overlap Graph: Form a node for each read in 
Patterns, then connect x to y if Suffix(x) = Prefix(y).



A Graph Can Represent All Overlapping 
Strings 

© 2024 Phillip Compeau

Note: we can still see the genome path, but we 
wouldn’t if we don’t know the order of k-mers …

TAA ATG TGC GCC CCA CAT ATG TGG GGG GGA GAT ATG TGT GTTAAT

Overlap Graph: Form a node for each read in 
Patterns, then connect x to y if Suffix(x) = Prefix(y).



Arranging k-mers Lexicographically 
Makes Genome Vanish
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TAAATG TGCGCCCCACATATG TGGGGGGGAGATATG TGTGTTAAT



Arranging k-mers Lexicographically 
Makes Genome Vanish

© 2024 Phillip Compeau

STOP: If we gave you this graph, what would you 
look for to find the genome?

TAAATG TGCGCCCCACATATG TGGGGGGGAGATATG TGTGTTAAT



We are Looking for a Hamiltonian Path 
in the Overlap Graph
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Hamiltonian path: A path through a graph that 
touches each node exactly once.

TAAATG TGCGCCCCACATATG TGGGGGGGAGATATG TGTGTTAAT



Here’s One Solution
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TAAATG TGCGCCCCACATATG TGGGGGGGAGATATG TGTGTTAAT

STOP: What genome does the highlighted path 
reconstruct?



And Here’s Another Solution
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STOP: How about this highlighted path?

TAAATG TGCGCCCCACATATG TGGGGGGGAGATATG TGTGTTAAT



We are Looking for a Hamiltonian Path 
in the Overlap Graph

© 2024 Phillip Compeau

Note: The graph organizes our reads, but we don’t 
have an algorithm for finding a Hamiltonian path.

TAAATG TGCGCCCCACATATG TGGGGGGGAGATATG TGTGTTAAT



We are Looking for a Hamiltonian Path 
in the Overlap Graph

© 2024 Phillip Compeau

STOP: What does the overlap graph look like if there 
are many repeats?  What if there are none?

TAAATG TGCGCCCCACATATG TGGGGGGGAGATATG TGTGTTAAT



Aside 1: de Bruijn and Good
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A binary string is k-universal if it 
contains every binary k-mer once. 

Jack Good

Nicolaas de Bruijn

Exercise: Find a 3-universal string. 



Aside 1: de Bruijn and Good

© 2024 Phillip Compeau

000 001 010 011 100 101 111110

A binary string is k-universal if it 
contains every binary k-mer once. 

Jack Good

Nicolaas de Bruijn

Note: a k-universal string 
corresponds to a Hamiltonian path 
in the following overlap graph.



Aside 1: de Bruijn and Good
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1946: Good and de Bruijn 
independently discover a way to 
find k-universal strings. They cannot 
imagine that their approach will 
one day power genome sequencing. Jack Good

Nicolaas de Bruijn

000 001 010 011 100 101 111110



Aside 2: Two Ways to Represent Graphs 
Computationally

© 2024 Phillip Compeau

a b c d e

a 0 1 0 0 1

b 0 0 1 1 0

c 1 0 0 0 0

d 1 0 0 0 0

e 0 1 1 1 0

Adjacency Matrix

Adjacency matrix: Ai,j = 1 if there is an edge 
connecting node i to node j; Ai,j = 0 otherwise.

c

e

d

a

b



Aside 2: Two Ways to Represent Graphs 
Computationally

© 2024 Phillip Compeau

a b c d e

a 0 1 0 0 1

b 0 0 1 1 0

c 1 0 0 0 0

d 1 0 0 0 0

e 0 1 1 1 0

a b, e

b c, d

c a

d a

e b, c, d

Adjacency ListAdjacency Matrix

Adjacency matrix: Ai,j = 1 if there is an edge 
connecting node i to node j; Ai,j = 0 otherwise.

Adjacency list: Dictionary; “key” node i;“value” is 
list of nodes that i is connected to.

c

e

d

a

b



GENOME ASSEMBLY AS AN
EULERIAN PATH PROBLEM

© 2024 Phillip Compeau



Assigning k-mers to Edges Instead of 
Nodes

© 2024 Phillip Compeau

TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA GAT ATG TGT GTT

We start again with a “genome path” corresponding 
to TAATGCCATGGGATGTT. 



Assigning k-mers to Edges Instead of 
Nodes

© 2024 Phillip Compeau

TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA GAT ATG TGT GTT

We start again with a “genome path” corresponding 
to TAATGCCATGGGATGTT. 

STOP: How should we label the nodes?



Assigning k-mers to Edges Instead of 
Nodes

© 2024 Phillip Compeau

Each node represents the (k – 1)-mer corresponding 
to the overlap between adjacent edges.

TA AA AT TG GC CC CA AT TG GG GG GA AT TG GT TT
TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA GAT ATG TGT GTT



Assigning k-mers to Edges Instead of 
Nodes

© 2024 Phillip Compeau

Each node represents the (k – 1)-mer corresponding 
to the overlap between adjacent edges.

TA AA AT TG GC CC CA AT TG GG GG GA AT TG GT TT
TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA GAT ATG TGT GTT

Unlike with the overlap graph, we will glue together 
nodes that have the same label.



First: Gluing AT Together

© 2024 Phillip Compeau

GA

TA

TGC

GCCCCA

CAT

ATG

TGG

GGGGGA

GAT

ATG

CA

AA

TG

AT

TG

GG

GG

TG GT TT

GC

CC

ATG
AT

AT

TAA TGT GTTAAT
AT

GA

TA

TGC

GCCCCA

CAT

ATG
GAT

ATG

CA

AA

TG

AT

TG

GG

GG

TG GT TT

GC

CC

ATG
TAA TGT GTTAAT

TGG

GGGGGA



Next: Gluing TG Together

© 2024 Phillip Compeau

GA

TA

TGC

GCCCCA

CAT

GAT

ATG

CA

AA

TG

AT

TG

GG

GG

TG GT TT

GC

CC

ATG
TAA TGT GTTAAT

TGG

GGGGGA

ATG

AT

GA

TA

GCCCCA

CAT

ATG
GAT

ATG

CA

AA

GG

GG

TG GT TT

GC

CC

ATG
TAA TGT GTTAAT

TGG

GGGGGA

TGC



Gluing GG Produces a “Loop”
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AT

GA

TA

GCCCCA

CAT

ATG
GAT

ATG

CA

AA

GG

GG

TG GT TT

GC

CC

ATG
TAA TGT GTTAAT

TGC

GGGGGA

TGG

AT

GA

TA

GCCCCA

CAT

ATG

GGG
GGA

GAT

ATG

CA

AA

GG

TG GT TT

GC

CC

ATG
TAA TGT GTTAAT

TGG

TGC



Gluing GG Produces a “Loop”
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AT

GA

TA

GCCCCA

CAT

ATG

GGG
GGA

GAT

ATG

CA

AA TG GT TT

GC

CC

ATG
TAA TGT GTTAAT

TGG

TGC

GG

This graph is called the 
de Bruijn graph of Text = 
TAATGCCATGGGATGTT 
for k = 3. 



Gluing GG Produces a “Loop”
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AT

GA

TA

GCCCCA

CAT

ATG

GGG
GGA

GAT

ATG

CA

AA TG GT TT

GC

CC

ATG
TAA TGT GTTAAT

TGG

TGC

GG

This graph is called the 
de Bruijn graph of Text = 
TAATGCCATGGGATGTT 
for k = 3. 

Exercise: Construct the 
de Bruijn graphs for k = 
4 and k = 5. How do 
they differ from k = 3?



de Bruijn Graph Becomes Less 
”Tangled” as k Increases (fewer repeats)

© 2024 Phillip Compeau

H O W D O W E A S S E M B L E G E N O M E S ?

AT

GA

TA

TGC

GCCCCA

CAT

ATG
TGG

GGGGGA

GAT

ATG

CA

AA

GG

TG GT TT

GC

CC

ATG
TAA TGT GTTAAT

TAAT AATG

TGCC

GCCACCAT

CATG

TGGG

GGAT

GATG

TAA

CAT

AAT ATG

GGGGAT

TGC

GCC

CCA

ATGC

ATGT
TGTT

TGT GTT

TGGATGG

CCA

GGGA

TAATG AATGC ATGCC TGCCA GCCAT CCATG CATGG ATGGG TGGGA GGGAT GGATG GATGT ATGTT
TAAT CATGAATG ATGC TGCC GCCA CCAT ATGG TGGG GGGA GGAT GATG ATGT TGTT

FIGURE 3.29 The graph DEBRUIJN4(TAATGCCATGGGATGTT) (top right) is less tan-
gled than the graph DEBRUIJN3(TAATGCCATGGGATGTT) (top left). The graph
DEBRUIJN5(TAATGCCATGGGATGTT) (bottom) is a path.

Increasing read length would help identify the correct assembly, but since increasing
read length presents a difficult experimental problem, biologists have devised an inge-
nious experimental approach to increase read length by generating read-pairs, which
are pairs of reads separated by a fixed distance d in the genome (Figure 3.30). You can

FIGURE 3.30 Read-pairs sampled from TAATGCCATGGGATGTT and formed by reads
of length 3 separated by a gap of length 1. A simple but inefficient way to assemble
these read-pairs is to construct the de Bruijn graph of individual reads (3-mers) within
the read-pairs.

151

k = 3
k = 4

k = 5



Gluing GG Produces a “Loop”
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AT

GA

TA

GCCCCA

CAT

ATG

GGG
GGA

GAT

ATG

CA

AA TG GT TT

GC

CC

ATG
TAA TGT GTTAAT

TGG

TGC

GG

This graph is called the 
de Bruijn graph of Text = 
TAATGCCATGGGATGTT 
for k = 3. 

STOP: If we gave you 
this graph, could you 
reconstruct Text? How?



The Genome Path is Still There
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1

11           

10           

8           

AT

GA

TA

TGC

GCCCCA

CAT

ATG
TGG

GGG
GGA

GAT

ATG

CA

AA

GG

TG GT TT

GC

CC

ATG

13           

TAA TGT GTTAAT

2 3 14 15

12           9

7 4

56

The genome path is an 
Eulerian path in the de 
Bruijn graph, or a path 
that uses every edge 
exactly once. 



The Genome Path is Still There
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1

11           

10           

8           

AT

GA

TA

TGC

GCCCCA

CAT

ATG
TGG

GGG
GGA

GAT

ATG

CA

AA

GG

TG GT TT

GC

CC

ATG

13           

TAA TGT GTTAAT

2 3 14 15

12           9

7 4

56

STOP: Can you construct 
the de Bruijn graph if 
you don’t already know 
Text?

The genome path is an 
Eulerian path in the de 
Bruijn graph, or a path 
that uses every edge 
exactly once. 



Forming de Bruijn Graph from k-mers
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TG
G

TG
GG

AT
G

AT
TG

TAA

TA
AA

AAT
AA ATAT

ATG
TG

TGC
TG

GC
GCC

GC CC

CC
A CA

CC

ATCA
T

CA

ATG

AT
TG

GGGGG
GG

GA

GGAGG

GAT

GA
ATTGT

TG GT GTT
GT TT

TAA
TA AA

AAT

AA
AT

ATG

AT TG

TG
C

TG
GC

GCC
GC CC

CCA
CA

CC

CA
T

CA
AT

ATG
AT TG

TGG
TG GG

GGG
GG

GG GGA
GG GA

GA
T

GA
AT

ATG

AT TG
TGTTG GT

GTTGT
TT

TA AA AT TG GC CC CA AT TG GG GG GA AT TG GT TT
TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA GAT ATG TGT GTT

TG
G

TG
GG AT

G
AT

TGTAA

TA
AA

AAT
AA AT

ATG
AT

TG

TGC
TG

GC

GCC
GC CC

CC
A C
A

CC
CA
T

CA
AT

ATG

AT
TG

GGG

GG
GG

GG
A

GG
GA

GAT

GA
AT

TG
T

TG
GT

GTT
GT TT

Exercise: Here are the 3-mers from our original 
dataset represented as isolated edges. By gluing 
nodes together, what do you obtain?



Forming de Bruijn Graph from k-mers
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TG
G

TG
GG

AT
G

AT
TG

TAA

TA
AA

AAT
AA ATAT

ATG
TG

TGC
TG

GC
GCC

GC CC

CC
A CA

CC

ATCA
T

CA

ATG

AT
TG

GGGGG
GG

GA

GGAGG

GAT

GA
ATTGT

TG GT GTT
GT TT

TAA
TA AA

AAT

AA
AT

ATG

AT TG

TG
C

TG
GC

GCC
GC CC

CCA
CA

CC

CA
T

CA
AT

ATG
AT TG

TGG
TG GG

GGG
GG

GG GGA
GG GA

GA
T

GA
AT

ATG

AT TG
TGTTG GT

GTTGT
TT

TA AA AT TG GC CC CA AT TG GG GG GA AT TG GT TT
TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA GAT ATG TGT GTT

TG
G

TG
GG AT

G
AT

TGTAA

TA
AA

AAT
AA AT

ATG
AT

TG

TGC
TG

GC

GCC
GC CC

CC
A C
A

CC
CA
T

CA
AT

ATG

AT
TG

GGG

GG
GG

GG
A

GG
GA

GAT

GA
AT

TG
T

TG
GT

GTT
GT TT

AT GA TACAAA GG TGGT TTGCCC



It’s the Same Graph…
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AT GA TACAAA GG TGGT TTGCCC

AT

GA

TA

GCCCCA

CAT

ATG

GGG
GGA

GAT

ATG

CA

AA TG GT TT

GC

CC

ATG
TAA TGT GTTAAT

TGG

TGC

GG



Approach for Constructing de Bruijn
Graph
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AT GA TACAAA GG TGGT TTGCCC

1. Form a node for every (k – 1)-mer appearing as a 
prefix/suffix in Patterns.

2. For every string in Patterns, connect its prefix to 
its suffix.



Approach for Constructing de Bruijn
Graph

© 2024 Phillip Compeau

AT GA TACAAA GG TGGT TTGCCC

1. Form a node for every (k – 1)-mer appearing as a 
prefix/suffix in Patterns.

2. For every string in Patterns, connect its prefix to 
its suffix.

STOP: Verify this approach for Patterns = {AAT ATG ATG 
ATG CAT CCA GAT GCC GGA GGG GTT TAA TGC TGG TGT}.



Which Graph Would You Rather Use?
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AT GA TACAAA GG TGGT TTGCCC

Overlap Graph – find a Hamiltonian path

de Bruijn Graph – find an Eulerian path

TAAATG TGCGCCCCACATATG TGGGGGGGAGATATG TGTGTTAAT



THE ICOSIAN GAME AND THE  
BRIDGES OF KONIGSBERG
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The Origin of “Hamiltonian” Path/Cycle
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Exercise: Can you find a 
Hamiltonian cycle in this 
graph? (What algorithm 
did you use?)

Hamiltonian cycle: A 
Hamiltonian path that 
returns to its starting node.



The Origin of “Hamiltonian” Path/Cycle

© 2024 Phillip Compeau

Icosian game: William Hamilton, 1857. Objective is 
to place pegs 1-20 one at a time in adjacent holes.



The Bridges of Königsberg
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STOP: Is it possible to walk across each bridge 
exactly once and return to the starting point?



Leonhard Euler’s Insight (1735)
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Define a graph:
• Nodes = 4 land masses
• Edges = 7 bridges



Leonhard Euler’s Insight (1735)

© 2024 Phillip Compeau

Define a graph:
• Nodes = 4 land masses
• Edges = 7 bridges



Leonhard Euler’s Insight (1735)
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Note: The Bridges of Königsberg question has a 
solution when this graph has an Eulerian cycle.



Leonhard Euler’s Insight (1735)
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STOP: Does this graph help you solve the original 
question?



Leonhard Euler’s Insight (1735)
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Answer: There is no solution because some nodes 
have an odd degree (number of incident edges).



Leonhard Euler’s Insight (1735)
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Even better, Euler would prove how to quickly 
determine whether a graph has an Eulerian cycle.



Intractable Problems
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Key Point: And yet no one has ever found a 
polynomial-time algorithm to find a Hamiltonian 
cycle in a graph!

Even better, Euler would prove how to quickly 
determine whether a graph has an Eulerian cycle.



Similar Problems with Different Fates
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Hamiltonian Cycle Problem
Input: a network with n nodes.
Output: “Yes” if there is a cycle visiting every 
node in the network; “No” otherwise.

Eulerian Cycle Problem
Input: a network with n nodes.
Output: “Yes” if there is a cycle visiting every 
edge in the network; “No” otherwise.

NP-Complete

Polynomial



FROM EULER’S THEOREM TO AN 
ALGORITHM FOR GENOME 
ASSEMBLY
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Euler’s Theorem for Directed Graphs
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Indegree: Number of edges leading into a node.
Outdegree: Number of edges leading out of a node.
Balanced graph: Every node has indegree equal to 
outdegree.

C H A P T E R 3

Euler’s Theorem

We will now explore Euler’s method for solving the Eulerian Cycle Problem. Euler
worked with undirected graphs like Königsberg, but we will consider an analogue of his
algorithm for directed graphs so that his method will apply to genome assembly.

Consider an ant, whom we will call Leo, walking along the edges of an Eulerian
cycle. Every time Leo enters a node of this graph by an edge, he is able to leave this
node by another, unused edge. Thus, in order for a graph to be Eulerian, the number
of incoming edges at any node must be equal to the number of outgoing edges at that
node. We define the indegree and outdegree of a node v (denoted IN(v) and OUT(v),
respectively) as the number of edges leading into and out of v. A node v is balanced
if IN(v)=OUT(v), and a graph is balanced if all its nodes are balanced. Because Leo
must always be able to leave a node by an unused edge, any Eulerian graph must be
balanced. Figure 3.19 shows a balanced graph and an unbalanced graph.

    

FIGURE 3.19 Balanced (left) and unbalanced (right) directed graphs. For the (unbal-
anced) blue node v, IN(v) = 1 and OUT(v) = 2, whereas for the (unbalanced) red
node w, IN(w) = 2 and OUT(w) = 1.

STOP and Think: We now know that every Eulerian graph is balanced; is every
balanced graph Eulerian?

The graph in Figure 3.20 is balanced but not Eulerian because it is disconnected, mean-
ing that some nodes cannot be reached from other nodes. In any disconnected graph,
it is impossible to find an Eulerian cycle. In contrast, we say that a directed graph is
strongly connected if it is possible to reach any node from every other node.
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Strongly connected graph: A graph where it is 
possible to reach every node from any other node.

Strongly
connected

C H A P T E R 3

Euler’s Theorem

We will now explore Euler’s method for solving the Eulerian Cycle Problem. Euler
worked with undirected graphs like Königsberg, but we will consider an analogue of his
algorithm for directed graphs so that his method will apply to genome assembly.
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if IN(v)=OUT(v), and a graph is balanced if all its nodes are balanced. Because Leo
must always be able to leave a node by an unused edge, any Eulerian graph must be
balanced. Figure 3.19 shows a balanced graph and an unbalanced graph.
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anced) blue node v, IN(v) = 1 and OUT(v) = 2, whereas for the (unbalanced) red
node w, IN(w) = 2 and OUT(w) = 1.

STOP and Think: We now know that every Eulerian graph is balanced; is every
balanced graph Eulerian?

The graph in Figure 3.20 is balanced but not Eulerian because it is disconnected, mean-
ing that some nodes cannot be reached from other nodes. In any disconnected graph,
it is impossible to find an Eulerian cycle. In contrast, we say that a directed graph is
strongly connected if it is possible to reach any node from every other node.
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FIGURE 3.20 A balanced, disconnected graph.

We now know that an Eulerian graph must be both balanced and strongly connected.
Euler’s Theorem states that these two conditions are sufficient to guarantee that an
arbitrary graph is Eulerian. As a result, it implies that we can determine whether a
graph is Eulerian without ever having to draw any cycles.

Euler’s Theorem: Every balanced, strongly connected directed graph is Eulerian.

Proof. Let Graph be an arbitrary balanced and strongly connected directed graph. To
prove that Graph has an Eulerian cycle, place Leo at any node v0 of Graph (the green
node in Figure 3.21), and let him randomly walk through the graph under the condition
that he cannot traverse the same edge twice.

FIGURE 3.21 Leo starts at the green node v0 and walks through a balanced and strongly
connected graph.

If Leo were incredibly lucky — or a genius — then he would traverse each edge ex-
actly once and return back to v0. However, odds are that he will “get stuck" somewhere
before he can complete an Eulerian cycle, meaning that he reaches a node and finds no
unused edges leaving that node.
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Strongly connected graph: A graph where it is 
possible to reach every node from any other node.
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respectively) as the number of edges leading into and out of v. A node v is balanced
if IN(v)=OUT(v), and a graph is balanced if all its nodes are balanced. Because Leo
must always be able to leave a node by an unused edge, any Eulerian graph must be
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anced) blue node v, IN(v) = 1 and OUT(v) = 2, whereas for the (unbalanced) red
node w, IN(w) = 2 and OUT(w) = 1.

STOP and Think: We now know that every Eulerian graph is balanced; is every
balanced graph Eulerian?

The graph in Figure 3.20 is balanced but not Eulerian because it is disconnected, mean-
ing that some nodes cannot be reached from other nodes. In any disconnected graph,
it is impossible to find an Eulerian cycle. In contrast, we say that a directed graph is
strongly connected if it is possible to reach any node from every other node.
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FIGURE 3.20 A balanced, disconnected graph.

We now know that an Eulerian graph must be both balanced and strongly connected.
Euler’s Theorem states that these two conditions are sufficient to guarantee that an
arbitrary graph is Eulerian. As a result, it implies that we can determine whether a
graph is Eulerian without ever having to draw any cycles.

Euler’s Theorem: Every balanced, strongly connected directed graph is Eulerian.

Proof. Let Graph be an arbitrary balanced and strongly connected directed graph. To
prove that Graph has an Eulerian cycle, place Leo at any node v0 of Graph (the green
node in Figure 3.21), and let him randomly walk through the graph under the condition
that he cannot traverse the same edge twice.

FIGURE 3.21 Leo starts at the green node v0 and walks through a balanced and strongly
connected graph.

If Leo were incredibly lucky — or a genius — then he would traverse each edge ex-
actly once and return back to v0. However, odds are that he will “get stuck" somewhere
before he can complete an Eulerian cycle, meaning that he reaches a node and finds no
unused edges leaving that node.
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FIGURE 3.20 A balanced, disconnected graph.

We now know that an Eulerian graph must be both balanced and strongly connected.
Euler’s Theorem states that these two conditions are sufficient to guarantee that an
arbitrary graph is Eulerian. As a result, it implies that we can determine whether a
graph is Eulerian without ever having to draw any cycles.

Euler’s Theorem: Every balanced, strongly connected directed graph is Eulerian.

Proof. Let Graph be an arbitrary balanced and strongly connected directed graph. To
prove that Graph has an Eulerian cycle, place Leo at any node v0 of Graph (the green
node in Figure 3.21), and let him randomly walk through the graph under the condition
that he cannot traverse the same edge twice.

FIGURE 3.21 Leo starts at the green node v0 and walks through a balanced and strongly
connected graph.

If Leo were incredibly lucky — or a genius — then he would traverse each edge ex-
actly once and return back to v0. However, odds are that he will “get stuck" somewhere
before he can complete an Eulerian cycle, meaning that he reaches a node and finds no
unused edges leaving that node.
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FIGURE 3.20 A balanced, disconnected graph.

We now know that an Eulerian graph must be both balanced and strongly connected.
Euler’s Theorem states that these two conditions are sufficient to guarantee that an
arbitrary graph is Eulerian. As a result, it implies that we can determine whether a
graph is Eulerian without ever having to draw any cycles.

Euler’s Theorem: Every balanced, strongly connected directed graph is Eulerian.

Proof. Let Graph be an arbitrary balanced and strongly connected directed graph. To
prove that Graph has an Eulerian cycle, place Leo at any node v0 of Graph (the green
node in Figure 3.21), and let him randomly walk through the graph under the condition
that he cannot traverse the same edge twice.

FIGURE 3.21 Leo starts at the green node v0 and walks through a balanced and strongly
connected graph.

If Leo were incredibly lucky — or a genius — then he would traverse each edge ex-
actly once and return back to v0. However, odds are that he will “get stuck" somewhere
before he can complete an Eulerian cycle, meaning that he reaches a node and finds no
unused edges leaving that node.
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STOP and Think: Where is Leo when he gets stuck? Can he get stuck in any
node of the graph or only in certain nodes?

It turns out that the only node where Leo can get stuck is the starting node v0! The
reason why is that Graph is balanced: if Leo walks into any node other than v0 (through
an incoming edge), then he will always be able to escape via an unused outgoing edge.
The only exception to this rule is the starting node v0, since Leo used up one of the
outgoing edges of v0 on his first move. Now, because Leo has returned to v0, the result
of his walk was a cycle, which we call Cycle0 (Figure 3.22 (left)).

FIGURE 3.22 (Left) Leo produces a cycle Cycle0 (formed by green edges) when he
gets stuck at the green node v0. In this case, he has not yet visited every edge in the
graph. (Right) Starting at a new node v1 (shown in blue), Leo first travels along Cycle0,
returning to v1. Note that the blue node v1, unlike the green node v0, has unused
outgoing and incoming edges.

STOP and Think: Is there a way to give Leo different instructions so that he
selects a longer walk through the graph before he gets stuck?

As we mentioned, if Cycle0 is Eulerian, then we are finished. Otherwise, because Graph
is strongly connected, some node on Cycle0 must have unused edges entering it and
leaving it (why?). Naming this node v1, we ask Leo to start at v1 instead of v0 and
traverse Cycle0 (thus returning to v1), as shown in Figure 3.22 (right).

Leo is probably annoyed that we have asked him to travel along the exact same cycle,
since as before, he will eventually return to v1, the node where he started. However,
now there are unused edges starting at this node, and so he can continue walking from
v1, using a new edge each time. The same argument as the one that we used before
implies that Leo must eventually get stuck at v1. The result of Leo’s walk is a new cycle,
Cycle1 (Figure 3.23), which is larger than Cycle0.
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If this cycle, which we call Cycle0, is Eulerian, then 
we stop. Otherwise, move the ant to a node on 
Cycle0 that still has unused edges, called v1.
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STOP and Think: Where is Leo when he gets stuck? Can he get stuck in any
node of the graph or only in certain nodes?

It turns out that the only node where Leo can get stuck is the starting node v0! The
reason why is that Graph is balanced: if Leo walks into any node other than v0 (through
an incoming edge), then he will always be able to escape via an unused outgoing edge.
The only exception to this rule is the starting node v0, since Leo used up one of the
outgoing edges of v0 on his first move. Now, because Leo has returned to v0, the result
of his walk was a cycle, which we call Cycle0 (Figure 3.22 (left)).

FIGURE 3.22 (Left) Leo produces a cycle Cycle0 (formed by green edges) when he
gets stuck at the green node v0. In this case, he has not yet visited every edge in the
graph. (Right) Starting at a new node v1 (shown in blue), Leo first travels along Cycle0,
returning to v1. Note that the blue node v1, unlike the green node v0, has unused
outgoing and incoming edges.

STOP and Think: Is there a way to give Leo different instructions so that he
selects a longer walk through the graph before he gets stuck?

As we mentioned, if Cycle0 is Eulerian, then we are finished. Otherwise, because Graph
is strongly connected, some node on Cycle0 must have unused edges entering it and
leaving it (why?). Naming this node v1, we ask Leo to start at v1 instead of v0 and
traverse Cycle0 (thus returning to v1), as shown in Figure 3.22 (right).

Leo is probably annoyed that we have asked him to travel along the exact same cycle,
since as before, he will eventually return to v1, the node where he started. However,
now there are unused edges starting at this node, and so he can continue walking from
v1, using a new edge each time. The same argument as the one that we used before
implies that Leo must eventually get stuck at v1. The result of Leo’s walk is a new cycle,
Cycle1 (Figure 3.23), which is larger than Cycle0.
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Make the ant traverse all of Cycle0 first, then explore 
unused edges. 

C H A P T E R 3

STOP and Think: Where is Leo when he gets stuck? Can he get stuck in any
node of the graph or only in certain nodes?

It turns out that the only node where Leo can get stuck is the starting node v0! The
reason why is that Graph is balanced: if Leo walks into any node other than v0 (through
an incoming edge), then he will always be able to escape via an unused outgoing edge.
The only exception to this rule is the starting node v0, since Leo used up one of the
outgoing edges of v0 on his first move. Now, because Leo has returned to v0, the result
of his walk was a cycle, which we call Cycle0 (Figure 3.22 (left)).
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FIGURE 3.22 (Left) Leo produces a cycle Cycle0 (formed by green edges) when he
gets stuck at the green node v0. In this case, he has not yet visited every edge in the
graph. (Right) Starting at a new node v1 (shown in blue), Leo first travels along Cycle0,
returning to v1. Note that the blue node v1, unlike the green node v0, has unused
outgoing and incoming edges.

STOP and Think: Is there a way to give Leo different instructions so that he
selects a longer walk through the graph before he gets stuck?

As we mentioned, if Cycle0 is Eulerian, then we are finished. Otherwise, because Graph
is strongly connected, some node on Cycle0 must have unused edges entering it and
leaving it (why?). Naming this node v1, we ask Leo to start at v1 instead of v0 and
traverse Cycle0 (thus returning to v1), as shown in Figure 3.22 (right).

Leo is probably annoyed that we have asked him to travel along the exact same cycle,
since as before, he will eventually return to v1, the node where he started. However,
now there are unused edges starting at this node, and so he can continue walking from
v1, using a new edge each time. The same argument as the one that we used before
implies that Leo must eventually get stuck at v1. The result of Leo’s walk is a new cycle,
Cycle1 (Figure 3.23), which is larger than Cycle0.
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The same reasoning implies that the ant will 
eventually get stuck at v1, creating Cycle1. 

H O W D O W E A S S E M B L E G E N O M E S ?
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FIGURE 3.23 After traversing the previously constructed green cycle Cycle0, Leo con-
tinues walking and eventually produces a larger cycle Cycle1 formed of both the green
and the blue cycles put together into a single cycle.

If Cycle1 is an Eulerian cycle, then Leo has completed his job. Otherwise, we select
a node v2 in Cycle1 that has unused edges entering it and leaving it (the red node in
Figure 3.24 (left)). Starting at v2, we ask Leo to traverse Cycle1, returning to v2, as
shown in Figure 3.24 (left). Afterwards, he will randomly walk until he gets stuck at v2,
creating an even larger cycle that we name Cycle2.

FIGURE 3.24 (Left) Starting at a new node v2 (shown in red), Leo first travels along
the previously constructed Cycle1 (shown as green and blue edges). (Right) After
completing the walk through Cycle1, Leo continues randomly walking through the
graph and finally produces an Eulerian cycle.

In Figure 3.24 (right), Cycle2 happens to be Eulerian, although this is certainly not
the case for an arbitrary graph. In general, Leo generates larger and larger cycles at each
iteration, and so we are guaranteed that sooner or later some Cyclem will traverse all
the edges in Graph. This cycle must be Eulerian, and so we (and Leo) are finished.
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We simply iterate this procedure until we are out of 
unused edges, when we have an Eulerian cycle!
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FIGURE 3.23 After traversing the previously constructed green cycle Cycle0, Leo con-
tinues walking and eventually produces a larger cycle Cycle1 formed of both the green
and the blue cycles put together into a single cycle.

If Cycle1 is an Eulerian cycle, then Leo has completed his job. Otherwise, we select
a node v2 in Cycle1 that has unused edges entering it and leaving it (the red node in
Figure 3.24 (left)). Starting at v2, we ask Leo to traverse Cycle1, returning to v2, as
shown in Figure 3.24 (left). Afterwards, he will randomly walk until he gets stuck at v2,
creating an even larger cycle that we name Cycle2.
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FIGURE 3.24 (Left) Starting at a new node v2 (shown in red), Leo first travels along
the previously constructed Cycle1 (shown as green and blue edges). (Right) After
completing the walk through Cycle1, Leo continues randomly walking through the
graph and finally produces an Eulerian cycle.

In Figure 3.24 (right), Cycle2 happens to be Eulerian, although this is certainly not
the case for an arbitrary graph. In general, Leo generates larger and larger cycles at each
iteration, and so we are guaranteed that sooner or later some Cyclem will traverse all
the edges in Graph. This cycle must be Eulerian, and so we (and Leo) are finished.

145



Proof of Euler’s Theorem

© 2024 Phillip Compeau

We simply iterate this procedure until we are out of 
unused edges, when we have an Eulerian cycle!
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FIGURE 3.23 After traversing the previously constructed green cycle Cycle0, Leo con-
tinues walking and eventually produces a larger cycle Cycle1 formed of both the green
and the blue cycles put together into a single cycle.

If Cycle1 is an Eulerian cycle, then Leo has completed his job. Otherwise, we select
a node v2 in Cycle1 that has unused edges entering it and leaving it (the red node in
Figure 3.24 (left)). Starting at v2, we ask Leo to traverse Cycle1, returning to v2, as
shown in Figure 3.24 (left). Afterwards, he will randomly walk until he gets stuck at v2,
creating an even larger cycle that we name Cycle2.
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FIGURE 3.24 (Left) Starting at a new node v2 (shown in red), Leo first travels along
the previously constructed Cycle1 (shown as green and blue edges). (Right) After
completing the walk through Cycle1, Leo continues randomly walking through the
graph and finally produces an Eulerian cycle.

In Figure 3.24 (right), Cycle2 happens to be Eulerian, although this is certainly not
the case for an arbitrary graph. In general, Leo generates larger and larger cycles at each
iteration, and so we are guaranteed that sooner or later some Cyclem will traverse all
the edges in Graph. This cycle must be Eulerian, and so we (and Leo) are finished.
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FIGURE 3.23 After traversing the previously constructed green cycle Cycle0, Leo con-
tinues walking and eventually produces a larger cycle Cycle1 formed of both the green
and the blue cycles put together into a single cycle.

If Cycle1 is an Eulerian cycle, then Leo has completed his job. Otherwise, we select
a node v2 in Cycle1 that has unused edges entering it and leaving it (the red node in
Figure 3.24 (left)). Starting at v2, we ask Leo to traverse Cycle1, returning to v2, as
shown in Figure 3.24 (left). Afterwards, he will randomly walk until he gets stuck at v2,
creating an even larger cycle that we name Cycle2.
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FIGURE 3.24 (Left) Starting at a new node v2 (shown in red), Leo first travels along
the previously constructed Cycle1 (shown as green and blue edges). (Right) After
completing the walk through Cycle1, Leo continues randomly walking through the
graph and finally produces an Eulerian cycle.

In Figure 3.24 (right), Cycle2 happens to be Eulerian, although this is certainly not
the case for an arbitrary graph. In general, Leo generates larger and larger cycles at each
iteration, and so we are guaranteed that sooner or later some Cyclem will traverse all
the edges in Graph. This cycle must be Eulerian, and so we (and Leo) are finished.
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FIGURE 3.23 After traversing the previously constructed green cycle Cycle0, Leo con-
tinues walking and eventually produces a larger cycle Cycle1 formed of both the green
and the blue cycles put together into a single cycle.

If Cycle1 is an Eulerian cycle, then Leo has completed his job. Otherwise, we select
a node v2 in Cycle1 that has unused edges entering it and leaving it (the red node in
Figure 3.24 (left)). Starting at v2, we ask Leo to traverse Cycle1, returning to v2, as
shown in Figure 3.24 (left). Afterwards, he will randomly walk until he gets stuck at v2,
creating an even larger cycle that we name Cycle2.

2 

3 

4 

5 

6 

7 
8 

1 

9 

10 
11 

FIGURE 3.24 (Left) Starting at a new node v2 (shown in red), Leo first travels along
the previously constructed Cycle1 (shown as green and blue edges). (Right) After
completing the walk through Cycle1, Leo continues randomly walking through the
graph and finally produces an Eulerian cycle.

In Figure 3.24 (right), Cycle2 happens to be Eulerian, although this is certainly not
the case for an arbitrary graph. In general, Leo generates larger and larger cycles at each
iteration, and so we are guaranteed that sooner or later some Cyclem will traverse all
the edges in Graph. This cycle must be Eulerian, and so we (and Leo) are finished.
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Answer: Because the graph is strongly connected!  
So note that we have used both conditions in the 
theorem (balanced and strongly connected).
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Exercise: When will an “undirected” graph have an 
Eulerian cycle?



Euler’s Theorem is “Constructive”

EulerianCycle(Graph)
v ß arbitrary node in Graph
Cycle ß randomly walk starting at v (don’t revisit edges) until cycle
while there are unexplored edges in Graph

newStart ß node in Cycle with unexplored edges
Cycle’ ß cycle formed by traversing Cycle (starting at newStart)

and then randomly walking
       Cycle ← Cycle’

    return Cycle

Key Point: This is a “constructive proof”, meaning it 
implies an algorithm for finding an Eulerian cycle.

© 2024 Phillip Compeau
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DEBRUIJN3(TAATGCCATGGGATGTT)
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FIGURE 3.13 (Top panels) Bringing the three nodes labeled AT in Figure 3.12 closer
(left) and closer (middle) to each other to eventually glue them into a single node (right).
(Middle panels) Bringing the three nodes labeled TG closer (left) and closer (middle) to
each other to eventually glue them into a single node (right). (Bottom panels) Bringing
the two nodes labeled GG closer (left) and closer (middle) to each other to eventually
glue them into a single node (right). The path with 16 nodes from Figure 3.12 has been
transformed into the graph DEBRUIJN3(TAATGCCATGGGATGTT) with eleven nodes.
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From Eulerian Cycles to Paths

STOP: How do we find an Eulerian path in this 
graph?
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Answer: Simply draw an edge connecting the two 
unbalanced nodes to form a balanced graph. 
Eulerian cycle on right = Eulerian path on left.

From Eulerian Cycles to Paths

H O W D O W E A S S E M B L E G E N O M E S ?
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FIGURE 3.25 Transforming an Eulerian path (left) into an Eulerian cycle (right) by adding
an edge.

More generally, consider a graph that does not have an Eulerian cycle but does have
an Eulerian path. If an Eulerian path in this graph connects a node v to a different node
w, then the graph is nearly balanced, meaning that all its nodes except v and w are
balanced. In this case, adding an extra edge from w to v transforms the Eulerian path
into an Eulerian cycle. Thus, a nearly balanced graph has an Eulerian path if and only if
adding an edge between its unbalanced nodes makes the graph balanced and strongly
connected.

3G

You now have a method to assemble a genome, since the String Reconstruction
Problem reduces to finding an Eulerian path in the de Bruijn graph generated from
reads.

3H

EXERCISE BREAK: Find an analogue of the nearly balanced condition that will
determine when an undirected graph has an Eulerian path.

The analogue of Euler’s theorem for undirected graphs immediately implies that there
is no Eulerian path in 18th Century Königsberg, but the story is different in modern-day
Kaliningrad (see DETOUR: The Seven Bridges of Kaliningrad). PAGE 178

Constructing universal strings

Now that you know how to use the de Bruijn graph to solve the String Reconstruction
Problem, you can also construct a k-universal string for any value of k. We should note
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FIGURE 3.13 (Top panels) Bringing the three nodes labeled AT in Figure 3.12 closer
(left) and closer (middle) to each other to eventually glue them into a single node (right).
(Middle panels) Bringing the three nodes labeled TG closer (left) and closer (middle) to
each other to eventually glue them into a single node (right). (Bottom panels) Bringing
the two nodes labeled GG closer (left) and closer (middle) to each other to eventually
glue them into a single node (right). The path with 16 nodes from Figure 3.12 has been
transformed into the graph DEBRUIJN3(TAATGCCATGGGATGTT) with eleven nodes.
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FIGURE 3.25 Transforming an Eulerian path (left) into an Eulerian cycle (right) by adding
an edge.

More generally, consider a graph that does not have an Eulerian cycle but does have
an Eulerian path. If an Eulerian path in this graph connects a node v to a different node
w, then the graph is nearly balanced, meaning that all its nodes except v and w are
balanced. In this case, adding an extra edge from w to v transforms the Eulerian path
into an Eulerian cycle. Thus, a nearly balanced graph has an Eulerian path if and only if
adding an edge between its unbalanced nodes makes the graph balanced and strongly
connected.

3G

You now have a method to assemble a genome, since the String Reconstruction
Problem reduces to finding an Eulerian path in the de Bruijn graph generated from
reads.

3H

EXERCISE BREAK: Find an analogue of the nearly balanced condition that will
determine when an undirected graph has an Eulerian path.

The analogue of Euler’s theorem for undirected graphs immediately implies that there
is no Eulerian path in 18th Century Königsberg, but the story is different in modern-day
Kaliningrad (see DETOUR: The Seven Bridges of Kaliningrad). PAGE 178

Constructing universal strings

Now that you know how to use the de Bruijn graph to solve the String Reconstruction
Problem, you can also construct a k-universal string for any value of k. We should note

147

H O W D O W E A S S E M B L E G E N O M E S ?

DEBRUIJN3(TAATGCCATGGGATGTT)

AT

GA

TA

GCCCCA

CAT

ATG

GGG
GGA

GAT

ATG

CA

AA

GG

TG GT TT

GC

CC

ATG
TAA TGT GTTAAT

TGG

TGC

FIGURE 3.13 (Top panels) Bringing the three nodes labeled AT in Figure 3.12 closer
(left) and closer (middle) to each other to eventually glue them into a single node (right).
(Middle panels) Bringing the three nodes labeled TG closer (left) and closer (middle) to
each other to eventually glue them into a single node (right). (Bottom panels) Bringing
the two nodes labeled GG closer (left) and closer (middle) to each other to eventually
glue them into a single node (right). The path with 16 nodes from Figure 3.12 has been
transformed into the graph DEBRUIJN3(TAATGCCATGGGATGTT) with eleven nodes.
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STOP: Why will the augmented de Bruijn graph on 
the right be balanced for any collection of strings 
Patterns?
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FIGURE 3.25 Transforming an Eulerian path (left) into an Eulerian cycle (right) by adding
an edge.

More generally, consider a graph that does not have an Eulerian cycle but does have
an Eulerian path. If an Eulerian path in this graph connects a node v to a different node
w, then the graph is nearly balanced, meaning that all its nodes except v and w are
balanced. In this case, adding an extra edge from w to v transforms the Eulerian path
into an Eulerian cycle. Thus, a nearly balanced graph has an Eulerian path if and only if
adding an edge between its unbalanced nodes makes the graph balanced and strongly
connected.

3G

You now have a method to assemble a genome, since the String Reconstruction
Problem reduces to finding an Eulerian path in the de Bruijn graph generated from
reads.

3H
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The analogue of Euler’s theorem for undirected graphs immediately implies that there
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FIGURE 3.13 (Top panels) Bringing the three nodes labeled AT in Figure 3.12 closer
(left) and closer (middle) to each other to eventually glue them into a single node (right).
(Middle panels) Bringing the three nodes labeled TG closer (left) and closer (middle) to
each other to eventually glue them into a single node (right). (Bottom panels) Bringing
the two nodes labeled GG closer (left) and closer (middle) to each other to eventually
glue them into a single node (right). The path with 16 nodes from Figure 3.12 has been
transformed into the graph DEBRUIJN3(TAATGCCATGGGATGTT) with eleven nodes.
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Answer: For every node v in de Bruijn graph, 
Indegree(v) and Outdegree(v) are both equal to # of 
patterns containing v as prefix/suffix, respectively.
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We Can Assemble a Genome!

String Reconstruction Problem: Reconstruct a string 
from its k-mer composition. 

Input: An integer k and a collection Patterns of k-
mers.
Output: A string Text with k-mer composition 
equal to Patterns (if such a string exists).

1. Form de Bruijn graph G from Patterns.
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from its k-mer composition. 

Input: An integer k and a collection Patterns of k-
mers.
Output: A string Text with k-mer composition 
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We Can Assemble a Genome!

String Reconstruction Problem: Reconstruct a string 
from its k-mer composition. 

Input: An integer k and a collection Patterns of k-
mers.
Output: A string Text with k-mer composition 
equal to Patterns (if such a string exists).

1. Form de Bruijn graph G from Patterns.
2. Add edge to make modified graph G’ balanced.
3. Find Eulerian cycle in G’.
4. Infer Eulerian path in G from this cycle.
5. Convert “genome path” into string Text.

© 2024 Phillip Compeau



Aside: De Bruijn/Good’s Question
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STOP: How can we find 
a k-universal binary 
string?

Jack Good Nicolaas de Bruijn

Recall: a binary string is k-universal if it contains 
every binary k-mer once. 



Aside: De Bruijn/Good’s Question
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00 01

10 11

00 00 00 01 01 10 01 11 10 00 10 01 11 10 11 11
000 001 010 011 100 101 110 111

000 001

010
011100

101

110
111

Answer: Construct the “de Bruijn graph” for Patterns 
= all binary k-mers; find Eulerian path.



DE BRUIJN GRAPHS FACE 
HARSH PRACTICAL REALITIES
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Practical Sequencing Complications

1. DNA may be divided over multiple 
chromosomes.

2. Reads have imperfect “coverage” of the 
underlying genome – there may be some regions 
that are not covered by any reads.

3. Sequencing machines are error-prone.

4. DNA is double-stranded.
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Genomes May Have Multiple 
Chromosomes

© 2024 Phillip Compeau

STOP: Any ideas for 
assembling a genome 
with multiple 
chromosomes?



Genomes May Have Multiple 
Chromosomes
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STOP: Any ideas for 
assembling a genome 
with multiple 
chromosomes?

Answer: In theory, we 
just find an Eulerian 
path in n different de 
Bruijn graphs…



Read Coverage is Never Perfect
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Boosting Coverage through Read 
Breaking
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ATGCCGTATGGACAACGACT
ATGCCGTATG
  GCCGTATGGA
     GTATGGACAA
          GACAACGACT

Note that these reads don’t 
overlap perfectly, so building a 
de Bruijn graph will fail.



Boosting Coverage through Read 
Breaking
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ATGCCGTATGGACAACGACT
ATGCCGTATG
  GCCGTATGGA
     GTATGGACAA
          GACAACGACT

ATGCCGTATGGACAACGACT
ATGCC
 TGCCG
  GCCGT
   CGTAT
    GTATG

Read breaking: Split each read 
into all its k-mer substrings (for a 
smaller value of k).
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ATGCCGTATGGACAACGACT
ATGCCGTATG
  GCCGTATGGA
     GTATGGACAA
          GACAACGACT

ATGCCGTATGGACAACGACT
ATGCC
 TGCCG
  GCCGT
   CGTAT
    GTATG
     TATGG
      ATGGA

Read breaking: Split each read 
into all its k-mer substrings (for a 
smaller value of k).



Boosting Coverage through Read 
Breaking
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ATGCCGTATGGACAACGACT
ATGCCGTATG
  GCCGTATGGA
     GTATGGACAA
          GACAACGACT

ATGCCGTATGGACAACGACT
ATGCC
 TGCCG
  GCCGT
   CGTAT
    GTATG
     TATGG
      ATGGA
       TGGAC
        GGACA
         GACAA

Read breaking: Split each read 
into all its k-mer substrings (for a 
smaller value of k).



Boosting Coverage through Read 
Breaking
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ATGCCGTATGGACAACGACT
ATGCCGTATG
  GCCGTATGGA
     GTATGGACAA
          GACAACGACT

ATGCCGTATGGACAACGACT
ATGCC
 TGCCG
  GCCGT
   CGTAT
    GTATG
     TATGG
      ATGGA
       TGGAC
        GGACA
         GACAA
          ACAAC
           CAACG
            AACGA
             ACGAC
              CGACT

Read breaking: Split each read 
into all its k-mer substrings (for a 
smaller value of k).
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Breaking
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ATGCCGTATGGACAACGACT
ATGCCGTATG
  GCCGTATGGA
     GTATGGACAA
          GACAACGACT

ATGCCGTATGGACAACGACT
ATGCC
 TGCCG
  GCCGT
   CGTAT
    GTATG
     TATGG
      ATGGA
       TGGAC
        GGACA
         GACAA
          ACAAC
           CAACG
            AACGA
             ACGAC
              CGACT

Read breaking: Split each read 
into all its k-mer substrings (for a 
smaller value of k).



Boosting Coverage through Read 
Breaking
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ATGCCGTATGGACAACGACT
ATGCCGTATG
  GCCGTATGGA
     GTATGGACAA
          GACAACGACT

ATGCCGTATGGACAACGACT
ATGCC
 TGCCG
  GCCGT
   CGTAT
    GTATG
     TATGG
      ATGGA
       TGGAC
        GGACA
         GACAA
          ACAAC
           CAACG
            AACGA
             ACGAC
              CGACT

STOP: What are the trade-offs in 
choosing a value of k?



Boosting Coverage through Read 
Breaking
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ATGCCGTATGGACAACGACT
ATGCCGTATG
  GCCGTATGGA
     GTATGGACAA
          GACAACGACT

ATGCCGTATGGACAACGACT
ATGCC
 TGCCG
  GCCGT
   CGTAT
    GTATG
     TATGG
      ATGGA
       TGGAC
        GGACA
         GACAA
          ACAAC
           CAACG
            AACGA
             ACGAC
              CGACT

Answer: The smaller the value of 
k, the higher our coverage will 
be, but also the more repeats and 
the more ”tangled” our graph.



Assembling Contigs
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Even after read breaking, most assemblies have gaps 
in their coverage, and we will not have a true 
Eulerian path in the de Bruijn graph.



Assembling Contigs
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Even after read breaking, most assemblies have gaps 
in their coverage, and we will not have a true 
Eulerian path in the de Bruijn graph.

Real assembly software instead tries to infer (a small 
number of) contigs: contiguous genome segments.



Contigs Lurking in the de Bruijn Graph
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A path in a graph is called non-branching if 
InDegree(v) = OutDegree(v) = 1 for each 
“intermediate” node v in the path.



Contigs Lurking in the de Bruijn Graph
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A path in a graph is called non-branching if 
InDegree(v) = OutDegree(v) = 1 for each 
“intermediate” node v in the path.

A maximal non-branching path is a non-branching 
path that cannot made longer in either direction.



Contigs Lurking in the de Bruijn Graph
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A path in a graph is called non-branching if 
InDegree(v) = OutDegree(v) = 1 for each 
“intermediate” node v in the path.

Note: In mathematics, “maximum” means “global 
maximum”; “maximal” means “local maximum”.

A maximal non-branching path is a non-branching 
path that cannot made longer in either direction.



Transforming dB Graph into Paths
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Transforming dB Graph into Paths
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AT TG

GGG

STOP: Why do you think 
we are interested in 
maximal non-branching 
paths in genome 
assembly?
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TG GT TT

GC

CC

ATG

TAA TGT GTTAAT

GG

AT

GG
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TGAT

AT TG

GGG

STOP: Why do you think 
we are interested in 
maximal non-branching 
paths in genome 
assembly?

Answer: They represent 
”subpaths” that must be 
present in any assembly, 
and so we can be 
confident in them.



Assembling Error-Prone Reads
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STOP: Say we sequence both the correct read 
CGTATGGACA and the incorrect read CGTACGGACA. 
What will we see in the de Bruijn graph after read 
breaking for k = 5?



Assembling Error-Prone Reads
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STOP: Say we sequence both the correct read 
CGTATGGACA and the incorrect read CGTACGGACA. 
What will we see in the de Bruijn graph after read 
breaking for k = 5?

TACG ACGG CGGAGTAC

CGTAC

GTACG TACGG ACGGA

CGGAC

CGTA GTAT TATG ATGG TGGA GGAC GACACCGT CCGTA CGTAT GTATG TATGG ATGGA TGGAC GGACA

Answer: A “bubble”!



Popping Bubbles
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Bubble: Two disjoint short path (less than some 
threshold length) connecting the same pair of nodes 
in the de Bruijn graph.

TACG ACGG CGGAGTAC

CGTAC

GTACG TACGG ACGGA

CGGAC

CGTA GTAT TATG ATGG TGGA GGAC GACACCGT CCGTA CGTAT GTATG TATGG ATGGA TGGAC GGACA



Popping Bubbles
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Bubble: Two disjoint short path (less than some 
threshold length) connecting the same pair of nodes 
in the de Bruijn graph.

TACG ACGG CGGAGTAC

CGTAC

GTACG TACGG ACGGA

CGGAC

CGTA GTAT TATG ATGG TGGA GGAC GACACCGT CCGTA CGTAT GTATG TATGG ATGGA TGGAC GGACA

STOP: How might we remove bubbles? What would 
cause your approach to go wrong?



Popping Bubbles
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Inexact repeat: Repeated region in genome with 
minor variations; the variations look just like 
sequencing errors!

TACG ACGG CGGAGTAC

CGTAC

GTACG TACGG ACGGA

CGGAC

CGTA GTAT TATG ATGG TGGA GGAC GACACCGT CCGTA CGTAT GTATG TATGG ATGGA TGGAC GGACA



Popping Bubbles
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Inexact repeat: Repeated region in genome with 
minor variations; the variations look just like 
sequencing errors!

TACG ACGG CGGAGTAC

CGTAC

GTACG TACGG ACGGA

CGGAC

CGTA GTAT TATG ATGG TGGA GGAC GACACCGT CCGTA CGTAT GTATG TATGG ATGGA TGGAC GGACA

Lower “multiplicity” paths are likely errors; this is 
one more benefit of higher coverage in assembly.



dB Graph of N. meningitidis (Bacterium) 
After Removing Bubbles 
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Red edges represent repeats



Pitfalls of Double-Stranded DNA

© 2024 Phillip Compeau

W H E R E I N T H E G E N O M E D O E S D N A R E P L I C AT I O N B E G I N ?

STOP and Think: Is any one of the four most frequent 9-mers in the oriC of Vibrio

cholerae “more surprising” than the others?

Some Hidden Messages are More Surprising than Others

Recall that nucleotides A and T are complements of each other, as are C and G. Having
one strand of DNA and a supply of “free floating” nucleotides as shown in Figure 1.1,
one can imagine the synthesis of a complementary strand on a template strand. This
model of replication was confirmed by Meselson and Stahl in 1958 (see DETOUR: PAGE 57
The Most Beautiful Experiment in Biology). Figure 1.4 shows a template strand
AGTCGCATAGT and its complementary strand ACTATGCGACT.

At this point, you may think that we have made a mistake, since the comple-
mentary strand in Figure 1.4 reads out TCAGCGTATCA from left to right rather than
ACTATGCGACT. We have not: each DNA strand has a direction, and the complementary
strand runs in the opposite direction to the template strand, as shown by the arrows in
Figure 1.4. Each strand is read in the 5’ ! 3’ direction (see DETOUR: Directionality PAGE 59
of DNA Strands to learn why biologists refer to the beginning and end of a strand of
DNA using the terms 5’ and 3’).

T C A G C G T A T C A 

A G T C G C A T A G T 

3  

3  

5  

5  

FIGURE 1.4 Complementary strands run in opposite directions.

Given a nucleotide p, we denote its complementary nucleotide as p. The reverse
complement of a string Pattern = p1 · · · pn is the string Pattern = pn · · · p1 formed by
taking the complement of each nucleotide in Pattern, then reversing the resulting string.
We will need the solution to the following problem throughout this chapter.

11

DNA is double-stranded, and the two strands are 
reverse complements of each other.
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STOP and Think: Is any one of the four most frequent 9-mers in the oriC of Vibrio

cholerae “more surprising” than the others?

Some Hidden Messages are More Surprising than Others

Recall that nucleotides A and T are complements of each other, as are C and G. Having
one strand of DNA and a supply of “free floating” nucleotides as shown in Figure 1.1,
one can imagine the synthesis of a complementary strand on a template strand. This
model of replication was confirmed by Meselson and Stahl in 1958 (see DETOUR: PAGE 57
The Most Beautiful Experiment in Biology). Figure 1.4 shows a template strand
AGTCGCATAGT and its complementary strand ACTATGCGACT.

At this point, you may think that we have made a mistake, since the comple-
mentary strand in Figure 1.4 reads out TCAGCGTATCA from left to right rather than
ACTATGCGACT. We have not: each DNA strand has a direction, and the complementary
strand runs in the opposite direction to the template strand, as shown by the arrows in
Figure 1.4. Each strand is read in the 5’ ! 3’ direction (see DETOUR: Directionality PAGE 59
of DNA Strands to learn why biologists refer to the beginning and end of a strand of
DNA using the terms 5’ and 3’).

T C A G C G T A T C A 

A G T C G C A T A G T 

3  

3  

5  

5  

FIGURE 1.4 Complementary strands run in opposite directions.

Given a nucleotide p, we denote its complementary nucleotide as p. The reverse
complement of a string Pattern = p1 · · · pn is the string Pattern = pn · · · p1 formed by
taking the complement of each nucleotide in Pattern, then reversing the resulting string.
We will need the solution to the following problem throughout this chapter.

11

Reads may come from either strand, so we need 
to consider each read’s reverse complement.
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GAC

TCAATA

TAT

GAT

ATG TGT GTC

CAT

TA AT TG GT TC CA

GA
DeBruijn3(GATGTCATA)

ATG

CAT

TA AT TG TC CA

GA AC

TGA

ATC

ACA

DeBruijn3(TATGACATC)

Note that this 
example is trivial 
if we had two de 
Bruijn graphs 
(one for the 
string, one for its 
reverse 
complement).
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The reality is that 
we see the 
amalgamation of 
both graphs.

TGT

TAT

GAC

GAT

TCAATA

ATG

GTC

CAT

TA AT TG GT TC CA

GA

ATC

AC

ACATGA
GATGTCATA
TATGACATC
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The reality is that 
we see the 
amalgamation of 
both graphs.

TGT

TAT

GAC

GAT

TCAATA

ATG

GTC

CAT

TA AT TG GT TC CA

GA

ATC

AC

ACATGA

Even though neither string has a repeat, the graph 
becomes tangled because ATG and CAT are 
inverted repeats: the strings are reverse 
complements of each other.

GATGTCATA
TATGACATC
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