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Questions about SARS SARS-CoV-2

. Which animal gave us SARS-CoV-2?

. How does SARS-CoV-2 compare to other related
viruses?

. How has SARS-CoV-2 mutated over time?
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Questions about SARS SARS-CoV-2

1. Which animal gave us SARS-CoV-2?

2. How does SARS-CoV-2 compare to other related
viruses?

3. How has SARS-CoV-2 mutated over time?

All of these questions require us to construct
evolutionary trees (a.k.a. phylogenies).
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Another Example: HIV Phylogeny

— SIVs (monkeys)

— HIV (human)
7z human infection

rﬁﬁ%ﬁrmrm K
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human HIV/
human HIV/M
chimpanzee SIV
chimpanzee SIV
human HIV/N
human HIV/N
chimpanzee SIV
chimpanzee SIV
chimpanzee SIV
chimpanzee SIV
chimpanzee SIV

chimpanzee SIV
chimpanzee SIV
human HIV/O
human HIV/O
chimpanzee SIV
chimpanzee SIV

red-capped manabey SIV
drill SIV

vervet monkey SIV

tantalus monkey SIV
sooty mangabey SIV

human HIV/A

human HIV/B

sooty mangabey SIV

Sykes’s monkey SIV

greater spot-nosed monkey SIV

De Brazzas monkey SIV



Another Example: HIV Phylogeny

— SIVs (monkeys)

— HIV (human)
7z human infection

STOP: What

conclusion can we
draw from this tree?

4
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Another Example: HIV Phylogeny

— SIVs (monkeys)
— HIV (human)
7z human infection

Answer: HIV comes

from multiple origins
in chimps, not one.

4

\hﬁ%mmﬂ h
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Two Computational Questions

How do we construct
the tree’s structure?

Bacteria

Hug et al., 2016

Staphylococcus
Lactobacillus
a
$ 3. )

Cyanobacteria

\

Archaea

Methanogens

Candidate

s Phyla Radiation

AT Peregrinibacteria
J
LJ

Eukaryotes

uuuuu
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Two Computational Questions

How do we construct
the tree’s structure?

Can we infer anything
about the ancestral
species on the inside
of the tree?

Bacteria

P

He/:cobac”

Hug et al., 2016

Staphylococcus
\ Lactobacillus
Chlamydia L 4

Cyanobacteria

Methanogens

Archaea

Candidate

s Phyla Radiation

AT Peregrinibacteria
J

Eukaryotes

UUUUU
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LIFE

e

bacteria /

archaebacteria /
protoctists / \
PLANTS
ANIMALS
/ \ green algae fungn / \
/ \ mosses sponges / \
/ \ ferns Cnidarian/ | \
flowering  non-flowering flatworms
seed plants  seed plants
/ \lophophorates/ \rotlfers roundworms
VERTEBRATES ARTHROPODS
/ \ echlnodermy\ / \
cartllagmous segmented moIIusks chellcerates
fish worms
TETRAPODS
/ \ bony flsh crustaceans msects
AMNIOTES o
/ \amphibians
/ \ mammals

/ \ turtles
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snakes crocodiles
& lizards & birds

EUKARYOTES
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Some Tree Math

Tree: Connected
graph containing
no cycles.




Tree: Connected

e
2 > Some Tree Math
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graph containing
no cycles.

Leaves (degree = 1):

present-day species
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Some Tree Math

Tree: Connected
graph containing
no cycles.

Leaves (degree = 1):

present-day species

Internal nodes
(degree > 2):
ancestral species




Some Tree Math

0\/7\. L o.\\/ /.
/ ~ \/ /\ <"
«. o
’/ \. > \’ 0.// l\>o o

Theorem: Every tree with n nodes has exactly n — 1
edges.
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Some Tree Math

0\/7\. L o.\\/ /.
j a2
.\ / o
. > X N e

Theorem: There is a unique path connecting any
two nodes in a tree.
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What is the main
evolutionary division
of dinosaurs?

"

Courtesy: Universal Studios



Character-Based Construction

Biologists used to form trees based on anatomical
or physiological properties called characters.
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Character-Based Construction

Biologists used to form trees based on anatomical
or physiological properties called characters.

STOP: Say you wanted to construct an evolutionary
tree of all insects. What might be the first thing you

would do?
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Character-Based Construction

Biologists used to form trees based on anatomical
or physiological properties called characters.

STOP: Say you wanted to construct an evolutionary
tree of all insects. What might be the first thing you

would do?

WINGED WINGLESS
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Character-Based Construction

Dollo’s principle of irreversibility (1893): evolution
doesn’t reinvent the same organ (e.g. insect wings).

STOP: Say you wanted to construct an evolutionary
tree of all insects. What might be the first thing you

would do?

WINGED WINGLESS

© 2024 Phillip Compeau



Dollo’s Principle Violated in Stick Insect

Phylogeny

d
less

—— winge

—— wing

£ wing gain/loss

ﬁﬁﬁﬁﬂﬁrmmm ditli

Oligotoma nigra
Teratembia

Timema knulii
Oreophoetes peruana
Libethra regularis
Diapheromera
Diapheromera femorata
Baculum thaii

Gratidia fritzschei
Sceptrophasma hispidula
§. langikawicensis
Baculini

Medauroidea extradentum
Medaura

Oncotophasma martini
Bacillus rossius
Carausius morosus
Eurycanthia insularis
Phyllium bioculatum
Neohirasea maerens
Neohirasea

Sipyloidea sipylus
Pseudodiacantha macklottii
Lopaphus perakensis
Lopaphus sphalerus
Phoebaticus heusii
Lamponius guerini
Dimorphodes prostasis
Tropiderus childrenii
Eurycnema goliath
Ctenomorphodes briareus
Extatosoma tiaratum
Anisomorpha ferruginea
Pseudophasma rufipes
Aretaon asperrimus
Sungaya inexpectata
Agathemera crassa
Heteropteryx dilatata
Haaniella dehaanii
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Dollo’s Principle Violated in Stick Insect

Phylogeny

—— winged

—— wingless

£ wing gain/loss

ﬁﬁﬁﬁjﬂﬁrmrﬂm ditli

STOP (biologists)

Oligotoma nigra
Teratembia

Timema knulii
Oreophoetes peruana
Libethra regularis
Diapheromera
Diapheromera femorata
Baculum thaii

Gratidia fritzschei
Sceptrophasma hispidula
§. langikawicensis
Baculini

Medauroidea extradentum
Medaura

Oncotophasma martini
Bacillus rossius
Carausius morosus
Eurycanthia insularis
Phyllium bioculatum
Neohirasea maerens
Neohirasea

Sipyloidea sipylus
Pseudodiacantha macklottii
Lopaphus perakensis
Lopaphus sphalerus
Phoebaticus heusii
Lamponius guerini
Dimorphodes prostasis
Tropiderus childrenii
Eurycnema goliath
Ctenomorphodes briareus
Extatosoma tiaratum
Anisomorpha ferruginea
Pseudophasma rufipes
Aretaon asperrimus
Sungaya inexpectata
Agathemera crassa
Heteropteryx dilatata
Haaniella dehaanii

What do you think happened?
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Dollo’s Principle Violated in Stick Insect

Phylogeny

—— winged

—— wingless

£ wing gain/loss

ﬁﬁﬁﬁjﬂﬁrmmm ditli

Key Point

Oligotoma nigra
Teratembia

Timema knulii
Oreophoetes peruana
Libethra regularis
Diapheromera
Diapheromera femorata
Baculum thaii

Gratidia fritzschei
Sceptrophasma hispidula
§. langikawicensis
Baculini

Medauroidea extradentum
Medaura

Oncotophasma martini
Bacillus rossius
Carausius morosus
Eurycanthia insularis
Phyllium bioculatum
Neohirasea maerens
Neohirasea

Sipyloidea sipylus
Pseudodiacantha macklottii
Lopaphus perakensis
Lopaphus sphalerus
Phoebaticus heusii
Lamponius guerini
Dimorphodes prostasis
Tropiderus childrenii
Eurycnema goliath
Ctenomorphodes briareus
Extatosoma tiaratum
Anisomorpha ferruginea
Pseudophasma rufipes
Aretaon asperrimus
Sungaya inexpectata
Agathemera crassa
Heteropteryx dilatata
Haaniella dehaanii

We need a more rigorous approach.
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TRANSFORMING DISTANCE
MATRICES INTO TREES
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Definition of a Distance Matrix

Distance matrix: A matrix D
representing distances between pairs
of n organisms that satisfies three

properties:

1. Symmetry: D;; = D;; for all pairs j,

2. Non-negativity: D;; >= 0 tor all
pairs i, |

3. Triangle inequality: For all j, j, and
k, Dj;+ D;>=D; .

© 2024 Phillip Compeau



A Multiple Alignment Defines a Simple
Distance Matrix

SPECIES ALIGNMENT
Chimp ACGTAGGCCT
Human ATGTAAGACT
Seal TCGAGAGCAC
Whale TCGAAAGCAT
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A Multiple Alignment Defines a Simple
Distance Matrix

D;; = number of differing symbols between /-th and
Jj-th rows of a multiple alignment.

SPECIES ALIGNMENT DISTANCE MATRIX
Chimp Human Seal Whale
Chimp ACGTAGGCCT 0 3 6 4
Human ATCTANCACT 3 0 7 5
Seal TCGAGAGCAC 6 7 0 %
Whale TCGARAGCAT 4 5 - 0

© 2024 Phillip Compeau




A Multiple Alignment Defines a Simple
Distance Matrix

D;; = number of differing symbols between /-th and
Jj-th rows of a multiple alignment.

SPECIES ALIGNMENT DISTANCE MATRIX
Chimp Human Seal Whale
Chimp ACGTAGGCCT 0 3 6 4
Human ATGTAAGACT 3 0 7 5
Seal TCGAGAGCAC 6 7 0 %
Whale TCGARAGCAT 4 5 - 0
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Distance-Based Phylogeny

Distance-Based Phylogeny Problem.
* Input: A distance matrix.
* Output: The tree fitting this distance matrix.
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Distance-Based Phylogeny

Distance-Based Phylogeny Problem.
* Input: A distance matrix.
* Output: The tree fitting this distance matrix.

Of course, we are getting a bit ahead of ourselves —
we should define what we mean by “fitting”!
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“Fitting” a Tree to a Matrix

Chimp Human Seal Whale
Chimp 0 3 6 4
Human 3 0 % 5
Seal 6 7 0 2
Whale 4 5 2 0
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“Fitting” a Tree to a Matrix

Chimp Human Seal Whale
Chimp 0 3 6 4
Human 3 0 7 5
Seal 6 7 0 2
Whale 4 5 7 0
Chim Seal
1@ 2
\ 3 /
Human ./ X Whale
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“Fitting” a Tree to a Matrix

Chimp Human Seal Whale
Chimp 0 3 6 4
Human 3 0 5
Seal 6 7 7
Whale 4 5 0

\1 . / Seal
\

Whale

d; (T) = distance between nodes i and j in tree T,
computed by summing edge weights from i to J.
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“Fitting” a Tree to a Matrix

Chimp Human Seal Whale
Chimp 0 3 6 4
Human 3 0 5
Seal 6 7 2
Whale 4 5 0

\1 i / Seal
\

Whale

We say that T fits matrix D if for every pair i and j,
d,‘//'(n — D,'//'.

© 2024 Phillip Compeau




“Fitting” a Tree to a Matrix

Chimp Human Seal Whale
Chimp 0 3 6 4
Human 3 0 o 5
Seal 6 7 0 2
Whale 4 5 el 0
Chim Seal
1@ 2
\ 3 /
Human ./ X Whale

© 2024 Phillip Compeau



“Fitting” a Tree to a Matrix

Chimp Human Seal Whale
Chimp 0 3 6 4
Human 3 0 o 5
Seal 6 7 0 2
Whale 4 5 el 0
Chim Seal
@ ;
\ 3 /
Human ./ X Whale
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“Fitting” a Tree to a Matrix

Chimp Human Seal Whale
Chimp 0 3 6 4
Human 3 0 5
Seal 6 e 2
Whale 4 5 0

Seal

s
T

Whale
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“Fitting” a Tree to a Matrix

Chimp Human Seal Whale
Chimp 0 3 6 4
Human 3 0 5
Seal 6 7 2
Whale 4 5 0

Seal

s
s

Whale
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“Fitting” a Tree to a Matrix

Chimp Human Seal Whale
Chimp 0 3 6 4
Human 3 0 5
Seal 6 7 2
Whale 4 5 0

Seal

s
T

Whale
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“Fitting” a Tree to a Matrix

Chimp Human Seal Whale
Chimp 0 3 6 4
Human 3 0 o 5
Seal 6 7 0 2
Whale 4 5 el 0
Chim Seal
1@ ;
\ 3 /
Human ./ X Whale
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Return to Distance-Based Phylogeny

Exercise: Find a tree fitting the following matrix.

Vi O 3 o4 3
Vo 3 i) by
Vi 44 02
Vi oo an i )
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Sometimes, No Tree Fits a Matrix

There is no tree fitting this matrix!

Vi O 3 o4 3
Vo 3 i) by
Vi 44 02
Vi oo an i )

Additive matrix: distance matrix such that there
exists a tree fitting it.

© 2024 Phillip Compeau




How Can We Know if a Matrix Has a

Tree Fitting [t¢

Indices (i, j, k, I) satisfy the four
point condition if two of the
following sums are equal, and
the third sum is less than or
equal to the other two sums:

Di,j + Dk,/ Di,k + Dj,/ Di,/ + Dj,k

Four Point Theorem: A distance
matrix D is additive if and only if
the four point condition holds
for every quartet (i, j, k, /).

© 2024 Phillip Compeau




Sometimes, More Than One Tree Fits a

Matrix
Chimp Human Seal Whale
Chimp 0 3 6 4
Human 2 0 7 5
Seal 6 7 0 o
Whale 4 5 2 0
Chim Seal
1@, :
\ 3 /
Human ./ X Whale
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Sometimes, More Than One Tree Fits a

Matrix
Chimp Human Seal Whale
Chimp 0 3 6 4
Human 3 0 i 5
Seal 6 7 0 2
Whale 4 5 2 0

© 2024 Phillip Compeau



Which Tree is Better?



Which Tree is Better?

\1 : 1/ degree = 2

degree = 2 / X
Human ./

© 2024 Phillip Compeau



Which Tree is Better?

Chimp . . Seal

\ e /

Human . . Whale

Simple tree: tree with no nodes of degree 2.

© 2024 Phillip Compeau




Which Tree is Better?

Chimp . . Seal

\ e /

Human . . Whale

Simple tree: tree with no nodes of degree 2.

Theorem: There is a unique simple tree fitting an
additive matrix. (And there is an algorithm to
produce this tree.)
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Reformulating Distance-Based
Phylogeny

Distance-Based Phylogeny Problem: Construct an

evolutionary tree from a distance matrix.

* Input: A distance matrix.

* Output: The simple tree fitting this distance
matrix (if this matrix is additive).

© 2024 Phillip Compeau




TOWARD AN ALGORITHM FOR
DISTANCE-BASED PHYLOGENY

© 2024 Phillip Compeau



An Idea for Distance-Based Phylogeny

Chimp Human Seal Whale
Chimp 0 3 6 4
Human 3 0 5
Seal 6 7 2
Whale 4 5 0

7
0
2
Seal
1
\ 3 /
\ Whale
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An Idea for Distance-Based Phylogeny

Seal and whale are neighbors (meaning they are
leaves with the same parent).

© 2024 Phillip Compeau




An Idea for Distance-Based Phylogeny

Chimp Human Seal Whale
Chimp 0 3 6 4
Human 3 0 7 5
Seal 6 7 0 2
Whale 4 5 2 0
Seal

© 2024 Phillip Compeau



An Idea for Distance-Based Phylogeny

Chimp
Chimp 0
Human 3
Seal 6
Whale 4

Key Point: How do we
compute the unknown
distances?

Human

3

0
7
5

Seal Whale
6 4
7 5
o) 2
2 0
Seal
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Toward a Recursive Algorithm
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Toward a Recursive Algorithm
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Toward a Recursive Algorithm

g b=l ap g d) Jegg kg ] )
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Toward a Recursive Algorithm

OI/<,m = [<di,m W dk m) (d/ mT dk m) (di,m i dj,m>] j7
dk,m:(di,k+dk_d )/2
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Toward a Recursive Algorithm

g b=l ap g d) Jegg kg ] )
dk/m == (di,k -+ dj,/( ey di,j) / 2
dk/m e (Di,k i Dj,/( T Di,j) / 2

© 2024 Phillip Compeau



Toward a Recursive Algorithm

g b=l ap g d) Jegg kg ] )
g, -d, ta a0

o =l el D

. =D DDy D)2
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Toward a Recursive Algorithm

g b=l ap g d) Jegg kg ] )
g, -d, ta a0

o =l el

. -D DDy D)2

d. W 0D
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An ldea for Distance-Based Phylogeny

Chimp Human Seal Whale
Chimp 0 3 6 4
Human 3 0 i 5
Seal 6 7 0 2
Whale 4 5 2 0

d,‘/m T (Di,k = ic Di,j = Dj,k) / 2

© 2024 Phillip Compeau



An ldea for Distance-Based Phylogeny

Chimp Human Seal Whale
Chimp 0 3 6 4
Human 3 0 i 5
Seal 6 7 0 2
Whale 4 5 2 0

dSeaI/m i <DSeaI,k + DSeal,j = Dj,k) 2

© 2024 Phillip Compeau



An ldea for Distance-Based Phylogeny

Chimp Human Seal Whale
Chimp 0 3 6 4
Human 3 0 i 5
Seal 6 7 0 =
Whale 4 5 2 0

. Seal

\

: . Whale

m

dSeaI/m = <DSeaI,k 4 DSeaI,Whale o DWhale,k) L2
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An ldea for Distance-Based Phylogeny

Chimp Human Seal Whale
Chimp 0 3 6 4
Human 3 0 7 5
Seal 6 7 0 =
Whale 4 5 2 0
Chimp . - dSeal/ Seal
~ 2 m

.

' . Whale

dSeaI/m = <DSeaI,Chimp 2 DSeaI,Whale = DWhale,Chimp) /2
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An ldea for Distance-Based Phylogeny

Chimp Human Seal Whale
Chimp 0 3 6 4
Human 3 0 7 5
Seal 6 7 0 =
Whale 4 5 2 0
Chimp . - dSeal/ Seal
~ 2 m

.

: . Whale

dSeaI/m = 6 s DSeaI,Whale = DWhale,Chimp) i
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An ldea for Distance-Based Phylogeny

Chimp Human Seal Whale
Chimp 0 3 6 4
Human 3 0 i 5
Seal 6 7 0 2
Whale 4 5 2 0

o

' . Whale

dSeaI/m = 6 is 2 1 DWhale,Chimp) 2

© 2024 Phillip Compeau



An ldea for Distance-Based Phylogeny

Chimp Human Seal Whale
Chimp 0 3 6 4
Human 3 0 i 5
Seal 6 7 0 2
Whale 4 5 2 0

dSeaI/m = 6 i 2

© 2024 Phillip Compeau



An ldea for Distance-Based Phylogeny

Chimp Human Seal Whale
Chimp 0 3 6 4
Human 3 0 7 5
Seal 6 7 0 2
Whale 4 5 2 0
Chimp . < 2/ Seal
— 2 m
\
. Whale
dSeaI/m 2

© 2024 Phillip Compeau



An ldea for Distance-Based Phylogeny

Chimp Human Seal Whale
Chimp 0 3 6 4
Human 3 0 7 5
Seal 6 7 0 =
Whale 4 5 2 0
Chimp . < 2/ Seal
— 2 m
STOP: What about the \
. . . . Whale
remaining distance dwpaje, m?

© 2024 Phillip Compeau



An ldea for Distance-Based Phylogeny

Chimp Human Seal Whale
Chimp 0 3 6 4
Human 3 0 7 5
Seal 6 7 0 =
Whale 4 5 2 0
Chimp . < 2/ Seal
~ 2 m

Ot =D oo 0o
=) e )
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An ldea for Distance-Based Phylogeny

Chimp Human Seal Whale
Chimp 0 3 6 4
Human 3 0 7 5
Seal 6 7 0 =
Whale 4 5 2 0
Chimp . < 2/ Seal
— 2 m
STOP: What about the \
. . Whale
distance dchimp, m?
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An ldea for Distance-Based Phylogeny

Chimp Human Seal Whale

Chimp 0 3 6 4
Human 3 0 7 5

Seal 6 7 0 2
Whale 4 5 2 0

Chim
imp . o i 4 2/ Seal
— 2 m

dChlmpm DChlmp Seal i dSealm
=

© 2024 Phillip Compeau



An ldea for Distance-Based Phylogeny

Chimp Human Seal Whale
Chimp 0 3 6 4
Human 3 0 i 5
Seal 6 7 0 2
Whale 4 5 ) 0
Chimp . = 2/ Seal

STOP: And dyyyman m?
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An ldea for Distance-Based Phylogeny

Chimp Human Seal Whale
Chimp 0 3 6 4
Human 3 0 i 5
Seal 6 7 0 2
Whale 4 5 ) 0
Chimp . = 2/ Seal

© 2024 Phillip Compeau



We Add a Row and Column for m...

Chimp Human Seal Whale m
Chimp 0 3 6 4 4
Human 3 0 7 5 5
Seal 6 / 0 2 2
Whale 4 5 ) 0 0
m = 5 2 0 0
Ch
mp . ng O i 4 2/ Seal

© 2024 Phillip Compeau



. and recurse on this 3x3 matrix!

Chimp Human

m
Chimp 0 3 4
Human 3 0 3

m 4 5 0

Chimp . < . Seal

© 2024 Phillip Compeau



. and recurse on this 3x3 matrix!

Chimp Human

m

Chimp 0 3 4

Human 3 0 5

m 4 5 0
Chimp . < . Seal

© 2024 Phillip Compeau



An ldea for Distance-Based Phylogeny

Chimp Human

m
Chimp 0 3 4
Human 3 0 5
m 4 5 0
Chimp .\? ) . Seal
a m/
/ \
Human . 0
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An ldea for Distance-Based Phylogeny

Chimp Human

m

Chimp 0 3 4

Human 3 0 5

m 4 5 0
Chimp . Seal

dChimp,a ™ (DChimp,m i DChimp,Human - DHuman,m) i

© 2024 Phillip Compeau



An ldea for Distance-Based Phylogeny

Chimp Human

m

Chimp 0 3 4

Human 3 0 5

m 4 5 0
Chimp . Seal
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An ldea for Distance-Based Phylogeny

Chimp Human

m

Chimp 0 3 4

Human 3 0 5

m 4 5 0
Chimp . Seal

\ 2/
/ 3 \
Human . 0 Whale

dChimp,a =1, s0 dHuman,a ™ C/Human, Chimp — OIChimp,a

© 2024 Phillip Compeau
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An ldea for Distance-Based Phylogeny

Chimp Human

m

Chimp 0 3 4

Human 3 0 5

m 4 5 0
Chimp . Seal

STOP: And d, ,,?
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An ldea for Distance-Based Phylogeny

Chimp Human

m

Chimp 0 3 4

Human 3 0 5

m 4 5 0
Chimp . Seal
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Note that the Matrix Fits the Tree

Chimp Human Seal Whale
Chimp 0 3 6 4
Human 0 5
Seal 7 2
Whale 5 0

Seal

P
0
2
\ Whale
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ULTRAMETRIC TREES AND
UPGMA
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An Idea for Distance-Based Phylogeny

Vil Vel
T W
v, 13 012 13
v. 1 10 1
Ve 30 1343 1

Exercise: Apply our recursive approach to this
additive distance matrix.
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What Was Wrong With Our Algorithm?

v g el
v, 13 0 12 13
v. 1 10 1
v, 20 33 0

\ 6/ Here is the
= tree fitting the
7

matrix...

@/ \@
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What Was Wrong With Our Algorithm?

Ve i oh

v, 13 0 12 13 minimum
V. 2 e element is Dy 3

v, 20 33 0

\ 6/ Here is the
i tree fitting the
i

matrix...

@/ \@
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What Was Wrong With Our Algorithm?

Ve i oh

v, 13 0 12 13 minimum
V. 2 e element is Dy 3

v, 20 33 0

11 6 @
\ 4 / v, and v are
/ \ not neighbors!
& @
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What Was Wrong With Our Algorithm?

o

11
/

1
21
g

byl D
O0F iwlnie s
12200 13
I3 3. 0
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STOP: What about the
tree prevents the
minimum matrix
element from
corresponding to
neighbors?

e
b




What Was Wrong With Our Algorithm?

o

11
/

1
21
g

byl D
O0F iwlnie s
12200 13
I3 3. 0

© 2024 Phillip Compeau

STOP: What about the
tree prevents the
minimum matrix
element from
corresponding to
neighbors?

e
b

Answer: v, Is an
outlier, so the
distance from v,
to any other
node is higher
than average.




Modeling Speciations

Even though the minimum element of D doesn’t

necessarily correspond to neighbors, this
assumption powers one of the most famous

evolutionary tree heuristics.
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Modeling Speciations

Even though the minimum element of D doesn’t

necessarily correspond to neighbors, this
assumption powers one of the most famous

evolutionary tree heuristics.

Researchers often assume that
all internal nodes correspond to
speciations, where one species
splits into two.
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We've Thus Far Seen Unrooted Trees

Unrooted binary
tree: every node
Orangutan | has degree 1 or 3.

Squirrel O
Monkey

.\

./
Baboon

Gorilla
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From Unrooted to Rooted Trees

Rooted binary tree:
an unrooted binary
tree with a root (of

degree 2) on one of
/ S
Q

Squ1rrel Monkey Baboon Orangutan Gorllla Chlmpanzee Bonobo Human
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From Unrooted to Rooted Trees

/\B

Neuis
/\
o o ./

Squirrel Monkey Baboon

Orangutan

@ 33

Gorilla  Chimpanzee

© 2024 Phillip Compeau

Molecular clock:
assigns ages to each
node in the tree
(age of leaves = 0).

<
<.\.

Bonobo Human




From Unrooted to Rooted Trees

edge weights:
correspond to
difference in ages
on the nodes the
edge connects.

Squirrel Monkey Baboon  Orangutan Gorilla  Chimpanzee Bonobo Human
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From Unrooted to Rooted Trees

Ultrametric tree:
distance from root
to any leaf is the
same (age of root).

Squirrel Monkey Baboon  Orangutan Gorilla  Chimpanzee Bonobo Human
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UPGMA: A Clustering Heuristic

1. Form a cluster for each present-day species, each
containing a single leaf.

i L]
i
o
ka4 0D
L 35 2.9 ' 6o 0 0
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UPGMA: A Clustering Heuristic

2. Find the two closest clusters C; and C, according
to the minimum value in the current matrix.

—
Sl e L e o
5 HESE < s ap b (0GR, S
N © »~ b~ ==
g AU 00 o

OO0 0o OG0 Oo
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UPGMA: A Clustering Heuristic

3. Merge C; and G, into a single cluster C.

i L]
i L]
o
ko448 2
I 35 9.9 ' 6o 0 0
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UPGMA: A Clustering Heuristic

4. Form a new node for C and connect to C; and G,
by an edge. Set age of C as D(C;, G,)/2.

U1 N e S (P
o R ) it A~ =~
O N U1 o ~—

® o

—
(G0 -h o O -,

© 2024 Phillip Compeau




UPGMA: A Clustering Heuristic

5. Update the distance matrix by computing the
average distance between each pair of clusters.

i ikl
] 0 3 Beh

1
j 3.0 45 1/\
(k11 3545 0

o ©o

¢ 0o

{k, I}
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UPGMA: A Clustering Heuristic

6. lterate steps 2-5 until a single cluster contains all
species.

{ij}

il
i i3 a5
j 30 as /\
(hily 25:45 0 /\

O o o @ o
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UPGMA: A Clustering Heuristic

6. lterate steps 2-5 until a single cluster contains all
species.

{ij}
i, {kI}

0 4
ikl 4 0 /\

O o o @ o
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UPGMA: A Clustering Heuristic

6. lterate steps 2-5 until a single cluster contains all
species.

2

.
i, {kI}

1

5 1
0 4 .
s 1.5
ik1} 4 0 1/ \
0o o O o

@ o
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UPGMA: A Clustering Heuristic

6. lterate steps 2-5 until a single cluster contains all
species.

2

y

1

1
5
1
T+ 5 125
/\ o
®© o o O o

@ o
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UPGMA Doesn’t “Fit” a Tree to a Matrix

2
P y
i 0 1.5 \
e g 1
g i 1.5 1.5 1/\1
oo iy ©0 O®° Qo © o
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UPGMA Doesn’t “Fit” a Tree to a Matrix

2
P y
P04 1.5 \
g 1
g i 1.5 1.5 1/\1
I e o ® 6. o o
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Quick UPGMA Quiz

Exercise: Apply UPGMA to the following matrix.
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/

oy
9
1

Quick UPGMA Quiz

ok
200 00 1)
0 17 1
lcsbd 8 4
il 8 @ k)

© 2024 Phillip Compeau
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{k, I}

20
10

Quick UPGMA Quiz

P kD
200 10
o .
4 0 P

© 2024 Phillip Compeau
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Quick UPGMA Quiz

i P
i 0
i o0 0 g / \
kh 10 14 0

0o @o @ o
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Quick UPGMA Quiz

J {i, k, I}

j 0 i
ik I 17 0 / \

0o @o @ o

© 2024 Phillip Compeau



Quick UPGMA Quiz

STOP: This is wrong. Why?

J {i, k, I}

j 0 17
i k I 17 0 / \

0o @o @ o
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Average Distance Must be Weighted

Answer: The average distance from j to i, k, and /
1Is (20+17+11)/3 =16, not 17.

Bk
020 907 :
1
N
o0 g 7 1 s 4
4 4

k
i 11t 80 00 e() 0()
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Average Distance Must be Weighted

Answer: The average distance from j to i, k, and /
Is (20+17+11)/3 =16, not 17.

el
5
L e D N
: 4
i 00 0 . |
k, I 10 0

OO0 00 O
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Average Distance Must be Weighted

3
P nkD N
5
j 0 16 8 N -
5
{l,k,l} 16 0 . |

o 00 OO0 O
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The Ultrametric Assumption is Very

Strong
STOP: Can you ® 33 Ultrametric tree:
think of any \ distance from root
possible trees where 10 23 to any leaf is the
this may be flawed? T same (age of root).

33

o
Ny 6

Human

Squirrel Monkey Baboon

© 2024 Phillip Compeau



UPGMA May Even Fail on an Additive

Matrix
Voo ey
v, 0 i 00 6& /@
ol a0 4
v, 21 120 13 / x
. 0 @ Q

Furthermore, this is an additive matrix, and yet
UPGMA will join v, and v;, producing the wrong
tree even though there is one that perfectly fits it!
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UPGMA is Suboptimal But Has Become
“Machine Learning”...

In your “ML” Al future, you
THE UNIVERSITY OF KANSAS may Iearn abOUt

SCIENCE BULLETIN

hierarchical clustering, a

A Statistical Method for Evaluating Systematic

generalization of UPGMA.

Roserr R. Soxar and Cuarces D, Micuesen *

Department of Entomology —_ — - e - — - —_

University of RKansas, Lawrence

AssTacT,  Starting with correlation cocfficients ( based on numerous char

acters ) ar ematic unit, the authors

for groupi » resultant assembl

Bcatory hicrarchy most

The details of the method are desc s an example 3 of bees — A i1
The resulting classification was similar to that previously established by classi | /ga
cal systematic metho Uthough e taxonomic changes were made in view (

of the new ht thrown on relationships thod is time consuming, al N ’
though practical ated cases, with punched-card machines such as were

used; it becomes generally practical with increasingly widely available digital

computers —

INTRODUCTION

The purpose of the study reported here was to develop a quanti
tative index of relationship between any two species of a higher
systematic unit, as well as to exploit such indices of association in

interested in the development of such a method when they at

the establishment of a satisfactory hierarchy. The authors became r ——

E

1]lll'l |—
[ ) e 6 o6 o o e 6 o o
83 8 83 8 81 86 80 82 84 89

tempted to find a technique for classifying organisms that was free

from the subjectivity inherent in customary taxonomic procedure
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THE NEIGHBOR-JOINING
ALGORITHM
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Recall: Outliers were the Issue

i o 6& /@
e i
V.21 1206 15 / x
@ Vs

b g )

Recall: Outliers prevented minimum elements from
corresponding to neighbors.
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Recall: Outliers were the Issue

i o @& /@
e i
V.21 1206 15 / X
@ Vs

. 0 0

Recall: Outliers prevented minimum elements from
corresponding to neighbors.

Key Insight: What if our idea of joining neighbors
was GREAT, we just need to change the matrix?
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The Neighbor-Joining Theorem

Given an n x n distance matrix D, its neighbor-joining
matrix is the matrix D* defined as

D*; ;= (n —2)*D;; — TotalDistancep(i) — TotalDistancep())

where TotalDistancep(i) is the sum of distances from J
to all other leaves.

© 2024 Phillip Compeau




The Neighbor-Joining Theorem

Given an n x n distance matrix D, its neighbor-joining
matrix is the matrix D* defined as

D*; ;= (n —2)*D;; — TotalDistancep(i) — TotalDistancep())

where TotalDistancep(i) is the sum of distances from J
to all other leaves.

PR
v, 20 200 13
Yy D0 e i
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The Neighbor-Joining Theorem

Given an n x n distance matrix D, its neighbor-joining
matrix is the matrix D* defined as

D*;i=(n—2)*D;; —Tota/DlstanceD() TotalDistancep|))

where TotalDistancep(i) is the sum of distances from J
to all other leaves.

Vit il TotalDistance,
e [ ) 56
5 R 38
Vo g 46
e Ll el iy 48
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The Neighbor-Joining Theorem

Given an n x n distance matrix D, its neighbor-joining
matrix is the matrix D* defined as

D*; ;= (n —2)*D;; — TotalDistancep(i) — TotalDistancep())

where TotalDistancep(i) is the sum of distances from J
to all other leaves.

Vit e TotalDistancep, Vioils Vs
e Ll e T e 56 vilio 0t EhE a0 S60
Vi d3ie el 3 38 Vo 68 0L Ep0 60

D [
Ve Al e 46 ¥ 6060 0y WhE
vy g ) 48 Vi 60 60068
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The Neighbor-Joining Theorem

Given an n x n distance matrix D, its neighbor-joining
matrix is the matrix D* defined as

D* = (n—-2)*D;; —Tota/DlstanceD()

hj

TotalDistancep|))

STOP: What does D* do to outliers?

Vo udide G0
vy w2l a2
Vi i bR

21
2

13

2
13
1:3

@&
@/

© 2024 Phillip Compeau
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The Neighbor-Joining Theorem

Given an n x n distance matrix D, its neighbor-joining
matrix is the matrix D* defined as

D* = (n—-2)*D;; —Tota/DlstanceD() TotalDistancep|))

hj

Answer: If i is an outlier, TotalDistancep(i) goes up,
which causes D*;; to go down.

Vici Vo.nVa
Vg a0 el
Vo adidet 0 e D
ve o2l 20
Vi i R R 3

Vy
.
13
13
0

\ - /@
- an
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The Neighbor-Joining Theorem

Neighbor-Joining Theorem: If D is additive, then the
smallest element of D* corresponds to neighboring
leaves in Tree(D)!

Vit e TotalDistancep, Vioils Vs
e Ll e T e 56 vilio 0t EhE a0 S60
Vi d3ie el 3 38 Vo 68 0L Ep0 60

D [
Ve Al e 46 ¥ 6060 ey H6B
vy g ) 48 Vi 60 60068
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The Neighbor-Joining Theorem

Neighbor-Joining Theorem: If D is additive, then the

smallest element of D* corresponds to neighboring
leaves in Tree(D)!

Vit Vs TotalDistancep, Vi Vs Vs Vs
e Ll e T e 56 Va0 S E68 60 260
Vi 3t g1 13 38 Vo 468 50 60, i 60

D [
Ve Al 46 ¥ 6060 00 thB
vy g ) 48 v; 60 -60..-68 O
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Neighbor-Joining in Action

vi Vv, v3 v, TotalDistancep
vi 0 -68 -60  -60 56
D* v, 68 0 -60 -60 38
Vg =60 -60 0 -68 46
V4 260 -60  -68 0 48

1. Construct neighbor-joining matrix D* from D.
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Neighbor-Joining in Action

vi Vv, v3 v, TotalDistancep
vi O -68 -60 -60 56
D* v, -68 0 -60 -60 38
Vg =60 -60 0 -68 46
vy -60 -60 -68 0 48

2. Find a minimum element D*; ; of D*.
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Neighbor-Joining in Action

vi Vv, v3 v, TotalDistancep @

?
0 68 60 60 56 \
680 6h e 38

D* v
b0 e el 83 46 /
va 60 60 680 48 @

By the Neighbor-Joining Theorem, we know that this
means that v; and v, are neighbors. But what are the
“?” distances?
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Recall: Computing Length of a Limb

gin=lld ot )t id wd ) (de 2 g ) 1D
g 0 td =)
e =D ea ) 1) 000
d. D D, tD D
v s (B D D

© 2024 Phillip Compeau
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Recall: Computing Length of a Limb

Define a limb as the edge from a leaf to its parent,
and LimbLength(i) as the length of the limb at leaf /.

d,‘/m e (Di,k i i Di,j o Dj,k) / 2 — lebLength(l)

© 2024 Phillip Compeau




Recall: Computing Length of a Limb

STOP: The following formula must hold if D is
additive and i/ and j are neighbors ... But what if D is
not additive?

d,‘/m e (Di,k i i Di,j o Dj,k) / 2 — lebLength(l)

© 2024 Phillip Compeau




Recall: Computing Length of a Limb

Answer: Take the average of this formula over every
k other than /i and J.

d,‘/m e (Di,k i i Di,j o Dj,k) / 2 — lebLength(l)

© 2024 Phillip Compeau




Neighbor-Joining in Action

vi Vv, v3 v, TotalDistancep @

5600 60 0+ 68 46
Ve 260 1600 68 0 48 @

?
0 68 60 60 56 \

[}t s iR 6Dl 60 38
/

3. Having found that i and j are neighbors, take the
average (D, + D;; - D; )/2 over all k not equal to J, |.
Set LimblLength(i) equal to this average.
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Neighbor-Joining in Action

V1 Vo V3 Vg

.
0 e \
fmd el e
v, 21 gy /

Ve 222 0% 13D @

Exercise: What should be the limb length of v;?

3. Having found that i and j are neighbors, take the
average (D, + D;; - D; )/2 over all k not equal to J, |.
Set LimblLength(i) equal to this average.
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Neighbor-Joining in Action

V1 Vo V3 Vg
0.
T
s s
Vi 2E e s /

Ve 222 0% 13D @

4. Set LimblLength(j) equal to D;; — LimbLength(i).

© 2024 Phillip Compeau



Neighbor-Joining in Action

Vi
V0
v, 13
Va2 1
vy 22

V2
13
0
12
13

V3 Vg
2l )
120013
(il s
13 0

LN

o
—

Exercise: What should be the limb length of v,?

4. Set LimblLength(j) equal to D;; — LimbLength(i).
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Neighbor-Joining in Action

V1 Vo V3 Vg @ 1
1

Ve A3 2 s \
D
Va2l w0 1s 5

Ve 222 0% 13D @

4. Set LimblLength(j) equal to D;; — LimbLength(i).
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Neighbor-Joining in Act

lon

V1 Vo V3 Vg @ 1
1

Wi e g
Ve 2Tl g s

Ve 222 0% 13D @

m

o
-

Now we want to apply a recursive algorithm. To do

so, we ask what the distance from m (the

parent of

our neighbors) to every other node should be.
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Flashback: Computation of d, ,,

OI/<,m = [<di,m T dk m) (d/ m Tt dk m) (di,m in dj,m>] j7
dk/m:(d,-/k+dk—d)/2
dk/m e (Di,/( i D// DI,/) / 2
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Neighbor-Joining in Action

V1 Vo V3 Vg @
11

Wi e g

\
D /

m
Vi ik el a0 ol

Ve 222 0% 13D @

5. Form a matrix D’ by removing i-th and j-th
row/column from D and adding an m-th row/column
such that for any k, D’ ,, = (D + D, — D) / 2.
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Neighbor-Joining in Action

Exercise: Compute distance from m to v; and v, .

V1 Vo V3 Vg @ 1
1

Tl Rty
Gt i

\m
D /
v Dl g s 7

Ve 222 0% 13D @

5. Form a matrix D’ by removing i-th and j-th
row/column from D and adding an m-th row/column
such that for any k, D’ ,, = (D + D, — D) / 2.
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Neighbor-Joining in Action

m V3 V4 0 11

m O 10 11

e R e m
/

Ve 3o
Vo)

5. Form a matrix D’ by removing i-th and j-th

row/column from D and adding an m-th row/column
such that for any k, D’ ,, = (D + D, — D) / 2.
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Neighbor-Joining in Action

m V3 V4 @ 11

m O 10 11

IR e m
/

Ty
Vo)

STOP: What should we do now?
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Neighbor-Joining in Action

m V3 V4 @ 11

m O 10 11

IR e m
/

Ty
Vo)

STOP: What should we do now?

Answer: Recursion on our 3 x 3 matrix!
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Neighbor-Joining in Action

Exercise: Carry out one more step of the algorithm.

m V3 V4 @ 11

e 0 DT \
w00 g
T s /

m

—
.

Construct neighbor-joining matrix D* from D.

2. Find a minimum element D*; ; of D*.

3. Having found that i and j are neighbors, take the average (D;, + D;; — D; ;) / 2
over all k not equal to j, j. Set LimbLength(i) equal to this average.

4.  Set LimbLength(j) equal to D;; — LimbLength(j).

Form a matrix D’ by removing i-th and j-th row/column from D and adding

an m-th row/column such that for any k, Dy ,, = (Dy; + Dy, — D;)) / 2.

Ul
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Neighbor-Joining in Action

m V3
m O 10

[ vy 10 0
vy 11 13

m V3
m 0 -34

[+ v; -34 O
v -34 -34

v, TotalDistance,
11 21
13 23
0) 24

Vs
-34
-34

0

NS

o
-

m

1. Construct neighbor-joining matrix.
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Neighbor-Joining in Action

m V3
m O 10

[ vy 10 0
vy 11 13

m V3
m 0 -34

D= v; -34 O
v -34 -34

11
13

Vs
-34
-34

0

TotalDistancep, @
21

23 \m
o

24
V2,

11

They're all neighbors!

2. Find a minimum element D*; - of D*.
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Neighbor-Joining in Action

m v V4 TotaIDlstanceD
w0 \
B0 0 13 23

T B 24

m V3 V4 /
m O -34 -34 ¢

/%
D A e e

vi 34> 34

3. For any i, set LimblLength(i) equal to the average
(D + D;; = D;)/2 over all k not equal to J, /.
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Neighbor-Joining in Action

m v V4 TotaIDlstanceD
m O 10 11
e 0 e 23
Ty 24
m v V4

MmO g g

/%
D va Bt
Vi s34t aagl g

\

-
/
o

STOP: What are the limb lengths?
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Neighbor-Joining in Action

m v V4 TotaIDlstanceD
S e \
B0 0 13 23

T B 24

m v V4 /
= 4 \

/%
D A e e
e

We hit a base case! Now add remaining limbs ...
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Neighbor-Joining in Action

= -
@/

®
e

X@

m

We hit a base case! Now add remaining limbs ...
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Neighbor-Joining in Action

s
@/

4

e
o

... and we’re done!
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Neighbor-Joining Summary

Neighborjoining(D):

1.
2.
3.

U1

Construct neighbor-joining matrix D* from D.

Find a minimum element D*; ; of D*.

Having found that / and j are neighbors, take the average
(D + D;;— D; ) over all k not equal to /, j. Set
LimbLength(i) equal to this average.

Set LimbLength(j) equal to D;; — LimbLength()).

Form a matrix D’ by removing i-th and j-th row/column
from D and adding an m-th row/column such that for any
K, Dy = (Dy; + Dy = D;) / 2.

Apply Neighbor]oining recursively to D’ to obtain
Tree(D).

Reattach limbs of / and j to obtain Tree(D).
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Weakness of Distance-Based Methods

Distance-based algorithms for evolutionary tree
reconstruction say nothing about ancestral states at
internal nodes.



Weakness of Distance-Based Methods

Distance-based algorithms for evolutionary tree
reconstruction say nothing about ancestral states at
internal nodes.

We lost information when we converted a multiple
alignment to a distance matrix...

SPECIES ALIGNMENT DISTANCE MATRIX
Chimp Human Seal Whale
Chimp ACGTAGGCCT 0 3 6 4
Human ATGTAAGACT

3 0 7
Seal laEn i alalie 6 7 0
Whale TEEARACCAT 4 5 2

GO =R



THE SMALL PARSIMONY
ALGORITHM
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Goal: Infer Ancestral Sequences

Chimp ACGTAGGCCT
Human ATGTAAGACT

Seal TCGAGAGCAC
Whale TCGAAAGCAT

R R DN )

paEbRGGeY fisieie ety
ACGTAGGCCT ATGTAAGACT TCGAGAGCAC TCGAAAGCAT
Chimp Human Seal Whale
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Goal: Infer Ancestral Sequences

STOP: Here's a hypothetical assignment of strings to
ancestral nodes. How can we know how good it is?

ACGAAAGCCT

e

ACGTAAGCCT TCGAAAGCAT
ACGTAGGCCT ATGTAAGACT TCGAGAGCAC TCGAAAGCAT
Chimp Human Seal Whale
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How good is a given assignment of
strings to internal nodes?

Parsimony score: sum of Hamming distances (total
mismatches) along each edge.

CGARAGCCT
/ \
ACGTAAGCCT CGAAAGCAT
ACGTAGGCCT ATGTAAGACT TCGAGAGCAC TCGAAAGCAT
Chimp Human Seal Whale
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How good is a given assignment of
strings to internal nodes?

Parsimony score: sum of Hamming distances (total
mismatches) along each edge.

Parsimony Score: 8

CGARAGCCT
/ \
ACGTAAGCCT CGAAAGCAT
ACGTAGGCCT ATGTAAGACT TCGAGAGCAC TCGAAAGCAT
Chimp Human Seal Whale
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What Does “Parsimony” Mean?

parsimony noun

par-sirmo-ny | \'par-sa-mo-né @\ MEN Too
Tol S COMPLICATED
Definition of parsimony LETRIES
1 a :the quality of being careful with money or resources € TITANIUM Q
: THRIFT \g)“A!DRu/PLE ADVANCED
: . . DE SWIVEL HEAD
/1 the necessity of wartime parsimony BLA

b :the quality or state of being stingy

/1 The charity was surprised by the parsimony of some
larger corporations.

2 :economy in the use of means to an end

especially : economy of explanation in conformity with
Occam's razor

/1 the scientific law of parsimony dictates that any
example of animal behavior should be interpreted at its
simplest, most immediate level

— Peter Gorner

Ockham chooses a razor

© 2024 Phillip Compeau




Toward a Computational Problem

Small Parsimony Problem:
* Input: A rooted binary tree with each leaf labeled

by a string of length m.
* Output: A labeling of all other nodes of the tree
by strings of length m that minimizes the tree’s

parsimony score.
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Toward a Computational Problem

Small Parsimony Problem:

* Input: A rooted binary tree with each leaf labeled
by a string of length m.

* Output: A labeling of all other nodes of the tree
by strings of length m that minimizes the tree’s
parsimony score.

STOP: Is there any way we can simplify this
problem statement?
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Toward a Computational Problem

Small Parsimony Problem:

* Input: A rooted binary tree with each leaf labeled
by a single symbol.

* Output: A labeling of all other nodes of the tree
by single symbols that minimizes the tree’s
parsimony score.

STOP: Why is this an acceptable simplification?
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Toward a Computational Problem

Small Parsimony Problem:

* Input: A rooted binary tree with each leaf labeled
by a single symbol.

* Output: A labeling of all other nodes of the tree
by single symbols that minimizes the tree’s
parsimony score.

Answer: We may choose to assume that the
characters are independent.
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Toward a Computational Problem

Small Parsimony Problem:

* Input: A rooted binary tree with each leaf labeled
by a single symbol.

* Output: A labeling of all other nodes of the tree
by single symbols that minimizes the tree’s
parsimony score.

STOP: Any thoughts on what approach we might
use to solve this problem?

© 2024 Phillip Compeau




A Dynamic Programming Algorithm

Let 7, denote the subtree of T
whose root is v. / \

oA
e
Q/ \.



A Dynamic Programming Algorithm

Let 7, denote the subtree of T
whose root is v. / \ -
LN 0
[

=

Define si(v) as the minimum
parsimony score of T, over

\
all labelings of T, assuming o
./\.

that v is labeled by k.
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A Dynamic Programming Algorithm

Let 7, denote the subtree of T / \

whose root is v. / \ ./V\TV
=

Define si(v) as the minimum
parsimony score of T, over

\
all labelings of T, assuming o
./\.

that v is labeled by k.

The minimum parsimony score for the tree is equal to
the minimum value of s,(root) over all symbols k.
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A Dynamic Programming Algorithm

Let 7, denote the subtree of T / \

whose root is v. ;
d g

Define si(v) as the minimum

parsimony score of T, over \

all labelings of T, assuming o /\
Qo O

=

that v is labeled by k.

STOP: Can you find a recurrence relation for s,(v)?
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A Dynamic Programming Algorithm

3

For symbols i and j, define / \ ./V\TV

* a;; =1 otherwise. ./\ '/\. ./\.

a says, “do they match?”
Qo O

Theorem: The following recurrence relation holds:

Sk(v) — minall symbols i {Si(Daughter(V)) + a'i,k} + rninaII symbols i {5,-(50n(v)) + a'i,k}
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A Dynamic Programming Algorithm

/\
Ja i
L R

A CGT A CGT A CGT A CGT A CGT A CGT A CGT A CGT

o () oo oo oo () oo oo ) oo oo oo co () oo oo o oo () oo co oo () oo co oo oo () oo () oo oo

Sk(v) = rninall symbols i {Si(Daughter(V)) + a/’,k} + minall symbols i {SI(SOI’)(V)) T a/’,k}
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A Dynamic Programming Algorithm

/ \
C s

20 D) i)t |

A C G T A CGT A CGT A C G T A C G T A CGT A C G T A CGT
co () oo oo co () oo oo Q0 oo oo oo o () oo oo co oo () oo co oo () oo co oo oo () co () oo oo

Sk(v) = rninall symbols i {Si(Daughter(V)) + a/’,k} + minall symbols i {SI(SOI’)(V)) T a/’,k}
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A Dynamic Programming Algorithm

e / \ T
Keediniii e / R Y e
/Ak A CGT A\

/\ /\ /\ 2‘2‘/\
A=HCERGIRT A= CHnGT A CGT A C G T A CGT A CGT A CG T A CGT
o () oo oo c© () oo oo ) o0 oo oo () oo oo co oo () oo c© oo () oo co oo oo () c© () oo oo

Sk(v) = rninall symbols i {Si(Daughter(V)) + a/’,k} + minall symbols i {SI(SOI’)(V)) T a/’,k}
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A Dynamic Programming Algorithm

A CGT
5 3 4 4

C
SRl / \ -
et Wl LS / st DD
A CGT /Ak A CGT A\

/\ /\ ““/\ 2‘2‘/\
A C G T A C G T A CG T A C G T A C G T A CGT A C G T A C G T
o () oo oo c© () oo oo ) o0 oo oo oo () oo oo o oo () oo oo oo () oo co oo oo () o () oo oo

Because s, (root) is minimized when k is C, we infer
that the root must be assigned C!
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A Dynamic Programming Algorithm

A CGT
5 3 4 4

C
SRl / \ -
et Wl LS / st DD
A CGT /Ak A CGT A\

/\ /\ ““/\ 2‘2‘/\
A C G T A C G T A CG T A C G T A C G T A CGT A C G T A C G T
o () oo oo c© () oo oo ) o0 oo oo oo () oo oo o oo () oo oo oo () oo co oo oo () o () oo oo

STOP: How should we “backtrack” to fill in the
remaining nodes of the tree?
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A Dynamic Programming Algorithm

A CGT
5 3 4 4

MIN,|| symbols i 15; Daughter/ Bt s Dbennl e
A CGT
SN 6Y R )

A CGT /Ak A CGT / A\

i e | P el [l |

A C G T A C G T A CG T A C G T A CGT A CGT A C G T A C G T
o () oo oo c© () oo oo ) o0 oo oo oo () oo oo o oo () oo oo oo () oo co oo oo () o () oo oo

Answer: Remember which symbol was used at each
child when computing s,(v)!
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A Dynamic Programming Algorithm

A CGT
Siriidaad e

mlnallsymbOISI {5 Daughter + a,IC} rnlnaIIsymboIs; {5 50[’7 + a'/C}
R Cigim
SRS HE)
A.cicT /Ak ACGT / A\

i e | P el [l |

A CGT A CGT A C G T A C G T A CGT A CGT A C G T A C G T
co () oo oo oo () oo oo ) o0 oo oo oo () oo oo co oo () oo oo oo () oo co oo oo () oo () oo oo

STOP: Fill in the remaining nodes.
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A Dynamic Programming Algorithm

A CGT
Siriidaad e

/ \ S
/ o
A CGT /Ak A CGT A\

/\ /\ ““/\ 2‘2‘/\
A CGT A CGT A C G T A C G T A CGT A CGT A C G T A C G T
co () oo oo o () oo oo ) o0 oo oo oo () oo oo co oo () oo oo oo () oo co oo oo () oo () oo oo

© 2024 Phillip Compeau



Citations for Neighbor-Joining and Small
Parsimony

The neighbor-joining method: a new method for reconstructing ...

by N Saitou - 1987 - Cited by 61260 - Related articles

The principle of this method is to find pairs of operational taxonomic units (OTUs [= neighbors])
that minimize the total branch length at each stage of clustering of OTUs starting with a starlike

tree. The branch lengths as well as the topology of a parsimonious tree can quickly be obtained
by using this method.

A note on the neighbor-joining algorithm of Saitou and Nei

by JA Studier - 1988 - Cited by 614 - Related articles
A note on the neighbor-joining algorithm of Saitou and Nei. Mol Biol Evol. 1988
Nov;5(6):729-31. doi: 10.1093/oxfordjournals.molbev.a040527.

Minimal Mutation Trees of Sequences - JSTOR

by D Sankoff - 1975 - Cited by 649 - Related articles

The integer d(x, y) equals the minimum number of mutations required to transform sequence x
into y, or y into x, where a mutation may be either a change (replacement) of the value in A of a
single term x(i) to correspond with the value of some y(j), or else the deletion from, or insertion
into sequence x, of a single ...
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