

Evolutionary Trees

Tattoos by Shauna S.

Black Tattoos

Color Tattoos

Art

About

Contact

FAQ

Health and Safety

Merchandise

Art Commissions

Travel Calendar

Instagram

2012 Encyclopædia Britannica, Inc.

Bet U wish airplanes didn't exist now

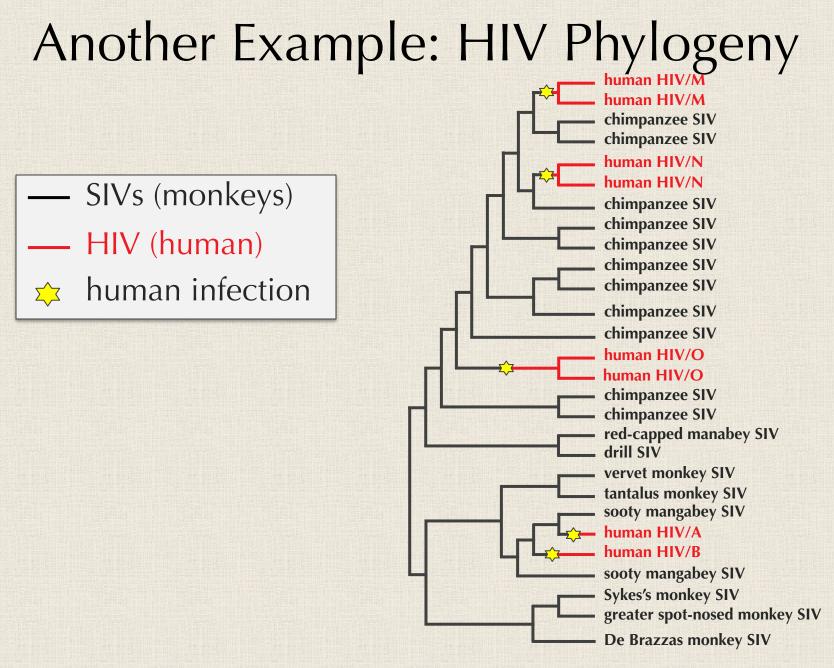
Questions about SARS SARS-CoV-2

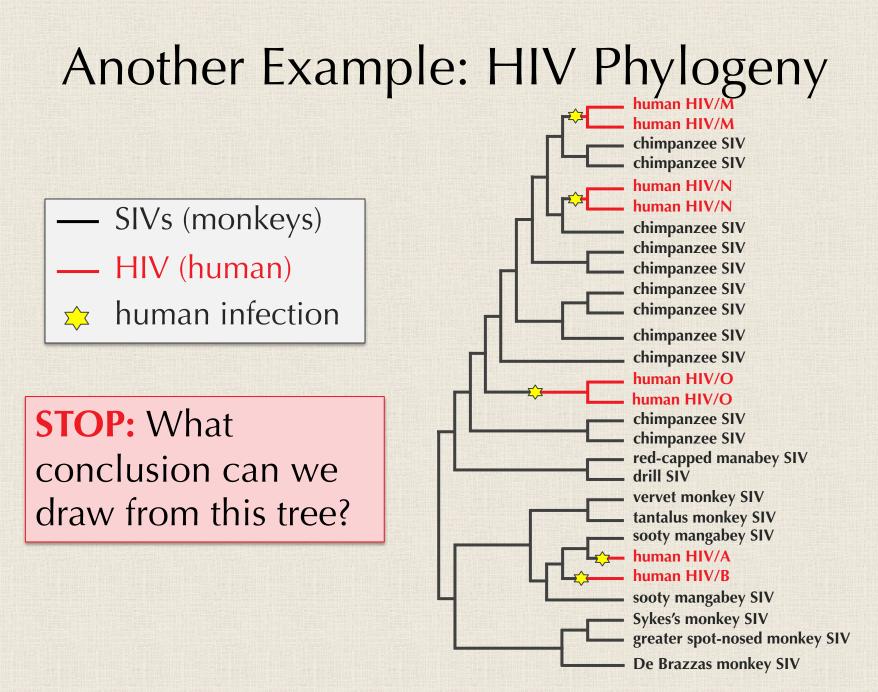
- 1. Which animal gave us SARS-CoV-2?
- 2. How does SARS-CoV-2 compare to other related viruses?
- 3. How has SARS-CoV-2 mutated over time?

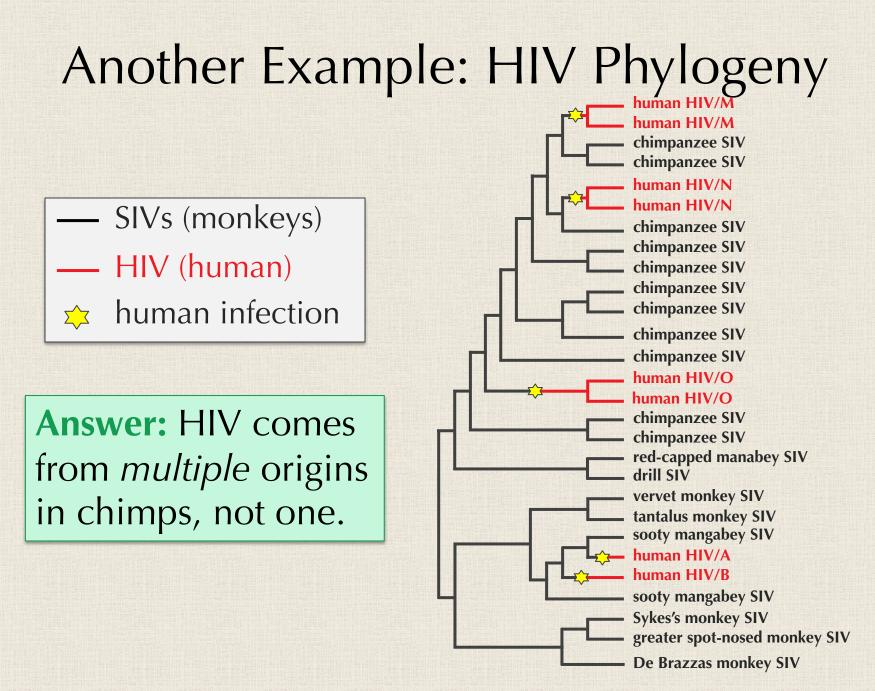
Questions about SARS SARS-CoV-2

- 1. Which animal gave us SARS-CoV-2?
- 2. How does SARS-CoV-2 compare to other related viruses?
- 3. How has SARS-CoV-2 mutated over time?

All of these questions require us to construct **evolutionary trees** (a.k.a. **phylogenies**).

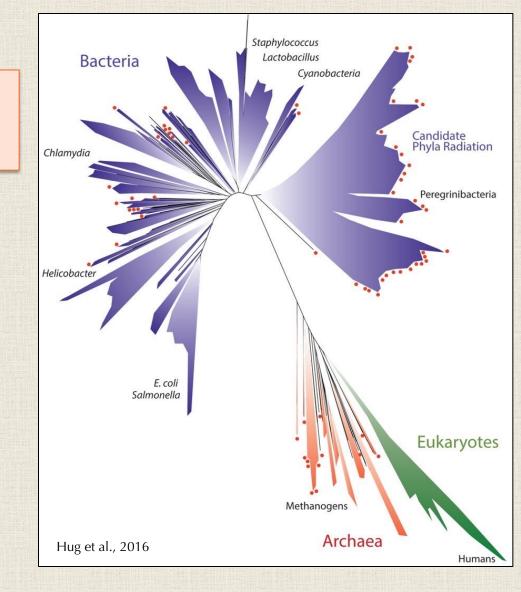






Two Computational Questions

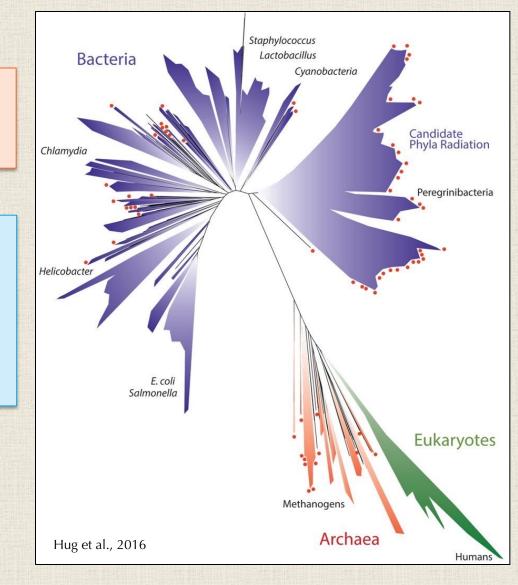
How do we construct the tree's *structure*?

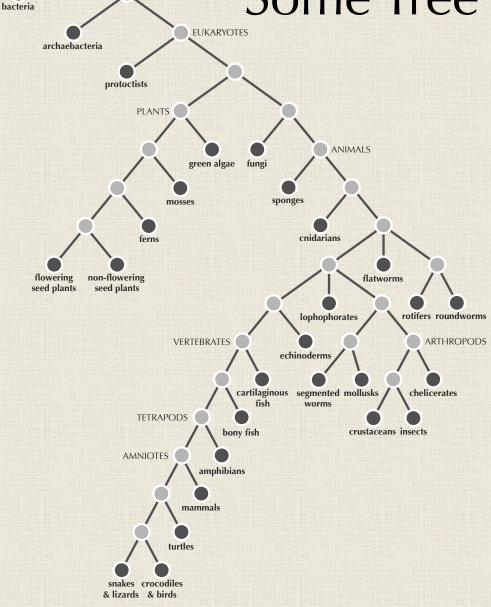


Two Computational Questions

How do we construct the tree's *structure*?

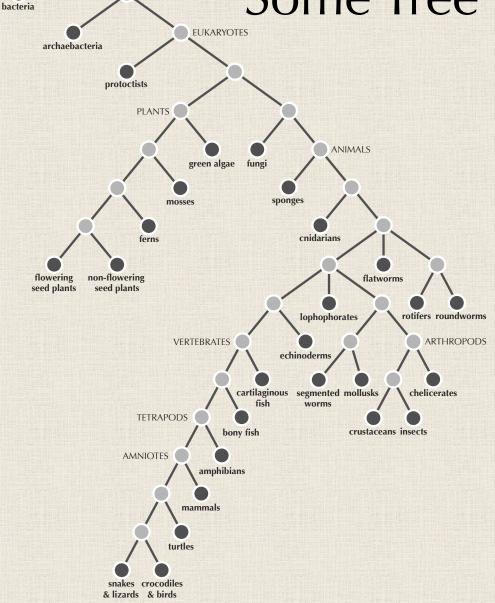
Can we infer anything about the ancestral species on the inside of the tree?





LIFE

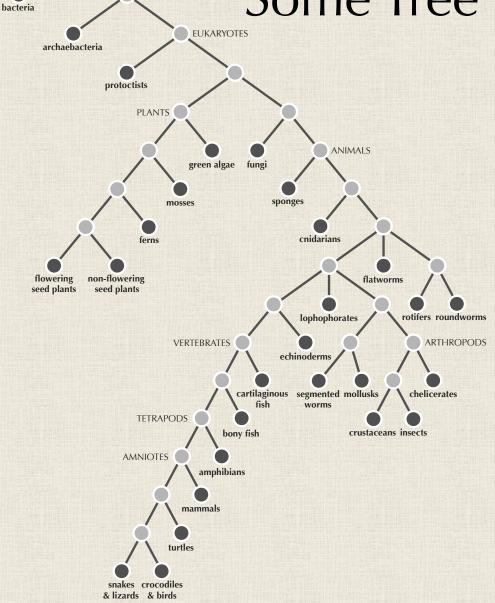
Tree: Connected graph containing no cycles.



LIFE

Tree: Connected graph containing no cycles.

Leaves (degree = 1): present-day species

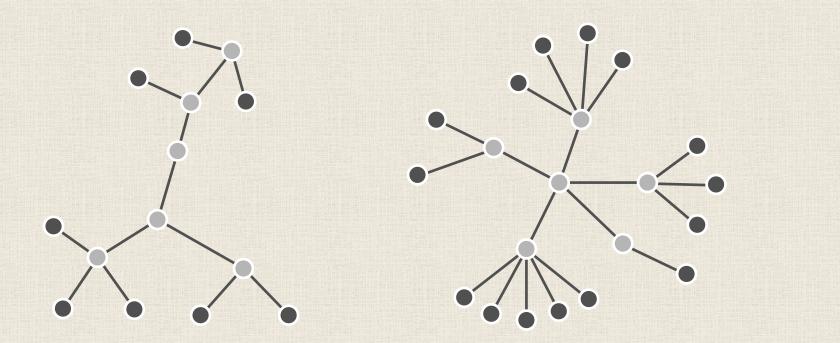


LIFE

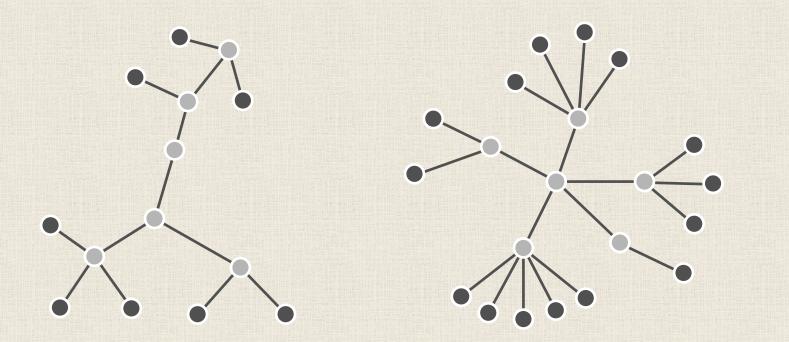
Tree: Connected graph containing no cycles.

Leaves (degree = 1): present-day species

Internal nodes (degree ≥ 2): ancestral species



Theorem: Every tree with *n* nodes has exactly n - 1 edges.



Theorem: There is a unique path connecting any two nodes in a tree.

What is the main evolutionary division of dinosaurs?

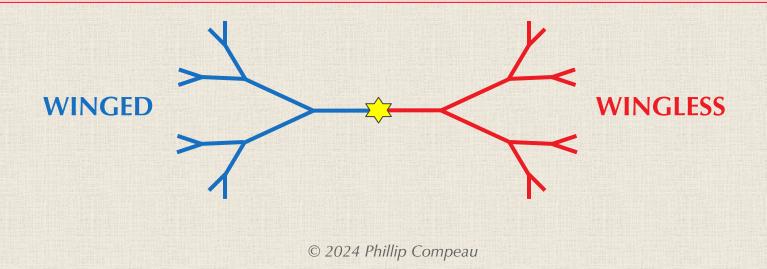
Biologists used to form trees based on anatomical or physiological properties called **characters**.

Biologists used to form trees based on anatomical or physiological properties called **characters**.

STOP: Say you wanted to construct an evolutionary tree of all insects. What might be the first thing you would do?

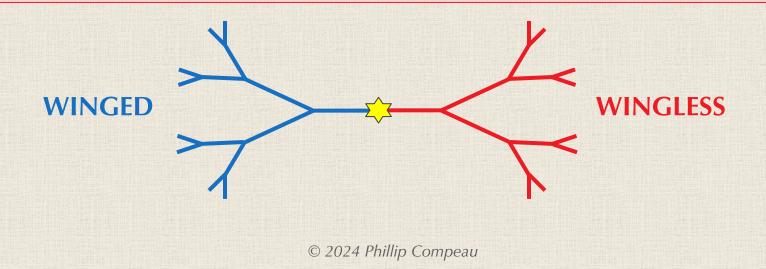
Biologists used to form trees based on anatomical or physiological properties called **characters**.

STOP: Say you wanted to construct an evolutionary tree of all insects. What might be the first thing you would do?

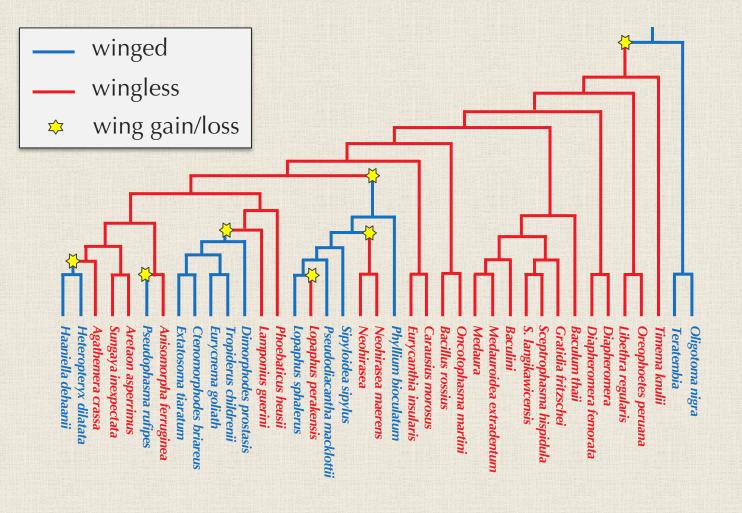


Dollo's principle of irreversibility (1893): evolution doesn't reinvent the same organ (e.g. insect wings).

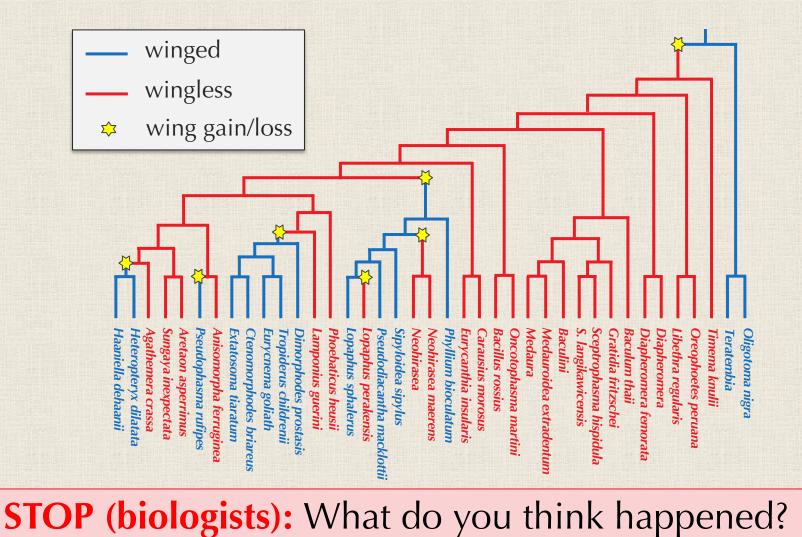
STOP: Say you wanted to construct an evolutionary tree of all insects. What might be the first thing you would do?



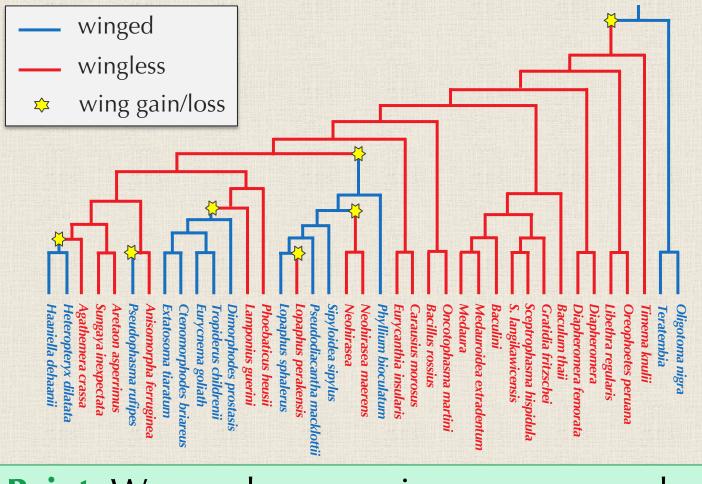
Dollo's Principle Violated in Stick Insect Phylogeny



Dollo's Principle Violated in Stick Insect Phylogeny



Dollo's Principle Violated in Stick Insect Phylogeny



Key Point: We need a more rigorous approach.

TRANSFORMING DISTANCE MATRICES INTO TREES

Definition of a Distance Matrix

Distance matrix: A matrix *D* representing distances between pairs of *n* organisms that satisfies three properties:

- **1.** Symmetry: $D_{i,j} = D_{j,i}$ for all pairs *i*, *j*
- **2.** Non-negativity: $D_{i,j} >= 0$ for all pairs *i*, *j*
- **3. Triangle inequality:** For all *i*, *j*, and $k, D_{i,j} + D_{j,k} \ge D_{i,k}$.

A Multiple Alignment Defines a Simple Distance Matrix

	SPECIES	ALIGNMENT
--	---------	-----------

Chimp	ACGTAGGCCT
Human	ATGTAAGACT
Seal	TCGAGAGCAC
Whale	TCGAAAGCAT

A Multiple Alignment Defines a Simple Distance Matrix

D_{i,j} = number of differing symbols between *i*-th and *j*-th rows of a multiple alignment.

Species	Alignment	Distance Matrix			
		Chimp	Human	Seal	Whale
Chimp	ACGTAGGCCT	0	3	6	4
Human	ATGTAAGACT	3	0	7	5
Seal	TCGAGAGCAC	6	7	0	2
Whale	TCGAAAGCAT	4	5	2	0

A Multiple Alignment Defines a Simple Distance Matrix

D_{i,j} = number of differing symbols between *i*-th and *j*-th rows of a multiple alignment.

Species	Alignment	Distance Matrix			
		Chimp	Human	Seal	Whale
Chimp	A C GTA G G C CT	0	3	6	4
Human	A T GTA A G A CT	3	0	7	5
Seal	TCGAGAGCAC	6	7	0	2
Whale	TCGAAAGCAT	4	5	2	0

Distance-Based Phylogeny

Distance-Based Phylogeny Problem.

- **Input:** A distance matrix.
- **Output:** The tree fitting this distance matrix.

Distance-Based Phylogeny

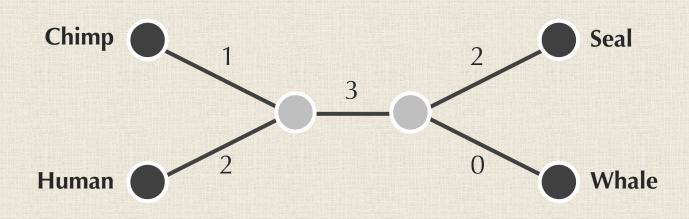
Distance-Based Phylogeny Problem.

- **Input:** A distance matrix.
- **Output:** The tree *fitting* this distance matrix.

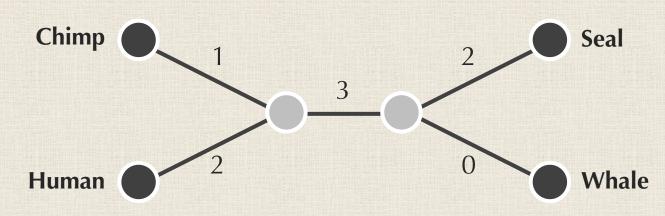
Of course, we are getting a bit ahead of ourselves – we should define what we mean by "fitting"!

	Chimp	Human	Seal	Whale
Chimp	0	3	6	4
Human	3	0	7	5
Seal	6	7	0	2
Whale	4	5	2	0

	Chimp	Human	Seal	Whale
Chimp	0	3	6	4
Human	3	0	7	5
Seal	6	7	0	2
Whale	4	5	2	0

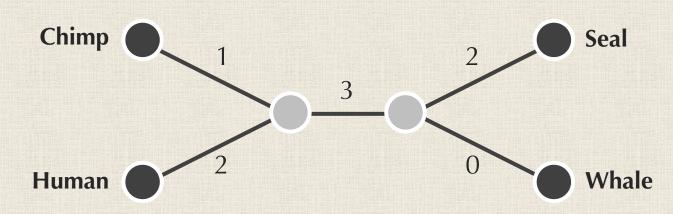


	Chimp	Human	Seal	Whale
Chimp	0	3	6	4
Human	3	0	7	5
Seal	6	7	0	2
Whale	4	5	2	0



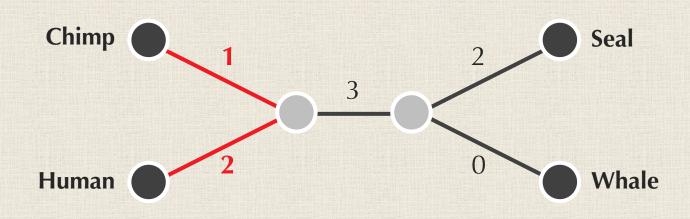
 $d_{i,j}(T)$ = distance between nodes *i* and *j* in tree *T*, computed by summing edge weights from *i* to *j*.

	Chimp	Human	Seal	Whale
Chimp	0	3	6	4
Human	3	0	7	5
Seal	6	7	0	2
Whale	4	5	2	0

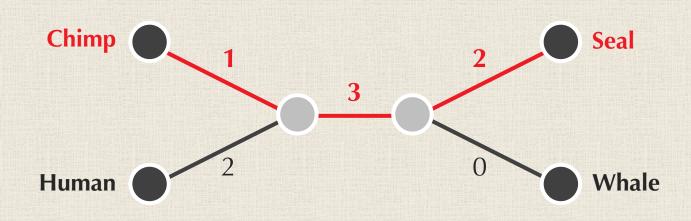


We say that *T* fits matrix *D* if for every pair *i* and *j*, $d_{i,j}(T) = D_{i,j}$.

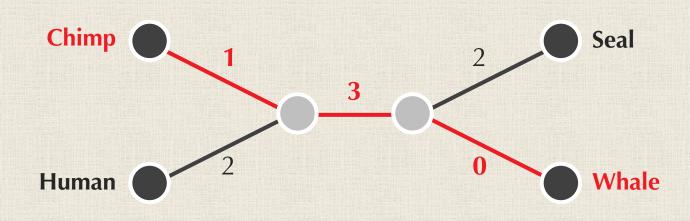
	Chimp	Human	Seal	Whale
Chimp	0	3	6	4
Human	3	0	7	5
Seal	6	7	0	2
Whale	4	5	2	0



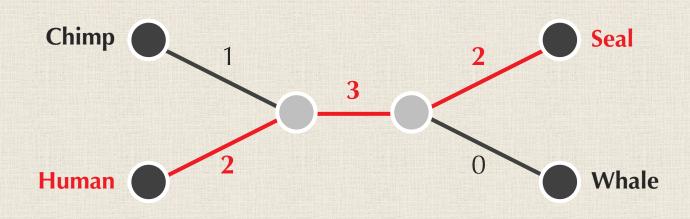
	Chimp	Human	Seal	Whale
Chimp	0	3	6	4
Human	3	0	7	5
Seal	6	7	0	2
Whale	4	5	2	0



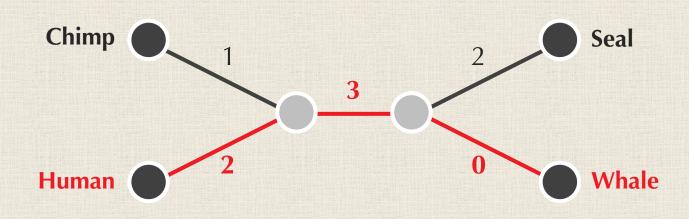
	Chimp	Human	Seal	Whale
Chimp	0	3	6	4
Human	3	0	7	5
Seal	6	7	0	2
Whale	4	5	2	0



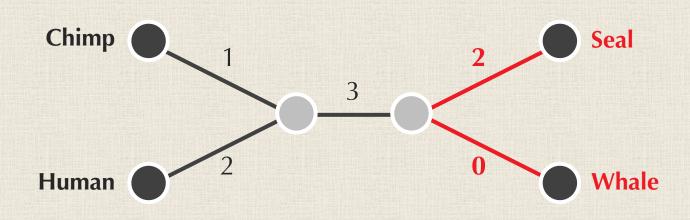
	Chimp	Human	Seal	Whale
Chimp	0	3	6	4
Human	3	0	7	5
Seal	6	7	0	2
Whale	4	5	2	0



	Chimp	Human	Seal	Whale
Chimp	0	3	6	4
Human	3	0	7	5
Seal	6	7	0	2
Whale	4	5	2	0



	Chimp	Human	Seal	Whale
Chimp	0	3	6	4
Human	3	0	7	5
Seal	6	7	0	2
Whale	4	5	2	0



Return to Distance-Based Phylogeny

Exercise: Find a tree fitting the following matrix.

	<i>v</i> ₁	<i>V</i> ₂	<i>V</i> ₃	<i>V</i> ₄	
<i>v</i> ₁	0	3	4	3	
<i>V</i> ₂	3	0	4	5	
<i>V</i> ₃	4	4	0	2	
<i>V</i> ₄	3	5	2	0	

Sometimes, No Tree Fits a Matrix

There is no tree fitting this matrix!

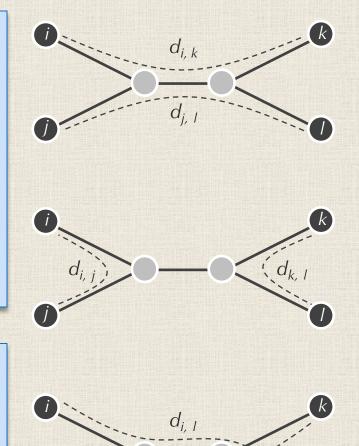
	<i>v</i> ₁	<i>V</i> ₂	<i>V</i> ₃	<i>V</i> ₄
<i>v</i> ₁	0	3	4	3
<i>V</i> ₂	3	0	4	5
<i>V</i> ₃	4	4	0	2
<i>V</i> ₄	3	5	2	0

Additive matrix: distance matrix such that there exists a tree fitting it.

How Can We Know if a Matrix Has a Tree Fitting It?

Indices (*i*, *j*, *k*, *l*) satisfy the **four point condition** if two of the following sums are equal, and the third sum is less than or equal to the other two sums: $D_{i,j} + D_{k,l}$ $D_{i,k} + D_{j,l}$ $D_{i,l} + D_{j,k}$

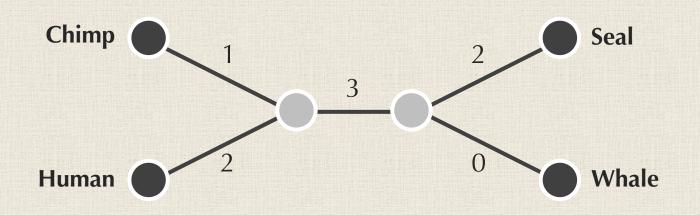
Four Point Theorem: A distance matrix *D* is additive if and only if the four point condition holds for every quartet (*i*, *j*, *k*, *l*).



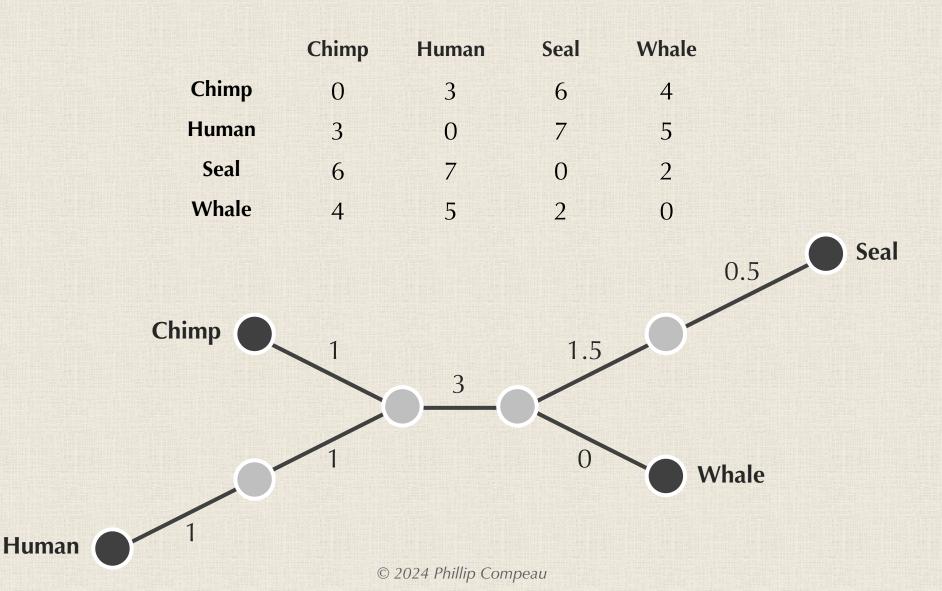
 $d_{i,k}$

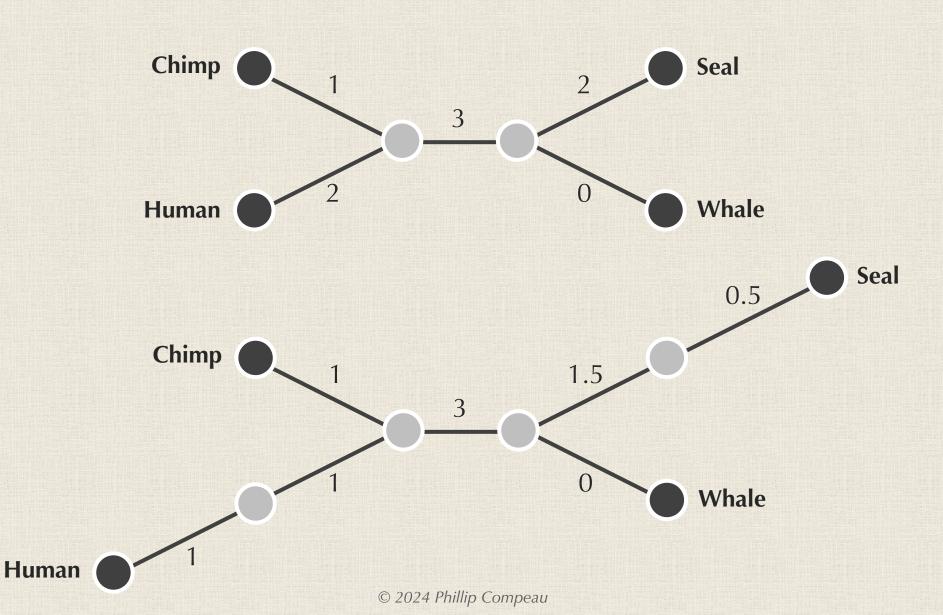
Sometimes, More Than One Tree Fits a Matrix

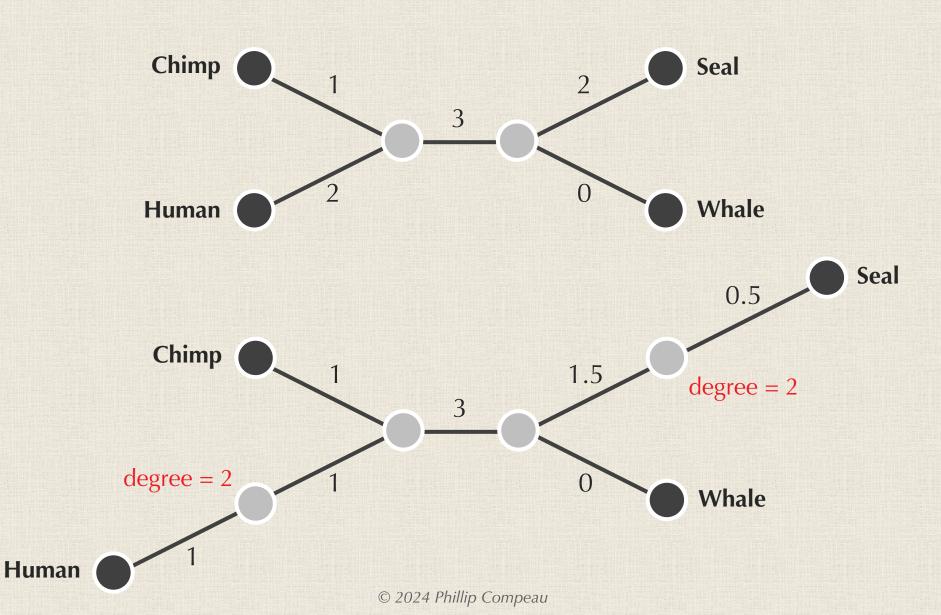
	Chimp	Human	Seal	Whale
Chimp	0	3	6	4
Human	3	0	7	5
Seal	6	7	0	2
Whale	4	5	2	0

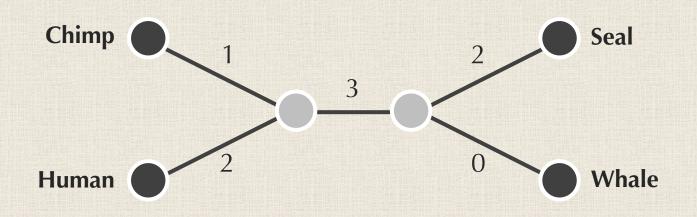


Sometimes, More Than One Tree Fits a Matrix

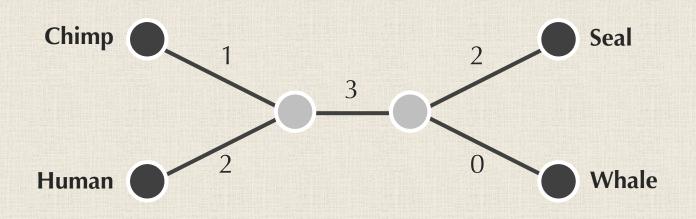








Simple tree: tree with no nodes of degree 2.



Simple tree: tree with no nodes of degree 2.

Theorem: There is a unique *simple* tree fitting an *additive* matrix. (And there is an algorithm to produce this tree.)

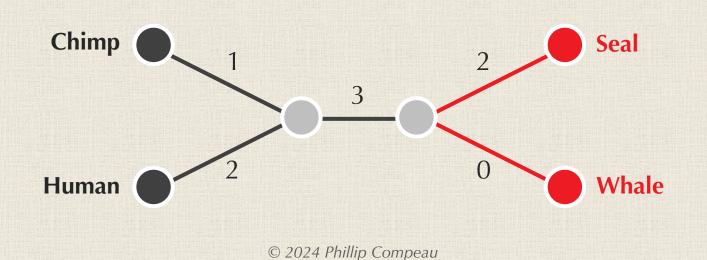
Reformulating Distance-Based Phylogeny

Distance-Based Phylogeny Problem: Construct an evolutionary tree from a distance matrix.

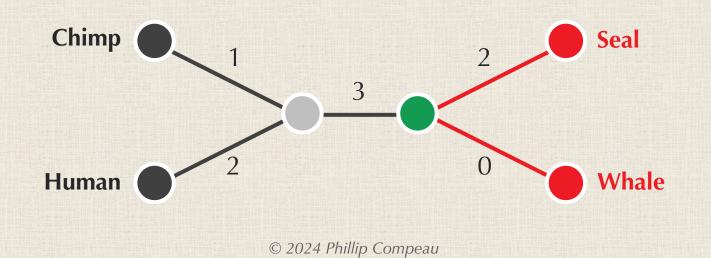
- **Input:** A distance matrix.
- **Output:** The simple tree fitting this distance matrix (if this matrix is additive).

TOWARD AN ALGORITHM FOR DISTANCE-BASED PHYLOGENY

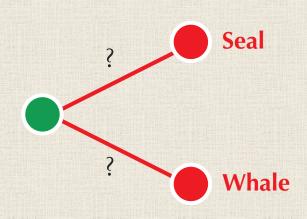
	Chimp	Human	Seal	Whale
Chimp	0	3	6	4
Human	3	0	7	5
Seal	6	7	0	2
Whale	4	5	2	0



Seal and whale are **neighbors** (meaning they are leaves with the same **parent**).

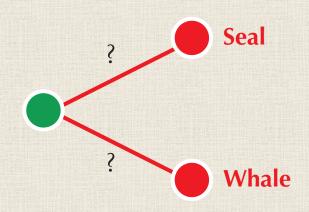


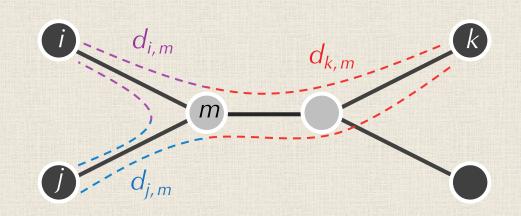
	Chimp	Human	Seal	Whale
Chimp	0	3	6	4
Human	3	0	7	5
Seal	6	7	0	2
Whale	4	5	2	0

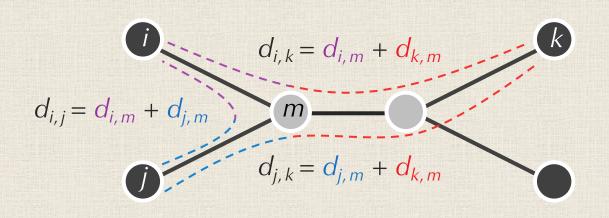


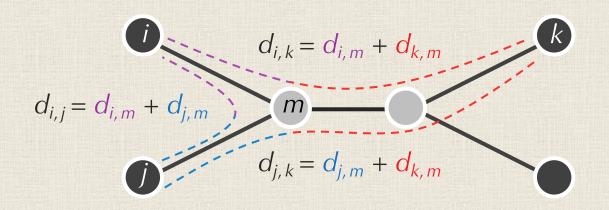
	Chimp	Human	Seal	Whale
Chimp	0	3	6	4
Human	3	0	7	5
Seal	6	7	0	2
Whale	4	5	2	0

Key Point: How do we compute the unknown distances?

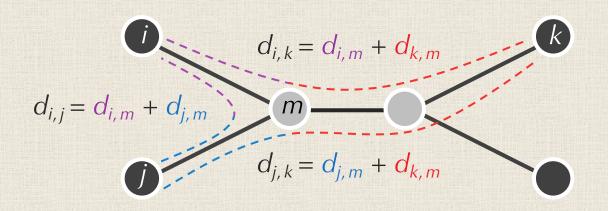








 $d_{k,m} = \left[(d_{i,m} + d_{k,m}) + (d_{j,m} + d_{k,m}) - (d_{i,m} + d_{j,m}) \right] / 2$



 $d_{k,m} = [(d_{i,m} + d_{k,m}) + (d_{j,m} + d_{k,m}) - (d_{i,m} + d_{j,m})] / 2$ $d_{k,m} = (d_{i,k} + d_{j,k} - d_{i,j}) / 2$

$$d_{i,k} = d_{i,m} + d_{k,m}$$

$$d_{i,j} = d_{i,m} + d_{j,m}$$

$$d_{j,k} = d_{j,m} + d_{k,m}$$

 $d_{k,m} = [(d_{i,m} + d_{k,m}) + (d_{j,m} + d_{k,m}) - (d_{i,m} + d_{j,m})] / 2$ $d_{k,m} = (d_{i,k} + d_{j,k} - d_{i,j}) / 2$ $d_{k,m} = (D_{i,k} + D_{j,k} - D_{i,j}) / 2$

$$d_{i,k} = d_{i,m} + d_{k,m}$$

$$d_{i,j} = d_{i,m} + d_{j,m}$$

$$d_{j,k} = d_{j,m} + d_{k,m}$$

$$d_{k,m} = [(d_{i,m} + d_{k,m}) + (d_{j,m} + d_{k,m}) - (d_{i,m} + d_{j,m})] / 2$$

$$d_{k,m} = (d_{i,k} + d_{j,k} - d_{i,j}) / 2$$

$$d_{k,m} = (D_{i,k} + D_{j,k} - D_{i,j}) / 2$$

$$d_{i,m} = D_{i,k} - (D_{i,k} + D_{j,k} - D_{i,j}) / 2$$

...

$$d_{i,k} = d_{i,m} + d_{k,m}$$

$$d_{i,j} = d_{i,m} + d_{j,m}$$

$$d_{j,k} = d_{j,m} + d_{k,m}$$

$$d_{k,m} = [(d_{i,m} + d_{k,m}) + (d_{j,m} + d_{k,m}) - (d_{i,m} + d_{j,m})] / 2$$

$$d_{k,m} = (d_{i,k} + d_{j,k} - d_{i,j}) / 2$$

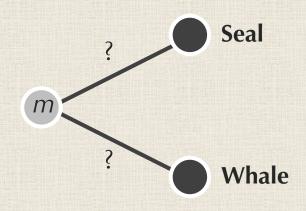
$$d_{k,m} = (D_{i,k} + D_{j,k} - D_{i,j}) / 2$$

$$d_{i,m} = D_{i,k} - (D_{i,k} + D_{j,k} - D_{i,j}) / 2$$

$$d_{i,m} = (D_{i,k} + D_{i,j} - D_{j,k}) / 2$$

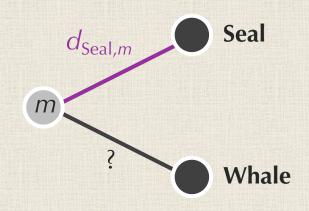
$$\overset{(a)}{=} 2024 Phillip Compean}$$

	Chimp	Human	Seal	Whale
Chimp	0	3	6	4
Human	3	0	7	5
Seal	6	7	0	2
Whale	4	5	2	0



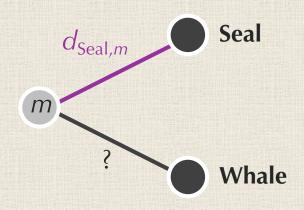
 $d_{i,m} = (D_{i,k} + D_{i,j} - D_{j,k}) / 2$ © 2024 Phillip Compeau

	Chimp	Human	Seal	Whale
Chimp	0	3	6	4
Human	3	0	7	5
Seal	6	7	0	2
Whale	4	5	2	0



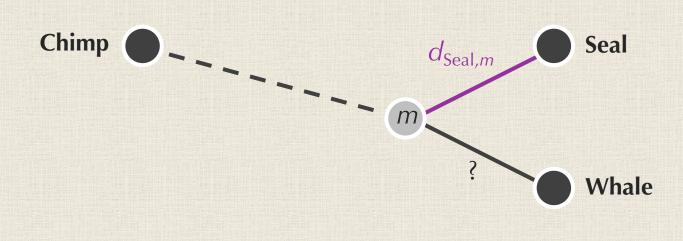
 $d_{\text{Seal},m} = (D_{\text{Seal},k} + D_{\text{Seal},j} - D_{j,k}) / 2$ © 2024 Phillip Compeau

	Chimp	Human	Seal	Whale
Chimp	0	3	6	4
Human	3	0	7	5
Seal	6	7	0	2
Whale	4	5	2	0



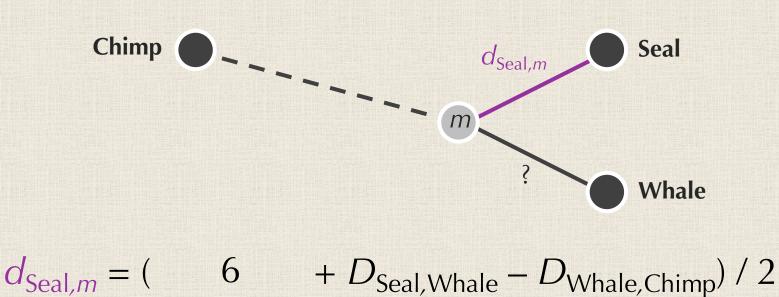
 $d_{\text{Seal},m} = (D_{\text{Seal},k} + D_{\text{Seal},\text{Whale}} - D_{\text{Whale},k}) / 2$ © 2024 Phillip Compeau

	Chimp	Human	Seal	Whale
Chimp	0	3	6	4
Human	3	0	7	5
Seal	6	7	0	2
Whale	4	5	2	0

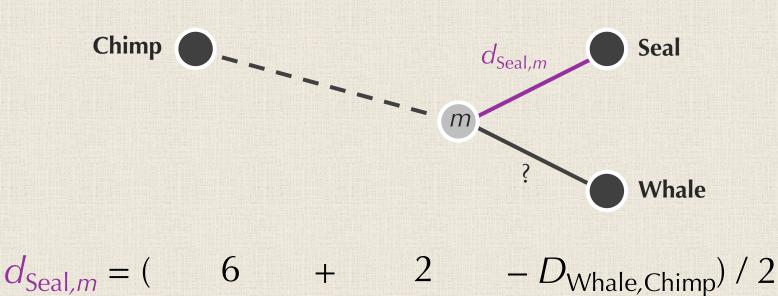


 $d_{\text{Seal},m} = (D_{\text{Seal},\text{Chimp}} + D_{\text{Seal},\text{Whale}} - D_{\text{Whale},\text{Chimp}}) / 2$

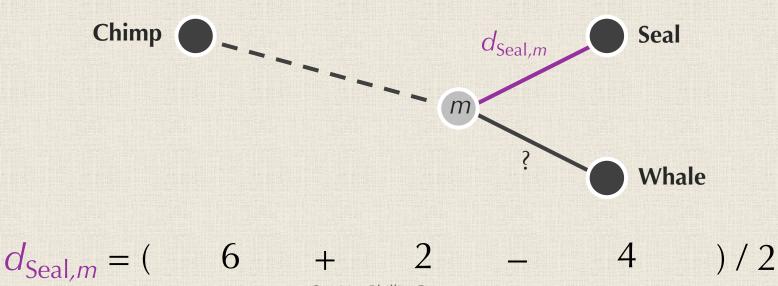
	Chimp	Human	Seal	Whale
Chimp	0	3	6	4
Human	3	0	7	5
Seal	6	7	0	2
Whale	4	5	2	0



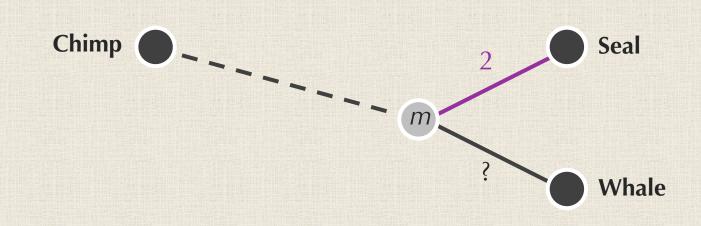
	Chimp	Human	Seal	Whale
Chimp	0	3	6	4
Human	3	0	7	5
Seal	6	7	0	2
Whale	4	5	2	0



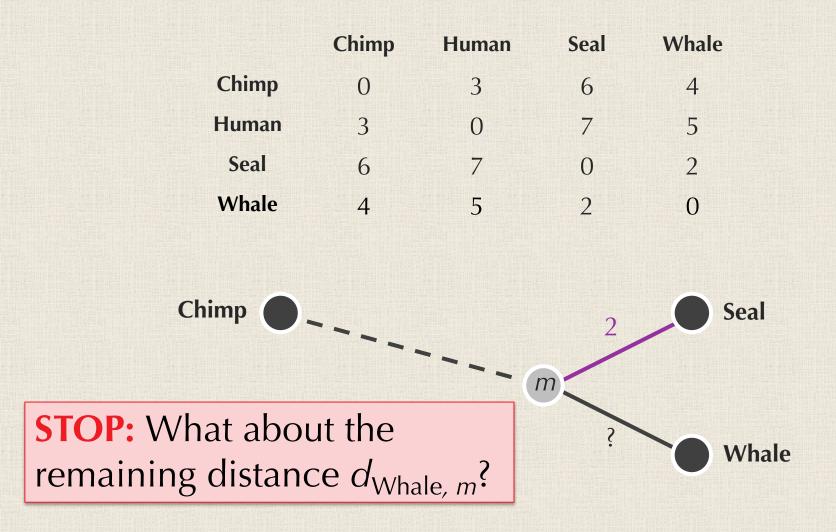
	Chimp	Human	Seal	Whale
Chimp	0	3	6	4
Human	3	0	7	5
Seal	6	7	0	2
Whale	4	5	2	0

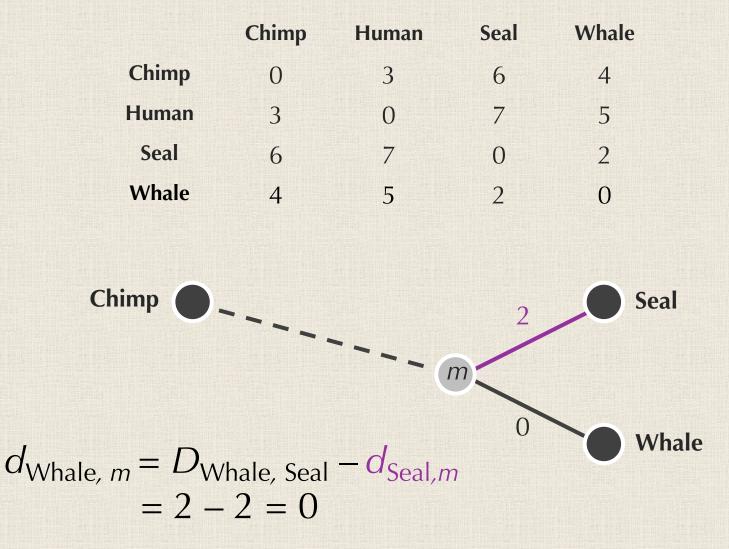


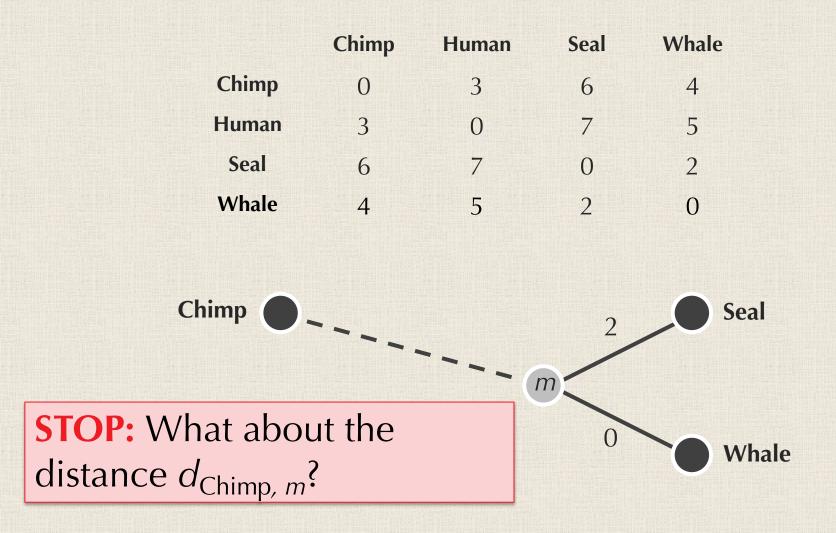
	Chimp	Human	Seal	Whale
Chimp	0	3	6	4
Human	3	0	7	5
Seal	6	7	0	2
Whale	4	5	2	0

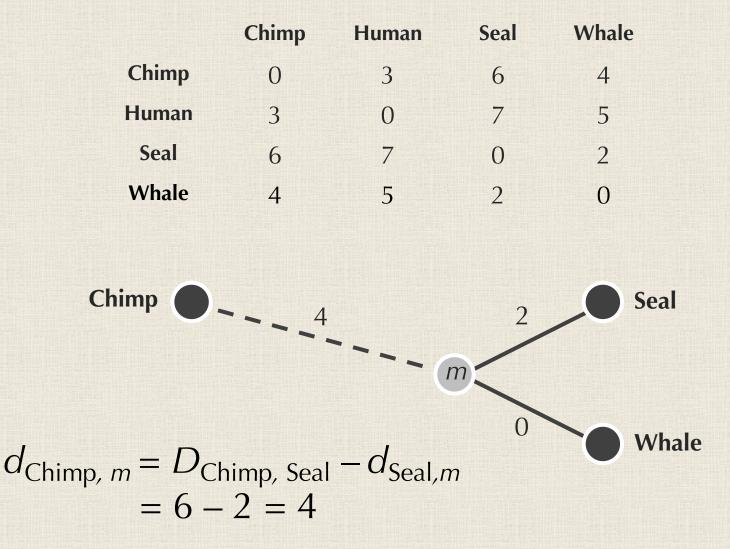


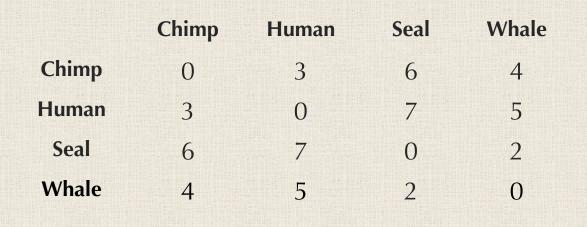
 $d_{\text{Seal},m} = 2$

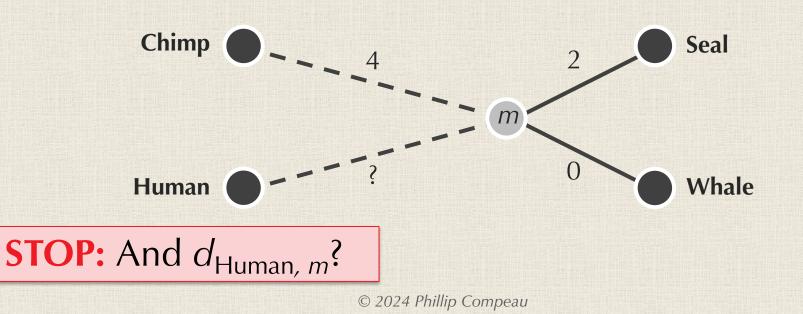




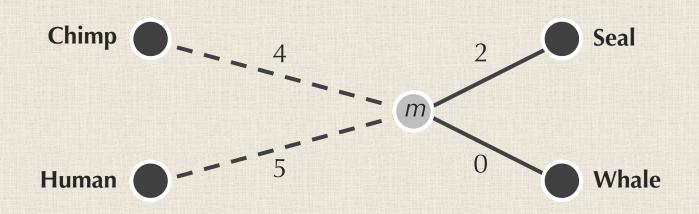




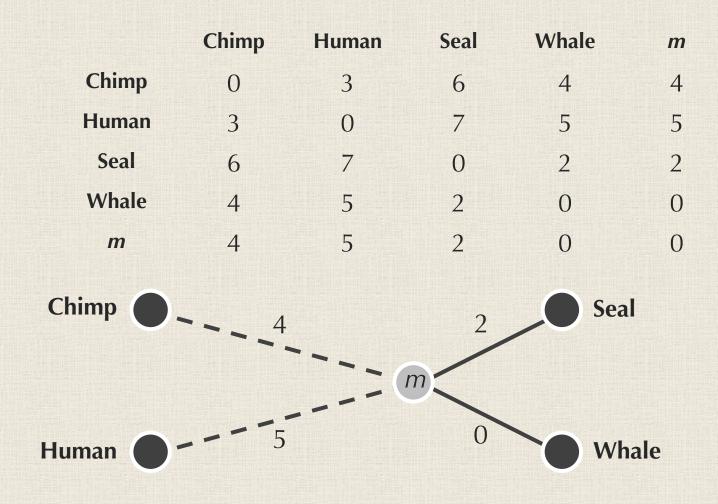




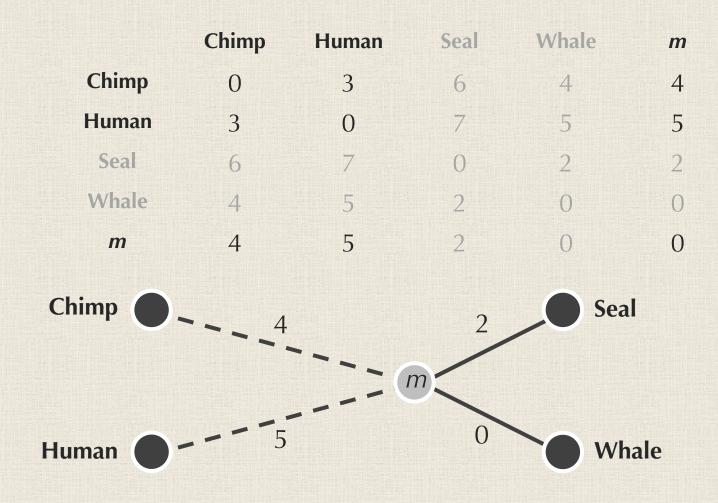
	Chimp	Human	Seal	Whale
Chimp	0	3	6	4
Human	3	0	7	5
Seal	6	7	0	2
Whale	4	5	2	0



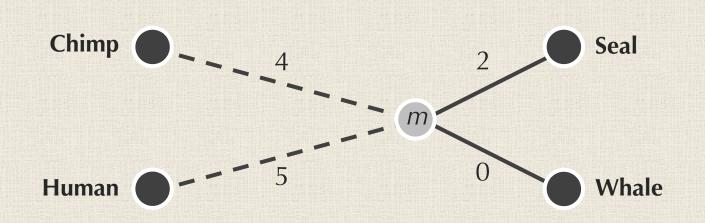
We Add a Row and Column for *m*...

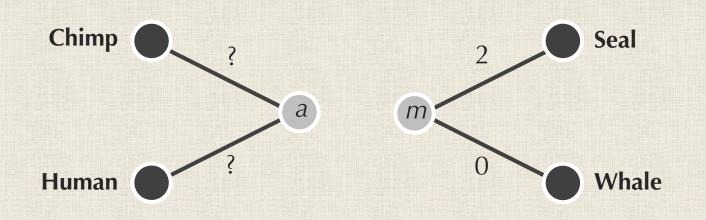


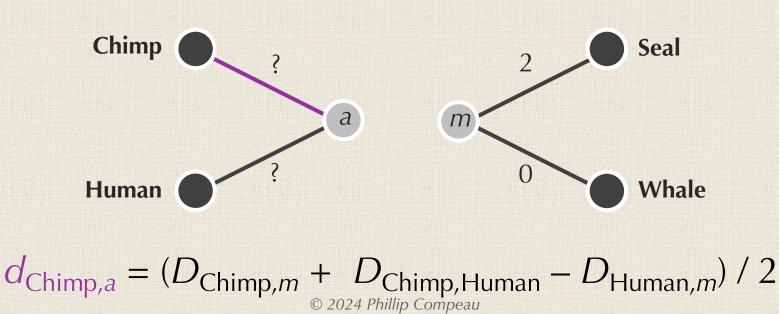
... and recurse on this 3x3 matrix!

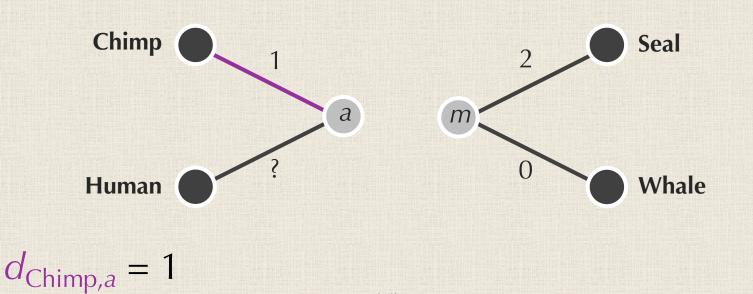


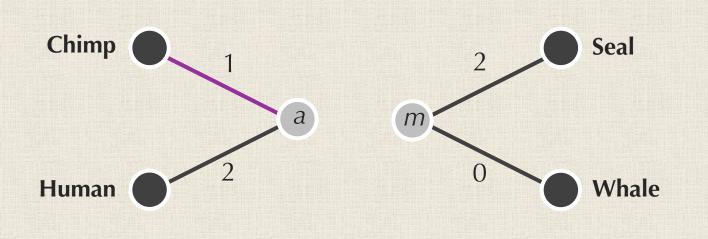
... and recurse on this 3x3 matrix!



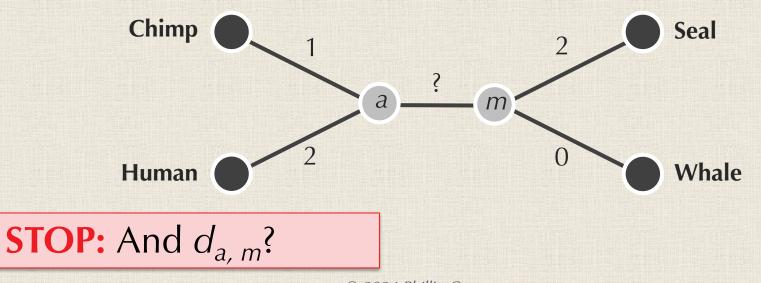


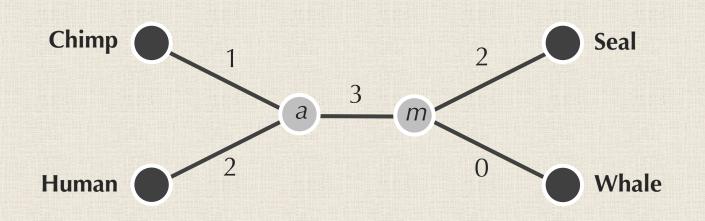






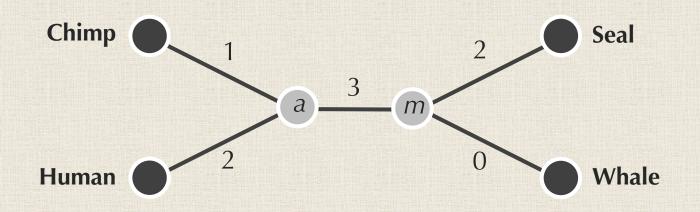
 $d_{\text{Chimp},a} = 1$, so $d_{\text{Human},a} = d_{\text{Human}, \text{Chimp}} - d_{\text{Chimp},a} = 2$





Note that the Matrix Fits the Tree

	Chimp	Human	Seal	Whale
Chimp	0	3	6	4
Human	3	0	7	5
Seal	6	7	0	2
Whale	4	5	2	0

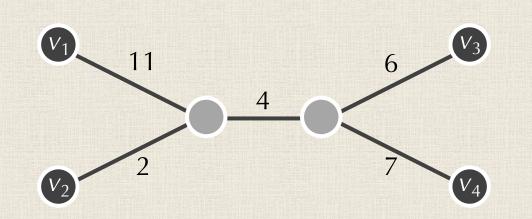


ULTRAMETRIC TREES AND UPGMA

	<i>V</i> ₁	<i>V</i> ₂	<i>V</i> ₃	<i>V</i> ₄
<i>v</i> ₁	0	13	21	22
<i>v</i> ₂	13	0	12	13
<i>V</i> ₃	21	12	0	13
<i>v</i> ₄	22	13	13	0

Exercise: Apply our recursive approach to this additive distance matrix.

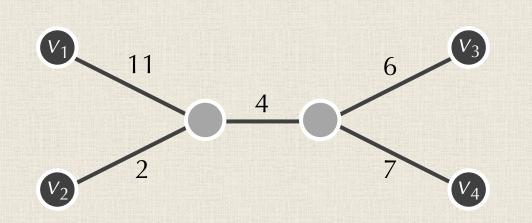
	<i>V</i> ₁	<i>V</i> ₂	<i>V</i> ₃	<i>V</i> ₄
<i>V</i> ₁	0	13	21	22
<i>V</i> ₂	13	0	12	13
<i>V</i> ₃	21	12	0	13
<i>V</i> ₄	22	13	13	0



Here is the tree fitting the matrix...

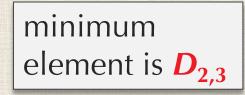
	<i>V</i> ₁	<i>V</i> ₂	<i>V</i> ₃	<i>V</i> ₄
<i>v</i> ₁	0	13	21	22
<i>V</i> ₂	13	0	12	13
<i>V</i> ₃	21	12	0	13
<i>V</i> ₄	22	13	13	0

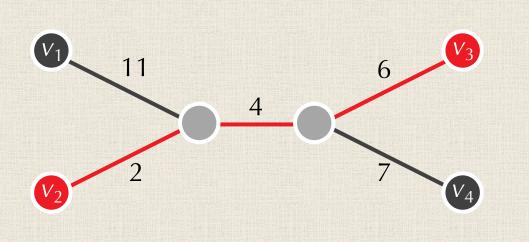
minimum element is **D_{2,3}**



Here is the tree fitting the matrix...

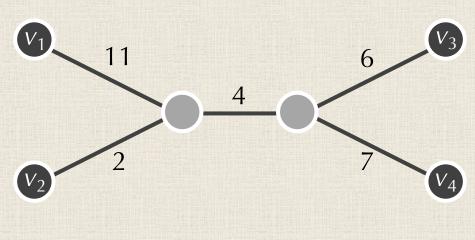
	<i>V</i> ₁	<i>V</i> ₂	<i>V</i> ₃	V_4	
<i>v</i> ₁	0	13	21	22	
<i>V</i> ₂	13	0	12	13	
<i>V</i> ₃	21	12	0	13	
<i>V</i> ₄	22	13	13	0	





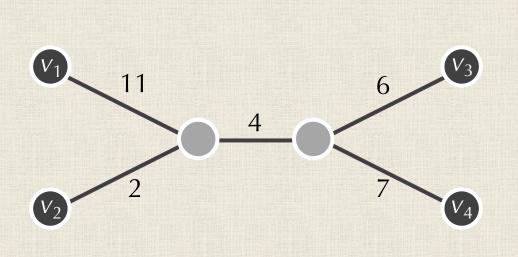
	<i>V</i> ₁	<i>V</i> ₂	<i>V</i> ₃	<i>V</i> ₄
<i>v</i> ₁	0	13	21	22
<i>v</i> ₂	13	0	12	13
<i>V</i> ₃	21	12	0	13
<i>V</i> ₄	22	13	13	0

STOP: What about the tree prevents the minimum matrix element from corresponding to neighbors?



	<i>v</i> ₁	<i>V</i> ₂	<i>V</i> ₃	<i>V</i> ₄
<i>v</i> ₁	0	13	21	22
<i>v</i> ₂	13	0	12	13
<i>V</i> ₃	21	12	0	13
<i>V</i> ₄	22	13	13	0

STOP: What about the tree prevents the minimum matrix element from corresponding to neighbors?



Answer: v_1 is an outlier, so the distance from v_1 to any other node is higher than average.

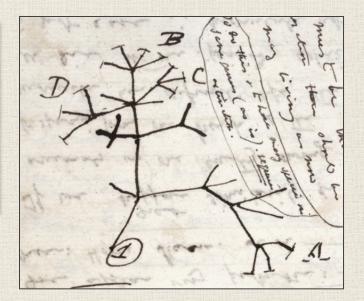
Modeling Speciations

Even though the minimum element of *D* doesn't necessarily correspond to neighbors, this assumption powers one of the most famous evolutionary tree heuristics.

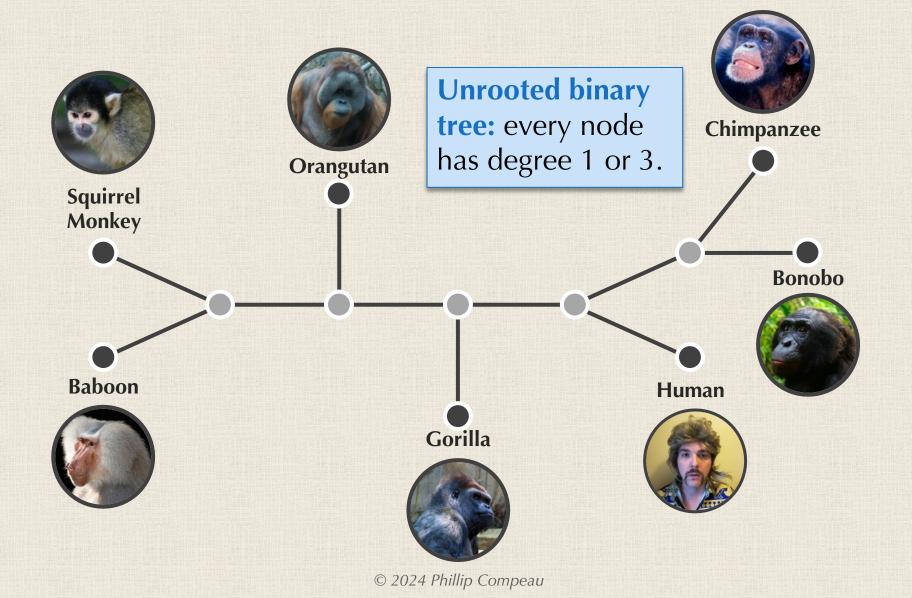
Modeling Speciations

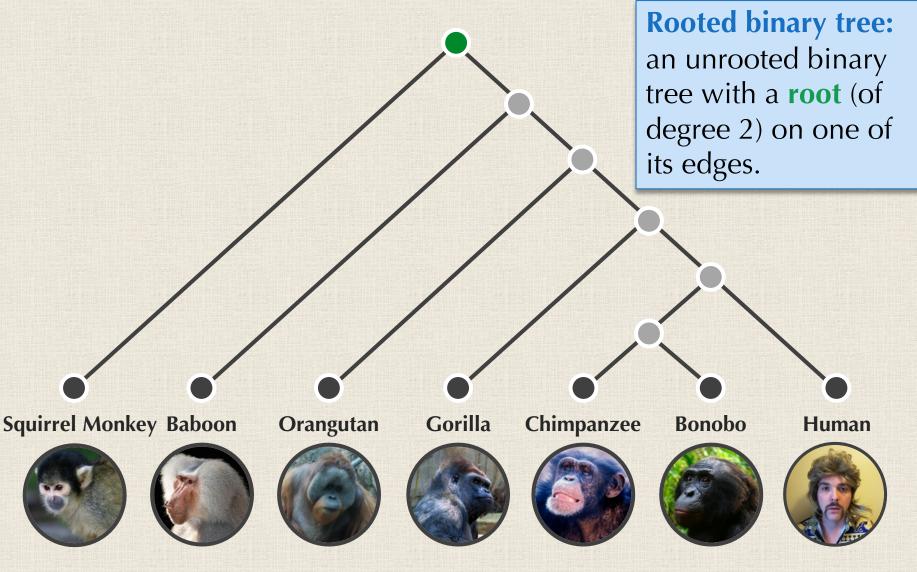
Even though the minimum element of *D* doesn't necessarily correspond to neighbors, this assumption powers one of the most famous evolutionary tree heuristics.

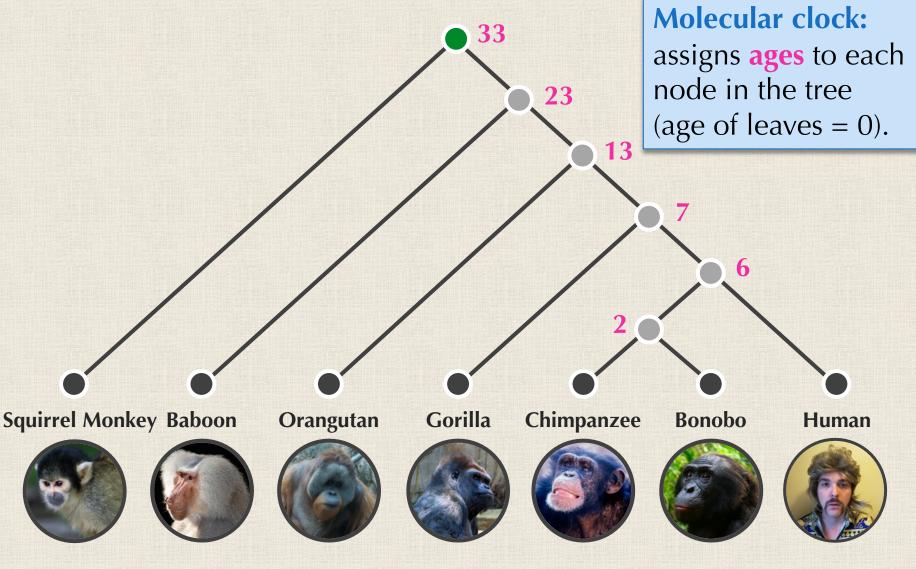
Researchers often assume that all internal nodes correspond to **speciations**, where one species splits into two.

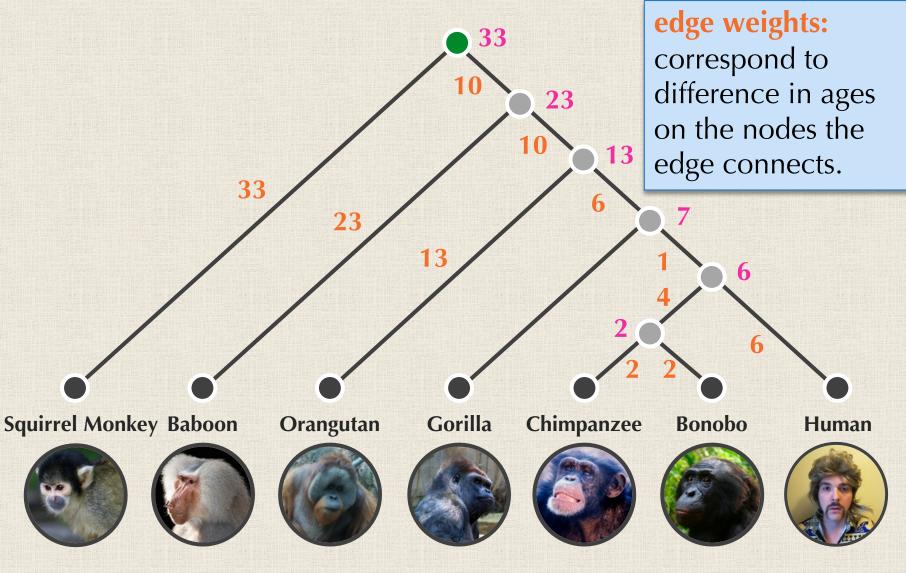


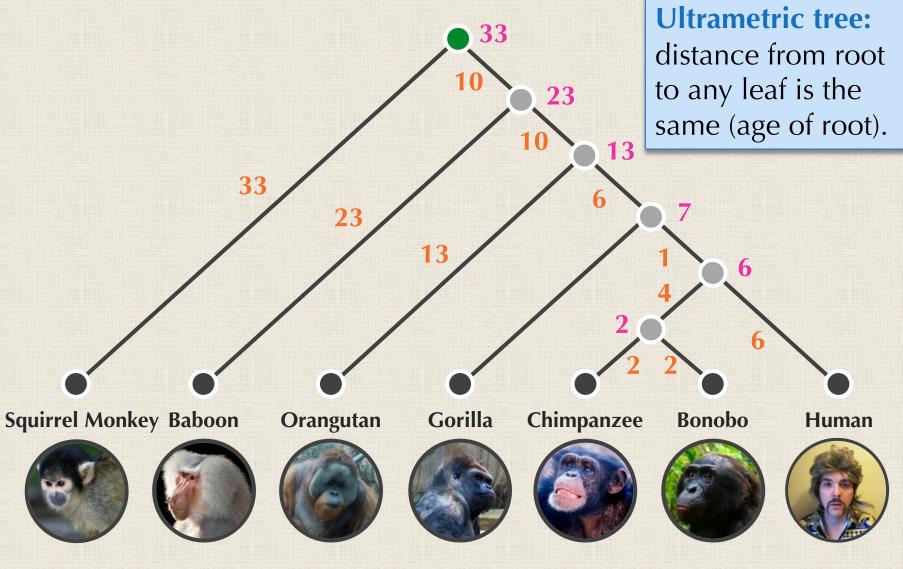
We've Thus Far Seen Unrooted Trees











1. Form a cluster for each present-day species, each containing a single leaf.

i j k i i i i i i i i i i k i

0

0

2. Find the two closest clusters C_1 and C_2 according to the minimum value in the current matrix.

i j k i i i i i i i i i i k i

🚺 0 🊺 0 🔥 0 🦺

0

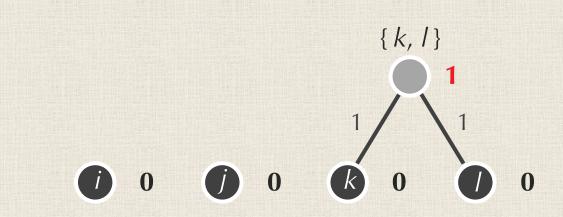
3. Merge C_1 and C_2 into a single cluster *C*.

(i) 0

 $\{k, l\}$

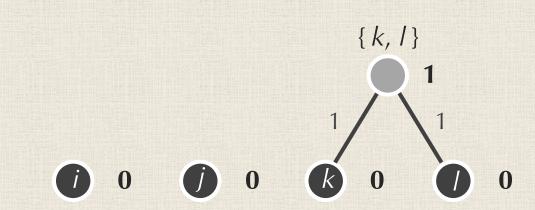
0

4. Form a new node for *C* and connect to C_1 and C_2 by an edge. Set age of *C* as $D(C_1, C_2)/2$.

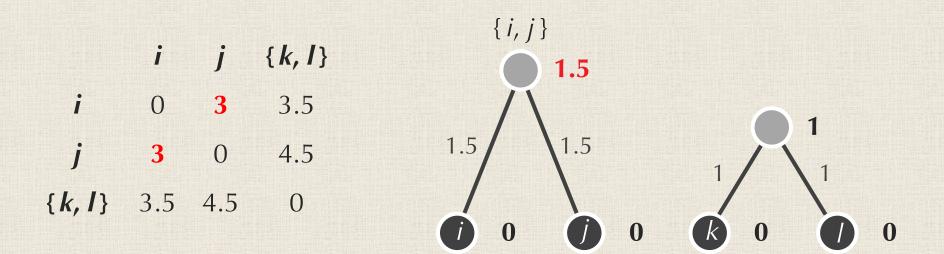


5. Update the distance matrix by computing the average distance between each pair of clusters.

i j {*k*, *l*} *i* 0 3 3.5 *j* 3 0 4.5
{*k*, *l*} 3.5 4.5 0

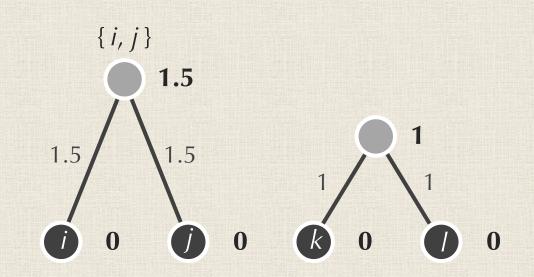


6. Iterate steps 2-5 until a single cluster contains all species.



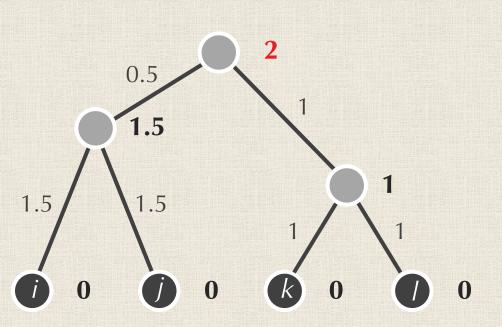
6. Iterate steps 2-5 until a single cluster contains all species.

{*i*, *j*} {*k*, *l*} {*i*, *j*} 0 4 {*k*, *l*} 4 0



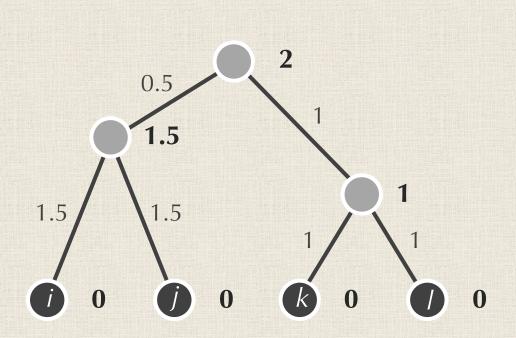
6. Iterate steps 2-5 until a single cluster contains all species.

{i, j} {k, l}
{i, j} 0 4
{k, l} 4 0

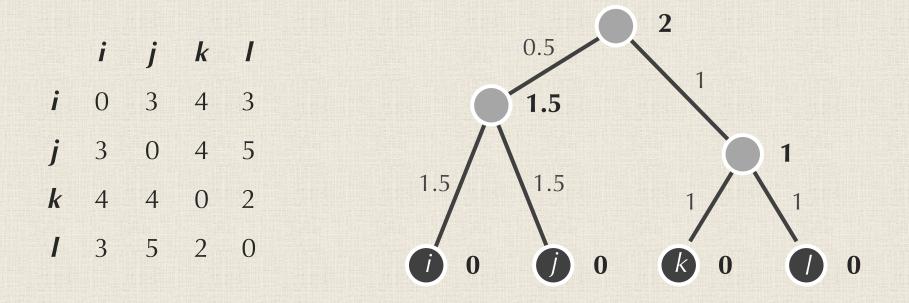


UPGMA: A Clustering Heuristic

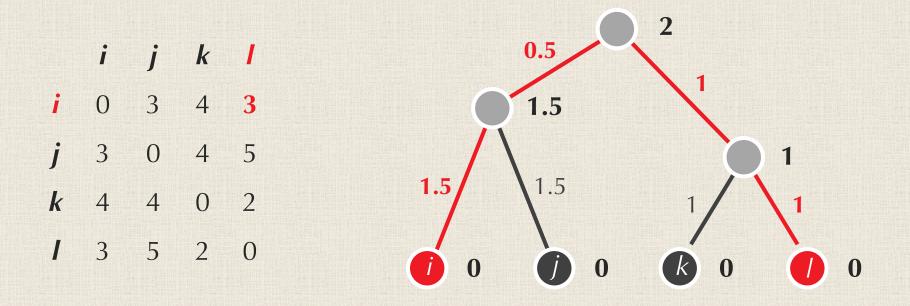
6. Iterate steps 2-5 until a single cluster contains all species.



UPGMA Doesn't "Fit" a Tree to a Matrix



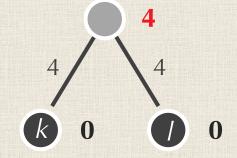
UPGMA Doesn't "Fit" a Tree to a Matrix



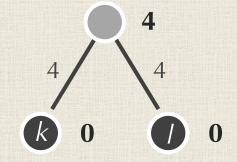
Exercise: Apply UPGMA to the following matrix.

i j k i i i i i i i i i i k i

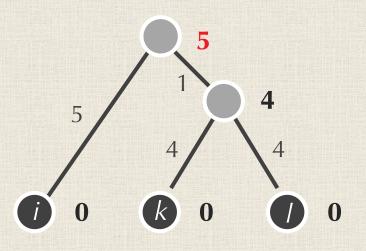
	i	j	k	1	
i	0	20	9	11	
j	20	0	17	11	
k	9	17	0	8	
Ι	11	11	8	0	



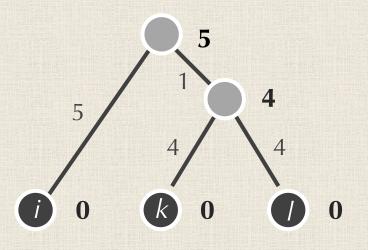
	i	j	{ <i>k, I</i> }
i	0	20	10
j	20	0	14
{ <i>k, I</i> }	10	14	0



i j {*k*, *l*} *i* 0 20 **10** *j* 20 0 14 {*k*, *l*} **10** 14 0

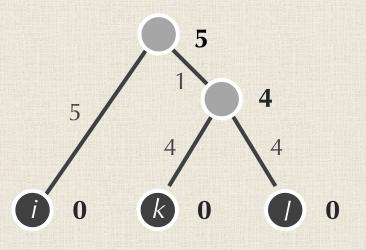


j {*i*, *k*, *l*} *j* 0 17 {*i*, *k*, *l*} 17 0



STOP: This is wrong. Why?

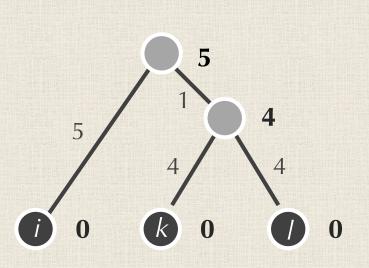
j {i, k, l} j 0 17 {i, k, l} 17 0



Average Distance Must be Weighted

Answer: The average distance from *j* to *i*, *k*, and *l* is (20+17+11)/3 = 16, not 17.

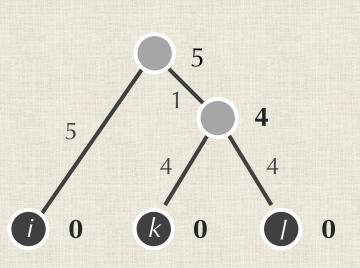
	i	j	k	1
i	0	20	9	11
j	20	0	17	11
k	9	17	0	8
Ι	11	11	8	0



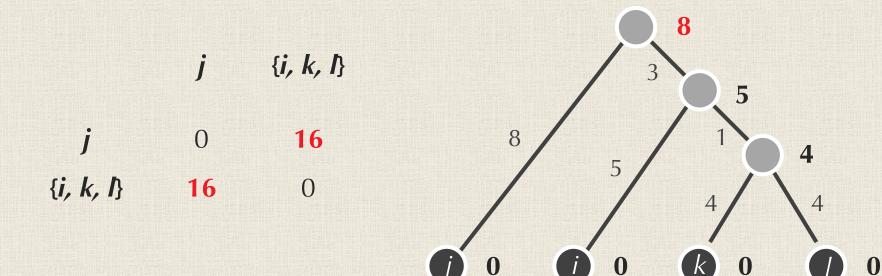
Average Distance Must be Weighted

Answer: The average distance from *j* to *i*, *k*, and *l* is (20+17+11)/3 = 16, not 17.

	i	j	{ <i>k, I</i> }
i	0	20	10
j	20	0	14
{ <i>k, I</i> }	10	14	0



Average Distance Must be Weighted

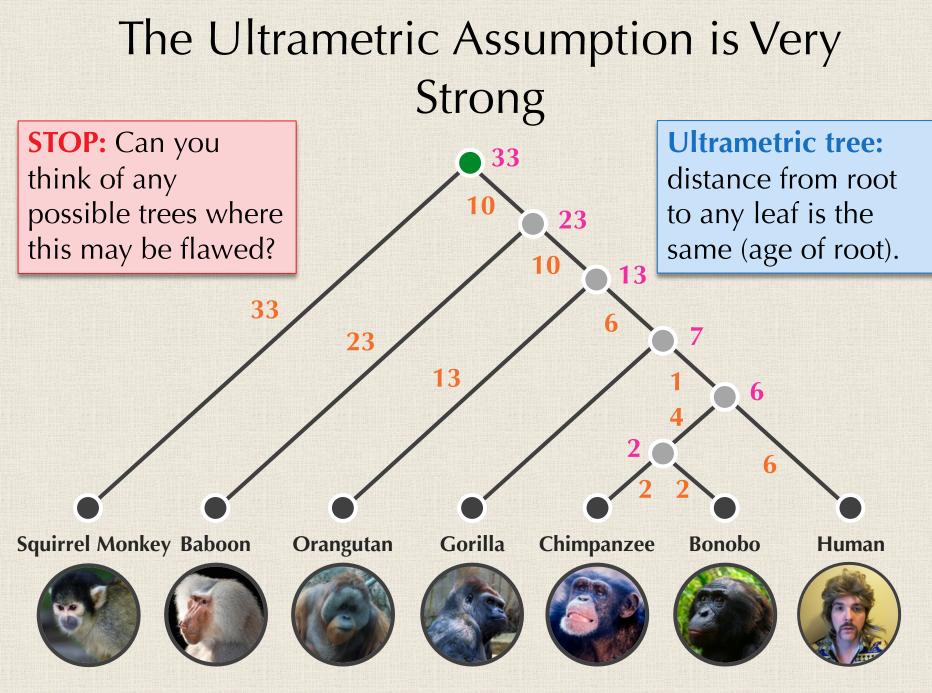


© 2024 Phillip Compeau

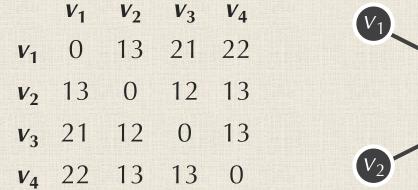
0

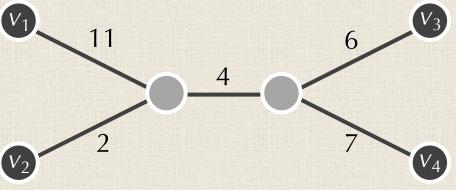
0

0



UPGMA May Even Fail on an Additive Matrix





Furthermore, this is an additive matrix, and yet UPGMA will join v_2 and v_3 , producing the *wrong* tree even though there is one that perfectly fits it!

UPGMA is Suboptimal But Has Become "Machine Learning"...

THE UNIVERSITY OF KANSAS SCIENCE BULLETIN

Vol. XXXVIII, Pt. II] March 20, 1958

[No. 22

A Statistical Method for Evaluating Systematic Relationships ¹

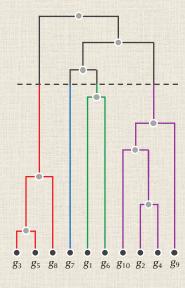
BY

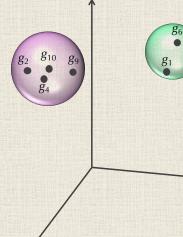
ROBERT R. SOKAL and CHARLES D. MICHENER² Department of Entomology University of Kansas, Lawrence

ABSTRACT. Starting with correlation coefficients (based on numerous characters) among species, of a systematic unit, the authors developed a method for grouping species, and regrouping the resultant assemblages, to form a classificatory hierarchy most easily expressed as a treelike diagram of relationships. The details of the method are described, using as an example a group of bees. The resulting classification was similar to that previously established by classical systematic methods, although some taxonomic changes were made in view of the new light thrown on relationships. The method is time consuming, although practical in isolated cases, with punched-card machines such as were used; it becomes generally practical with increasingly widely available digital computers.

INTRODUCTION

The purpose of the study reported here was to develop a quantitative index of relationship between any two species of a higher systematic unit, as well as to exploit such indices of association in the establishment of a satisfactory hierarchy. The authors became interested in the development of such a method when they attempted to find a technique for classifying organisms that was free from the subjectivity inherent in customary taxonomic procedure. In your <u>"ML"</u> AI future, you may learn about **hierarchical clustering**, a generalization of UPGMA.

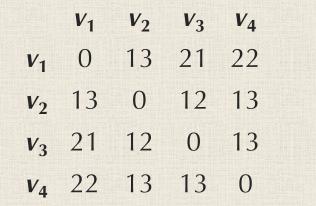


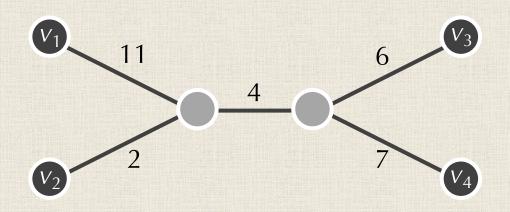


^{1.} Contribution number 945 from the Department of Entomology. University of Kansta, 2. We with the acknowledge the constructive criticine received in connection with this and related work from the following individuals who kindly gave their time to read and comment upon the manuscript: Paul R. Ehrlich, University of Kanssa, Raymond R. Catell, University of Elimosis, Affred E. Emerson, University of Cansas, Raymond R. Catell, University, G. G. Simpson, American Museum of Natural History; Feter G. Silvester-Radley, University of Kansas and University of Sheet C. Subvester Radley, Chiversity of Kansas and University of Sheet C. Subvester and the opinions which we have expressed. Acknowledgement is also due to the University of Kansas General Research Fund for

THE NEIGHBOR-JOINING ALGORITHM

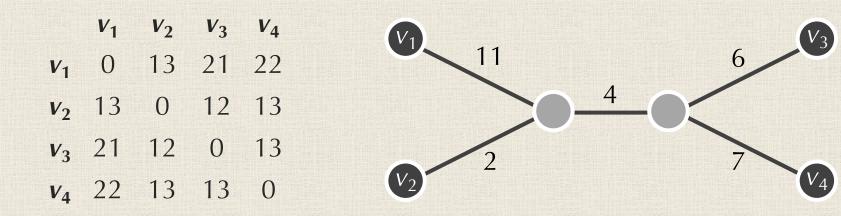
Recall: Outliers were the Issue





Recall: Outliers prevented minimum elements from corresponding to neighbors.

Recall: Outliers were the Issue



Recall: Outliers prevented minimum elements from corresponding to neighbors.

Key Insight: What if our idea of joining neighbors was GREAT, we just need to change the matrix?

Given an $n \ge n$ distance matrix D, its **neighbor-joining matrix** is the matrix D^* defined as

 $D^*_{i,j} = (n-2) \bullet D_{i,j} - TotalDistance_D(i) - TotalDistance_D(j)$

where *TotalDistance*_D(i) is the sum of distances from i to all other leaves.

Given an *n* x *n* distance matrix *D*, its **neighbor-joining matrix** is the matrix *D** defined as

 $D^*_{i,j} = (n-2) \bullet D_{i,j} - TotalDistance_D(i) - TotalDistance_D(j)$

where *TotalDistance*_D(i) is the sum of distances from i to all other leaves.

		<i>v</i> ₁	<i>v</i> ₂	<i>V</i> ₃	<i>V</i> 4	
	<i>v</i> ₁	0	13	21	22	
	<i>v</i> ₂	13	0	12	13	
,	<i>V</i> ₃	21	12	0	13	
	<i>v</i> ₄	22	13	13	0	

Given an *n* x *n* distance matrix *D*, its **neighbor-joining matrix** is the matrix *D** defined as

 $D^*_{i,j} = (n-2) \bullet D_{i,j} - TotalDistance_D(i) - TotalDistance_D(j)$

where *TotalDistance*_D(i) is the sum of distances from i to all other leaves.

		<i>v</i> ₁	<i>V</i> ₂	V ₃	<i>V</i> 4	TotalDistance _D
	<i>v</i> ₁	0	13	21	22	56
	<i>v</i> ₂	13	0	12	13	38
9	<i>V</i> ₃	21	12	0	13	46
	<i>v</i> ₄	22	13	13	0	48

Given an *n* x *n* distance matrix *D*, its **neighbor-joining matrix** is the matrix *D** defined as

 $D^*_{i,j} = (n-2) \bullet D_{i,j} - TotalDistance_D(i) - TotalDistance_D(j)$

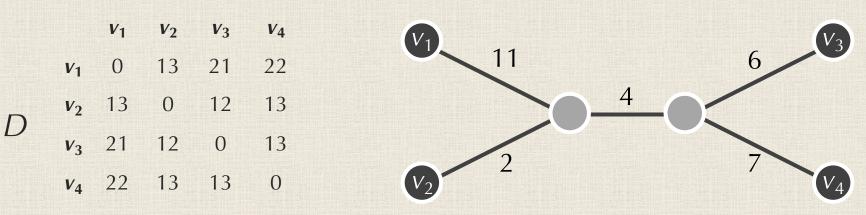
where *TotalDistance*_D(*i*) is the sum of distances from *i* to all other leaves.

		<i>v</i> ₁	<i>V</i> ₂	<i>V</i> ₃	<i>V</i> 4	<i>TotalDistance</i> _D			<i>V</i> ₁	<i>V</i> ₂	<i>V</i> ₃	V 4
	<i>v</i> ₁	0	13	21	22	56		<i>v</i> ₁	0	-68	-60	-60
	<i>v</i> ₂	13	0	12	13 13	38	D*	<i>v</i> ₂	-68	0	-60	-60
D	<i>V</i> ₃	21	12	0	13	46	D^*	<i>V</i> ₃	-60	0 -60	0	-68
	<i>v</i> ₄	22	13	13	0	48		<i>v</i> ₄	-60	-60	-68	0

Given an *n* x *n* distance matrix *D*, its **neighbor-joining matrix** is the matrix *D** defined as

 $D^*_{i,j} = (n-2) \bullet D_{i,j} - TotalDistance_D(i) - TotalDistance_D(j)$

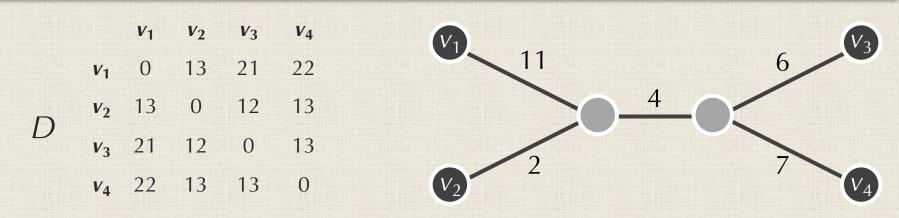
STOP: What does *D** do to outliers?



Given an *n* x *n* distance matrix *D*, its **neighbor-joining matrix** is the matrix *D** defined as

 $D^*_{i,j} = (n-2) \bullet D_{i,j} - TotalDistance_D(i) - TotalDistance_D(j)$

Answer: If *i* is an outlier, *TotalDistance*_D(*i*) goes up, which causes $D^*_{i,i}$ to go down.



Neighbor-Joining Theorem: If *D* is additive, then the smallest element of *D** corresponds to neighboring leaves in *Tree*(*D*)!

		<i>v</i> ₁	<i>V</i> ₂	<i>V</i> ₃	<i>V</i> 4	<i>TotalDistance_D</i>			<i>v</i> ₁	<i>V</i> ₂	<i>V</i> ₃	<i>V</i> 4
	<i>v</i> ₁	0	13	21	22	56		<i>v</i> ₁	0	-68	-60	-60
•	<i>v</i> ₂	13	0	12	13	38	D*	<i>v</i> ₂	-68	0	-60	-60
)	<i>V</i> ₃	21	12	0	13	46	D^*	<i>V</i> ₃	-60	-60	-60 0	-68
	<i>v</i> ₄	22	13	13	0	48		<i>v</i> ₄	-60	-60	-68	0

Neighbor-Joining Theorem: If *D* is additive, then the smallest element of *D** corresponds to neighboring leaves in *Tree*(*D*)!

		<i>v</i> ₁	<i>v</i> ₂	<i>V</i> ₃	V4	TotalDistance _D			<i>v</i> ₁	<i>V</i> ₂	<i>V</i> ₃	<i>V</i> 4
	<i>v</i> ₁	0	13	21	22	56		<i>v</i> ₁	0	-68	-60	-60
7	<i>v</i> ₂	13	0	12	13	38	D*	<i>v</i> ₂	-68	0	-60 0	-60
)	<i>V</i> ₃	21	12	0	13	46	D^*	<i>V</i> ₃	-60	-60	0	-68
	<i>v</i> ₄	22	13	13	0	48		<i>v</i> ₄	-60	-60	-68	0

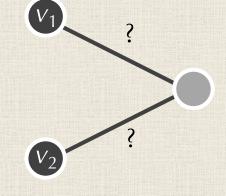
		<i>v</i> ₁	<i>v</i> ₂	<i>V</i> ₃	<i>v</i> ₄	<i>TotalDistance_D</i>
	<i>v</i> ₁	0	-68	-60	-60	56
D^*	<i>v</i> ₂	-68	0	-60	-60	38
	<i>V</i> ₃	-60	-60	0	-68	46
	<i>V</i> 4	-60	-60	-68	0	48

1. Construct neighbor-joining matrix D^* from D.

		<i>v</i> ₁	<i>v</i> ₂	<i>V</i> ₃	<i>v</i> ₄	<i>TotalDistance_D</i>
	<i>v</i> ₁	0	-68	-60	-60	56
<i>D</i> *	<i>v</i> ₂	-68	0	-60	-60	38
	<i>V</i> ₃	-60	-60	0	-68	46
	<i>V</i> 4	-60	-60	-68	0	48

2. Find a minimum element $D^*_{i,j}$ of D^* .

		<i>v</i> ₁	<i>v</i> ₂	<i>V</i> ₃	<i>V</i> ₄	<i>TotalDistance_D</i>
	<i>v</i> ₁	0	-68	-60	-60	56
D^*	<i>v</i> ₂	-68	0	-60	-60	38
	<i>V</i> ₃	-60	-60	0	-68	46
	<i>v</i> ₄	-60	-60	-68	0	48



By the Neighbor-Joining Theorem, we know that this means that v_1 and v_2 are neighbors. But what are the "?" distances?

$$d_{i,k} = d_{i,m} + d_{k,m}$$

$$d_{i,j} = d_{i,m} + d_{j,m}$$

$$d_{j,k} = d_{j,m} + d_{k,m}$$

$$d_{k,m} = [(d_{i,m} + d_{k,m}) + (d_{j,m} + d_{k,m}) - (d_{i,m} + d_{j,m})] / 2$$

$$d_{k,m} = (d_{i,k} + d_{j,k} - d_{i,j}) / 2$$

$$d_{k,m} = (D_{i,k} + D_{j,k} - D_{i,j}) / 2$$

$$d_{i,m} = D_{i,k} - (D_{i,k} + D_{j,k} - D_{i,j}) / 2$$

$$d_{i,m} = (D_{i,k} + D_{i,j} - D_{j,k}) / 2$$

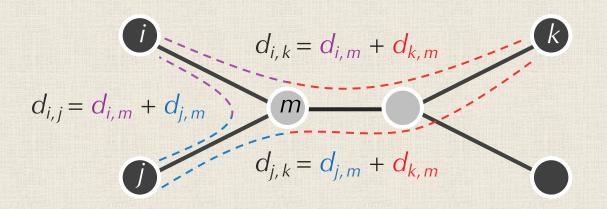
$$d_{i,k} = d_{i,m} + d_{k,m}$$

$$d_{i,j} = d_{i,m} + d_{j,m}$$

$$d_{j,k} = d_{j,m} + d_{k,m}$$

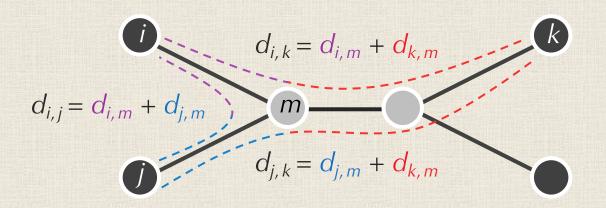
Define a **limb** as the edge from a leaf to its parent, and *LimbLength*(*i*) as the length of the limb at leaf *i*.

$$d_{i,m} = (D_{i,k} + D_{i,j} - D_{j,k}) / 2 = LimbLength(i)$$



STOP: The following formula must hold if *D* is additive and *i* and *j* are neighbors ... But what if *D* is not additive?

$$d_{i,m} = (D_{i,k} + D_{i,j} - D_{j,k}) / 2 = LimbLength(i)$$

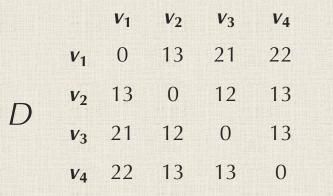


Answer: Take the *average* of this formula over every *k* other than *i* and *j*.

$$d_{i,m} = (D_{i,k} + D_{i,j} - D_{j,k}) / 2 = LimbLength(i)$$

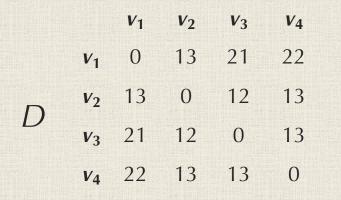
		<i>v</i> ₁	<i>v</i> ₂	<i>V</i> ₃	<i>v</i> ₄	<i>TotalDistance_D</i>	v_1
	<i>v</i> ₁	0	-68	-60	-60	56	
D*	<i>v</i> ₂	-68	0	-60	-60	38	
	<i>V</i> ₃	-60	-60	0	-68	46	
	<i>V</i> 4	-60	-60	-68	0	48	V_2

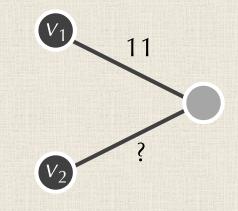
3. Having found that *i* and *j* are neighbors, take the average $(D_{i,k} + D_{i,j} - D_{j,k})/2$ over all *k* not equal to *i*, *j*. Set *LimbLength*(*i*) equal to this average.



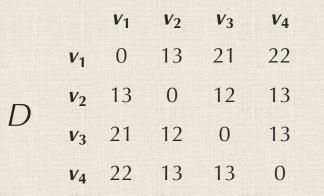
Exercise: What should be the limb length of v_1 ?

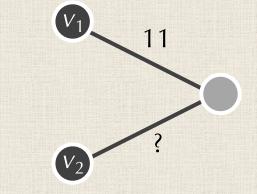
3. Having found that *i* and *j* are neighbors, take the average $(D_{i,k} + D_{i,j} - D_{j,k})/2$ over all *k* not equal to *i*, *j*. Set *LimbLength*(*i*) equal to this average.





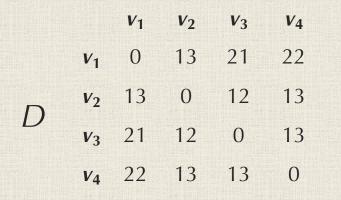
4. Set *LimbLength*(*j*) equal to $D_{i,j}$ – *LimbLength*(*i*).

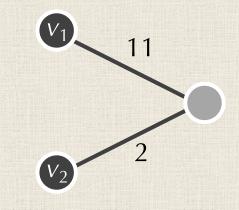




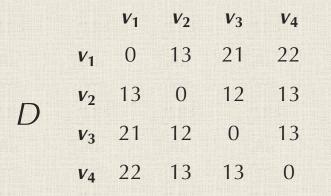
Exercise: What should be the limb length of v_2 ?

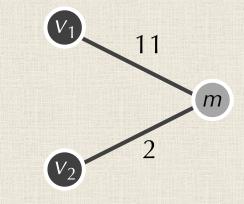
4. Set *LimbLength*(*j*) equal to $D_{i,j}$ – *LimbLength*(*i*).





4. Set LimbLength(j) equal to $D_{i,j} - LimbLength(i)$.





Now we want to apply a recursive algorithm. To do so, we ask what the distance from *m* (the parent of our neighbors) to every other node should be.

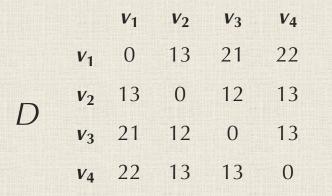
Flashback: Computation of $d_{k,m}$

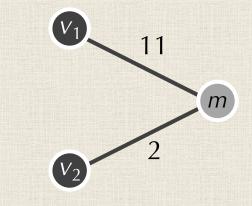
$$d_{i,k} = d_{i,m} + d_{k,m}$$

$$d_{i,j} = d_{i,m} + d_{j,m}$$

$$d_{j,k} = d_{j,m} + d_{k,m}$$

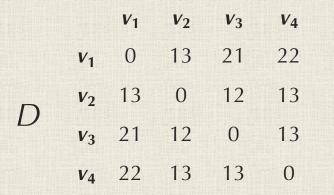
 $d_{k,m} = [(d_{i,m} + d_{k,m}) + (d_{j,m} + d_{k,m}) - (d_{i,m} + d_{j,m})] / 2$ $d_{k,m} = (d_{i,k} + d_{j,k} - d_{i,j}) / 2$ $d_{k,m} = (D_{i,k} + D_{j,k} - D_{i,j}) / 2$

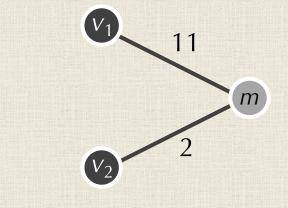




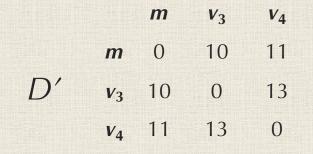
5. Form a matrix *D'* by removing *i*-th and *j*-th row/column from *D* and adding an *m*-th row/column such that for any k, $D'_{k,m} = (D_{i,k} + D_{j,k} - D_{i,j}) / 2$.

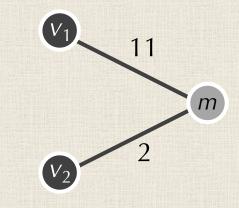
Exercise: Compute distance from *m* to v_3 and v_4 .



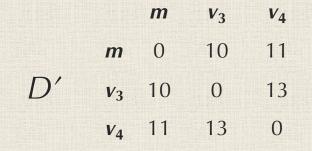


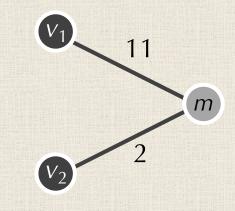
5. Form a matrix *D'* by removing *i*-th and *j*-th row/column from *D* and adding an *m*-th row/column such that for any k, $D'_{k,m} = (D_{i,k} + D_{j,k} - D_{i,j}) / 2$.



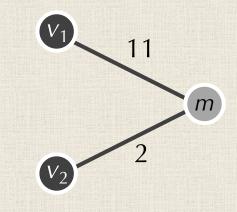


5. Form a matrix *D'* by removing *i*-th and *j*-th row/column from *D* and adding an *m*-th row/column such that for any *k*, $D'_{k,m} = (D_{i,k} + D_{j,k} - D_{i,j}) / 2$.





STOP: What should we do now?

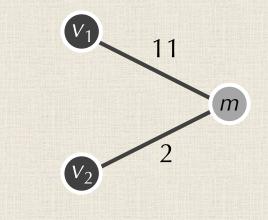


STOP: What should we do now?

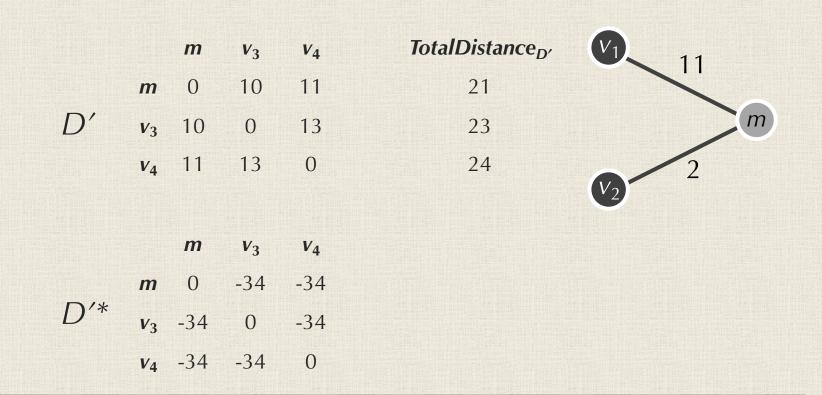
Answer: Recursion on our 3 x 3 matrix!

Exercise: Carry out one more step of the algorithm.

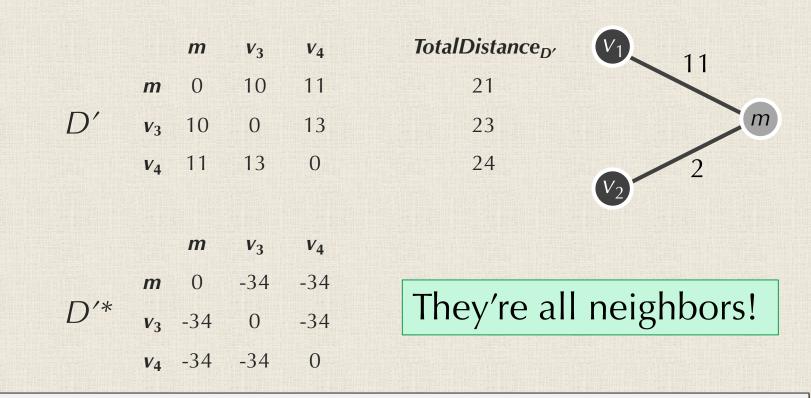
		т	<i>V</i> ₃	<i>v</i> ₄
	т	0	10	11
D'	<i>V</i> ₃	10	0	13
	<i>v</i> ₄	11	13	0



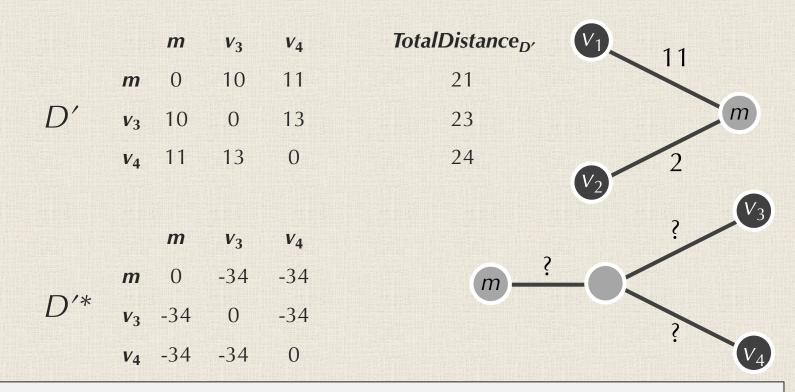
- 1. Construct neighbor-joining matrix D^* from D.
- 2. Find a minimum element $D^*_{i,j}$ of D^* .
- 3. Having found that *i* and *j* are neighbors, take the average $(D_{i,k} + D_{i,j} D_{j,k}) / 2$ over all *k* not equal to *i*, *j*. Set LimbLength(*i*) equal to this average.
- 4. Set LimbLength(j) equal to $D_{i,j} LimbLength(j)$.
- 5. Form a matrix *D'* by removing *i*-th and *j*-th row/column from *D* and adding an *m*-th row/column such that for any k, $D_{k,m} = (D_{k,i} + D_{k,j} D_{i,j}) / 2$.



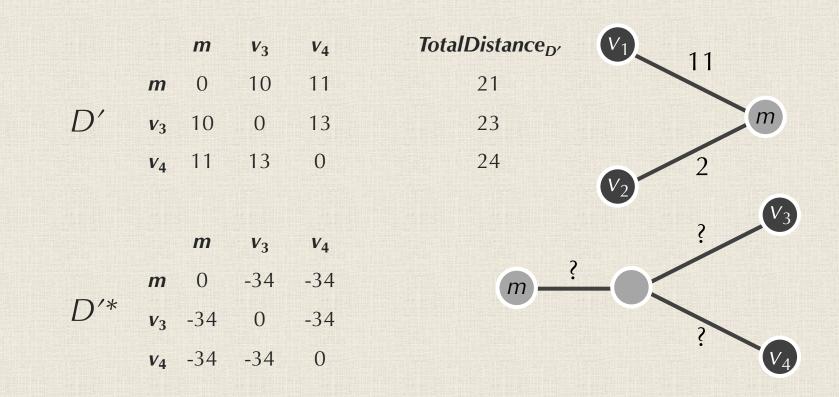
1. Construct neighbor-joining matrix.



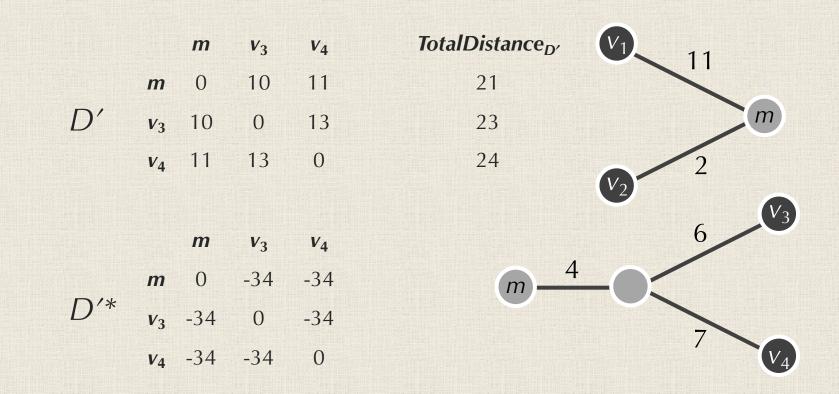
2. Find a minimum element $D^*_{i,i}$ of D^* .



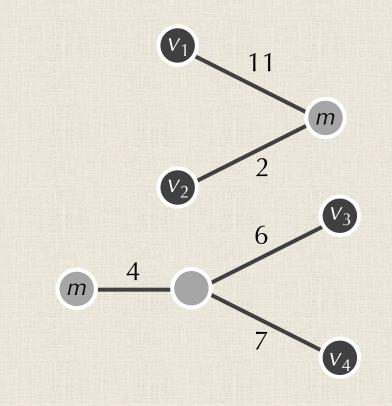
3. For any *i*, set *LimbLength*(*i*) equal to the average $(D_{i,k} + D_{i,j} - D_{i,k})/2$ over all *k* not equal to *i*, *j*.



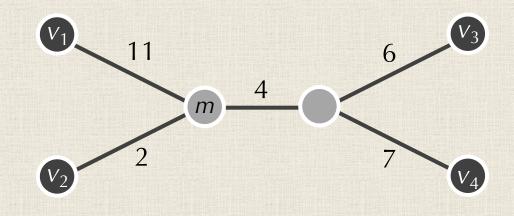
STOP: What are the limb lengths?



We hit a base case! Now add remaining limbs ...



We hit a base case! Now add remaining limbs ...



... and we're done!

Neighbor-Joining Summary

NeighborJoining(D):

- 1. Construct neighbor-joining matrix *D** from *D*.
- 2. Find a minimum element $D^*_{i,j}$ of D^* .
- 3. Having found that *i* and *j* are neighbors, take the average $(D_{i,k} + D_{i,j} D_{j,k})$ over all *k* not equal to *i*, *j*. Set LimbLength(*i*) equal to this average.
- 4. Set LimbLength(*j*) equal to $D_{i,j}$ LimbLength(*j*).
- 5. Form a matrix *D'* by removing *i*-th and *j*-th row/column from *D* and adding an *m*-th row/column such that for any $k, D_{k,m} = (D_{k,i} + D_{k,j} - D_{i,j}) / 2.$
- 6. Apply **NeighborJoining** recursively to D' to obtain *Tree*(D').
- 7. Reattach limbs of *i* and *j* to obtain *Tree*(*D*).

Weakness of Distance-Based Methods

Distance-based algorithms for evolutionary tree reconstruction say nothing about ancestral states at internal nodes.

Weakness of Distance-Based Methods

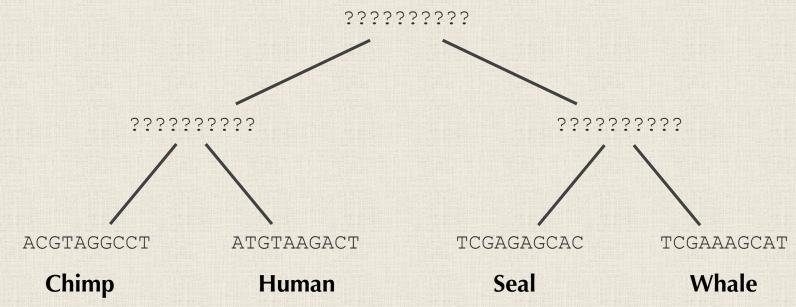
Distance-based algorithms for evolutionary tree reconstruction say nothing about ancestral states at internal nodes.

We *lost* information when we converted a multiple alignment to a distance matrix...

Species	Alignment	Distance Matrix			
		Chimp	Human	Seal	Whale
Chimp	ACGTAGGCCT	0	3	6	4
Human	ATGTAAGACT	3	0	7	5
Seal	TCGAGAGCAC	6	7	0	2
Whale	TCGAAAGCAT	4	5	2	0

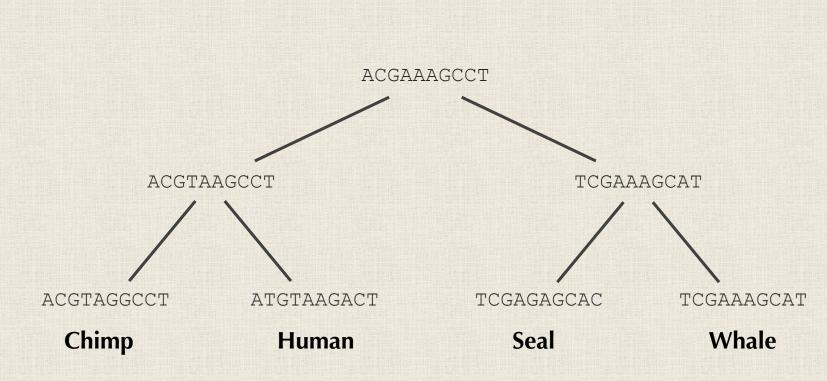
THE SMALL PARSIMONY ALGORITHM

Goal: Infer Ancestral Sequences



Goal: Infer Ancestral Sequences

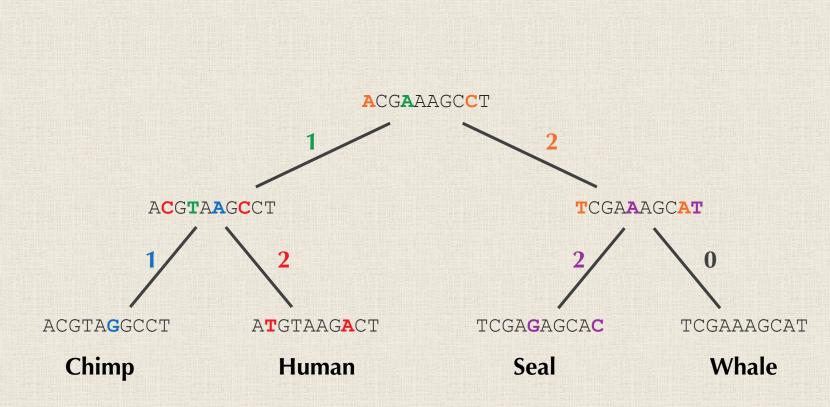
STOP: Here's a hypothetical assignment of strings to ancestral nodes. How can we know how good it is?



^{© 2024} Phillip Compeau

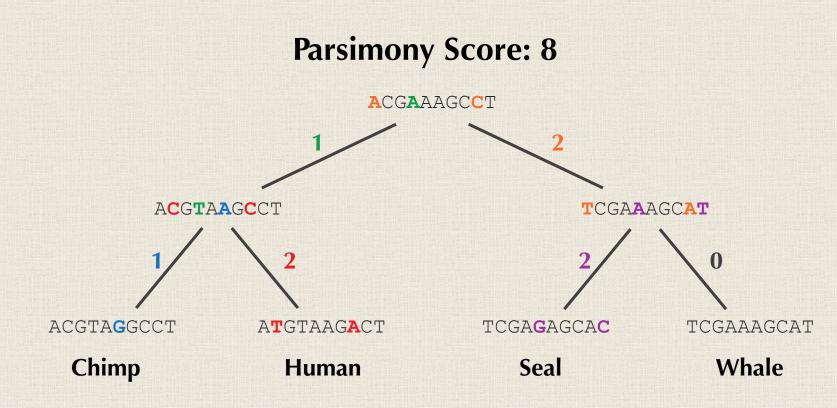
How good is a *given* assignment of strings to internal nodes?

Parsimony score: sum of Hamming distances (total mismatches) along each edge.



How good is a *given* assignment of strings to internal nodes?

Parsimony score: sum of Hamming distances (total mismatches) along each edge.



What Does "Parsimony" Mean?

parsimony noun

par·si·mo·ny | \'pär-sə-ˌmō-nē 🕥 \

Definition of parsimony

1 a : the quality of being careful with money or resources : <u>THRIFT</u>

II the necessity of wartime *parsimony*

- b : the quality or state of being stingy// The charity was surprised by the *parsimony* of some larger corporations.
- 2 : economy in the use of means to an end

especially : economy of explanation in conformity with <u>Occam's razor</u>

II the scientific law of *parsimony* dictates that any example of animal behavior should be interpreted at its simplest, most immediate level

— Peter Gorner

Ockham chooses a razor

Small Parsimony Problem:

- **Input:** A rooted binary tree with each leaf labeled by a string of length *m*.
- **Output:** A labeling of all other nodes of the tree by strings of length *m* that minimizes the tree's parsimony score.

Small Parsimony Problem:

- **Input:** A rooted binary tree with each leaf labeled by a string of length *m*.
- **Output:** A labeling of all other nodes of the tree by strings of length *m* that minimizes the tree's parsimony score.

STOP: Is there any way we can simplify this problem statement?

Small Parsimony Problem:

- **Input:** A rooted binary tree with each leaf labeled by a **single symbol**.
- **Output:** A labeling of all other nodes of the tree by **single symbols** that minimizes the tree's parsimony score.

STOP: Why is this an acceptable simplification?

Small Parsimony Problem:

- **Input:** A rooted binary tree with each leaf labeled by a **single symbol**.
- **Output:** A labeling of all other nodes of the tree by **single symbols** that minimizes the tree's parsimony score.

Answer: We may choose to assume that the characters are *independent*.

Small Parsimony Problem:

- **Input:** A rooted binary tree with each leaf labeled by a **single symbol**.
- **Output:** A labeling of all other nodes of the tree by **single symbols** that minimizes the tree's parsimony score.

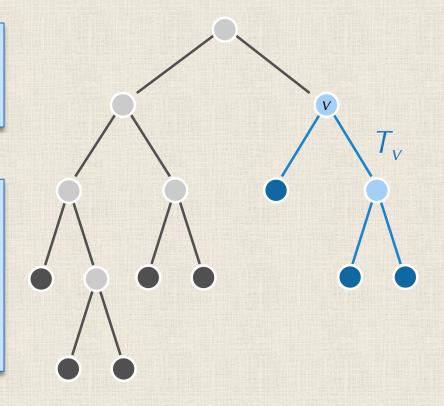
STOP: Any thoughts on what approach we might use to solve this problem?

V

Let T_v denote the subtree of T whose root is v.

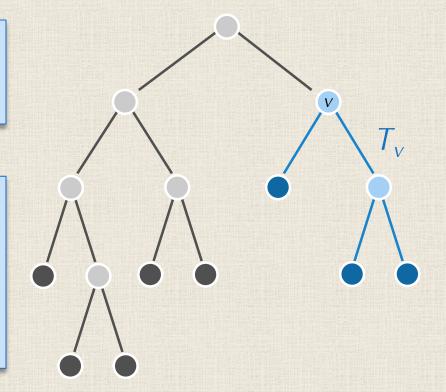
Let T_v denote the subtree of T whose root is v.

Define $s_k(v)$ as the minimum parsimony score of T_v over all labelings of T_v , assuming that v is labeled by k.



Let T_v denote the subtree of T whose root is v.

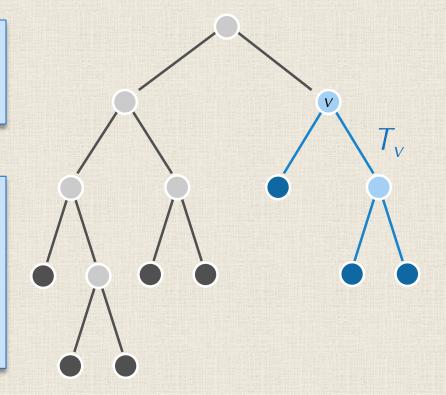
Define $s_k(v)$ as the minimum parsimony score of T_v over all labelings of T_v , assuming that v is labeled by k.



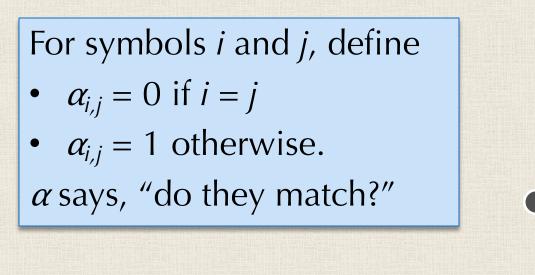
The minimum parsimony score for the tree is equal to the minimum value of $s_k(root)$ over all symbols k.

Let T_v denote the subtree of T whose root is v.

Define $s_k(v)$ as the minimum parsimony score of T_v over all labelings of T_v , assuming that v is labeled by k.

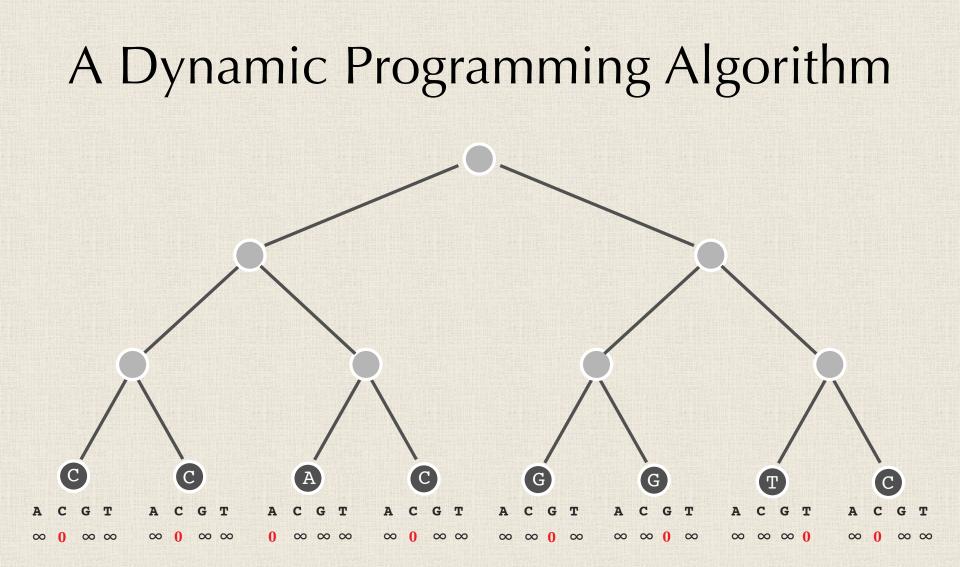


STOP: Can you find a recurrence relation for $s_k(v)$?

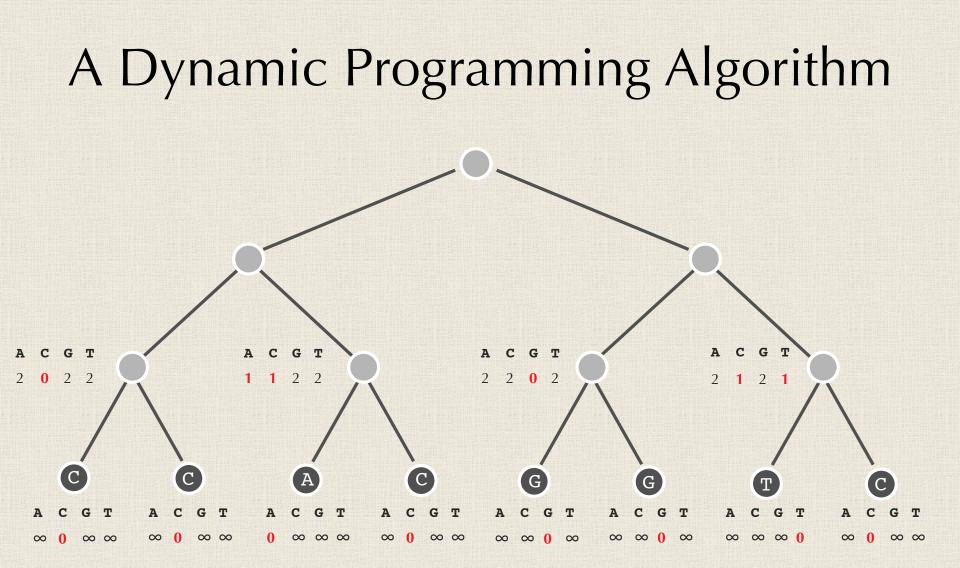


Theorem: The following recurrence relation holds:

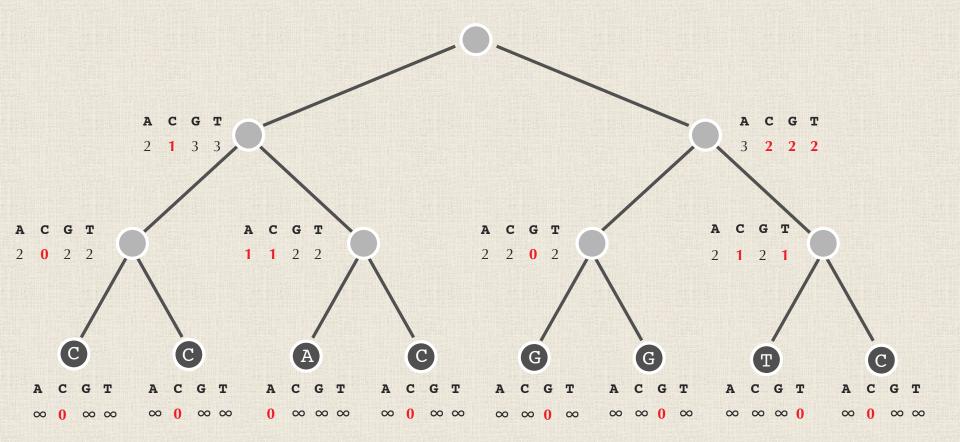
 $s_k(v) = \min_{\text{all symbols } i} \{s_i(Daughter(v)) + \alpha_{i,k}\} + \min_{\text{all symbols } i} \{s_i(Son(v)) + \alpha_{i,k}\}\}$



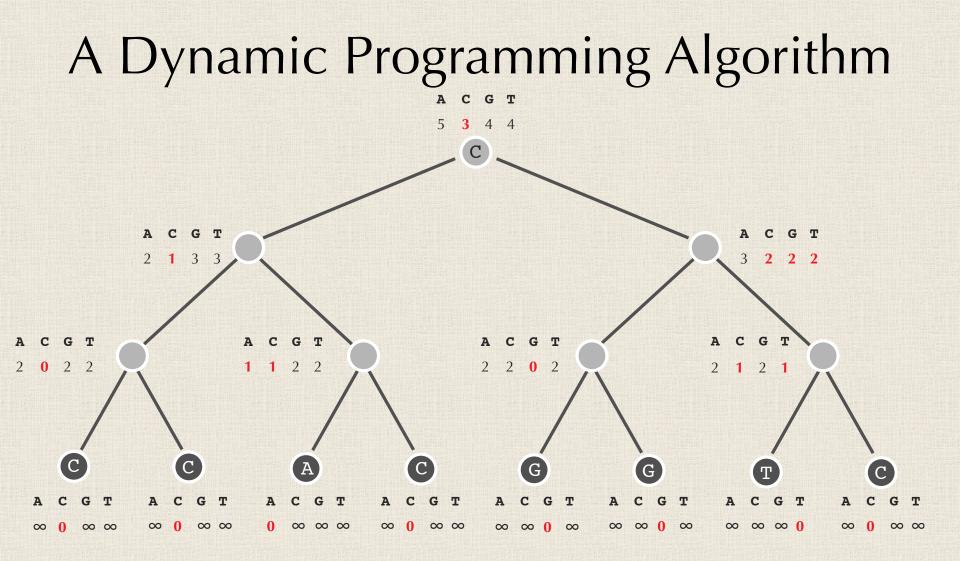
 $s_k(v) = \min_{\text{all symbols } i} \{s_i(Daughter(v)) + \alpha_{i,k}\} + \min_{\text{all symbols } i} \{s_i(Son(v)) + \alpha_{i,k}\}\}$



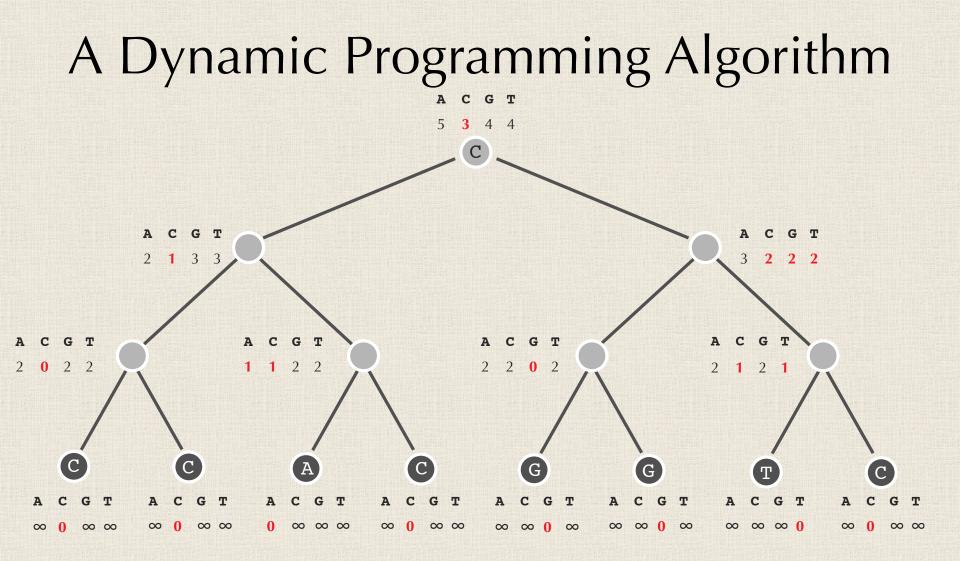
 $s_k(v) = \min_{\text{all symbols } i} \{s_i(Daughter(v)) + \alpha_{i,k}\} + \min_{\text{all symbols } i} \{s_i(Son(v)) + \alpha_{i,k}\}\}$



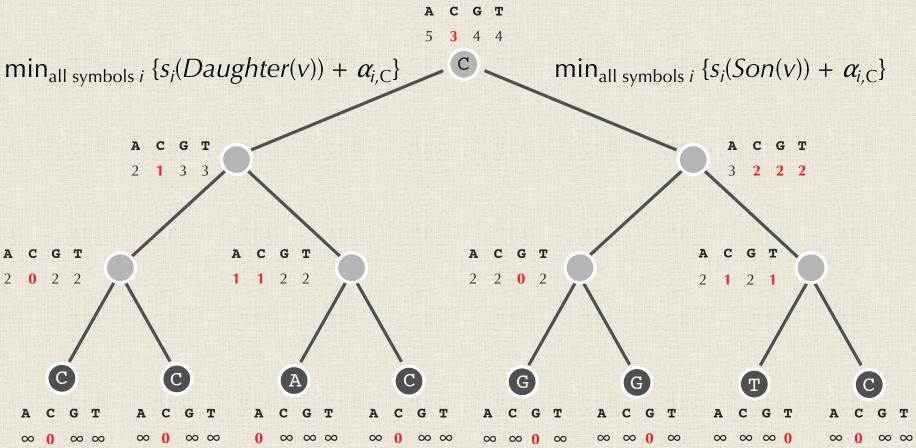
 $s_k(v) = \min_{\text{all symbols } i} \{s_i(Daughter(v)) + \alpha_{i,k}\} + \min_{\text{all symbols } i} \{s_i(Son(v)) + \alpha_{i,k}\}\}$



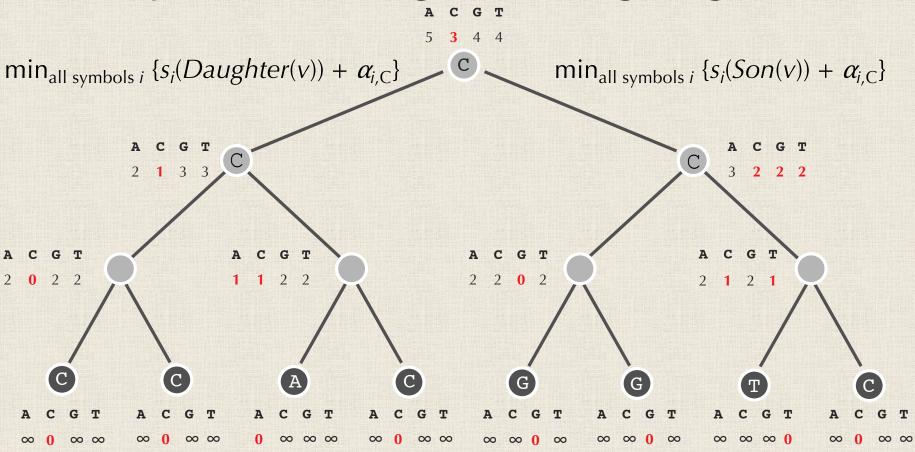
Because $s_k(root)$ is minimized when k is C, we infer that the root must be assigned C!



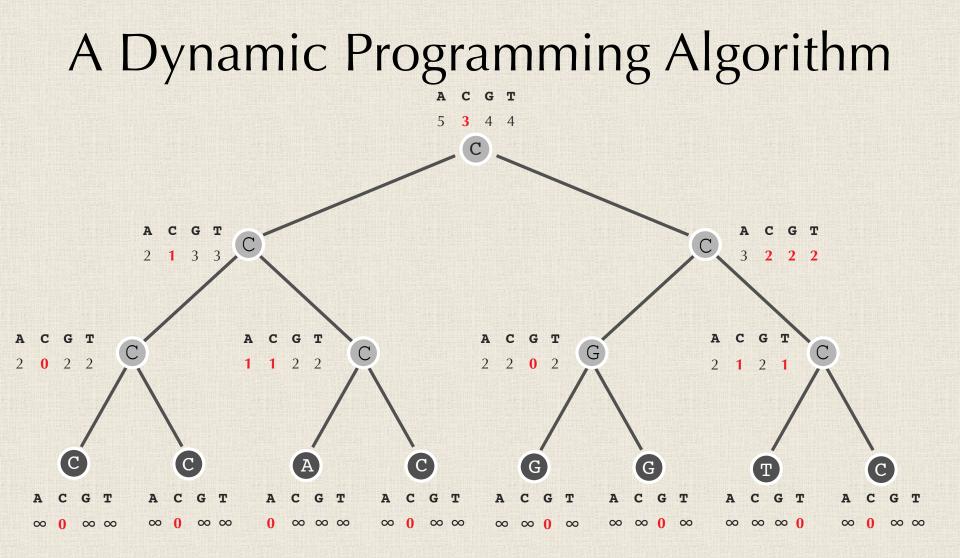
STOP: How should we "backtrack" to fill in the remaining nodes of the tree?



Answer: Remember which symbol was used at each child when computing $s_k(v)$!



STOP: Fill in the remaining nodes.



Citations for Neighbor-Joining and Small Parsimony

The neighbor-joining method: a new method for reconstructing ...

by N Saitou · 1987 · Cited by 61260 · Related articles

The principle of this **method** is to find pairs of operational taxonomic units (OTUs [= neighbors]) that minimize the total branch length at each stage of clustering of OTUs starting with a starlike **tree**. The branch lengths as well as the topology of a parsimonious **tree** can quickly be obtained by using this **method**.

A note on the neighbor-joining algorithm of Saitou and Nei

by JA Studier · 1988 · Cited by 614 · Related articles

A note on the neighbor-joining algorithm of Saitou and Nei. Mol Biol Evol. 1988 Nov;5(6):729-31. doi: 10.1093/oxfordjournals.molbev.a040527.

Minimal Mutation Trees of Sequences - JSTOR

by D Sankoff · 1975 · Cited by 649 · Related articles

The integer d(x, y) equals the **minimum** number of **mutations** required to transform **sequence** x into y, or y into x, where a **mutation** may be either a change (replacement) of the value in A of a single term x(i) to correspond with the value of some y(j), or else the deletion from, or insertion into **sequence** x, of a single ...