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Evolutionary
Trees



The Black Death was Slow to Spread



Bet U wish 
airplanes 
didn’t exist 
now



Questions about SARS SARS-CoV-2
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1. Which animal gave us SARS-CoV-2?
2. How does SARS-CoV-2 compare to other related 

viruses?
3. How has SARS-CoV-2 mutated over time?



Questions about SARS SARS-CoV-2
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1. Which animal gave us SARS-CoV-2?
2. How does SARS-CoV-2 compare to other related 

viruses?
3. How has SARS-CoV-2 mutated over time?

All of these questions require us to construct 
evolutionary trees (a.k.a. phylogenies). 
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STOP: What 
conclusion can we 
draw from this tree?
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Answer: HIV comes 
from multiple origins 
in chimps, not one.
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the tree’s structure?

Hug et al., 2016



Two Computational Questions
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How do we construct 
the tree’s structure?

Can we infer anything 
about the ancestral 
species on the inside 
of the tree?

Hug et al., 2016
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no cycles.
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present-day species

Tree: Connected 
graph containing 
no cycles.
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Leaves (degree = 1): 
present-day species

Internal nodes 
(degree ≥ 2): 
ancestral species

Tree: Connected 
graph containing 
no cycles.



Some Tree Math
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Theorem: Every tree with n nodes has exactly n – 1 
edges.



Some Tree Math
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Theorem: There is a unique path connecting any 
two nodes in a tree.
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What is the main 
evolutionary division 
of dinosaurs?
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Biologists used to form trees based on anatomical 
or physiological properties called characters.
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STOP: Say you wanted to construct an evolutionary 
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STOP: Say you wanted to construct an evolutionary 
tree of all insects. What might be the first thing you 
would do?

Biologists used to form trees based on anatomical 
or physiological properties called characters.

WINGED WINGLESS



Character-Based Construction
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STOP: Say you wanted to construct an evolutionary 
tree of all insects. What might be the first thing you 
would do?

WINGED WINGLESS

Dollo’s principle of irreversibility (1893): evolution 
doesn’t reinvent the same organ (e.g. insect wings).
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Key Point: We need a more rigorous approach.
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Definition of a Distance Matrix
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Distance matrix: A matrix D 
representing distances between pairs 
of n organisms that satisfies three 
properties:
1. Symmetry: Di,j = Dj,i for all pairs i, j
2. Non-negativity: Di,j >= 0 for all 

pairs i, j
3. Triangle inequality: For all i, j, and 

k, Di,j + Dj,k >= Di,k .



A Multiple Alignment Defines a Simple 
Distance Matrix 
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SPECIES ALIGNMENT

Chimp ACGTAGGCCT

Human ATGTAAGACT

Seal TCGAGAGCAC

Whale TCGAAAGCAT



A Multiple Alignment Defines a Simple 
Distance Matrix 
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Di,j = number of differing symbols between i-th and 
j-th rows of a multiple alignment.

SPECIES ALIGNMENT DISTANCE MATRIX

Chimp Human Seal Whale

Chimp ACGTAGGCCT 0 3 6 4
Human ATGTAAGACT 3 0 7 5

Seal TCGAGAGCAC 6 7 0 2
Whale TCGAAAGCAT 4 5 2 0
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Distance-Based Phylogeny Problem.
• Input: A distance matrix.
• Output: The tree fitting this distance matrix.



Distance-Based Phylogeny
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Distance-Based Phylogeny Problem.
• Input: A distance matrix.
• Output: The tree fitting this distance matrix.

Of course, we are getting a bit ahead of ourselves – 
we should define what we mean by “fitting”!
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di,j(T) = distance between nodes i and j in tree T, 
computed by summing edge weights from i to j.
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We say that T fits matrix D if for every pair i and j, 
di,j(T) = Di,j . 
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Return to Distance-Based Phylogeny
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v1 v2 v3 v4

v1 0 3 4 3

v2 3 0 4 5

v3 4 4 0 2

v4 3 5 2 0

Exercise: Find a tree fitting the following matrix.



Sometimes, No Tree Fits a Matrix
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There is no tree fitting this matrix!

Additive matrix: distance matrix such that there 
exists a tree fitting it.

v1 v2 v3 v4

v1 0 3 4 3

v2 3 0 4 5

v3 4 4 0 2

v4 3 5 2 0



How Can We Know if a Matrix Has a 
Tree Fitting It?
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Indices (i, j, k, l) satisfy the four 
point condition if two of the 
following sums are equal, and 
the third sum is less than or 
equal to the other two sums:
Di,j + Dk,l    Di,k + Dj,l    Di,l + Dj,k

j

i k

l

di, k

dj, l

j

i k

l

dk, ldi, j

j

i k

l

di, l

dj, k

Four Point Theorem: A distance 
matrix D is additive if and only if 
the four point condition holds 
for every quartet (i, j, k, l).
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Which Tree is Better?
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Simple tree: tree with no nodes of degree 2.



Which Tree is Better?

© 2024 Phillip Compeau

Whale
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Human
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1
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Simple tree: tree with no nodes of degree 2.

Theorem: There is a unique simple tree fitting an 
additive matrix. (And there is an algorithm to 
produce this tree.)



Reformulating Distance-Based 
Phylogeny
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Distance-Based Phylogeny Problem: Construct an 
evolutionary tree from a distance matrix.
• Input: A distance matrix.
• Output: The simple tree fitting this distance 

matrix (if this matrix is additive).
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An Idea for Distance-Based Phylogeny
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Seal and whale are neighbors (meaning they are 
leaves with the same parent).



An Idea for Distance-Based Phylogeny

© 2024 Phillip Compeau

Chimp Human Seal Whale

Chimp 0 3 6 4
Human 3 0 7 5

Seal 6 7 0 2
Whale 4 5 2 0

Whale

Seal
?

?



An Idea for Distance-Based Phylogeny

© 2024 Phillip Compeau

Chimp Human Seal Whale

Chimp 0 3 6 4
Human 3 0 7 5

Seal 6 7 0 2
Whale 4 5 2 0

Whale
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?

?

Key Point: How do we 
compute the unknown 
distances?
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dk,m = (Di,k + Dj,k – Di,j) / 2
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 di,m = (Di,k + Di,j – Dj,k) / 2
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dk,m = (di,k + dj,k – di,j) / 2
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Chimp
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Chimp

dk,m = (di,k + dj,k – di,j) / 2
dk,m = (Di,k + Dj,k – Di,j) / 2

 di,m = Di,k – (Di,k + Dj,k – Di,j) / 2

 dSeal,m = (DSeal,Chimp + DSeal,Whale – DWhale,Chimp) / 2

Chimp Human Seal Whale

Chimp 0 3 6 4
Human 3 0 7 5

Seal 6 7 0 2
Whale 4 5 2 0

Whale

Seal

?

m

6 2

dSeal,m



An Idea for Distance-Based Phylogeny
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Chimp

dk,m = (di,k + dj,k – di,j) / 2
dk,m = (Di,k + Dj,k – Di,j) / 2

 di,m = Di,k – (Di,k + Dj,k – Di,j) / 2

 dSeal,m = (DSeal,Chimp + DSeal,Whale – DWhale,Chimp) / 2

Chimp Human Seal Whale

Chimp 0 3 6 4
Human 3 0 7 5

Seal 6 7 0 2
Whale 4 5 2 0

Whale

Seal

?

m

6 2 4

dSeal,m



An Idea for Distance-Based Phylogeny
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Chimp

dk,m = (di,k + dj,k – di,j) / 2
dk,m = (Di,k + Dj,k – Di,j) / 2

 di,m = Di,k – (Di,k + Dj,k – Di,j) / 2

 dSeal,m = 2

Chimp Human Seal Whale

Chimp 0 3 6 4
Human 3 0 7 5

Seal 6 7 0 2
Whale 4 5 2 0

Whale

Seal
2

?

m



An Idea for Distance-Based Phylogeny
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Chimp

Chimp Human Seal Whale

Chimp 0 3 6 4
Human 3 0 7 5

Seal 6 7 0 2
Whale 4 5 2 0

Whale

Seal
2

?

m

STOP: What about the 
remaining distance dWhale, m?



An Idea for Distance-Based Phylogeny
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Chimp

dk,m = (di,k + dj,k – di,j) / 2
dk,m = (Di,k + Dj,k – Di,j) / di,m = Di,k – (Di,k + Dj,k – Di,j) 
/dWhale, m = DWhale, Seal – dSeal,m

                     = 2 – 2 = 0

Chimp Human Seal Whale

Chimp 0 3 6 4
Human 3 0 7 5

Seal 6 7 0 2
Whale 4 5 2 0

Whale

Seal
2

m

0



An Idea for Distance-Based Phylogeny
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Chimp

Chimp Human Seal Whale

Chimp 0 3 6 4
Human 3 0 7 5

Seal 6 7 0 2
Whale 4 5 2 0

Whale

Seal
2

0

m

STOP: What about the 
distance dChimp, m?



An Idea for Distance-Based Phylogeny
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Chimp

Chimp Human Seal Whale

Chimp 0 3 6 4
Human 3 0 7 5

Seal 6 7 0 2
Whale 4 5 2 0

Whale

Seal
2

0

m

4

dk,m = (di,k + dj,k – di,j) / 2
dk,m = (Di,k + Dj,k – Di,j) / di,m = Di,k – (Di,k + Dj,k – Di,j) 
/dChimp, m = DChimp, Seal – dSeal,m

                     = 6 – 2 = 4



An Idea for Distance-Based Phylogeny
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Chimp

Chimp Human Seal Whale

Chimp 0 3 6 4
Human 3 0 7 5

Seal 6 7 0 2
Whale 4 5 2 0

Whale

Seal
2

0

m

4

Human ?

STOP: And dHuman, m?



An Idea for Distance-Based Phylogeny

© 2024 Phillip Compeau

2

Whale

Seal

0

m

Chimp
4

Human 5

Chimp Human Seal Whale

Chimp 0 3 6 4
Human 3 0 7 5

Seal 6 7 0 2
Whale 4 5 2 0



We Add a Row and Column for m…
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2

Whale

Seal

0

m

Chimp Human Seal Whale m

Chimp 0 3 6 4 4
Human 3 0 7 5 5

Seal 6 7 0 2 2
Whale 4 5 2 0 0
m 4 5 2 0 0

Chimp
4

Human 5



… and recurse on this 3x3 matrix!
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Human 5

Chimp
4 2

Whale

Seal

0

m

Chimp Human Seal Whale m

Chimp 0 3 6 4 4
Human 3 0 7 5 5

Seal 6 7 0 2 2
Whale 4 5 2 0 0
m 4 5 2 0 0



… and recurse on this 3x3 matrix!
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Human 5

Chimp
4 2

Whale

Seal

0

m

Chimp Human m

Chimp 0 3 4
Human 3 0 5

m 4 5 0



An Idea for Distance-Based Phylogeny
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Human

Chimp
2

Whale

Seal

0

m

Chimp Human m

Chimp 0 3 4
Human 3 0 5

m 4 5 0

?

?

a



An Idea for Distance-Based Phylogeny
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Human

Chimp
2

Whale

Seal

0

m

Chimp Human m

Chimp 0 3 4
Human 3 0 5

m 4 5 0

?

?

dk,m = (di,k + dj,k – di,j) / 2
dk,m = (Di,k + Dj,k – Di,j) / 2

 di,m = Di,k – (Di,k + Dj,k – Di,j) / 2

 dChimp,a = (DChimp,m +  DChimp,Human – DHuman,m) / 2

a



An Idea for Distance-Based Phylogeny
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Human

Chimp
2

Whale

Seal

0

m

Chimp Human m

Chimp 0 3 4
Human 3 0 5

m 4 5 0

?

1

adk,m = (di,k + dj,k – di,j) / 2
dk,m = (Di,k + Dj,k – Di,j) / 2

 di,m = Di,k – (Di,k + Dj,k – Di,j) / 2

 dChimp,a = 1



dk,m = (di,k + dj,k – di,j) / 2
dk,m = (Di,k + Dj,k – Di,j) / 2

 di,m = Di,k – (Di,k + Dj,k – Di,j) / 2

 dChimp,a = 1, so dHuman,a = dHuman, Chimp – dChimp,a = 2

An Idea for Distance-Based Phylogeny

© 2024 Phillip Compeau

Human

Chimp
2

Whale

Seal

0

m

Chimp Human m

Chimp 0 3 4
Human 3 0 5

m 4 5 0

2

1

a



An Idea for Distance-Based Phylogeny
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Chimp Human m

Chimp 0 3 4
Human 3 0 5

m 4 5 0

Human

Chimp
2

Whale

Seal

0

m

2

1

a
?

STOP: And da, m?



An Idea for Distance-Based Phylogeny
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Chimp Human m

Chimp 0 3 4
Human 3 0 5

m 4 5 0

Human

Chimp
2

Whale

Seal

0

m

2

1

a
3



Note that the Matrix Fits the Tree
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Human

Chimp
2

Whale

Seal

0

m

2

1

a
3

Chimp Human Seal Whale

Chimp 0 3 6 4
Human 3 0 7 5

Seal 6 7 0 2
Whale 4 5 2 0



ULTRAMETRIC TREES AND 
UPGMA

© 2024 Phillip Compeau



An Idea for Distance-Based Phylogeny
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Exercise: Apply our recursive approach to this 
additive distance matrix.

v1 v2 v3 v4

v1 0 13 21 22

v2 13 0 12 13

v3 21 12 0 13

v4 22 13 13 0



What Was Wrong With Our Algorithm?
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v1 11

2

4
6

7

v1 v2 v3 v4

v1 0 13 21 22

v2 13 0 12 13

v3 21 12 0 13

v4 22 13 13 0

v3

v2 v4

Here is the 
tree fitting the 
matrix...



What Was Wrong With Our Algorithm?
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v1 v2 v3 v4

v1 0 13 21 22

v2 13 0 12 13

v3 21 12 0 13

v4 22 13 13 0

v1 11

2

4
6

7

v3

v2 v4

Here is the 
tree fitting the 
matrix...

minimum
element is D2,3



What Was Wrong With Our Algorithm?

© 2024 Phillip Compeau

v2 and v3 are
not neighbors!

11

2

4
6

7

minimum
element is D2,3

v1 v2 v3 v4

v1 0 13 21 22

v2 13 0 12 13

v3 21 12 0 13

v4 22 13 13 0

v1 v3

v2 v4



What Was Wrong With Our Algorithm?
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STOP: What about the 
tree prevents the 
minimum matrix 
element from 
corresponding to 
neighbors?

v1 11

2

4
6

7

v1 v2 v3 v4

v1 0 13 21 22

v2 13 0 12 13

v3 21 12 0 13

v4 22 13 13 0

v3

v2 v4



What Was Wrong With Our Algorithm?
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STOP: What about the 
tree prevents the 
minimum matrix 
element from 
corresponding to 
neighbors?

v1 11

2

4
6

7

v1 v2 v3 v4

v1 0 13 21 22

v2 13 0 12 13

v3 21 12 0 13

v4 22 13 13 0

v3

v2 v4

Answer: v1 is an 
outlier, so the 
distance from v1 
to any other 
node is higher 
than average.



Modeling Speciations

© 2024 Phillip Compeau

Even though the minimum element of D doesn’t 
necessarily correspond to neighbors, this 
assumption powers one of the most famous 
evolutionary tree heuristics.



Modeling Speciations

© 2024 Phillip Compeau

Researchers often assume that 
all internal nodes correspond to 
speciations, where one species 
splits into two.

Even though the minimum element of D doesn’t 
necessarily correspond to neighbors, this 
assumption powers one of the most famous 
evolutionary tree heuristics.



We’ve Thus Far Seen Unrooted Trees
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Squirrel
Monkey

Baboon

Gorilla

Chimpanzee

Bonobo

Human

Orangutan

Unrooted binary 
tree: every node 
has degree 1 or 3.



From Unrooted to Rooted Trees
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Baboon Orangutan Gorilla Chimpanzee Bonobo HumanSquirrel Monkey

Rooted binary tree: 
an unrooted binary 
tree with a root (of 
degree 2) on one of 
its edges.



From Unrooted to Rooted Trees
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Baboon Orangutan Gorilla Chimpanzee Bonobo HumanSquirrel Monkey

Molecular clock: 
assigns ages to each 
node in the tree 
(age of leaves = 0).

33

23

13

7

6

2



From Unrooted to Rooted Trees
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Baboon Orangutan Gorilla Chimpanzee Bonobo HumanSquirrel Monkey

edge weights: 
correspond to 
difference in ages 
on the nodes the 
edge connects.

33

23

13

7

6

2

23
33

10

10

6

1

22
6

13
4



From Unrooted to Rooted Trees

© 2024 Phillip Compeau

Baboon Orangutan Gorilla Chimpanzee Bonobo HumanSquirrel Monkey

33

23

13

7

6

2

23
33

10

10

6

1

22
6

13

Ultrametric tree: 
distance from root 
to any leaf is the 
same (age of root).

4



UPGMA: A Clustering Heuristic
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1. Form a cluster for each present-day species, each 
containing a single leaf.

i j k l

i 0 3 4 3

j 3 0 4 5

k 4 4 0 2

l 3 5 2 0
i j k l 0000



UPGMA: A Clustering Heuristic
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i j k l

i 0 3 4 3

j 3 0 4 5

k 4 4 0 2

l 3 5 2 0

2. Find the two closest clusters C1 and C2 according 
to the minimum value in the current matrix.

i j k l 0000



UPGMA: A Clustering Heuristic
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i j k l

i j k l

i 0 3 4 3

j 3 0 4 5

k 4 4 0 2

l 3 5 2 0
0000

3. Merge C1 and C2 into a single cluster C.

{ k, l }



UPGMA: A Clustering Heuristic
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i j k l

i j k l

i 0 3 4 3

j 3 0 4 5

k 4 4 0 2

l 3 5 2 0
0000

4. Form a new node for C and connect to C1 and C2 
by an edge. Set age of C as D(C1, C2)/2.

{ k, l }
1

11



UPGMA: A Clustering Heuristic
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i j k l 0000

1

11

i j { k, l }

i 0 3 3.5

j 3 0 4.5

{ k, l } 3.5 4.5 0

{ k, l }

5. Update the distance matrix by computing the 
average distance between each pair of clusters.



UPGMA: A Clustering Heuristic
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1.5

1.51.5

i j k l 0000

1

11

i j { k, l }

i 0 3 3.5

j 3 0 4.5

{ k, l } 3.5 4.5 0

{ i, j }

6. Iterate steps 2-5 until a single cluster contains all 
species.



UPGMA: A Clustering Heuristic
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1.5

1.51.5

i j k l 0000

1

11

{ i, j }
{i, j} { k, l }

{i, j} 0 4

{ k, l } 4 0

6. Iterate steps 2-5 until a single cluster contains all 
species.



UPGMA: A Clustering Heuristic
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2

1
0.5

1.5

1.51.5

i j k l 0000

1

11

{i, j} { k, l }

{i, j} 0 4

{ k, l } 4 0

6. Iterate steps 2-5 until a single cluster contains all 
species.



UPGMA: A Clustering Heuristic
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6. Iterate steps 2-5 until a single cluster contains all 
species.

2

1
0.5

1.5

1.51.5

i j k l 0000

1

11



UPGMA Doesn’t “Fit” a Tree to a Matrix
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i j k l

1

11

1.5

1.51.5

2

1
0.5

0000

i j k l

i 0 3 4 3

j 3 0 4 5

k 4 4 0 2

l 3 5 2 0



UPGMA Doesn’t “Fit” a Tree to a Matrix
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i j k l

1

11

1.5

1.51.5

2

1
0.5

0000

i j k l

i 0 3 4 3

j 3 0 4 5

k 4 4 0 2

l 3 5 2 0



Quick UPGMA Quiz
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i j k l

i 0 20 9 11

j 20 0 17 11

k 9 17 0 8

l 11 11 8 0

Exercise: Apply UPGMA to the following matrix.



Quick UPGMA Quiz
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i j k l

i 0 20 9 11

j 20 0 17 11

k 9 17 0 8

l 11 11 8 0 k l

4

44

00



Quick UPGMA Quiz

© 2024 Phillip Compeau

k l

4

44

00

i j {k, l}

i 0 20 10

j 20 0 14

{k, l} 10 14 0



Quick UPGMA Quiz
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i j {k, l}

i 0 20 10

j 20 0 14

{k, l} 10 14 0
i k l

4

44

5

5
1

000



Quick UPGMA Quiz
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j {i, k, l}

j 0 17

{i, k, l} 17 0

i k l

4

44

5

5
1

000



Quick UPGMA Quiz
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j {i, k, l}

j 0 17

{i, k, l} 17 0

i k l

4

44

5

5
1

000

STOP: This is wrong. Why?



Average Distance Must be Weighted
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Answer: The average distance from j to i, k, and l 
is (20+17+11)/3 = 16, not 17.

i k l

4

44

5

5
1

000

i j k l

i 0 20 9 11

j 20 0 17 11

k 9 17 0 8

l 11 11 8 0



Average Distance Must be Weighted
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i j {k, l}

i 0 20 10

j 20 0 14

{k, l} 10 14 0
i k l

4

44

5

5
1

000

Answer: The average distance from j to i, k, and l 
is (20+17+11)/3 = 16, not 17.



Average Distance Must be Weighted
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j {i, k, l}

j 0 16

{i, k, l} 16 0

j i k l

4

44

5

5
8

8

1

0000

3



The Ultrametric Assumption is Very 
Strong
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Baboon Orangutan Gorilla Chimpanzee Bonobo HumanSquirrel Monkey

33

23

13

7

6

2

23
33

10

10

6

1

22
6

13

Ultrametric tree: 
distance from root 
to any leaf is the 
same (age of root).

STOP: Can you 
think of any 
possible trees where 
this may be flawed?

4



UPGMA May Even Fail on an Additive 
Matrix
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Furthermore, this is an additive matrix, and yet 
UPGMA will join v2 and v3, producing the wrong 
tree even though there is one that perfectly fits it!

v1
11

2

4
6

7

v1 v2 v3 v4

v1 0 13 21 22

v2 13 0 12 13

v3 21 12 0 13

v4 22 13 13 0

v3

v2 v4



UPGMA is Suboptimal But Has Become 
“Machine Learning”…
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In your ”ML” AI future, you 
may learn about 
hierarchical clustering, a 
generalization of UPGMA.

g3 g5 g8 g7 g1 g6 g10 g2 g4 g9

g1

g6

g7

g3

g5 g8

g9g10

g4

g2



THE NEIGHBOR-JOINING 
ALGORITHM

© 2024 Phillip Compeau



Recall: Outliers were the Issue
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v1
11

2

4
6

7

v1 v2 v3 v4

v1 0 13 21 22

v2 13 0 12 13

v3 21 12 0 13

v4 22 13 13 0

v3

v2 v4

Recall: Outliers prevented minimum elements from 
corresponding to neighbors.



Recall: Outliers were the Issue

© 2024 Phillip Compeau

v1
11

2

4
6

7

v1 v2 v3 v4

v1 0 13 21 22

v2 13 0 12 13

v3 21 12 0 13

v4 22 13 13 0

v3

v2 v4

Key Insight: What if our idea of joining neighbors 
was GREAT, we just need to change the matrix? 

Recall: Outliers prevented minimum elements from 
corresponding to neighbors.



The Neighbor-Joining Theorem
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Given an n x n distance matrix D, its neighbor-joining 
matrix is the matrix D* defined as

where TotalDistanceD(i) is the sum of distances from i 
to all other leaves.

D*i,j = (n – 2)�Di,j – TotalDistanceD(i) – TotalDistanceD(j)



The Neighbor-Joining Theorem

© 2024 Phillip Compeau

Given an n x n distance matrix D, its neighbor-joining 
matrix is the matrix D* defined as

where TotalDistanceD(i) is the sum of distances from i 
to all other leaves.

D

v1 v2 v3 v4

v1 0 13 21 22

v2 13 0 12 13

v3 21 12 0 13

v4 22 13 13 0

D*i,j = (n – 2)�Di,j – TotalDistanceD(i) – TotalDistanceD(j)



The Neighbor-Joining Theorem

© 2024 Phillip Compeau

Given an n x n distance matrix D, its neighbor-joining 
matrix is the matrix D* defined as

where TotalDistanceD(i) is the sum of distances from i 
to all other leaves.

D

TotalDistanceD

56

38

46

48

v1 v2 v3 v4

v1 0 13 21 22

v2 13 0 12 13

v3 21 12 0 13

v4 22 13 13 0

D*i,j = (n – 2)�Di,j – TotalDistanceD(i) – TotalDistanceD(j)



The Neighbor-Joining Theorem

© 2024 Phillip Compeau

Given an n x n distance matrix D, its neighbor-joining 
matrix is the matrix D* defined as

where TotalDistanceD(i) is the sum of distances from i 
to all other leaves.

D

TotalDistanceD

56

38

46

48

v1 v2 v3 v4

v1 0 13 21 22

v2 13 0 12 13

v3 21 12 0 13

v4 22 13 13 0

v1 v2 v3 v4

v1 0 -68 -60 -60 

v2 -68 0 -60 -60 

v3 -60 -60 0 -68 

v4 -60 -60 -68 0

D*

D*i,j = (n – 2)�Di,j – TotalDistanceD(i) – TotalDistanceD(j)



The Neighbor-Joining Theorem

© 2024 Phillip Compeau

Given an n x n distance matrix D, its neighbor-joining 
matrix is the matrix D* defined as

D

v1 v2 v3 v4

v1 0 13 21 22

v2 13 0 12 13

v3 21 12 0 13

v4 22 13 13 0

D*i,j = (n – 2)�Di,j – TotalDistanceD(i) – TotalDistanceD(j)

v2

v1 v3
11

2

4
6

7
v4

STOP: What does D* do to outliers?



The Neighbor-Joining Theorem
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Given an n x n distance matrix D, its neighbor-joining 
matrix is the matrix D* defined as

D

v1 v2 v3 v4

v1 0 13 21 22

v2 13 0 12 13

v3 21 12 0 13

v4 22 13 13 0

D*i,j = (n – 2)�Di,j – TotalDistanceD(i) – TotalDistanceD(j)

v2

v1 v3
11

2

4
6

7
v4

Answer: If i is an outlier, TotalDistanceD(i) goes up, 
which causes D*i,j to go down. 



The Neighbor-Joining Theorem
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D

TotalDistanceD

56

38

46

48

v1 v2 v3 v4

v1 0 13 21 22

v2 13 0 12 13

v3 21 12 0 13

v4 22 13 13 0

v1 v2 v3 v4

v1 0 -68 -60 -60 

v2 -68 0 -60 -60 

v3 -60 -60 0 -68 

v4 -60 -60 -68 0

D*

Neighbor-Joining Theorem: If D is additive, then the 
smallest element of D* corresponds to neighboring 
leaves in Tree(D)!



The Neighbor-Joining Theorem

© 2024 Phillip Compeau

Neighbor-Joining Theorem: If D is additive, then the 
smallest element of D* corresponds to neighboring 
leaves in Tree(D)!

D

TotalDistanceD

56

38

46

48

v1 v2 v3 v4

v1 0 13 21 22

v2 13 0 12 13

v3 21 12 0 13

v4 22 13 13 0

v1 v2 v3 v4

v1 0 -68 -60 -60 

v2 -68 0 -60 -60 

v3 -60 -60 0 -68 

v4 -60 -60 -68 0

D*



Neighbor-Joining in Action
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D*

TotalDistanceD

56

38

46

48

v1 v2 v3 v4

v1 0 -68 -60 -60 

v2 -68 0 -60 -60 

v3 -60 -60 0 -68 

v4 -60 -60 -68 0

1. Construct neighbor-joining matrix D* from D.



Neighbor-Joining in Action
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D*

TotalDistanceD

56

38

46

48

v1 v2 v3 v4

v1 0 -68 -60 -60 

v2 -68 0 -60 -60 

v3 -60 -60 0 -68 

v4 -60 -60 -68 0

2. Find a minimum element D*i,j of D*.



Neighbor-Joining in Action
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By the Neighbor-Joining Theorem, we know that this 
means that v1 and v2 are neighbors. But what are the 
“?” distances?

D*

TotalDistanceD

56

38

46

48

v1 v2 v3 v4

v1 0 -68 -60 -60 

v2 -68 0 -60 -60 

v3 -60 -60 0 -68 

v4 -60 -60 -68 0

v1 ?

?
v2



Recall: Computing Length of a Limb
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j

i

m

kdi, k = di, m + dk, m

dj, k = dj, m + dk, m

di, j = di, m + dj, m

dk,m = (di,k + dj,k – di,j) / 2
dk,m = (Di,k + Dj,k – Di,j) / 2

 di,m = Di,k – (Di,k + Dj,k – Di,j) / 2

 di,m = (Di,k + Di,j – Dj,k) / 2

dk,m = [(di,m + dk,m) + (dj,m + dk,m) – (di,m + dj,m)] / 2

∴



Recall: Computing Length of a Limb
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j

i

m

kdi, k = di, m + dk, m

dj, k = dj, m + dk, m

di, j = di, m + dj, m

 di,m = (Di,k + Di,j – Dj,k) / 2 = LimbLength(i)

Define a limb as the edge from a leaf to its parent, 
and LimbLength(i) as the length of the limb at leaf i.  



Recall: Computing Length of a Limb
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j

i

m

kdi, k = di, m + dk, m

dj, k = dj, m + dk, m

di, j = di, m + dj, m

 di,m = (Di,k + Di,j – Dj,k) / 2 = LimbLength(i)

STOP: The following formula must hold if D is 
additive and i and j are neighbors ... But what if D is 
not additive?



Recall: Computing Length of a Limb
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j

i

m

kdi, k = di, m + dk, m

dj, k = dj, m + dk, m

di, j = di, m + dj, m

 di,m = (Di,k + Di,j – Dj,k) / 2 = LimbLength(i)

Answer: Take the average of this formula over every 
k other than i and j.



Neighbor-Joining in Action
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D*

TotalDistanceD

56

38

46

48

v1 v2 v3 v4

v1 0 -68 -60 -60 

v2 -68 0 -60 -60 

v3 -60 -60 0 -68 

v4 -60 -60 -68 0

3. Having found that i and j are neighbors, take the 
average (Di,k + Di,j – Dj,k)/2 over all k not equal to i, j. 
Set LimbLength(i) equal to this average.

v1 ?

?
v2



Neighbor-Joining in Action
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3. Having found that i and j are neighbors, take the 
average (Di,k + Di,j – Dj,k)/2 over all k not equal to i, j. 
Set LimbLength(i) equal to this average.

v1 ?

?
v2

D

v1 v2 v3 v4

v1 0 13 21 22

v2 13 0 12 13

v3 21 12 0 13

v4 22 13 13 0

Exercise: What should be the limb length of v1?



Neighbor-Joining in Action
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4. Set LimbLength(j) equal to Di,j – LimbLength(i).

v1 11

?
v2

D

v1 v2 v3 v4

v1 0 13 21 22

v2 13 0 12 13

v3 21 12 0 13

v4 22 13 13 0



Neighbor-Joining in Action
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v1 11

?
v2

D

v1 v2 v3 v4

v1 0 13 21 22

v2 13 0 12 13

v3 21 12 0 13

v4 22 13 13 0

Exercise: What should be the limb length of v2?

4. Set LimbLength(j) equal to Di,j – LimbLength(i).
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v1 11

2
v2

D

v1 v2 v3 v4

v1 0 13 21 22

v2 13 0 12 13

v3 21 12 0 13

v4 22 13 13 0

4. Set LimbLength(j) equal to Di,j – LimbLength(i).
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v1 11

2
v2

D

v1 v2 v3 v4

v1 0 13 21 22

v2 13 0 12 13

v3 21 12 0 13

v4 22 13 13 0

Now we want to apply a recursive algorithm.  To do 
so, we ask what the distance from m (the parent of 
our neighbors) to every other node should be.

m



Flashback: Computation of dk,m
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j

i

m

kdi, k = di, m + dk, m

dj, k = dj, m + dk, m

di, j = di, m + dj, m

dk,m = (di,k + dj,k – di,j) / 2
dk,m = (Di,k + Dj,k – Di,j) / 2

dk,m = [(di,m + dk,m) + (dj,m + dk,m) – (di,m + dj,m)] / 2



Neighbor-Joining in Action
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5. Form a matrix D’ by removing i-th and j-th 
row/column from D and adding an m-th row/column 
such that for any k, D’k,m = (Di,k + Dj,k – Di,j) / 2.

D

v1 v2 v3 v4

v1 0 13 21 22

v2 13 0 12 13

v3 21 12 0 13

v4 22 13 13 0

v1 11

2
v2

m



Neighbor-Joining in Action
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5. Form a matrix D’ by removing i-th and j-th 
row/column from D and adding an m-th row/column 
such that for any k, D’k,m = (Di,k + Dj,k – Di,j) / 2.

D

v1 v2 v3 v4

v1 0 13 21 22

v2 13 0 12 13

v3 21 12 0 13

v4 22 13 13 0

Exercise: Compute distance from m to v3 and v4 . 

v1 11

2
v2

m



Neighbor-Joining in Action
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m v3 v4

m 0 10 11

v3 10 0 13

v4 11 13 0

D’

5. Form a matrix D’ by removing i-th and j-th 
row/column from D and adding an m-th row/column 
such that for any k, D’k,m = (Di,k + Dj,k – Di,j) / 2.

v1 11

2
v2

m



Neighbor-Joining in Action
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m v3 v4

m 0 10 11

v3 10 0 13

v4 11 13 0

D’

STOP: What should we do now?

v1 11

2
v2

m



Neighbor-Joining in Action
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m v3 v4

m 0 10 11

v3 10 0 13

v4 11 13 0

D’

STOP: What should we do now?

Answer: Recursion on our 3 x 3 matrix!

v1 11

2
v2

m



Neighbor-Joining in Action
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1. Construct neighbor-joining matrix D* from D.
2. Find a minimum element D*i,j of D*.
3. Having found that i and j are neighbors, take the average (Di,k + Di,j – Dj,k) / 2 

over all k not equal to i, j. Set LimbLength(i) equal to this average.
4. Set LimbLength(j) equal to Di,j – LimbLength(j). 
5. Form a matrix D’ by removing i-th and j-th row/column from D and adding 

an m-th row/column such that for any k, Dk,m = (Dk,i + Dk,j – Di,j) / 2.

m v3 v4

m 0 10 11

v3 10 0 13

v4 11 13 0

D’

v1 11

2
v2

m

Exercise: Carry out one more step of the algorithm. 



Neighbor-Joining in Action
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m v3 v4

m 0 10 11

v3 10 0 13

v4 11 13 0

D’

TotalDistanceD’

21

23

24

v1 11

2
v2

m

D’*

m v3 v4

m 0 -34 -34

v3 -34 0 -34

v4 -34 -34 0

1. Construct neighbor-joining matrix.
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m v3 v4

m 0 10 11

v3 10 0 13

v4 11 13 0

D’

TotalDistanceD’

21

23

24

v1 11

2
v2

m

D’*

m v3 v4

m 0 -34 -34

v3 -34 0 -34

v4 -34 -34 0

They’re all neighbors!

1. Construct neighbor-joining matrix.2. Find a minimum element D*i,j of D*.
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m v3 v4

m 0 10 11

v3 10 0 13

v4 11 13 0

D’

TotalDistanceD’

21

23

24

v1 11

2
v2

m

D’*

m v3 v4

m 0 -34 -34

v3 -34 0 -34

v4 -34 -34 0

?
?

?

v3

v4

m

3. For any i, set LimbLength(i) equal to the average 
(Di,k + Di,j – Dj,k)/2 over all k not equal to i, j.
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m v3 v4

m 0 10 11

v3 10 0 13

v4 11 13 0

D’

TotalDistanceD’

21

23

24

v1 11

2
v2

m

D’*

m v3 v4

m 0 -34 -34

v3 -34 0 -34

v4 -34 -34 0

?
?

?

v3

v4

m

STOP: What are the limb lengths?
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m v3 v4

m 0 10 11

v3 10 0 13

v4 11 13 0

D’

TotalDistanceD’

21

23

24

v1 11

2
v2

m

D’*

m v3 v4

m 0 -34 -34

v3 -34 0 -34

v4 -34 -34 0

4
6

7

v3

v4

m

We hit a base case! Now add remaining limbs …
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v1 11

2
v2

m

4
6

7

v3

v4

m

We hit a base case! Now add remaining limbs …
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4
6

7

v3

v4

… and we’re done!

v1 11

2
v2

m



Neighbor-Joining Summary
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NeighborJoining(D):
1. Construct neighbor-joining matrix D* from D.
2. Find a minimum element D*i,j of D*.
3. Having found that i and j are neighbors, take the average 

(Di,k + Di,j – Dj,k) over all k not equal to i, j. Set 
LimbLength(i) equal to this average.

4. Set LimbLength(j) equal to Di,j – LimbLength(j). 
5. Form a matrix D’ by removing i-th and j-th row/column 

from D and adding an m-th row/column such that for any 
k, Dk,m = (Dk,i + Dk,j – Di,j) / 2.

6. Apply NeighborJoining recursively to D’ to obtain 
Tree(D’).

7. Reattach limbs of i and j to obtain Tree(D).



Weakness of Distance-Based Methods

Distance-based algorithms for evolutionary tree 
reconstruction say nothing about ancestral states at 
internal nodes.



We lost information when we converted a multiple 
alignment to a distance matrix...

Weakness of Distance-Based Methods

SPECIES ALIGNMENT DISTANCE MATRIX

Chimp Human Seal Whale

Chimp ACGTAGGCCT 0 3 6 4
Human ATGTAAGACT 3 0 7 5

Seal TCGAGAGCAC 6 7 0 2
Whale TCGAAAGCAT 4 5 2 0

Distance-based algorithms for evolutionary tree 
reconstruction say nothing about ancestral states at 
internal nodes.



THE SMALL PARSIMONY 
ALGORITHM
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Goal: Infer Ancestral Sequences
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ACGTAGGCCT ATGTAAGACT TCGAGAGCAC TCGAAAGCAT

?????????? ??????????

??????????

Chimp Human Seal Whale

Chimp ACGTAGGCCT

Human ATGTAAGACT

Seal TCGAGAGCAC

Whale TCGAAAGCAT



Goal: Infer Ancestral Sequences
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ACGTAGGCCT ATGTAAGACT TCGAGAGCAC TCGAAAGCAT

ACGTAAGCCT TCGAAAGCAT

ACGAAAGCCT

Chimp Human Seal Whale

STOP: Here’s a hypothetical assignment of strings to 
ancestral nodes. How can we know how good it is? 



How good is a given assignment of 
strings to internal nodes?
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Parsimony score: sum of Hamming distances (total 
mismatches) along each edge.

ACGTAGGCCT ATGTAAGACT TCGAGAGCAC TCGAAAGCAT

ACGTAAGCCT TCGAAAGCAT

ACGAAAGCCT

Chimp Human Seal Whale

21

2

02

1



How good is a given assignment of 
strings to internal nodes?

© 2024 Phillip Compeau

Parsimony score: sum of Hamming distances (total 
mismatches) along each edge.

ACGTAGGCCT ATGTAAGACT TCGAGAGCAC TCGAAAGCAT

ACGTAAGCCT TCGAAAGCAT

ACGAAAGCCT

Chimp Human Seal Whale

21

2

02

1

Parsimony Score: 8



What Does “Parsimony” Mean?
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Toward a Computational Problem
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Small Parsimony Problem:
• Input: A rooted binary tree with each leaf labeled 

by a string of length m.
• Output: A labeling of all other nodes of the tree 

by strings of length m that minimizes the tree’s 
parsimony score.



Toward a Computational Problem
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STOP: Is there any way we can simplify this 
problem statement?

Small Parsimony Problem:
• Input: A rooted binary tree with each leaf labeled 

by a string of length m.
• Output: A labeling of all other nodes of the tree 

by strings of length m that minimizes the tree’s 
parsimony score.



Toward a Computational Problem
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Small Parsimony Problem:
• Input: A rooted binary tree with each leaf labeled 

by a single symbol.
• Output: A labeling of all other nodes of the tree 

by single symbols that minimizes the tree’s 
parsimony score.

STOP: Why is this an acceptable simplification?



Toward a Computational Problem
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Answer: We may choose to assume that the 
characters are independent. 

Small Parsimony Problem:
• Input: A rooted binary tree with each leaf labeled 

by a single symbol.
• Output: A labeling of all other nodes of the tree 

by single symbols that minimizes the tree’s 
parsimony score.



Toward a Computational Problem
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STOP: Any thoughts on what approach we might 
use to solve this problem?

Small Parsimony Problem:
• Input: A rooted binary tree with each leaf labeled 

by a single symbol.
• Output: A labeling of all other nodes of the tree 

by single symbols that minimizes the tree’s 
parsimony score.



A Dynamic Programming Algorithm
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v 

Let Tv denote the subtree of T
whose root is v.

Tv



A Dynamic Programming Algorithm

© 2024 Phillip Compeau

v 

Let Tv denote the subtree of T
whose root is v.

Tv

Define sk(v) as the minimum 
parsimony score of Tv over 
all labelings of Tv, assuming 
that v is labeled by k.



A Dynamic Programming Algorithm
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v 

Let Tv denote the subtree of T
whose root is v.

Tv

Define sk(v) as the minimum 
parsimony score of Tv over 
all labelings of Tv, assuming 
that v is labeled by k.

The minimum parsimony score for the tree is equal to 
the minimum value of sk(root) over all symbols k.



A Dynamic Programming Algorithm
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v 

Let Tv denote the subtree of T
whose root is v.

Tv

Define sk(v) as the minimum 
parsimony score of Tv over 
all labelings of Tv, assuming 
that v is labeled by k.

STOP: Can you find a recurrence relation for sk(v)?



A Dynamic Programming Algorithm
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Theorem: The following recurrence relation holds:

sk(v) = minall symbols i {si(Daughter(v)) + ⍺i,k} + minall symbols i {si(Son(v)) + ⍺i,k}

For symbols i and j, define
• ⍺i,j = 0 if i = j 
• ⍺i,j = 1 otherwise.
⍺ says, “do they match?”

v 

Tv



A Dynamic Programming Algorithm
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A C G T

� 0 � �

A C G T

� 0 � �

A C G T

0 � � �

A C G T

� 0 � �

A C G T

� � 0 �

A C G T

� � 0 �

A C G T

� 0 � �

A C G T

� � � 0 

C C A C G G T C

sk(v) = minall symbols i {si(Daughter(v)) + ⍺i,k} + minall symbols i {si(Son(v)) + ⍺i,k}



A Dynamic Programming Algorithm
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A C G T

2 0 2 2 

A C G T

1 1 2 2 

A C G T

2 2 0 2 

A C G T

2 1 2 1 

A C G T

� 0 � �

A C G T

� 0 � �

A C G T

0 � � �

A C G T

� 0 � �

A C G T

� � 0 �

A C G T

� � 0 �

A C G T

� 0 � �

A C G T

� � � 0 

C C A C G G T C

sk(v) = minall symbols i {si(Daughter(v)) + ⍺i,k} + minall symbols i {si(Son(v)) + ⍺i,k}



A Dynamic Programming Algorithm
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A C G T

2 1 2 1 

A C G T

2 2 0 2 

A C G T

1 1 2 2 

A C G T

2 0 2 2 

A C G T

2 1 3 3 

A C G T

3 2 2 2 

A C G T

� 0 � �

A C G T

� 0 � �

A C G T

0 � � �

A C G T

� 0 � �

A C G T

� � 0 �

A C G T

� � 0 �

A C G T

� 0 � �

A C G T

� � � 0 

C C A C G G T C

sk(v) = minall symbols i {si(Daughter(v)) + ⍺i,k} + minall symbols i {si(Son(v)) + ⍺i,k}
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A C G T

� 0 � �

A C G T

� 0 � �

A C G T

0 � � �

A C G T

� 0 � �

A C G T

� � 0 �

A C G T

� � 0 �

A C G T

� 0 � �

A C G T

� � � 0 

A C G T

2 0 2 2 

A C G T

1 1 2 2 

A C G T

2 2 0 2 

A C G T

2 1 3 3 

A C G T

3 2 2 2 

A C G T

5 3 4 4 

A C G T

2 1 2 1 

C

C C A C G G T C

Because sk(root) is minimized when k is C, we infer 
that the root must be assigned C!
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A C G T

� 0 � �

A C G T

� 0 � �

A C G T

0 � � �

A C G T

� 0 � �

A C G T

� � 0 �

A C G T

� � 0 �

A C G T

� 0 � �

A C G T

� � � 0 

A C G T

2 0 2 2 

A C G T

1 1 2 2 

A C G T

2 2 0 2 

A C G T

2 1 3 3 

A C G T

3 2 2 2 

A C G T

5 3 4 4 

A C G T

2 1 2 1 

C

C C A C G G T C

STOP: How should we “backtrack” to fill in the 
remaining nodes of the tree?
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A C G T

� 0 � �

A C G T

� 0 � �

A C G T

0 � � �

A C G T

� 0 � �

A C G T

� � 0 �

A C G T

� � 0 �

A C G T

� 0 � �

A C G T

� � � 0 

A C G T

2 0 2 2 

A C G T

1 1 2 2 

A C G T

2 2 0 2 

A C G T

2 1 3 3 

A C G T

3 2 2 2 

A C G T

5 3 4 4 

A C G T

2 1 2 1 

C

C C A C G G T C

Answer: Remember which symbol was used at each 
child when computing sk(v)! 

minall symbols i {si(Son(v)) + ⍺i,C}minall symbols i {si(Daughter(v)) + ⍺i,C}
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A C G T

� 0 � �

A C G T

� 0 � �

A C G T

0 � � �

A C G T

� 0 � �

A C G T

� � 0 �

A C G T

� � 0 �

A C G T

� 0 � �

A C G T

� � � 0 

A C G T

2 0 2 2 

A C G T

1 1 2 2 

A C G T

2 2 0 2 

A C G T

2 1 3 3 

A C G T

3 2 2 2 

A C G T

5 3 4 4 

A C G T

2 1 2 1 

C

C C A C G G T C

C C

STOP: Fill in the remaining nodes.

minall symbols i {si(Son(v)) + ⍺i,C}minall symbols i {si(Daughter(v)) + ⍺i,C}
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A C G T

� 0 � �

A C G T

� 0 � �

A C G T

0 � � �

A C G T

� 0 � �

A C G T

� � 0 �

A C G T

� � 0 �

A C G T

� 0 � �

A C G T

� � � 0 

A C G T

2 0 2 2 

A C G T

1 1 2 2 

A C G T

2 2 0 2 

A C G T

2 1 3 3 

A C G T

3 2 2 2 

A C G T

5 3 4 4 

A C G T

2 1 2 1 

C

C C A C G G T C

C C

C GC C



Citations for Neighbor-Joining and Small 
Parsimony
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