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Algorithm in nature: an approach for ”solving” 
some problem that is inspired by nature. 

STOP: Where have we seen algorithms in nature 
already in this course?

Answer: Three primary answers.
1. Neural networks.
2. “Genetic” algorithms!
3. Bacterial chemotaxis.
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Remember our “Be An 
Ant” Strat for the Lost 
Immortals Hypothetical

If you have no information, walk at random, leaving a trail of stone 
markers, each one pointing to the next. For every day that you walk, rest 
for three. Periodically mark the date alongside the cairn. It doesn’t 
matter how you do this, as long as it’s consistent. You could chisel the 
number of days into a rock, or lay out rocks to plot the number.

If you come across a trail that’s newer than any you’ve seen before, start 
following it as fast as you can. If you lose the trail and can’t recover it, 
resume leaving your own trail.

You don’t have to come across the other player’s current location; you 
simply have to come across a location where they’ve been. You can still 
chase one another in circles, but as long as you move more quickly 
when you’re following a trail than when you’re leaving one, you’ll find 
each other in a matter of years or decades.

And if your partner isn’t cooperating—perhaps they’re just sitting where 
they started and waiting for you—then you’ll get to see some neat stuff.
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Most ants explore using:
1. trails of pheromones;
2. vision.

Allelomimesis: One organism 
performing a behavior makes 
others more likely to perform 
it as well.
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Abstract
Ants colonies exhibit very interesting behaviours: even if a single ant only has simple ca-
pabilities, the behaviour of a whole ant colony is highly structured. This is the result of coordi-
nated interactions. But, as communication possibilities among ants are very limited, interac-
tions must be based on very simple flows of information. In this paper we explore the implica-
tions that the study of ants behaviour can have on problem solving and optimization. We intro-
duce a distributed problem solving environment and propose its use to search for a solution to
the travelling salesman problem.

1. Introduction

In this paper we propose a novel approach to distributed problem solving and optimization
based on the result of low-level interactions among many cooperating simple agents that are not
aware of their cooperative behaviour. Our work has been inspired by the study of ant colonies:
in these systems each ant performs very simple actions and does not explicitly know what other
ants are doing. Nevertheless everybody can observe the resulting highly structured behaviour.

In section 2 we explain the background on which our speculations have been built. We
decided to develop a software environment to test our ideas on a very difficult and well known
problem: the travelling salesman problem - TSP. We call our system, described in section 3,
the ant system and we propose in this paper three possible instantiations to the TSP problem:
the ANT-quantity and the ANT-density systems, described in section 4, and the ANT-
cycle system, introduced in section 5. Section 6 presents some experiments, together with
simulation results and discussion. In section 7 we sketch some conclusions and prefigure the
directions along which our research work will proceed in the near future.

2. Motivations

The animal realm exhibits several cases of social systems having poor individual capabilities
when compared to their complex collective behaviours. This is observed at different evolution-
ary stages, from bacteria [11], to ants [8], caterpillars [5] molluscs and larvae. Moreover, the
same causal processes that originate these behaviours are largely conserved in higher level
species, like fishes, birds and mammals. These species make use of different communication
media, adopted in less ubiquitous situation but essentially leading to the same patterns of be-
haviours (see for example the circular mills [3]).

This suggests that the underlying mechanisms have proven evolutionarely extremely effec-
tive and are therefore worth of being analyzed when trying to achieve the similar goal of per-
forming complex tasks by distributing activities over massively parallel systems composed of
computationally simple elements.

One of the better studied natural cases of distributed activities regards ant colonies [2]: we
outline here the main features of the models so far proposed to explain ant colonies behaviour.
These features have been the basis for the definition of a distributed algorithm, that we have
applied to the solution of "difficult" (NP-hard) computational problems.

The problem of interest is how almost blind animals manage to establish shortest route paths
from their colony to feeding sources and back.

In the case of ants, the media used to communicate among individuals information regarding
paths and used to decide where to go consists of pheromone trails. A moving ant lays some
pheromone (in varying quantities) on the ground, thus marking the path it followed by a trail of
this substance. While an isolated ant moves essentially at random, an ant encountering a previ-
ously laid trail can detect it and decide with high probability to follow it, thus reinforcing the
trail with its own pheromone. The collective behaviour that emerges is a form of autocatalytic
behaviour — or allelomimesis — where the more are the ants following a trail, the more that
trail becomes attractive for being followed. The process is thus characterized by a positive
feedback loop, where the probability with which an ant chooses a path increases with the num-
ber of ants that chose the same path in the preceding steps.

In Fig.1 we present an example of how allelomimesis can lead to the identification of the
shortest path around an obstacle.
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Fig.1 - a) Some ants are walking on a path between points A and E
b) An obstacle suddenly appears and the ants must get around it
c) At steady-state the ants choose the shorter path

The experimental setting is the following: there is a path along which ants are walking (for
example it could be a path from a food source A to the nest E - Fig.1a). Suddenly an obstacle
appears and the previous path is cut off. So at position B the ants walking from E to A (or at
position D those walking in the opposite direction) have to decide whether to turn right or left
(Fig.1b). The choice is influenced by the intensity of the pheromone trails left by preceding
ants. A higher level of pheromone on the right path gives an ant a stronger stimulus and thus an
higher probability to turn right. The first ant reaching point B (or D) has the same probability to
turn right or left (as there was no previous pheromone on the two alternative paths). Being path
BCD shorter than BGD, the first ant following it will reach D before the first ant following path
BGD. The result is that new ants coming from ED will find a stronger trail on path DCB,
caused by the half of all the ants that by chance decided to approach the obstacle via ABCD and
by the already arrived ones coming via BCD: they will therefore prefer (in probability) path
DCB to path DGB. As a consequence, the number of ants following path BCD will be higher,

Ants on the path from A to 
E will reach D faster if they 
go through C. 

Colorni, Dorigo, Maniezzo 1991 
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based on the result of low-level interactions among many cooperating simple agents that are not
aware of their cooperative behaviour. Our work has been inspired by the study of ant colonies:
in these systems each ant performs very simple actions and does not explicitly know what other
ants are doing. Nevertheless everybody can observe the resulting highly structured behaviour.

In section 2 we explain the background on which our speculations have been built. We
decided to develop a software environment to test our ideas on a very difficult and well known
problem: the travelling salesman problem - TSP. We call our system, described in section 3,
the ant system and we propose in this paper three possible instantiations to the TSP problem:
the ANT-quantity and the ANT-density systems, described in section 4, and the ANT-
cycle system, introduced in section 5. Section 6 presents some experiments, together with
simulation results and discussion. In section 7 we sketch some conclusions and prefigure the
directions along which our research work will proceed in the near future.
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This suggests that the underlying mechanisms have proven evolutionarely extremely effec-
tive and are therefore worth of being analyzed when trying to achieve the similar goal of per-
forming complex tasks by distributing activities over massively parallel systems composed of
computationally simple elements.

One of the better studied natural cases of distributed activities regards ant colonies [2]: we
outline here the main features of the models so far proposed to explain ant colonies behaviour.
These features have been the basis for the definition of a distributed algorithm, that we have
applied to the solution of "difficult" (NP-hard) computational problems.

The problem of interest is how almost blind animals manage to establish shortest route paths
from their colony to feeding sources and back.

In the case of ants, the media used to communicate among individuals information regarding
paths and used to decide where to go consists of pheromone trails. A moving ant lays some
pheromone (in varying quantities) on the ground, thus marking the path it followed by a trail of
this substance. While an isolated ant moves essentially at random, an ant encountering a previ-
ously laid trail can detect it and decide with high probability to follow it, thus reinforcing the
trail with its own pheromone. The collective behaviour that emerges is a form of autocatalytic
behaviour — or allelomimesis — where the more are the ants following a trail, the more that
trail becomes attractive for being followed. The process is thus characterized by a positive
feedback loop, where the probability with which an ant chooses a path increases with the num-
ber of ants that chose the same path in the preceding steps.

In Fig.1 we present an example of how allelomimesis can lead to the identification of the
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Fig.1 - a) Some ants are walking on a path between points A and E
b) An obstacle suddenly appears and the ants must get around it
c) At steady-state the ants choose the shorter path

The experimental setting is the following: there is a path along which ants are walking (for
example it could be a path from a food source A to the nest E - Fig.1a). Suddenly an obstacle
appears and the previous path is cut off. So at position B the ants walking from E to A (or at
position D those walking in the opposite direction) have to decide whether to turn right or left
(Fig.1b). The choice is influenced by the intensity of the pheromone trails left by preceding
ants. A higher level of pheromone on the right path gives an ant a stronger stimulus and thus an
higher probability to turn right. The first ant reaching point B (or D) has the same probability to
turn right or left (as there was no previous pheromone on the two alternative paths). Being path
BCD shorter than BGD, the first ant following it will reach D before the first ant following path
BGD. The result is that new ants coming from ED will find a stronger trail on path DCB,
caused by the half of all the ants that by chance decided to approach the obstacle via ABCD and
by the already arrived ones coming via BCD: they will therefore prefer (in probability) path
DCB to path DGB. As a consequence, the number of ants following path BCD will be higher,

Ants on the path from A to 
E will reach D faster if they 
go through C. 

Colorni, Dorigo, Maniezzo 1991 

Ants headed from E to D 
will find the path through 
C stronger. They are 
therefore more likely to 
take this path, laying down 
more pheromone à 
feedback loop!
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based on the result of low-level interactions among many cooperating simple agents that are not
aware of their cooperative behaviour. Our work has been inspired by the study of ant colonies:
in these systems each ant performs very simple actions and does not explicitly know what other
ants are doing. Nevertheless everybody can observe the resulting highly structured behaviour.

In section 2 we explain the background on which our speculations have been built. We
decided to develop a software environment to test our ideas on a very difficult and well known
problem: the travelling salesman problem - TSP. We call our system, described in section 3,
the ant system and we propose in this paper three possible instantiations to the TSP problem:
the ANT-quantity and the ANT-density systems, described in section 4, and the ANT-
cycle system, introduced in section 5. Section 6 presents some experiments, together with
simulation results and discussion. In section 7 we sketch some conclusions and prefigure the
directions along which our research work will proceed in the near future.

2. Motivations

The animal realm exhibits several cases of social systems having poor individual capabilities
when compared to their complex collective behaviours. This is observed at different evolution-
ary stages, from bacteria [11], to ants [8], caterpillars [5] molluscs and larvae. Moreover, the
same causal processes that originate these behaviours are largely conserved in higher level
species, like fishes, birds and mammals. These species make use of different communication
media, adopted in less ubiquitous situation but essentially leading to the same patterns of be-
haviours (see for example the circular mills [3]).

This suggests that the underlying mechanisms have proven evolutionarely extremely effec-
tive and are therefore worth of being analyzed when trying to achieve the similar goal of per-
forming complex tasks by distributing activities over massively parallel systems composed of
computationally simple elements.

One of the better studied natural cases of distributed activities regards ant colonies [2]: we
outline here the main features of the models so far proposed to explain ant colonies behaviour.
These features have been the basis for the definition of a distributed algorithm, that we have
applied to the solution of "difficult" (NP-hard) computational problems.

The problem of interest is how almost blind animals manage to establish shortest route paths
from their colony to feeding sources and back.

In the case of ants, the media used to communicate among individuals information regarding
paths and used to decide where to go consists of pheromone trails. A moving ant lays some
pheromone (in varying quantities) on the ground, thus marking the path it followed by a trail of
this substance. While an isolated ant moves essentially at random, an ant encountering a previ-
ously laid trail can detect it and decide with high probability to follow it, thus reinforcing the
trail with its own pheromone. The collective behaviour that emerges is a form of autocatalytic
behaviour — or allelomimesis — where the more are the ants following a trail, the more that
trail becomes attractive for being followed. The process is thus characterized by a positive
feedback loop, where the probability with which an ant chooses a path increases with the num-
ber of ants that chose the same path in the preceding steps.

In Fig.1 we present an example of how allelomimesis can lead to the identification of the
shortest path around an obstacle.
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Fig.1 - a) Some ants are walking on a path between points A and E
b) An obstacle suddenly appears and the ants must get around it
c) At steady-state the ants choose the shorter path

The experimental setting is the following: there is a path along which ants are walking (for
example it could be a path from a food source A to the nest E - Fig.1a). Suddenly an obstacle
appears and the previous path is cut off. So at position B the ants walking from E to A (or at
position D those walking in the opposite direction) have to decide whether to turn right or left
(Fig.1b). The choice is influenced by the intensity of the pheromone trails left by preceding
ants. A higher level of pheromone on the right path gives an ant a stronger stimulus and thus an
higher probability to turn right. The first ant reaching point B (or D) has the same probability to
turn right or left (as there was no previous pheromone on the two alternative paths). Being path
BCD shorter than BGD, the first ant following it will reach D before the first ant following path
BGD. The result is that new ants coming from ED will find a stronger trail on path DCB,
caused by the half of all the ants that by chance decided to approach the obstacle via ABCD and
by the already arrived ones coming via BCD: they will therefore prefer (in probability) path
DCB to path DGB. As a consequence, the number of ants following path BCD will be higher,

STOP: What does this 
exploration algorithm 
remind us of?

Colorni, Dorigo, Maniezzo 1991 

Ants headed from E to D 
will find the path through 
C stronger. They are 
therefore more likely to 
take this path, laying down 
more pheromone à 
feedback loop!
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Ants colonies exhibit very interesting behaviours: even if a single ant only has simple ca-
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1. Introduction

In this paper we propose a novel approach to distributed problem solving and optimization
based on the result of low-level interactions among many cooperating simple agents that are not
aware of their cooperative behaviour. Our work has been inspired by the study of ant colonies:
in these systems each ant performs very simple actions and does not explicitly know what other
ants are doing. Nevertheless everybody can observe the resulting highly structured behaviour.

In section 2 we explain the background on which our speculations have been built. We
decided to develop a software environment to test our ideas on a very difficult and well known
problem: the travelling salesman problem - TSP. We call our system, described in section 3,
the ant system and we propose in this paper three possible instantiations to the TSP problem:
the ANT-quantity and the ANT-density systems, described in section 4, and the ANT-
cycle system, introduced in section 5. Section 6 presents some experiments, together with
simulation results and discussion. In section 7 we sketch some conclusions and prefigure the
directions along which our research work will proceed in the near future.

2. Motivations

The animal realm exhibits several cases of social systems having poor individual capabilities
when compared to their complex collective behaviours. This is observed at different evolution-
ary stages, from bacteria [11], to ants [8], caterpillars [5] molluscs and larvae. Moreover, the
same causal processes that originate these behaviours are largely conserved in higher level
species, like fishes, birds and mammals. These species make use of different communication
media, adopted in less ubiquitous situation but essentially leading to the same patterns of be-
haviours (see for example the circular mills [3]).

This suggests that the underlying mechanisms have proven evolutionarely extremely effec-
tive and are therefore worth of being analyzed when trying to achieve the similar goal of per-
forming complex tasks by distributing activities over massively parallel systems composed of
computationally simple elements.

One of the better studied natural cases of distributed activities regards ant colonies [2]: we
outline here the main features of the models so far proposed to explain ant colonies behaviour.
These features have been the basis for the definition of a distributed algorithm, that we have
applied to the solution of "difficult" (NP-hard) computational problems.

The problem of interest is how almost blind animals manage to establish shortest route paths
from their colony to feeding sources and back.

In the case of ants, the media used to communicate among individuals information regarding
paths and used to decide where to go consists of pheromone trails. A moving ant lays some
pheromone (in varying quantities) on the ground, thus marking the path it followed by a trail of
this substance. While an isolated ant moves essentially at random, an ant encountering a previ-
ously laid trail can detect it and decide with high probability to follow it, thus reinforcing the
trail with its own pheromone. The collective behaviour that emerges is a form of autocatalytic
behaviour — or allelomimesis — where the more are the ants following a trail, the more that
trail becomes attractive for being followed. The process is thus characterized by a positive
feedback loop, where the probability with which an ant chooses a path increases with the num-
ber of ants that chose the same path in the preceding steps.

In Fig.1 we present an example of how allelomimesis can lead to the identification of the
shortest path around an obstacle.
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Fig.1 - a) Some ants are walking on a path between points A and E
b) An obstacle suddenly appears and the ants must get around it
c) At steady-state the ants choose the shorter path

The experimental setting is the following: there is a path along which ants are walking (for
example it could be a path from a food source A to the nest E - Fig.1a). Suddenly an obstacle
appears and the previous path is cut off. So at position B the ants walking from E to A (or at
position D those walking in the opposite direction) have to decide whether to turn right or left
(Fig.1b). The choice is influenced by the intensity of the pheromone trails left by preceding
ants. A higher level of pheromone on the right path gives an ant a stronger stimulus and thus an
higher probability to turn right. The first ant reaching point B (or D) has the same probability to
turn right or left (as there was no previous pheromone on the two alternative paths). Being path
BCD shorter than BGD, the first ant following it will reach D before the first ant following path
BGD. The result is that new ants coming from ED will find a stronger trail on path DCB,
caused by the half of all the ants that by chance decided to approach the obstacle via ABCD and
by the already arrived ones coming via BCD: they will therefore prefer (in probability) path
DCB to path DGB. As a consequence, the number of ants following path BCD will be higher,

STOP: What does this 
exploration algorithm 
remind us of?

Colorni, Dorigo, Maniezzo 1991 

Answer: Gibbs sampling 
(motif finding) and finding 
the best abundance vector 
(RNA-seq). A small 
“signal” could be detected 
and reinforced 
probabilistically.
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don’t use pheromones. 
They search for seeds in 
the desert, a sparse 
environment, and the ants 
typically scatter to do so.
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Image courtesy: Bob Peterson

Their exploration is more 
individualized. So how 
interesting could their 
algorithm be?

Harvester ants (P. barbatus) 
don’t use pheromones. 
They search for seeds in 
the desert, a sparse 
environment, and the ants 
typically scatter to do so.
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the ants should want to explore, since exploring a 
barren waste would lead to a quick death.
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The more food that is currently available, the more 
the ants should want to explore, since exploring a 
barren waste would lead to a quick death.

Key insight: The ants use the frequency of arriving 
ants to determine whether to explore further.
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STOP: Say that we want to model arriving ants. Any 
ideas based on (hint hint) what we already know?

Answer: Let’s use a Poisson distribution! Indeed, the 
times between real ant arrivals are exponential. J

Source: Prabhakar, Dekhtar, Gordon 2012
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STOP: If this is how ants arrive, how could we 
model the number of departing ants in a given time 
interval?

Answer: One solution would be to use a Poisson 
distribution, but with the caveat that the mean 
should vary based on the number of arrivals.
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Let Dn be the number of predicted departures in 
interval n, and let An denote the number of arrivals.
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Let Dn be the number of predicted departures in 
interval n, and let An denote the number of arrivals.

Dn should be a Poisson variable with mean f⍺n , 
where ⍺n depends on An in the following way.

⍺n = max(cAn, ⍺’)
where c is a constant and ⍺’ is a “baseline” that will 
prevent the departure from becoming zero.
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To allow the signal to last more than one interval, ⍺n 
should depend on ⍺n-1 minus some constant d.
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To allow the signal to last more than one interval, ⍺n 
should depend on ⍺n-1 minus some constant d.

Finally, the entrance can get crowded, so ⍺n should 
vary inversely with Dn-1.
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To allow the signal to last more than one interval, ⍺n 
should depend on ⍺n-1 minus some constant d.

Dn should be a Poisson variable with mean f⍺n , 
where ⍺n depends on An in the following way.

⍺n = max(⍺n-1 – d – qDn-1 + cAn, ⍺’)
where c is a constant and ⍺’ is a “baseline” that will 
prevent the departure from becoming zero.

Finally, the entrance can get crowded, so ⍺n should 
vary inversely with Dn-1.
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departure rates are correlated

© 2024 Phillip Compeau

The model has four parameters: a, c, q and d. We examined the fit
between model and data for one parameter, c. We thus fixed a., q
and d and varied c. As with any birth-death process, the ratio of c to e
determines the distribution of {an}. We set q to 0.05 to keep the
range of values of an within the range of observed foraging rates
(0.15 to 1.2 ants per sec). We set d to 0 for the simulations reported

here; however, empirical studies show that d may be an important
parameter because it may vary by colony [29], or in response to
variation in environmental conditions that could affect the rate of
decay of chemical cues such as the cuticular hydrocarbons that ants
assess by antennal contact [24]. Similarly, a, the baserate of
foraging, was very small, equal to 0.01 ants per second [27].

Figure 2. Comparison of observed and simulated foraging rates. The rate of returning foragers was experimentally decreased by removing
the returning foragers, leading to a decrease in the rate at which outgoing foragers left the nest. Each figure shows data from one trial. Returning
foragers were removed from 240–420 sec, during the interval indicated by the horizontal black line, and then allowed to return to the nest
undisturbed for the remainder of the trial. The red line shows the observed rate of returning foragers, the blue line shows the observed rate of
outgoing foragers, and the green line shows the simulated rate of outgoing foragers. a, high foraging rate (mean rate returning foragers 0.807 ants/
sec); b, low foraging rate (mean rate returning foragers 0.169 ants/sec).
doi:10.1371/journal.pcbi.1002670.g002
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SLIME MOLDS AND 
TRANSPORTATION NETWORKS

© 2024 Phillip Compeau



Slime molds are foragers too

© 2024 Phillip Compeau

https://www.youtube.com/watch?v=VJkJbM3y5R4

Goal: study how slime molds form networks.



Toward a computational problem

© 2024 Phillip Compeau

When the slime mold encounters a food source, the 
food becomes a “hub” for distributing resources.



Toward a computational problem
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When the slime mold encounters a food source, the 
food becomes a “hub” for distributing resources.

The mold reinforces pathways when there is a lot of 
food and trimming away connections where there 
isn’t any. Can we model its heuristic?



Toward a computational problem

© 2024 Phillip Compeau

When the slime mold encounters a food source, the 
food becomes a “hub” for distributing resources.

The mold reinforces pathways when there is a lot of 
food and trimming away connections where there 
isn’t any. Can we model its heuristic?

STOP: What computational problem do you think 
that the mold is solving? What is it optimizing?



Steiner trees model connected networks 
of minimal transportation cost

© 2024 Phillip Compeau

Steiner Tree Problem:
• Input: A collection of n points in 2-D space.
• Output: A Steiner tree containing the n points.

A Steiner tree of a collection of points is a tree 
including the points as nodes and minimizing the 
sum of edge lengths in the tree.  



Steiner trees model connected networks 
of minimal transportation cost

© 2024 Phillip Compeau

Steiner Tree Problem:
• Input: A collection of n points in 2-D space.
• Output: A Steiner tree containing the n points.

STOP: Why are we looking for a tree?

A Steiner tree of a collection of points is a tree 
including the points as nodes and minimizing the 
sum of edge lengths in the tree.  



Steiner trees model connected networks 
of minimal transportation cost

© 2024 Phillip Compeau

Steiner Tree Problem:
• Input: A collection of n points in 2-D space.
• Output: A Steiner tree containing the n points.

A Steiner tree of a collection of points is a tree 
including the points as nodes and minimizing the 
sum of edge lengths in the tree.  

Answer: If we have a cycle, then removing an edge 
produces a connected network with less “cost”. 



Let’s do an example

© 2024 Phillip Compeau

Exercise: Say that our 
points are the four 
corners of a unit 
square. Find a Steiner 
tree of these points.



Let’s do an example

© 2024 Phillip Compeau

Exercise: Say that our 
points are the four 
corners of a unit 
square. Find a Steiner 
tree of these points.

Total distance: 2 + √2



Let’s do an example

© 2024 Phillip Compeau

Exercise: Say that our 
points are the four 
corners of a unit 
square. Find a Steiner 
tree of these points.

Total distance: 3



Let’s do an example

© 2024 Phillip Compeau

Answer: The correct 
answer in this case 
adds two new nodes 
that do not occur in 
the original set.

Total distance: 1 + √3

√3/3 √3/3

√3/3√3/3

1– √3/3



Finding a Steiner tree is hard

© 2024 Phillip Compeau

Steiner Tree Problem:
• Input: A collection of n points in 2-D space.
• Output: A Steiner tree containing the n points.

A Steiner tree of a collection of points is a tree 
including the points as nodes and minimizing the 
sum of edge lengths in the tree.  

Note: As you might expect, this problem is NP-
Complete. But slime molds don’t know this!



Finding a Steiner tree is hard

© 2024 Phillip Compeau

Steiner Tree Problem:
• Input: A collection of n points in 2-D space.
• Output: A Steiner tree containing the n points.

A Steiner tree of a collection of points is a tree 
including the points as nodes and minimizing the 
sum of edge lengths in the tree.  

Also, this isn’t an ideal problem; edges have varying 
thicknesses (i.e., weights), and the network needs to 
be somewhat fault tolerant (so a tree isn’t the best).



How do slime molds explore?

© 2024 Phillip Compeau

The mold starts as a thinly meshed lattice with many 
thin edges to explore an area completely.



How do slime molds explore?

© 2024 Phillip Compeau

As the slime mold grows, it reinforces successful 
tubes (i.e., ones with lots of flow per unit length).



How do slime molds explore?

© 2024 Phillip Compeau

The slime mold also allows tubes that have not been 
successful to die out, which produces the network. 



How do slime molds explore?

© 2024 Phillip Compeau

Note: Using feedback to make small changes should 
remind us of some things… 



Fun idea: grow “Tokyo” slime molds and 
compare against real rail network

© 2024 Phillip Compeau

accumulate on a large FS outside the arena (LFS
in Fig. 2A).

A range of network solutions were apparent
in replicate experiments (compare Fig. 2A with
Fig. 1F); nonetheless, the topology of many
Physarum networks bore similarity to the real rail
network (Fig. 2D). Some of the differences may
relate to geographical features that constrain the rail
network, such as mountainous terrain or lakes.
These constraints were imposed on the Physarum
network by varying the intensity of illumination, as
the plasmodium avoids bright light (16). This
yielded networks (Fig. 2, B and C) with greater
visual congruence to the real rail network (Fig. 2D).
Networks were also compared with the minimal
spanning tree (MST, Fig. 2E), which is the shortest
possible network connecting all the city positions,
and various derivatives with increasing numbers of
cross-links added (e.g., Fig. 2F), culminating in a
fully connected Delaunay triangulation, which rep-
resents the maximally connected network linking
all the cities.

The performance of each network was char-
acterized by the cost (TL), transport efficiency
(MD), and robustness (FT), normalized to the
corresponding value for the MST to give TLMST,
MDMST, and FTMST. The TL of the Tokyo rail
network was greater than the MST by a factor
of ~1.8 (i.e., TLMST ≈ 1.8), whereas the average
TLMST for Physarum was 1.75 T 0.30 (n = 21).
Illuminated networks gave slightly better clus-
tering around the value for the rail network (Fig.
3A). For comparison, the Delaunay triangulation
was longer than the MST by a factor of ~4.6.
Thus, the cost of the solutions found by Physarum
closely matched that of the rail network, with
about 30% of the maximum possible number of
links in place. The transport performance of the
two networks was also similar, with MDMST of
0.85 and 0.85 T 0.04 for the rail network and the
Physarum networks, respectively. However, the
Physarum networks achieved this with margin-
ally lower overall cost (Fig. 3A).

The converse was true for the fault tolerance
(FTMST) in which the real rail network showed
marginally better resilience, close to the lowest
level needed to givemaximum tolerance to a single
random failure. Thus, only 4% of faults in the rail
network would lead to isolation of any part,
whereas 14 T 4%would disconnect the illuminated
Physarum networks, and 20 T 13% would
disconnect the unconstrained Physarum networks.
In contrast, simply adding additional links to the
MST to improve network performance resulted
in networks with poor fault tolerance (Fig. 3B).

The trade-off between fault tolerance and cost
was captured in a single benefit-cost measure, ex-
pressed as the ratio of FT/TLMST = a. In general,
the Physarum networks and the rail network had
a benefit/cost ratio of ~0.5 for any given TLMST

(Fig. 3B). The relationship between different a
values and transport efficiency (Fig. 3C) high-
lighted the similarity in aggregate behavior of the
Physarum network when considering all three per-
formance measures (MDMST, TLMST, and FTMST).

Fig. 1. Network formation in Physa-
rum polycephalum. (A) At t = 0, a
small plasmodium of Physarum was
placed at the location of Tokyo in an
experimental arena bounded by the
Pacific coastline (white border) and
supplemented with additional food
sources at each of the major cities in
theregion(whitedots). Thehorizontal
width of each panel is 17 cm. (B to F)
The plasmodium grew out from the
initial food source with a contiguous
margin and progressively colonized
each of the food sources. Behind the
growingmargin, the spreadingmyce-
lium resolved into a network of tubes
interconnecting the food sources.
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Fig. 2. Comparison of the Physarum
networks with the Tokyo rail network.
(A) In the absence of illumination, the
Physarum network resulted from even
exploration of the available space. (B)
Geographical constraints were imposed
on the developing Physarum network
by means of an illumination mask to
restrict growth to more shaded areas
corresponding to low-altitude regions.
The ocean and inland lakes were also
given strong illumination to prevent
growth. (C andD) The resulting network
(C) was compared with the rail network
in the Tokyo area (D). (E and F) The
minimum spanning tree (MST) con-
necting the same set of city nodes (E)
and a model network constructed by
adding additional links to the MST (F).
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Researchers placed food at 
locations corresponding to cities 
around Tokyo and used variable 
light to simulate geography.



Slime mold network is very similar to 
real Tokyo rail network 

© 2024 Phillip Compeau

accumulate on a large FS outside the arena (LFS
in Fig. 2A).

A range of network solutions were apparent
in replicate experiments (compare Fig. 2A with
Fig. 1F); nonetheless, the topology of many
Physarum networks bore similarity to the real rail
network (Fig. 2D). Some of the differences may
relate to geographical features that constrain the rail
network, such as mountainous terrain or lakes.
These constraints were imposed on the Physarum
network by varying the intensity of illumination, as
the plasmodium avoids bright light (16). This
yielded networks (Fig. 2, B and C) with greater
visual congruence to the real rail network (Fig. 2D).
Networks were also compared with the minimal
spanning tree (MST, Fig. 2E), which is the shortest
possible network connecting all the city positions,
and various derivatives with increasing numbers of
cross-links added (e.g., Fig. 2F), culminating in a
fully connected Delaunay triangulation, which rep-
resents the maximally connected network linking
all the cities.

The performance of each network was char-
acterized by the cost (TL), transport efficiency
(MD), and robustness (FT), normalized to the
corresponding value for the MST to give TLMST,
MDMST, and FTMST. The TL of the Tokyo rail
network was greater than the MST by a factor
of ~1.8 (i.e., TLMST ≈ 1.8), whereas the average
TLMST for Physarum was 1.75 T 0.30 (n = 21).
Illuminated networks gave slightly better clus-
tering around the value for the rail network (Fig.
3A). For comparison, the Delaunay triangulation
was longer than the MST by a factor of ~4.6.
Thus, the cost of the solutions found by Physarum
closely matched that of the rail network, with
about 30% of the maximum possible number of
links in place. The transport performance of the
two networks was also similar, with MDMST of
0.85 and 0.85 T 0.04 for the rail network and the
Physarum networks, respectively. However, the
Physarum networks achieved this with margin-
ally lower overall cost (Fig. 3A).

The converse was true for the fault tolerance
(FTMST) in which the real rail network showed
marginally better resilience, close to the lowest
level needed to givemaximum tolerance to a single
random failure. Thus, only 4% of faults in the rail
network would lead to isolation of any part,
whereas 14 T 4%would disconnect the illuminated
Physarum networks, and 20 T 13% would
disconnect the unconstrained Physarum networks.
In contrast, simply adding additional links to the
MST to improve network performance resulted
in networks with poor fault tolerance (Fig. 3B).

The trade-off between fault tolerance and cost
was captured in a single benefit-cost measure, ex-
pressed as the ratio of FT/TLMST = a. In general,
the Physarum networks and the rail network had
a benefit/cost ratio of ~0.5 for any given TLMST

(Fig. 3B). The relationship between different a
values and transport efficiency (Fig. 3C) high-
lighted the similarity in aggregate behavior of the
Physarum network when considering all three per-
formance measures (MDMST, TLMST, and FTMST).

Fig. 1. Network formation in Physa-
rum polycephalum. (A) At t = 0, a
small plasmodium of Physarum was
placed at the location of Tokyo in an
experimental arena bounded by the
Pacific coastline (white border) and
supplemented with additional food
sources at each of the major cities in
theregion(whitedots). Thehorizontal
width of each panel is 17 cm. (B to F)
The plasmodium grew out from the
initial food source with a contiguous
margin and progressively colonized
each of the food sources. Behind the
growingmargin, the spreadingmyce-
lium resolved into a network of tubes
interconnecting the food sources.
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Fig. 2. Comparison of the Physarum
networks with the Tokyo rail network.
(A) In the absence of illumination, the
Physarum network resulted from even
exploration of the available space. (B)
Geographical constraints were imposed
on the developing Physarum network
by means of an illumination mask to
restrict growth to more shaded areas
corresponding to low-altitude regions.
The ocean and inland lakes were also
given strong illumination to prevent
growth. (C andD) The resulting network
(C) was compared with the rail network
in the Tokyo area (D). (E and F) The
minimum spanning tree (MST) con-
necting the same set of city nodes (E)
and a model network constructed by
adding additional links to the MST (F).
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accumulate on a large FS outside the arena (LFS
in Fig. 2A).

A range of network solutions were apparent
in replicate experiments (compare Fig. 2A with
Fig. 1F); nonetheless, the topology of many
Physarum networks bore similarity to the real rail
network (Fig. 2D). Some of the differences may
relate to geographical features that constrain the rail
network, such as mountainous terrain or lakes.
These constraints were imposed on the Physarum
network by varying the intensity of illumination, as
the plasmodium avoids bright light (16). This
yielded networks (Fig. 2, B and C) with greater
visual congruence to the real rail network (Fig. 2D).
Networks were also compared with the minimal
spanning tree (MST, Fig. 2E), which is the shortest
possible network connecting all the city positions,
and various derivatives with increasing numbers of
cross-links added (e.g., Fig. 2F), culminating in a
fully connected Delaunay triangulation, which rep-
resents the maximally connected network linking
all the cities.

The performance of each network was char-
acterized by the cost (TL), transport efficiency
(MD), and robustness (FT), normalized to the
corresponding value for the MST to give TLMST,
MDMST, and FTMST. The TL of the Tokyo rail
network was greater than the MST by a factor
of ~1.8 (i.e., TLMST ≈ 1.8), whereas the average
TLMST for Physarum was 1.75 T 0.30 (n = 21).
Illuminated networks gave slightly better clus-
tering around the value for the rail network (Fig.
3A). For comparison, the Delaunay triangulation
was longer than the MST by a factor of ~4.6.
Thus, the cost of the solutions found by Physarum
closely matched that of the rail network, with
about 30% of the maximum possible number of
links in place. The transport performance of the
two networks was also similar, with MDMST of
0.85 and 0.85 T 0.04 for the rail network and the
Physarum networks, respectively. However, the
Physarum networks achieved this with margin-
ally lower overall cost (Fig. 3A).

The converse was true for the fault tolerance
(FTMST) in which the real rail network showed
marginally better resilience, close to the lowest
level needed to givemaximum tolerance to a single
random failure. Thus, only 4% of faults in the rail
network would lead to isolation of any part,
whereas 14 T 4%would disconnect the illuminated
Physarum networks, and 20 T 13% would
disconnect the unconstrained Physarum networks.
In contrast, simply adding additional links to the
MST to improve network performance resulted
in networks with poor fault tolerance (Fig. 3B).

The trade-off between fault tolerance and cost
was captured in a single benefit-cost measure, ex-
pressed as the ratio of FT/TLMST = a. In general,
the Physarum networks and the rail network had
a benefit/cost ratio of ~0.5 for any given TLMST

(Fig. 3B). The relationship between different a
values and transport efficiency (Fig. 3C) high-
lighted the similarity in aggregate behavior of the
Physarum network when considering all three per-
formance measures (MDMST, TLMST, and FTMST).

Fig. 1. Network formation in Physa-
rum polycephalum. (A) At t = 0, a
small plasmodium of Physarum was
placed at the location of Tokyo in an
experimental arena bounded by the
Pacific coastline (white border) and
supplemented with additional food
sources at each of the major cities in
theregion(whitedots). Thehorizontal
width of each panel is 17 cm. (B to F)
The plasmodium grew out from the
initial food source with a contiguous
margin and progressively colonized
each of the food sources. Behind the
growingmargin, the spreadingmyce-
lium resolved into a network of tubes
interconnecting the food sources.
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Fig. 2. Comparison of the Physarum
networks with the Tokyo rail network.
(A) In the absence of illumination, the
Physarum network resulted from even
exploration of the available space. (B)
Geographical constraints were imposed
on the developing Physarum network
by means of an illumination mask to
restrict growth to more shaded areas
corresponding to low-altitude regions.
The ocean and inland lakes were also
given strong illumination to prevent
growth. (C andD) The resulting network
(C) was compared with the rail network
in the Tokyo area (D). (E and F) The
minimum spanning tree (MST) con-
necting the same set of city nodes (E)
and a model network constructed by
adding additional links to the MST (F).
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Next, let’s mimic the slime mold’s 
algorithm

© 2024 Phillip Compeau

Let Qi,j denote the flux through the tube connecting 
node i to j, the volume moving through a fixed part 
of the tube per unit time. Physics tells us that Qi,j is:

i j
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Let Qi,j denote the flux through the tube connecting 
node i to j, the volume moving through a fixed part 
of the tube per unit time. Physics tells us that Qi,j is:
• directly proportional to the thickness of the tube;

i j
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Let Qi,j denote the flux through the tube connecting 
node i to j, the volume moving through a fixed part 
of the tube per unit time. Physics tells us that Qi,j is:
• directly proportional to the thickness of the tube;
• directly proportional to the pressure differential 

between nodes i and j;
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Next, let’s mimic the slime mold’s 
algorithm

© 2024 Phillip Compeau

Let Qi,j denote the flux through the tube connecting 
node i to j, the volume moving through a fixed part 
of the tube per unit time. Physics tells us that Qi,j is:
• directly proportional to the thickness of the tube;
• directly proportional to the pressure differential 

between nodes i and j;
• inversely proportional to the length of the tube.

i j



Next, let’s mimic the slime mold’s 
algorithm

© 2024 Phillip Compeau

Putting this together gives us that the flux Qi,j is
Qi,j = Di,j (pi – pj) / Li,j 

• Di,j is the thickness of the tube;
• pi is the pressure at node i;
• Li,j is the length of the tube.

i j



Next, let’s mimic the slime mold’s 
algorithm

© 2024 Phillip Compeau

1. Build a finely meshed lattice covering the space.
2. Repeat the following steps n times:

i. Pick two random nodes as source and sink.
ii. “Push” the source’s total outgoing flux toward 

sink, setting pressure values to ensure that the 
incoming/outcoming flux balance at every 
other node. (This is a linear algebra problem.)

iii. Update Di,j along every edge to reinforce 
high-flux edges and allow low-flux edges to 
decay.



Updating the thickness Di,j 

© 2024 Phillip Compeau

To update Di,j after we have updated the Qi,j, we use 
the following differential equation:

dDi,j /dt = f(|Qi,j|) – Di,j



Updating the thickness Di,j 

© 2024 Phillip Compeau

The function should be an 
increasing function, so 
that the tube will become 
thicker if we have more 
flux. One choice is a 
sigmoid function.

https://en.wikipedia.org/wiki/Sigmoid_function

To update Di,j after we have updated the Qi,j, we use 
the following differential equation:

dDi,j /dt = f(|Qi,j|) – Di,j



Updating the thickness Di,j 

© 2024 Phillip Compeau

To update Di,j after we have updated the Qi,j, we use 
the following differential equation:

dDi,j /dt = f(|Qi,j|) – Di,j

STOP: What is the purpose of subtracting the Di,j 
term? 



Updating the thickness Di,j 

© 2024 Phillip Compeau

To update Di,j after we have updated the Qi,j, we use 
the following differential equation:

dDi,j /dt = f(|Qi,j|) – Di,j

STOP: What is the purpose of subtracting the Di,j 
term? 

Answer: If the flux is low, then we want the tube to 
shrink in the next step.



Measuring network quality
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Note: There are two (conflicting) things we want:
1. Small network size.
2. “Fault tolerant” network robust to edge removals.



Measuring network quality
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STOP: How could we quantify each of these 
properties? 

Note: There are two (conflicting) things we want:
1. Small network size.
2. “Fault tolerant” network robust to edge removals.



Measuring network quality

© 2024 Phillip Compeau

Note: There are two (conflicting) things we want:
1. Small network size.
2. “Fault tolerant” network robust to edge removals.

STOP: How could we quantify each of these 
properties? 

Answer: Two simple (but good) ideas:
1. Total distance of all edges in network.
2. Chance that edge removal disconnects network.



Comparing simulated network against 
real and slime mold networks

© 2024 Phillip Compeau

Simulated networks are more efficient but less fault 
tolerant than both the real rail network and slime 
mold network.

accumulate on a large FS outside the arena (LFS
in Fig. 2A).

A range of network solutions were apparent
in replicate experiments (compare Fig. 2A with
Fig. 1F); nonetheless, the topology of many
Physarum networks bore similarity to the real rail
network (Fig. 2D). Some of the differences may
relate to geographical features that constrain the rail
network, such as mountainous terrain or lakes.
These constraints were imposed on the Physarum
network by varying the intensity of illumination, as
the plasmodium avoids bright light (16). This
yielded networks (Fig. 2, B and C) with greater
visual congruence to the real rail network (Fig. 2D).
Networks were also compared with the minimal
spanning tree (MST, Fig. 2E), which is the shortest
possible network connecting all the city positions,
and various derivatives with increasing numbers of
cross-links added (e.g., Fig. 2F), culminating in a
fully connected Delaunay triangulation, which rep-
resents the maximally connected network linking
all the cities.

The performance of each network was char-
acterized by the cost (TL), transport efficiency
(MD), and robustness (FT), normalized to the
corresponding value for the MST to give TLMST,
MDMST, and FTMST. The TL of the Tokyo rail
network was greater than the MST by a factor
of ~1.8 (i.e., TLMST ≈ 1.8), whereas the average
TLMST for Physarum was 1.75 T 0.30 (n = 21).
Illuminated networks gave slightly better clus-
tering around the value for the rail network (Fig.
3A). For comparison, the Delaunay triangulation
was longer than the MST by a factor of ~4.6.
Thus, the cost of the solutions found by Physarum
closely matched that of the rail network, with
about 30% of the maximum possible number of
links in place. The transport performance of the
two networks was also similar, with MDMST of
0.85 and 0.85 T 0.04 for the rail network and the
Physarum networks, respectively. However, the
Physarum networks achieved this with margin-
ally lower overall cost (Fig. 3A).

The converse was true for the fault tolerance
(FTMST) in which the real rail network showed
marginally better resilience, close to the lowest
level needed to givemaximum tolerance to a single
random failure. Thus, only 4% of faults in the rail
network would lead to isolation of any part,
whereas 14 T 4%would disconnect the illuminated
Physarum networks, and 20 T 13% would
disconnect the unconstrained Physarum networks.
In contrast, simply adding additional links to the
MST to improve network performance resulted
in networks with poor fault tolerance (Fig. 3B).

The trade-off between fault tolerance and cost
was captured in a single benefit-cost measure, ex-
pressed as the ratio of FT/TLMST = a. In general,
the Physarum networks and the rail network had
a benefit/cost ratio of ~0.5 for any given TLMST

(Fig. 3B). The relationship between different a
values and transport efficiency (Fig. 3C) high-
lighted the similarity in aggregate behavior of the
Physarum network when considering all three per-
formance measures (MDMST, TLMST, and FTMST).

Fig. 1. Network formation in Physa-
rum polycephalum. (A) At t = 0, a
small plasmodium of Physarum was
placed at the location of Tokyo in an
experimental arena bounded by the
Pacific coastline (white border) and
supplemented with additional food
sources at each of the major cities in
theregion(whitedots). Thehorizontal
width of each panel is 17 cm. (B to F)
The plasmodium grew out from the
initial food source with a contiguous
margin and progressively colonized
each of the food sources. Behind the
growingmargin, the spreadingmyce-
lium resolved into a network of tubes
interconnecting the food sources.
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Fig. 2. Comparison of the Physarum
networks with the Tokyo rail network.
(A) In the absence of illumination, the
Physarum network resulted from even
exploration of the available space. (B)
Geographical constraints were imposed
on the developing Physarum network
by means of an illumination mask to
restrict growth to more shaded areas
corresponding to low-altitude regions.
The ocean and inland lakes were also
given strong illumination to prevent
growth. (C andD) The resulting network
(C) was compared with the rail network
in the Tokyo area (D). (E and F) The
minimum spanning tree (MST) con-
necting the same set of city nodes (E)
and a model network constructed by
adding additional links to the MST (F).
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Slime mold network Tokyo rail network
The rail network was embedded in the cluster of
results for the Physarum networks with a margin-
ally higher a value for the same transport effi-
ciency (Fig. 3C).

Overall, we conclude that the Physarum net-
works showed characteristics similar to those of
the rail network in terms of cost, transport efficien-
cy, and fault tolerance. However, the Physarum
networks self-organized without centralized con-
trol or explicit global information by a process of
selective reinforcement of preferred routes and
simultaneous removal of redundant connections.

We developed a mathematical model for adapt-
ive network construction to emulate this behavior,
based on feedback loops between the thickness of
each tube and internal protoplasmic flow (18–22)
in which high rates of streaming stimulate an in-
crease in tube diameter, whereas tubes tend to de-
cline at low flow rates (23). The initial shape of a
plasmodium is represented by a randomly meshed
lattice with a relatively fine spacing, as shown in
Fig. 4 (t = 0). The edges represent plasmodial

tubes in which protoplasm flows, and nodes are
junctions between tubes. Suppose that the pres-
sures at nodes i and j are pi and pj, respectively,
and that the two nodes are connected by a cyl-
inder of length Lij and radius rij. Assuming that
flow is laminar and follows the Hagen-Poiseuille
equation, the flux through the tube is

Qij ¼
!r4ðpi − pjÞ

8hLij
¼

Dijðpi − pjÞ
Lij

ð1Þ

where h is the viscosity of the fluid, and Dij =
pr4/8h is a measure of the conductivity of the
tube. As the length Lij is a constant, the behavior
of the network is described by the conductivities,
Dij, of the edges.

At each time step, a random FS (node 1) is
selected to drive flow through the network, so the
flux includes a source term SjQ1j = I0. A second
random FS is chosen as a sink (node 2) with a
corresponding withdrawal of I0 such that SjQ2j =
–I0. As the amount of fluid must be conserved,

the inflow and outflow at each internal nodemust
balance so that i (i ≠ 1, 2), SjQij = 0. Thus, for a
given set of conductivities and selected source
and sink nodes, the flux through each of the
network edges can be computed.

To accommodate the adaptive behavior of the
plasmodium, the conductivity of each tube evolves
according to dDij /dt = f(|Qij|) – Dij. The first term
on the right side describes the expansion of tubes in
response to the flux. The second term represents
the rate of tube constriction, so that in the absence
of flow the tubes will gradually disappear. The
functional form f (|Q|) is given by f (|Q|) = |Q|g/(1 +
|Q|g), which describes a sigmoidal response where g
is a parameter that controls the nonlinearity of feed-
back (g > 0). A typical simulation result with I0 = 2
and g = 1.8 (Fig. 4) gave a network with features
similar to those of both the Physarum system and
the rail network (Fig. 2, C and D, respectively).

In general, increasing I0 promoted the for-
mation of alternative routes that improved per-
formance by reducing MDMST and made the
network more fault-tolerant, but with increased
cost (Fig. 3, A to C, and fig. S1I). Low values of g
also gave a greater degree of cross-linking with
an increased number of Steiner points (fig. S2, A
and B). Conversely, decreasing I0 (fig. S1A) or
increasing g (fig. S2I) drove the system toward a
low-cost MST (Fig. 2E), but with an inevitable
decrease in resilience (Fig. 3B). The final net-
work solution also depended slightly on the
stochastic variation assigned to the starting values
of Dij. Judicious selection of specific parameter
combinations (I0 = 0.20, g = 1.15) yielded net-
works with remarkably similar topology and
metrics to the Tokyo rail network (fig. S2B). How-
ever, by increasing I0 to 2 and g to 1.8, the simula-
tion model also achieved a benefit/cost ratio (a =
FT/TLMST) that was better than those of the rail or
Physarum networks, reaching a value of 0.7 with
an almost identical transport efficiency of 0.85
(Fig. 3C). Conversely, the consequence of the in-
creased TLMST observed in the rail or Physarum
networks would be to confer greater resilience to

Fig. 3. Transport performance,
resilience, and cost for Physa-
rum networks, model simula-
tions, and the real rail networks.
(A) Transport performance of
each network, measured as the
minimum distance between all
pairs of nodes, normalized to
the MST (MDMST) and plotted
against the total length of the
network normalized by the MST
(TLMST) as a measure of cost.
Black circles and blue squares
represent results obtained from
Physarum in the absence or
presence of illumination, respectively. The green triangle represents the actual
rail network. Open red circles represent simulation results as I0 was varied from
0.20 to 7.19 at a fixed g ( = 1.80) and initial random fluctuations of Dij. (B) Fault
tolerance (FT), measured as the probability of disconnecting part of the network
with failure of a single link. Crosses represent results for reference networks; other

symbols as in (A). Different values of the benefit/cost ratio, a = FT/TLMST, are
shown as dashed lines. (C) Relationship between MDMST and a. Although the
overall performance of the experiment and that of the real rail network are
clustered together, the simulation model achieves better fault tolerance for the
same transport efficiency.
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Fig. 4. Network dynamics for the
simulationmodel. In this typical time
course for evolution of the simula-
tion, time (t) is shown in arbitrary
units; cities are blue dots. Each city
was modeled as a single FS, apart
from Tokyo, which was an aggregate
of seven FSs tomatch the importance
of Tokyo as the center of the region.
At the start (t = 0), the available
space was populated with a finely
meshed network of thin tubes. Over
time, many of these tubes died out,
whilst a limited number of tubes be-
came selectively thickened to yield
a stable, self-organized solution. g =
1.80, I0 = 2.00.
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accumulate on a large FS outside the arena (LFS
in Fig. 2A).

A range of network solutions were apparent
in replicate experiments (compare Fig. 2A with
Fig. 1F); nonetheless, the topology of many
Physarum networks bore similarity to the real rail
network (Fig. 2D). Some of the differences may
relate to geographical features that constrain the rail
network, such as mountainous terrain or lakes.
These constraints were imposed on the Physarum
network by varying the intensity of illumination, as
the plasmodium avoids bright light (16). This
yielded networks (Fig. 2, B and C) with greater
visual congruence to the real rail network (Fig. 2D).
Networks were also compared with the minimal
spanning tree (MST, Fig. 2E), which is the shortest
possible network connecting all the city positions,
and various derivatives with increasing numbers of
cross-links added (e.g., Fig. 2F), culminating in a
fully connected Delaunay triangulation, which rep-
resents the maximally connected network linking
all the cities.

The performance of each network was char-
acterized by the cost (TL), transport efficiency
(MD), and robustness (FT), normalized to the
corresponding value for the MST to give TLMST,
MDMST, and FTMST. The TL of the Tokyo rail
network was greater than the MST by a factor
of ~1.8 (i.e., TLMST ≈ 1.8), whereas the average
TLMST for Physarum was 1.75 T 0.30 (n = 21).
Illuminated networks gave slightly better clus-
tering around the value for the rail network (Fig.
3A). For comparison, the Delaunay triangulation
was longer than the MST by a factor of ~4.6.
Thus, the cost of the solutions found by Physarum
closely matched that of the rail network, with
about 30% of the maximum possible number of
links in place. The transport performance of the
two networks was also similar, with MDMST of
0.85 and 0.85 T 0.04 for the rail network and the
Physarum networks, respectively. However, the
Physarum networks achieved this with margin-
ally lower overall cost (Fig. 3A).

The converse was true for the fault tolerance
(FTMST) in which the real rail network showed
marginally better resilience, close to the lowest
level needed to givemaximum tolerance to a single
random failure. Thus, only 4% of faults in the rail
network would lead to isolation of any part,
whereas 14 T 4%would disconnect the illuminated
Physarum networks, and 20 T 13% would
disconnect the unconstrained Physarum networks.
In contrast, simply adding additional links to the
MST to improve network performance resulted
in networks with poor fault tolerance (Fig. 3B).

The trade-off between fault tolerance and cost
was captured in a single benefit-cost measure, ex-
pressed as the ratio of FT/TLMST = a. In general,
the Physarum networks and the rail network had
a benefit/cost ratio of ~0.5 for any given TLMST

(Fig. 3B). The relationship between different a
values and transport efficiency (Fig. 3C) high-
lighted the similarity in aggregate behavior of the
Physarum network when considering all three per-
formance measures (MDMST, TLMST, and FTMST).

Fig. 1. Network formation in Physa-
rum polycephalum. (A) At t = 0, a
small plasmodium of Physarum was
placed at the location of Tokyo in an
experimental arena bounded by the
Pacific coastline (white border) and
supplemented with additional food
sources at each of the major cities in
theregion(whitedots). Thehorizontal
width of each panel is 17 cm. (B to F)
The plasmodium grew out from the
initial food source with a contiguous
margin and progressively colonized
each of the food sources. Behind the
growingmargin, the spreadingmyce-
lium resolved into a network of tubes
interconnecting the food sources.

A

0 hr

D

11 hr

B

5 hr

E

16 hr

8 hr

C F

26 hr

Fig. 2. Comparison of the Physarum
networks with the Tokyo rail network.
(A) In the absence of illumination, the
Physarum network resulted from even
exploration of the available space. (B)
Geographical constraints were imposed
on the developing Physarum network
by means of an illumination mask to
restrict growth to more shaded areas
corresponding to low-altitude regions.
The ocean and inland lakes were also
given strong illumination to prevent
growth. (C andD) The resulting network
(C) was compared with the rail network
in the Tokyo area (D). (E and F) The
minimum spanning tree (MST) con-
necting the same set of city nodes (E)
and a model network constructed by
adding additional links to the MST (F).
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STOP: Why do you think this might be?

Simulated network



CHOOSING SENSORY ORGAN 
PRECURSOR CELLS IN 
DROSOPHILA

© 2024 Phillip Compeau



Development of Drosophila bristles

© 2024 Phillip Compeau

Drosophila 
melanogaster is covered 
in sensory bristles. 

During development, 
the fly has clusters of 
cells, some of which 
become sensory organ 
precursors (SOPs), 
which become bristles. 

https://www.biorxiv.org/content/10.1101/295485v1



Activating SOPs
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A Biological Solution to a Fundamental
Distributed Computing Problem
Yehuda Afek,1* Noga Alon,1,2* Omer Barad,3* Eran Hornstein,3 Naama Barkai,3† Ziv Bar-Joseph4†

Computational and biological systems are often distributed so that processors (cells) jointly solve
a task, without any of them receiving all inputs or observing all outputs. Maximal independent
set (MIS) selection is a fundamental distributed computing procedure that seeks to elect a set of
local leaders in a network. A variant of this problem is solved during the development of the
fly’s nervous system, when sensory organ precursor (SOP) cells are chosen. By studying SOP
selection, we derived a fast algorithm for MIS selection that combines two attractive features. First,
processors do not need to know their degree; second, it has an optimal message complexity
while only using one-bit messages. Our findings suggest that simple and efficient algorithms
can be developed on the basis of biologically derived insights.

Computational and mathematical methods
are extensively used to analyze and mod-
el biological systems (1–3). We provide

an example of the reverse of this strategy, in
which a biological process is used to derive a so-
lution to a long-standing computational problem.

In distributed computing, a large number
of processors jointly and distributively solve
a task, without any of the processors getting
all of the inputs or observing all of the outputs
(4). All large-scale computing efforts, from
web search to airplane control systems, use
distributed computing algorithms to reach agree-
ment, overcome failures, and decrease response
times. Biological processes are also distrib-
uted. Parallel pathways are used to transform
environmental signals to gene expression programs,
and several tasks are jointly performed by
independent cells without clear central control.

A long-standing distributed computing prob-
lem is that of electing a set of local leaders [the
maximal independent set (MIS)] in a network
of connected processors (4). The MIS is used
to determine a backbone for wireless networks,
for routing, and in several other network pro-
tocols (5). Formally, a MIS is defined as a set
of processors (nodes) A so that every node in
the network is either in A or directly connected
to a node in A, and no two nodes in A are con-
nected (Fig. 1A). Distributively electing a MIS
has been considered a challenging problem for
three decades (6). In particular, when all nodes
are initially identical constructing a MIS by using
deterministic algorithms is impossible (7), neces-
sitating probabilistic approaches. Luby (8) and
Alon et al. (9) presented fast probabilistic algo-
rithms for electing a MIS. In these algorithms,

nodes change their probability of being elected
based on the number of active neighbors they
have (nodes that are not yet connected to nodes
in A), and they require processors to send mes-
sages the sizes of which are a function of the num-
ber of nodes in the network. Recent methods were
proposed that partially remove either of these
assumptions (10, 11), but to date, no method has
been able to efficiently reduce message complex-
ity without assuming knowledge of the number
of neighbors. These are important requirements
for deployment of large, ad hoc sensor networks.

The selection of neural precursors during
the development of the nervous system resem-
bles the MIS election problem. The precursors
of the fly’s sensory bristles [sensory organ pre-
cursors (SOPs)] are selected during larvae and
pupae development from clusters of equivalent

cells. The selection of the small bristles pre-
cursors (microchaetes) (Fig. 1B) is initiated 8 to
10 hours after pupae formation, when several
elongated clusters of proneural cells, containing
between 20 and 30 cells each, appear at specific
positions in the imaginal discs, which will later
become the fly’s wings and notum. During the
next 3 hours, SOPs begin to appear within these
clusters. A cell that is selected as a SOP inhibits
its neighbors by expressing high levels of the
membrane-bound protein Delta, which binds
and activates the transmembrane receptor protein
Notch on adjacent cells (12). This lateral-inhibition
process is highly accurate (13), resulting in a
regularly spaced pattern in which each cell is
either selected as SOP or is inhibited by a neigh-
boring SOP (Fig. 1C). Thus, as in the MIS prob-
lem every proneural cluster must elect a set of
SOPs (A) so that every cell in the cluster is either
in A or connected to a SOP in A, and no two
SOPs in A are adjacent.

Extensive studies and mathematical model-
ing were used to define the molecular components
mediating SOP selection and the mechanism
underlying selection. These studies suggest sev-
eral similarities between the mechanism under-
lying SOP selection and current algorithms for
MIS election (14). First, the selection of a par-
ticular cell as a SOP is a random event governed
by an underlying stochastic process (15, 16).
Second, similar to computational requirements
SOP selection is probably constrained in time
because the default of all cluster cells is to be-
come SOPs unless they are inhibited (17). Lastly,
in computational algorithms (8, 9) processors
send messages only when they propose their

A

B

C

Fig. 1. Computational and biological overview.
(A) Illustration of a MIS. Edges represent com-
munication channels. (Left) Processors in a net-
work are initially identical. (Right) Following a
MIS selection algorithm, a set of local leaders
(blue computers) is elected so that each com-
puter is either a local leader or connected to a
local leader. No two local leaders can be neigh-
bors in the network. (B) The notum of an adult
fly, presenting the typical pattern of small and
large bristles (microchaetes and macrochaetes,
respectively). Microchaetes are surrounded by a

dashed line. (C) Illustration of SOPs in flies. (Left) Cells in a cluster are initially equivalent. (Right) Following a
SOP selection process, selected SOPs (blue cells) inhibit their physical neighbors (red cells), and so for the
cluster depicted in this figure, no more SOPs can be selected.
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When an SOP starts to 
appear, it expresses a 
membrane-bound protein 
Delta, which inhibits its 
neighboring cells. As a 
result, we cannot have 
neighboring SOPs. 

At right is a hypothetical 
coloring of SOPs (blue).
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Computational and biological systems are often distributed so that processors (cells) jointly solve
a task, without any of them receiving all inputs or observing all outputs. Maximal independent
set (MIS) selection is a fundamental distributed computing procedure that seeks to elect a set of
local leaders in a network. A variant of this problem is solved during the development of the
fly’s nervous system, when sensory organ precursor (SOP) cells are chosen. By studying SOP
selection, we derived a fast algorithm for MIS selection that combines two attractive features. First,
processors do not need to know their degree; second, it has an optimal message complexity
while only using one-bit messages. Our findings suggest that simple and efficient algorithms
can be developed on the basis of biologically derived insights.

Computational and mathematical methods
are extensively used to analyze and mod-
el biological systems (1–3). We provide

an example of the reverse of this strategy, in
which a biological process is used to derive a so-
lution to a long-standing computational problem.

In distributed computing, a large number
of processors jointly and distributively solve
a task, without any of the processors getting
all of the inputs or observing all of the outputs
(4). All large-scale computing efforts, from
web search to airplane control systems, use
distributed computing algorithms to reach agree-
ment, overcome failures, and decrease response
times. Biological processes are also distrib-
uted. Parallel pathways are used to transform
environmental signals to gene expression programs,
and several tasks are jointly performed by
independent cells without clear central control.

A long-standing distributed computing prob-
lem is that of electing a set of local leaders [the
maximal independent set (MIS)] in a network
of connected processors (4). The MIS is used
to determine a backbone for wireless networks,
for routing, and in several other network pro-
tocols (5). Formally, a MIS is defined as a set
of processors (nodes) A so that every node in
the network is either in A or directly connected
to a node in A, and no two nodes in A are con-
nected (Fig. 1A). Distributively electing a MIS
has been considered a challenging problem for
three decades (6). In particular, when all nodes
are initially identical constructing a MIS by using
deterministic algorithms is impossible (7), neces-
sitating probabilistic approaches. Luby (8) and
Alon et al. (9) presented fast probabilistic algo-
rithms for electing a MIS. In these algorithms,

nodes change their probability of being elected
based on the number of active neighbors they
have (nodes that are not yet connected to nodes
in A), and they require processors to send mes-
sages the sizes of which are a function of the num-
ber of nodes in the network. Recent methods were
proposed that partially remove either of these
assumptions (10, 11), but to date, no method has
been able to efficiently reduce message complex-
ity without assuming knowledge of the number
of neighbors. These are important requirements
for deployment of large, ad hoc sensor networks.

The selection of neural precursors during
the development of the nervous system resem-
bles the MIS election problem. The precursors
of the fly’s sensory bristles [sensory organ pre-
cursors (SOPs)] are selected during larvae and
pupae development from clusters of equivalent

cells. The selection of the small bristles pre-
cursors (microchaetes) (Fig. 1B) is initiated 8 to
10 hours after pupae formation, when several
elongated clusters of proneural cells, containing
between 20 and 30 cells each, appear at specific
positions in the imaginal discs, which will later
become the fly’s wings and notum. During the
next 3 hours, SOPs begin to appear within these
clusters. A cell that is selected as a SOP inhibits
its neighbors by expressing high levels of the
membrane-bound protein Delta, which binds
and activates the transmembrane receptor protein
Notch on adjacent cells (12). This lateral-inhibition
process is highly accurate (13), resulting in a
regularly spaced pattern in which each cell is
either selected as SOP or is inhibited by a neigh-
boring SOP (Fig. 1C). Thus, as in the MIS prob-
lem every proneural cluster must elect a set of
SOPs (A) so that every cell in the cluster is either
in A or connected to a SOP in A, and no two
SOPs in A are adjacent.

Extensive studies and mathematical model-
ing were used to define the molecular components
mediating SOP selection and the mechanism
underlying selection. These studies suggest sev-
eral similarities between the mechanism under-
lying SOP selection and current algorithms for
MIS election (14). First, the selection of a par-
ticular cell as a SOP is a random event governed
by an underlying stochastic process (15, 16).
Second, similar to computational requirements
SOP selection is probably constrained in time
because the default of all cluster cells is to be-
come SOPs unless they are inhibited (17). Lastly,
in computational algorithms (8, 9) processors
send messages only when they propose their
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Fig. 1. Computational and biological overview.
(A) Illustration of a MIS. Edges represent com-
munication channels. (Left) Processors in a net-
work are initially identical. (Right) Following a
MIS selection algorithm, a set of local leaders
(blue computers) is elected so that each com-
puter is either a local leader or connected to a
local leader. No two local leaders can be neigh-
bors in the network. (B) The notum of an adult
fly, presenting the typical pattern of small and
large bristles (microchaetes and macrochaetes,
respectively). Microchaetes are surrounded by a

dashed line. (C) Illustration of SOPs in flies. (Left) Cells in a cluster are initially equivalent. (Right) Following a
SOP selection process, selected SOPs (blue cells) inhibit their physical neighbors (red cells), and so for the
cluster depicted in this figure, no more SOPs can be selected.
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STOP: Thinking in terms of 
evolution, given a cluster 
of cells, what problem is 
the fly optimizing?
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Computational and mathematical methods
are extensively used to analyze and mod-
el biological systems (1–3). We provide

an example of the reverse of this strategy, in
which a biological process is used to derive a so-
lution to a long-standing computational problem.

In distributed computing, a large number
of processors jointly and distributively solve
a task, without any of the processors getting
all of the inputs or observing all of the outputs
(4). All large-scale computing efforts, from
web search to airplane control systems, use
distributed computing algorithms to reach agree-
ment, overcome failures, and decrease response
times. Biological processes are also distrib-
uted. Parallel pathways are used to transform
environmental signals to gene expression programs,
and several tasks are jointly performed by
independent cells without clear central control.

A long-standing distributed computing prob-
lem is that of electing a set of local leaders [the
maximal independent set (MIS)] in a network
of connected processors (4). The MIS is used
to determine a backbone for wireless networks,
for routing, and in several other network pro-
tocols (5). Formally, a MIS is defined as a set
of processors (nodes) A so that every node in
the network is either in A or directly connected
to a node in A, and no two nodes in A are con-
nected (Fig. 1A). Distributively electing a MIS
has been considered a challenging problem for
three decades (6). In particular, when all nodes
are initially identical constructing a MIS by using
deterministic algorithms is impossible (7), neces-
sitating probabilistic approaches. Luby (8) and
Alon et al. (9) presented fast probabilistic algo-
rithms for electing a MIS. In these algorithms,

nodes change their probability of being elected
based on the number of active neighbors they
have (nodes that are not yet connected to nodes
in A), and they require processors to send mes-
sages the sizes of which are a function of the num-
ber of nodes in the network. Recent methods were
proposed that partially remove either of these
assumptions (10, 11), but to date, no method has
been able to efficiently reduce message complex-
ity without assuming knowledge of the number
of neighbors. These are important requirements
for deployment of large, ad hoc sensor networks.

The selection of neural precursors during
the development of the nervous system resem-
bles the MIS election problem. The precursors
of the fly’s sensory bristles [sensory organ pre-
cursors (SOPs)] are selected during larvae and
pupae development from clusters of equivalent

cells. The selection of the small bristles pre-
cursors (microchaetes) (Fig. 1B) is initiated 8 to
10 hours after pupae formation, when several
elongated clusters of proneural cells, containing
between 20 and 30 cells each, appear at specific
positions in the imaginal discs, which will later
become the fly’s wings and notum. During the
next 3 hours, SOPs begin to appear within these
clusters. A cell that is selected as a SOP inhibits
its neighbors by expressing high levels of the
membrane-bound protein Delta, which binds
and activates the transmembrane receptor protein
Notch on adjacent cells (12). This lateral-inhibition
process is highly accurate (13), resulting in a
regularly spaced pattern in which each cell is
either selected as SOP or is inhibited by a neigh-
boring SOP (Fig. 1C). Thus, as in the MIS prob-
lem every proneural cluster must elect a set of
SOPs (A) so that every cell in the cluster is either
in A or connected to a SOP in A, and no two
SOPs in A are adjacent.

Extensive studies and mathematical model-
ing were used to define the molecular components
mediating SOP selection and the mechanism
underlying selection. These studies suggest sev-
eral similarities between the mechanism under-
lying SOP selection and current algorithms for
MIS election (14). First, the selection of a par-
ticular cell as a SOP is a random event governed
by an underlying stochastic process (15, 16).
Second, similar to computational requirements
SOP selection is probably constrained in time
because the default of all cluster cells is to be-
come SOPs unless they are inhibited (17). Lastly,
in computational algorithms (8, 9) processors
send messages only when they propose their
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Fig. 1. Computational and biological overview.
(A) Illustration of a MIS. Edges represent com-
munication channels. (Left) Processors in a net-
work are initially identical. (Right) Following a
MIS selection algorithm, a set of local leaders
(blue computers) is elected so that each com-
puter is either a local leader or connected to a
local leader. No two local leaders can be neigh-
bors in the network. (B) The notum of an adult
fly, presenting the typical pattern of small and
large bristles (microchaetes and macrochaetes,
respectively). Microchaetes are surrounded by a

dashed line. (C) Illustration of SOPs in flies. (Left) Cells in a cluster are initially equivalent. (Right) Following a
SOP selection process, selected SOPs (blue cells) inhibit their physical neighbors (red cells), and so for the
cluster depicted in this figure, no more SOPs can be selected.
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STOP: Thinking in terms of 
evolution, given a cluster 
of cells, what problem is 
the fly optimizing?

Answer: Turn “on” as 
many SOPs possible, 
subject to the constraint 
that neighbors cannot both 
be SOPs …
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Computational and biological systems are often distributed so that processors (cells) jointly solve
a task, without any of them receiving all inputs or observing all outputs. Maximal independent
set (MIS) selection is a fundamental distributed computing procedure that seeks to elect a set of
local leaders in a network. A variant of this problem is solved during the development of the
fly’s nervous system, when sensory organ precursor (SOP) cells are chosen. By studying SOP
selection, we derived a fast algorithm for MIS selection that combines two attractive features. First,
processors do not need to know their degree; second, it has an optimal message complexity
while only using one-bit messages. Our findings suggest that simple and efficient algorithms
can be developed on the basis of biologically derived insights.

Computational and mathematical methods
are extensively used to analyze and mod-
el biological systems (1–3). We provide

an example of the reverse of this strategy, in
which a biological process is used to derive a so-
lution to a long-standing computational problem.

In distributed computing, a large number
of processors jointly and distributively solve
a task, without any of the processors getting
all of the inputs or observing all of the outputs
(4). All large-scale computing efforts, from
web search to airplane control systems, use
distributed computing algorithms to reach agree-
ment, overcome failures, and decrease response
times. Biological processes are also distrib-
uted. Parallel pathways are used to transform
environmental signals to gene expression programs,
and several tasks are jointly performed by
independent cells without clear central control.

A long-standing distributed computing prob-
lem is that of electing a set of local leaders [the
maximal independent set (MIS)] in a network
of connected processors (4). The MIS is used
to determine a backbone for wireless networks,
for routing, and in several other network pro-
tocols (5). Formally, a MIS is defined as a set
of processors (nodes) A so that every node in
the network is either in A or directly connected
to a node in A, and no two nodes in A are con-
nected (Fig. 1A). Distributively electing a MIS
has been considered a challenging problem for
three decades (6). In particular, when all nodes
are initially identical constructing a MIS by using
deterministic algorithms is impossible (7), neces-
sitating probabilistic approaches. Luby (8) and
Alon et al. (9) presented fast probabilistic algo-
rithms for electing a MIS. In these algorithms,

nodes change their probability of being elected
based on the number of active neighbors they
have (nodes that are not yet connected to nodes
in A), and they require processors to send mes-
sages the sizes of which are a function of the num-
ber of nodes in the network. Recent methods were
proposed that partially remove either of these
assumptions (10, 11), but to date, no method has
been able to efficiently reduce message complex-
ity without assuming knowledge of the number
of neighbors. These are important requirements
for deployment of large, ad hoc sensor networks.

The selection of neural precursors during
the development of the nervous system resem-
bles the MIS election problem. The precursors
of the fly’s sensory bristles [sensory organ pre-
cursors (SOPs)] are selected during larvae and
pupae development from clusters of equivalent

cells. The selection of the small bristles pre-
cursors (microchaetes) (Fig. 1B) is initiated 8 to
10 hours after pupae formation, when several
elongated clusters of proneural cells, containing
between 20 and 30 cells each, appear at specific
positions in the imaginal discs, which will later
become the fly’s wings and notum. During the
next 3 hours, SOPs begin to appear within these
clusters. A cell that is selected as a SOP inhibits
its neighbors by expressing high levels of the
membrane-bound protein Delta, which binds
and activates the transmembrane receptor protein
Notch on adjacent cells (12). This lateral-inhibition
process is highly accurate (13), resulting in a
regularly spaced pattern in which each cell is
either selected as SOP or is inhibited by a neigh-
boring SOP (Fig. 1C). Thus, as in the MIS prob-
lem every proneural cluster must elect a set of
SOPs (A) so that every cell in the cluster is either
in A or connected to a SOP in A, and no two
SOPs in A are adjacent.

Extensive studies and mathematical model-
ing were used to define the molecular components
mediating SOP selection and the mechanism
underlying selection. These studies suggest sev-
eral similarities between the mechanism under-
lying SOP selection and current algorithms for
MIS election (14). First, the selection of a par-
ticular cell as a SOP is a random event governed
by an underlying stochastic process (15, 16).
Second, similar to computational requirements
SOP selection is probably constrained in time
because the default of all cluster cells is to be-
come SOPs unless they are inhibited (17). Lastly,
in computational algorithms (8, 9) processors
send messages only when they propose their
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Fig. 1. Computational and biological overview.
(A) Illustration of a MIS. Edges represent com-
munication channels. (Left) Processors in a net-
work are initially identical. (Right) Following a
MIS selection algorithm, a set of local leaders
(blue computers) is elected so that each com-
puter is either a local leader or connected to a
local leader. No two local leaders can be neigh-
bors in the network. (B) The notum of an adult
fly, presenting the typical pattern of small and
large bristles (microchaetes and macrochaetes,
respectively). Microchaetes are surrounded by a

dashed line. (C) Illustration of SOPs in flies. (Left) Cells in a cluster are initially equivalent. (Right) Following a
SOP selection process, selected SOPs (blue cells) inhibit their physical neighbors (red cells), and so for the
cluster depicted in this figure, no more SOPs can be selected.
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Nodes = cells; edges = adjacent cells.
Nodes are colored blue if an SOP, red if not.
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local leaders in a network. A variant of this problem is solved during the development of the
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selection, we derived a fast algorithm for MIS selection that combines two attractive features. First,
processors do not need to know their degree; second, it has an optimal message complexity
while only using one-bit messages. Our findings suggest that simple and efficient algorithms
can be developed on the basis of biologically derived insights.

Computational and mathematical methods
are extensively used to analyze and mod-
el biological systems (1–3). We provide

an example of the reverse of this strategy, in
which a biological process is used to derive a so-
lution to a long-standing computational problem.

In distributed computing, a large number
of processors jointly and distributively solve
a task, without any of the processors getting
all of the inputs or observing all of the outputs
(4). All large-scale computing efforts, from
web search to airplane control systems, use
distributed computing algorithms to reach agree-
ment, overcome failures, and decrease response
times. Biological processes are also distrib-
uted. Parallel pathways are used to transform
environmental signals to gene expression programs,
and several tasks are jointly performed by
independent cells without clear central control.

A long-standing distributed computing prob-
lem is that of electing a set of local leaders [the
maximal independent set (MIS)] in a network
of connected processors (4). The MIS is used
to determine a backbone for wireless networks,
for routing, and in several other network pro-
tocols (5). Formally, a MIS is defined as a set
of processors (nodes) A so that every node in
the network is either in A or directly connected
to a node in A, and no two nodes in A are con-
nected (Fig. 1A). Distributively electing a MIS
has been considered a challenging problem for
three decades (6). In particular, when all nodes
are initially identical constructing a MIS by using
deterministic algorithms is impossible (7), neces-
sitating probabilistic approaches. Luby (8) and
Alon et al. (9) presented fast probabilistic algo-
rithms for electing a MIS. In these algorithms,

nodes change their probability of being elected
based on the number of active neighbors they
have (nodes that are not yet connected to nodes
in A), and they require processors to send mes-
sages the sizes of which are a function of the num-
ber of nodes in the network. Recent methods were
proposed that partially remove either of these
assumptions (10, 11), but to date, no method has
been able to efficiently reduce message complex-
ity without assuming knowledge of the number
of neighbors. These are important requirements
for deployment of large, ad hoc sensor networks.

The selection of neural precursors during
the development of the nervous system resem-
bles the MIS election problem. The precursors
of the fly’s sensory bristles [sensory organ pre-
cursors (SOPs)] are selected during larvae and
pupae development from clusters of equivalent

cells. The selection of the small bristles pre-
cursors (microchaetes) (Fig. 1B) is initiated 8 to
10 hours after pupae formation, when several
elongated clusters of proneural cells, containing
between 20 and 30 cells each, appear at specific
positions in the imaginal discs, which will later
become the fly’s wings and notum. During the
next 3 hours, SOPs begin to appear within these
clusters. A cell that is selected as a SOP inhibits
its neighbors by expressing high levels of the
membrane-bound protein Delta, which binds
and activates the transmembrane receptor protein
Notch on adjacent cells (12). This lateral-inhibition
process is highly accurate (13), resulting in a
regularly spaced pattern in which each cell is
either selected as SOP or is inhibited by a neigh-
boring SOP (Fig. 1C). Thus, as in the MIS prob-
lem every proneural cluster must elect a set of
SOPs (A) so that every cell in the cluster is either
in A or connected to a SOP in A, and no two
SOPs in A are adjacent.

Extensive studies and mathematical model-
ing were used to define the molecular components
mediating SOP selection and the mechanism
underlying selection. These studies suggest sev-
eral similarities between the mechanism under-
lying SOP selection and current algorithms for
MIS election (14). First, the selection of a par-
ticular cell as a SOP is a random event governed
by an underlying stochastic process (15, 16).
Second, similar to computational requirements
SOP selection is probably constrained in time
because the default of all cluster cells is to be-
come SOPs unless they are inhibited (17). Lastly,
in computational algorithms (8, 9) processors
send messages only when they propose their
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Fig. 1. Computational and biological overview.
(A) Illustration of a MIS. Edges represent com-
munication channels. (Left) Processors in a net-
work are initially identical. (Right) Following a
MIS selection algorithm, a set of local leaders
(blue computers) is elected so that each com-
puter is either a local leader or connected to a
local leader. No two local leaders can be neigh-
bors in the network. (B) The notum of an adult
fly, presenting the typical pattern of small and
large bristles (microchaetes and macrochaetes,
respectively). Microchaetes are surrounded by a

dashed line. (C) Illustration of SOPs in flies. (Left) Cells in a cluster are initially equivalent. (Right) Following a
SOP selection process, selected SOPs (blue cells) inhibit their physical neighbors (red cells), and so for the
cluster depicted in this figure, no more SOPs can be selected.
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Exercise: Formulate a network problem 
corresponding to finding as many SOPs as possible.
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A set of nodes in a graph is an independent set if 
there are no edges connecting two nodes in the set.

Maximum Independent Set Problem:
• Input: A graph.
• Output: An independent set maximizing the 

number of nodes over all independent sets.
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A set of nodes in a graph is an independent set if 
there are no edges connecting two nodes in the set.

Maximum Independent Set Problem:
• Input: A graph.
• Output: An independent set maximizing the 

number of nodes over all independent sets.

This problem is NP-hard, and it’s fair to assume that 
Drosophila is not solving it to pick SOPs…



This network problem is not new
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A set of nodes in a graph is an independent set if 
there are no edges connecting two nodes in the set.

Maximal Independent Set Problem:
• Input: A graph.
• Output: An independent set that is not a subset of 

another independent set.

Note: The problem becomes tractable if we change 
“maximum” to “maximal”.



This network problem is not new

© 2024 Phillip Compeau

A set of nodes in a graph is an independent set if 
there are no edges connecting two nodes in the set.

Maximal Independent Set Problem:
• Input: A graph.
• Output: An independent set that is not a subset of 

another independent set.

STOP: How can we solve this problem?
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 S ß empty set
 while there are still nodes in G
  select an arbitrary node v in G
  append v to S
  remove v and its neighbors from G
 return S



A sequential optimal solution to this 
problem is “trivial”…
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MIS(G)
 S ß empty set
 while there are still nodes in G
  select an arbitrary node v in G
  append v to S
  remove v and its neighbors from G
 return S

But nature solves this problem in a distributed 
manner in which individual cells have limited info.



A lot of lab work was done to identify 
the following algorithm
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Each node v starts as OFF. Over n steps:
• v turns ON with probability p, which 

increases over time.
• If v is ON, then it broadcasts this (1-bit) 

message to its neighbors.
• If v is ON:

– If v did not receive a message, then v becomes 
an SOP, broadcasts to its neighbors, and the 
algorithm halts for v.

– Else, turn v OFF and continue.

• If v is OFF and received an ON message in 
second broadcast, then v remains OFF 
permanently, and the algorithm halts.
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currently under consideration.
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permanently and are no longer 
considered.
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which can inform non-biological 
applications (e.g., mesh Wi-Fi).



Looking to nature reveals elegant 
solutions outside normal CS thinking
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Key point: This is a new solution to an 
old, well-researched problem in CS, 
which can inform non-biological 
applications (e.g., mesh Wi-Fi).

Classic CS view:
• all global info is 

known.
• communication is 

free.
• problems solved 

exactly.

Nature’s view:
• limited local 

information.
• communication is 

simple.
• heuristics and 

probability rule!



NOVEL SMELL DETECTION IN 
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Detecting New Objects
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“Is this image / 
smell / taste / 
sound new?”

This is the same 
question that 
many database 
search algorithms 
ask. Courtesy: Michael Rivera



Detecting New Objects
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“Is this image / 
smell / taste / 
sound new?”

And both 
algorithms and 
our brains can be 
fooled …

Courtesy: Michael Rivera
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Novel Query Problem:
• Input: a set of n objects S and an object x.
• Output: “Yes” if x is in S, and “no” otherwise.

STOP: How could we solve this problem?
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Novel Query Problem:
• Input: a set of n objects S and an object x.
• Output: “Yes” if x is in S, and “no” otherwise.

STOP: How could we solve this problem?

Answer: Maintain S as a sorted list, and given x, 
perform binary search (as we did with the suffix 
array). Runtime: O(log(|S|)). We’re done!  



The Novel Query Problem
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Novel Query Problem:
• Input: a set of n objects S and an object x.
• Output: “Yes” if x is in S, and “no” otherwise.

Yet we know that this is not how our brains work 
(memories fade). S can simply be too large to store.

Answer: Maintain S as a sorted list, and given x, 
perform binary search (as we did with the suffix 
array). Runtime: O(log(|S|)). We’re done!  



The Novel Query Problem
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Novel Query Problem:
• Input: a set of n objects S and an object x.
• Output: “Yes” if x is in S, and “no” otherwise.

We will use a Bloom filter, a database of m > |S| 
bits used to detect membership in S heuristically.

0 1 2 3 4 5 6 7 8 9
1 1 1 1 1 1 1 1 1 1
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For a small value k, we have k hash functions that 
assign members of S to {0, 1, 2, …, m – 1}.
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For a small value k, we have k hash functions that 
assign members of S to {0, 1, 2, …, m – 1}.

For a given s in S, we set value at index i of the 
Bloom filter to 0 if there is some j with hj(s) = i.
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For a small value k, we have k hash functions that 
assign members of S to {0, 1, 2, …, m – 1}.

0 1 2 3 4 5 6 7 8 9
1 0 1 1 1 1 0 1 0 1

h1(“wet dog”)=8; h2(“wet dog”)=1; h3(“wet dog”)=6 

For a given s in S, we set value at index i of the 
Bloom filter to 0 if there is some j with hj(s) = i.
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For a small value k, we have k hash functions that 
assign members of S to {0, 1, 2, …, m – 1}.

h1(“fish”) = 4;

For a given s in S, we set value at index i of the 
Bloom filter to 0 if there is some j with hj(s) = i.

0 1 2 3 4 5 6 7 8 9
1 0 1 1 0 1 0 1 0 1



Bloom filters rely on hash functions
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For a small value k, we have k hash functions that 
assign members of S to {0, 1, 2, …, m – 1}.

h1(“fish”) = 4; h2(“fish”) = 3;

For a given s in S, we set value at index i of the 
Bloom filter to 0 if there is some j with hj(s) = i.

0 1 2 3 4 5 6 7 8 9
1 0 1 0 0 1 0 1 0 1



Bloom filters rely on hash functions
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For a small value k, we have k hash functions that 
assign members of S to {0, 1, 2, …, m – 1}.

For a given s in S, we set value at index i of the 
Bloom filter to 0 if there is some j with hj(s) = i.

0 1 2 3 4 5 6 7 8 9
1 0 1 0 0 1 0 1 0 1

h1(“fish”) = 4; h2(“fish”) = 3; h3(“fish”) = 1 

Already zero!



Using a Bloom filter to determine 
novelty
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STOP: How did we know that “fish” was a new 
smell?

0 1 2 3 4 5 6 7 8 9
1 0 1 0 0 1 0 1 0 1
Already zero!
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STOP: How did we know that “fish” was a new 
smell?

0 1 2 3 4 5 6 7 8 9
1 0 1 0 0 1 0 1 0 1
Already zero!

Answer: One of the hash functions produced a 
value that was equal to 1 in the hash table.
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STOP: What happens if we have the new smell 
h1(“Bradford pear”) = 6; h2(“Bradford pear”) = 4; 
h3(“Bradford pear”) = 3?

0 1 2 3 4 5 6 7 8 9
1 0 1 0 0 1 0 1 0 1
Already zero!
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0 1 2 3 4 5 6 7 8 9
1 0 1 0 0 1 0 1 0 1
Already zero!

Answer: The values at indices 6, 4, and 3 are all 
zero, so we conclude that we’ve already smelled 
this smell (which is not right in this case)!

STOP: What happens if we have the new smell 
h1(“Bradford pear”) = 6; h2(“Bradford pear”) = 4; 
h3(“Bradford pear”) = 3?
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0 1 2 3 4 5 6 7 8 9
1 0 1 0 0 1 0 1 0 1
Already zero!

Theorem: if hashing x produces any Bloom filter 
values = 1, then x is not in S. (But if all values are 0, 
all we can say is that x is possibly already in S).

Novel Query Problem:
• Input: a set of n objects S and an object x.
• Output: “Yes” if x is in S, and “no” otherwise.
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⋮

50 olfactory neurons

⋮

~2K Kenyon cells (KC)

Connections are 
“sparse”: a KC only 
receives input from 
~6 neurons.

Connections are 
“random”: there is 
no correlation 
between KCs’ 
incoming edges.
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⋮

50 olfactory neurons

⋮

~2K Kenyon cells (KC)

A smell excites a 
subset of the 
neurons, and a KC is 
excited if enough of 
its incoming neurons 
are excited.

A smell typically 
excites only ~5% 
(100) of the KCs.

?
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⋮

~2K Kenyon cells (KC)

⋮

34 Mushroom body
output neurons (MBON)

An MBON may have 
indegree ~400 from 
the KCs.

So an MBON will get 
an “On” message 
from ~20 KCs for a 
given smell.
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⋮

~2K Kenyon cells (KC)

Hattori et al. 2014: A 
single MBON, 
MBON-α′3, serves as 
the fly’s recognition 
of a smell’s novelty. 
Let’s see how!

MBON-α′3
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⋮

~2K Kenyon cells (KC)

1

1

1

1

1

1

.

.

.

1

1

Key point: MBON-α′3 
can be represented as 
a Bloom filter w of 
length m ~ 400 
initialized with all 
w(i) = 1. Here, w(i) is 
the weight of the i-th 
synapse (edge) into 
the MBON.
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⋮

~2K Kenyon cells (KC)

.2

1

1

1

1

1

.

.

.

1

1

If i-th incoming KC is 
“on”, set w(i) = w(i) · 
𝛿 for some 𝛿 > 0.

MBON-α′3
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⋮

~2K Kenyon cells (KC)

.2

1

1

1

1

1

.

.

.

1

1

If i-th incoming KC is 
“on”, set w(i) = w(i) · 
𝛿 for some 𝛿 > 0.

If i-th incoming KC is 
“off”, set w(i) = 
min{1, w(i) + ε} for 
some constant ε > 0.

MBON-α′3
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⋮

~2K Kenyon cells (KC)

Over time, as more 
odors come in, the 
output neuron will 
change weight of 
synapses from KCs.

.7

.4

.9

1

.7

.1

.3

.

.

.

.5

STOP: What would a 
“newish” odor mean 
in terms of a given 
MBON’s Bloom filter?

MBON-α′3
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⋮

~2K Kenyon cells (KC)

Over time, as more 
odors come in, the 
output neuron will 
change weight of 
synapses from KCs.

.7

.4

.9

1

.7
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.

.

.5

Answer: One that 
fires KCs with higher 
synapse weights (i.e., 
Bloom filter values).

MBON-α′3
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⋮

~2K Kenyon cells (KC)
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.4

.9

1

.7

.1

.3

.

.

.

.5

Answer: One that 
fires KCs with higher 
synapse weights (i.e., 
Bloom filter values).

So we can measure a 
”confidence” that a 
smell is new by 
summing weights and 
dividing by k.

MBON-α′3
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1. Time-sensitive (memory of old smells “fades”)
2. Continuous weights in [0,1] give more info
3. Outperforms other approaches (including 

traditional Bloom filter) for new query detection!


